Properties

Label 850.2.c
Level $850$
Weight $2$
Character orbit 850.c
Rep. character $\chi_{850}(749,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $10$
Sturm bound $270$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(270\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(850, [\chi])\).

Total New Old
Modular forms 148 24 124
Cusp forms 124 24 100
Eisenstein series 24 0 24

Trace form

\( 24 q - 24 q^{4} + 4 q^{6} - 24 q^{9} + 4 q^{11} - 8 q^{14} + 24 q^{16} + 8 q^{19} + 8 q^{21} - 4 q^{24} + 8 q^{26} + 20 q^{29} - 40 q^{31} + 4 q^{34} + 24 q^{36} + 64 q^{39} - 24 q^{41} - 4 q^{44} + 24 q^{46}+ \cdots + 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(850, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
850.2.c.a 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 170.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+3 i q^{3}-q^{4}-3 q^{6}-2 i q^{7}+\cdots\)
850.2.c.b 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 34.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+2 i q^{3}-q^{4}-2 q^{6}-4 i q^{7}+\cdots\)
850.2.c.c 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 170.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}-q^{6}-2 i q^{7}+\cdots\)
850.2.c.d 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 850.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}-q^{6}+5 i q^{7}+\cdots\)
850.2.c.e 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 170.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}+q^{6}-2 i q^{7}+\cdots\)
850.2.c.f 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 170.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+2 i q^{3}-q^{4}+2 q^{6}-2 i q^{7}+\cdots\)
850.2.c.g 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 170.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+2 i q^{3}-q^{4}+2 q^{6}+2 i q^{7}+\cdots\)
850.2.c.h 850.c 5.b $2$ $6.787$ \(\Q(\sqrt{-1}) \) None 850.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+3 i q^{3}-q^{4}+3 q^{6}-i q^{7}+\cdots\)
850.2.c.i 850.c 5.b $4$ $6.787$ \(\Q(i, \sqrt{17})\) None 170.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+\beta _{1}q^{3}-q^{4}+(-1+\beta _{3})q^{6}+\cdots\)
850.2.c.j 850.c 5.b $4$ $6.787$ \(\Q(\zeta_{8})\) None 850.2.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{2}+(\beta_{2}+\beta_1)q^{3}-q^{4}+(\beta_{3}+1)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(850, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(850, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 2}\)