Properties

Label 5440.2.a.bd
Level $5440$
Weight $2$
Character orbit 5440.a
Self dual yes
Analytic conductor $43.439$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5440,2,Mod(1,5440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5440.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5440 = 2^{6} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5440.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,-2,0,-2,0,3,0,-8,0,-5,0,1,0,2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4386186996\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - q^{5} - 2 \beta q^{7} + (\beta + 1) q^{9} - 4 q^{11} + ( - \beta - 2) q^{13} + \beta q^{15} + q^{17} - \beta q^{19} + (2 \beta + 8) q^{21} + 2 \beta q^{23} + q^{25} + (\beta - 4) q^{27} + \cdots + ( - 4 \beta - 4) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} - 2 q^{7} + 3 q^{9} - 8 q^{11} - 5 q^{13} + q^{15} + 2 q^{17} - q^{19} + 18 q^{21} + 2 q^{23} + 2 q^{25} - 7 q^{27} - q^{29} + 9 q^{31} + 4 q^{33} + 2 q^{35} + 6 q^{37} + 11 q^{39}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 −2.56155 0 −1.00000 0 −5.12311 0 3.56155 0
1.2 0 1.56155 0 −1.00000 0 3.12311 0 −0.561553 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5440.2.a.bd 2
4.b odd 2 1 5440.2.a.bj 2
8.b even 2 1 1360.2.a.m 2
8.d odd 2 1 170.2.a.f 2
24.f even 2 1 1530.2.a.r 2
40.e odd 2 1 850.2.a.n 2
40.f even 2 1 6800.2.a.be 2
40.k even 4 2 850.2.c.i 4
56.e even 2 1 8330.2.a.bq 2
120.m even 2 1 7650.2.a.de 2
136.e odd 2 1 2890.2.a.u 2
136.j odd 4 2 2890.2.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.f 2 8.d odd 2 1
850.2.a.n 2 40.e odd 2 1
850.2.c.i 4 40.k even 4 2
1360.2.a.m 2 8.b even 2 1
1530.2.a.r 2 24.f even 2 1
2890.2.a.u 2 136.e odd 2 1
2890.2.b.i 4 136.j odd 4 2
5440.2.a.bd 2 1.a even 1 1 trivial
5440.2.a.bj 2 4.b odd 2 1
6800.2.a.be 2 40.f even 2 1
7650.2.a.de 2 120.m even 2 1
8330.2.a.bq 2 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5440))\):

\( T_{3}^{2} + T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 16 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 5T_{13} + 2 \) Copy content Toggle raw display
\( T_{19}^{2} + T_{19} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$29$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$31$ \( T^{2} - 9T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$41$ \( T^{2} + 8T - 52 \) Copy content Toggle raw display
$43$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$47$ \( T^{2} + 9T + 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T - 2 \) Copy content Toggle raw display
$59$ \( T^{2} + 13T + 4 \) Copy content Toggle raw display
$61$ \( T^{2} + 19T + 86 \) Copy content Toggle raw display
$67$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$71$ \( T^{2} - 21T + 72 \) Copy content Toggle raw display
$73$ \( T^{2} - 7T - 94 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$89$ \( T^{2} + 7T - 26 \) Copy content Toggle raw display
$97$ \( T^{2} - 9T - 18 \) Copy content Toggle raw display
show more
show less