Properties

Label 8330.2.a.bq
Level $8330$
Weight $2$
Character orbit 8330.a
Self dual yes
Analytic conductor $66.515$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8330,2,Mod(1,8330)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8330, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8330.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8330.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,1,2,-2,1,0,2,3,-2,-8,1,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.5153848837\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta q^{3} + q^{4} - q^{5} + \beta q^{6} + q^{8} + (\beta + 1) q^{9} - q^{10} - 4 q^{11} + \beta q^{12} + ( - \beta - 2) q^{13} - \beta q^{15} + q^{16} - q^{17} + (\beta + 1) q^{18} + \cdots + ( - 4 \beta - 4) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} + q^{6} + 2 q^{8} + 3 q^{9} - 2 q^{10} - 8 q^{11} + q^{12} - 5 q^{13} - q^{15} + 2 q^{16} - 2 q^{17} + 3 q^{18} + q^{19} - 2 q^{20} - 8 q^{22} - 2 q^{23} + q^{24}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
1.00000 −1.56155 1.00000 −1.00000 −1.56155 0 1.00000 −0.561553 −1.00000
1.2 1.00000 2.56155 1.00000 −1.00000 2.56155 0 1.00000 3.56155 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8330.2.a.bq 2
7.b odd 2 1 170.2.a.f 2
21.c even 2 1 1530.2.a.r 2
28.d even 2 1 1360.2.a.m 2
35.c odd 2 1 850.2.a.n 2
35.f even 4 2 850.2.c.i 4
56.e even 2 1 5440.2.a.bd 2
56.h odd 2 1 5440.2.a.bj 2
105.g even 2 1 7650.2.a.de 2
119.d odd 2 1 2890.2.a.u 2
119.f odd 4 2 2890.2.b.i 4
140.c even 2 1 6800.2.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.f 2 7.b odd 2 1
850.2.a.n 2 35.c odd 2 1
850.2.c.i 4 35.f even 4 2
1360.2.a.m 2 28.d even 2 1
1530.2.a.r 2 21.c even 2 1
2890.2.a.u 2 119.d odd 2 1
2890.2.b.i 4 119.f odd 4 2
5440.2.a.bd 2 56.e even 2 1
5440.2.a.bj 2 56.h odd 2 1
6800.2.a.be 2 140.c even 2 1
7650.2.a.de 2 105.g even 2 1
8330.2.a.bq 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8330))\):

\( T_{3}^{2} - T_{3} - 4 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 5T_{13} + 2 \) Copy content Toggle raw display
\( T_{19}^{2} - T_{19} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 5T + 2 \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$29$ \( T^{2} - T - 38 \) Copy content Toggle raw display
$31$ \( T^{2} - 9T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$41$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$43$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$47$ \( T^{2} + 9T + 16 \) Copy content Toggle raw display
$53$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$59$ \( T^{2} - 13T + 4 \) Copy content Toggle raw display
$61$ \( T^{2} + 19T + 86 \) Copy content Toggle raw display
$67$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$71$ \( T^{2} + 21T + 72 \) Copy content Toggle raw display
$73$ \( T^{2} + 7T - 94 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$89$ \( T^{2} - 7T - 26 \) Copy content Toggle raw display
$97$ \( T^{2} + 9T - 18 \) Copy content Toggle raw display
show more
show less