Defining parameters
Level: | \( N \) | \(=\) | \( 8330 = 2 \cdot 5 \cdot 7^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8330.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 75 \) | ||
Sturm bound: | \(3024\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(11\), \(13\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8330))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1544 | 216 | 1328 |
Cusp forms | 1481 | 216 | 1265 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(90\) | \(10\) | \(80\) | \(87\) | \(10\) | \(77\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(102\) | \(16\) | \(86\) | \(98\) | \(16\) | \(82\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(102\) | \(17\) | \(85\) | \(98\) | \(17\) | \(81\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(92\) | \(11\) | \(81\) | \(88\) | \(11\) | \(77\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(98\) | \(14\) | \(84\) | \(94\) | \(14\) | \(80\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(94\) | \(12\) | \(82\) | \(90\) | \(12\) | \(78\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(94\) | \(14\) | \(80\) | \(90\) | \(14\) | \(76\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(100\) | \(14\) | \(86\) | \(96\) | \(14\) | \(82\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(100\) | \(15\) | \(85\) | \(96\) | \(15\) | \(81\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(92\) | \(9\) | \(83\) | \(88\) | \(9\) | \(79\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(94\) | \(14\) | \(80\) | \(90\) | \(14\) | \(76\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(100\) | \(17\) | \(83\) | \(96\) | \(17\) | \(79\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(96\) | \(9\) | \(87\) | \(92\) | \(9\) | \(83\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(96\) | \(19\) | \(77\) | \(92\) | \(19\) | \(73\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(98\) | \(17\) | \(81\) | \(94\) | \(17\) | \(77\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(96\) | \(8\) | \(88\) | \(92\) | \(8\) | \(84\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(748\) | \(87\) | \(661\) | \(717\) | \(87\) | \(630\) | \(31\) | \(0\) | \(31\) | ||||||
Minus space | \(-\) | \(796\) | \(129\) | \(667\) | \(764\) | \(129\) | \(635\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8330))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8330))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8330)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(490))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(595))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(833))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1190))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1666))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4165))\)\(^{\oplus 2}\)