L(s) = 1 | − 3-s − 2·5-s − 2·7-s − 9-s − 8·11-s − 5·13-s + 2·15-s + 2·17-s − 19-s + 2·21-s + 2·23-s + 3·25-s − 29-s + 9·31-s + 8·33-s + 4·35-s + 6·37-s + 5·39-s − 8·41-s + 6·43-s + 2·45-s − 9·47-s + 6·49-s − 2·51-s − 3·53-s + 16·55-s + 57-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s − 0.755·7-s − 1/3·9-s − 2.41·11-s − 1.38·13-s + 0.516·15-s + 0.485·17-s − 0.229·19-s + 0.436·21-s + 0.417·23-s + 3/5·25-s − 0.185·29-s + 1.61·31-s + 1.39·33-s + 0.676·35-s + 0.986·37-s + 0.800·39-s − 1.24·41-s + 0.914·43-s + 0.298·45-s − 1.31·47-s + 6/7·49-s − 0.280·51-s − 0.412·53-s + 2.15·55-s + 0.132·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.915818215640767738140639144078, −7.56907044341038213506621207088, −7.51261872699765058931677440007, −6.96444181398855444226179090881, −6.44035850333500238324147369640, −6.30154912927293688576293339952, −5.80037678574700767424860896140, −5.37128125423571993484051531186, −4.99377789945894280707155255739, −4.88300652383944695049138906403, −4.42274679002303989733615722743, −3.97640421853068490492344353127, −3.21920276248370840318315189279, −3.07901965739458561986254309331, −2.66625642731110859057086656108, −2.39948126190682557041498779706, −1.59550704880028086857708408658, −0.73802318591659891450630980638, 0, 0,
0.73802318591659891450630980638, 1.59550704880028086857708408658, 2.39948126190682557041498779706, 2.66625642731110859057086656108, 3.07901965739458561986254309331, 3.21920276248370840318315189279, 3.97640421853068490492344353127, 4.42274679002303989733615722743, 4.88300652383944695049138906403, 4.99377789945894280707155255739, 5.37128125423571993484051531186, 5.80037678574700767424860896140, 6.30154912927293688576293339952, 6.44035850333500238324147369640, 6.96444181398855444226179090881, 7.51261872699765058931677440007, 7.56907044341038213506621207088, 7.915818215640767738140639144078