Properties

Label 8450.2.a.da.1.7
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,7,9,0,7,1,9,8,0,4,7,0,1,0,9,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.430845\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.55203 q^{3} +1.00000 q^{4} +2.55203 q^{6} +1.86919 q^{7} +1.00000 q^{8} +3.51288 q^{9} -4.42801 q^{11} +2.55203 q^{12} +1.86919 q^{14} +1.00000 q^{16} +4.16688 q^{17} +3.51288 q^{18} -4.52055 q^{19} +4.77024 q^{21} -4.42801 q^{22} +7.56163 q^{23} +2.55203 q^{24} +1.30889 q^{27} +1.86919 q^{28} +3.22160 q^{29} +8.51124 q^{31} +1.00000 q^{32} -11.3004 q^{33} +4.16688 q^{34} +3.51288 q^{36} -0.488194 q^{37} -4.52055 q^{38} +10.9095 q^{41} +4.77024 q^{42} +4.38872 q^{43} -4.42801 q^{44} +7.56163 q^{46} -12.5176 q^{47} +2.55203 q^{48} -3.50612 q^{49} +10.6340 q^{51} -0.191394 q^{53} +1.30889 q^{54} +1.86919 q^{56} -11.5366 q^{57} +3.22160 q^{58} +11.2785 q^{59} +6.28685 q^{61} +8.51124 q^{62} +6.56625 q^{63} +1.00000 q^{64} -11.3004 q^{66} +5.69785 q^{67} +4.16688 q^{68} +19.2975 q^{69} -10.1438 q^{71} +3.51288 q^{72} -4.10663 q^{73} -0.488194 q^{74} -4.52055 q^{76} -8.27681 q^{77} -2.33064 q^{79} -7.19832 q^{81} +10.9095 q^{82} +2.49654 q^{83} +4.77024 q^{84} +4.38872 q^{86} +8.22163 q^{87} -4.42801 q^{88} -11.9415 q^{89} +7.56163 q^{92} +21.7210 q^{93} -12.5176 q^{94} +2.55203 q^{96} -1.91384 q^{97} -3.50612 q^{98} -15.5551 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} + 7 q^{3} + 9 q^{4} + 7 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} + 4 q^{11} + 7 q^{12} + q^{14} + 9 q^{16} + 12 q^{17} + 8 q^{18} + 6 q^{19} + 8 q^{21} + 4 q^{22} + 11 q^{23} + 7 q^{24} + 34 q^{27}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.55203 1.47342 0.736709 0.676210i \(-0.236379\pi\)
0.736709 + 0.676210i \(0.236379\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.55203 1.04186
\(7\) 1.86919 0.706488 0.353244 0.935531i \(-0.385078\pi\)
0.353244 + 0.935531i \(0.385078\pi\)
\(8\) 1.00000 0.353553
\(9\) 3.51288 1.17096
\(10\) 0 0
\(11\) −4.42801 −1.33510 −0.667548 0.744567i \(-0.732656\pi\)
−0.667548 + 0.744567i \(0.732656\pi\)
\(12\) 2.55203 0.736709
\(13\) 0 0
\(14\) 1.86919 0.499563
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.16688 1.01062 0.505308 0.862939i \(-0.331379\pi\)
0.505308 + 0.862939i \(0.331379\pi\)
\(18\) 3.51288 0.827994
\(19\) −4.52055 −1.03709 −0.518543 0.855052i \(-0.673525\pi\)
−0.518543 + 0.855052i \(0.673525\pi\)
\(20\) 0 0
\(21\) 4.77024 1.04095
\(22\) −4.42801 −0.944056
\(23\) 7.56163 1.57671 0.788354 0.615221i \(-0.210933\pi\)
0.788354 + 0.615221i \(0.210933\pi\)
\(24\) 2.55203 0.520932
\(25\) 0 0
\(26\) 0 0
\(27\) 1.30889 0.251895
\(28\) 1.86919 0.353244
\(29\) 3.22160 0.598236 0.299118 0.954216i \(-0.403308\pi\)
0.299118 + 0.954216i \(0.403308\pi\)
\(30\) 0 0
\(31\) 8.51124 1.52866 0.764332 0.644823i \(-0.223069\pi\)
0.764332 + 0.644823i \(0.223069\pi\)
\(32\) 1.00000 0.176777
\(33\) −11.3004 −1.96715
\(34\) 4.16688 0.714614
\(35\) 0 0
\(36\) 3.51288 0.585480
\(37\) −0.488194 −0.0802585 −0.0401293 0.999194i \(-0.512777\pi\)
−0.0401293 + 0.999194i \(0.512777\pi\)
\(38\) −4.52055 −0.733330
\(39\) 0 0
\(40\) 0 0
\(41\) 10.9095 1.70378 0.851888 0.523724i \(-0.175458\pi\)
0.851888 + 0.523724i \(0.175458\pi\)
\(42\) 4.77024 0.736065
\(43\) 4.38872 0.669274 0.334637 0.942347i \(-0.391386\pi\)
0.334637 + 0.942347i \(0.391386\pi\)
\(44\) −4.42801 −0.667548
\(45\) 0 0
\(46\) 7.56163 1.11490
\(47\) −12.5176 −1.82587 −0.912937 0.408101i \(-0.866191\pi\)
−0.912937 + 0.408101i \(0.866191\pi\)
\(48\) 2.55203 0.368354
\(49\) −3.50612 −0.500874
\(50\) 0 0
\(51\) 10.6340 1.48906
\(52\) 0 0
\(53\) −0.191394 −0.0262900 −0.0131450 0.999914i \(-0.504184\pi\)
−0.0131450 + 0.999914i \(0.504184\pi\)
\(54\) 1.30889 0.178117
\(55\) 0 0
\(56\) 1.86919 0.249781
\(57\) −11.5366 −1.52806
\(58\) 3.22160 0.423016
\(59\) 11.2785 1.46833 0.734166 0.678970i \(-0.237573\pi\)
0.734166 + 0.678970i \(0.237573\pi\)
\(60\) 0 0
\(61\) 6.28685 0.804949 0.402474 0.915431i \(-0.368150\pi\)
0.402474 + 0.915431i \(0.368150\pi\)
\(62\) 8.51124 1.08093
\(63\) 6.56625 0.827270
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −11.3004 −1.39099
\(67\) 5.69785 0.696103 0.348051 0.937475i \(-0.386843\pi\)
0.348051 + 0.937475i \(0.386843\pi\)
\(68\) 4.16688 0.505308
\(69\) 19.2975 2.32315
\(70\) 0 0
\(71\) −10.1438 −1.20384 −0.601922 0.798555i \(-0.705598\pi\)
−0.601922 + 0.798555i \(0.705598\pi\)
\(72\) 3.51288 0.413997
\(73\) −4.10663 −0.480645 −0.240323 0.970693i \(-0.577253\pi\)
−0.240323 + 0.970693i \(0.577253\pi\)
\(74\) −0.488194 −0.0567514
\(75\) 0 0
\(76\) −4.52055 −0.518543
\(77\) −8.27681 −0.943230
\(78\) 0 0
\(79\) −2.33064 −0.262217 −0.131108 0.991368i \(-0.541854\pi\)
−0.131108 + 0.991368i \(0.541854\pi\)
\(80\) 0 0
\(81\) −7.19832 −0.799813
\(82\) 10.9095 1.20475
\(83\) 2.49654 0.274031 0.137016 0.990569i \(-0.456249\pi\)
0.137016 + 0.990569i \(0.456249\pi\)
\(84\) 4.77024 0.520476
\(85\) 0 0
\(86\) 4.38872 0.473248
\(87\) 8.22163 0.881451
\(88\) −4.42801 −0.472028
\(89\) −11.9415 −1.26579 −0.632896 0.774237i \(-0.718134\pi\)
−0.632896 + 0.774237i \(0.718134\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.56163 0.788354
\(93\) 21.7210 2.25236
\(94\) −12.5176 −1.29109
\(95\) 0 0
\(96\) 2.55203 0.260466
\(97\) −1.91384 −0.194322 −0.0971608 0.995269i \(-0.530976\pi\)
−0.0971608 + 0.995269i \(0.530976\pi\)
\(98\) −3.50612 −0.354171
\(99\) −15.5551 −1.56334
\(100\) 0 0
\(101\) 16.3092 1.62282 0.811411 0.584476i \(-0.198700\pi\)
0.811411 + 0.584476i \(0.198700\pi\)
\(102\) 10.6340 1.05292
\(103\) 14.5800 1.43661 0.718305 0.695728i \(-0.244918\pi\)
0.718305 + 0.695728i \(0.244918\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.191394 −0.0185898
\(107\) −11.4218 −1.10418 −0.552091 0.833784i \(-0.686170\pi\)
−0.552091 + 0.833784i \(0.686170\pi\)
\(108\) 1.30889 0.125948
\(109\) 10.3606 0.992363 0.496181 0.868219i \(-0.334735\pi\)
0.496181 + 0.868219i \(0.334735\pi\)
\(110\) 0 0
\(111\) −1.24589 −0.118254
\(112\) 1.86919 0.176622
\(113\) −0.559115 −0.0525971 −0.0262985 0.999654i \(-0.508372\pi\)
−0.0262985 + 0.999654i \(0.508372\pi\)
\(114\) −11.5366 −1.08050
\(115\) 0 0
\(116\) 3.22160 0.299118
\(117\) 0 0
\(118\) 11.2785 1.03827
\(119\) 7.78870 0.713989
\(120\) 0 0
\(121\) 8.60730 0.782482
\(122\) 6.28685 0.569185
\(123\) 27.8414 2.51037
\(124\) 8.51124 0.764332
\(125\) 0 0
\(126\) 6.56625 0.584968
\(127\) −1.52200 −0.135055 −0.0675277 0.997717i \(-0.521511\pi\)
−0.0675277 + 0.997717i \(0.521511\pi\)
\(128\) 1.00000 0.0883883
\(129\) 11.2002 0.986120
\(130\) 0 0
\(131\) 7.16465 0.625979 0.312989 0.949757i \(-0.398670\pi\)
0.312989 + 0.949757i \(0.398670\pi\)
\(132\) −11.3004 −0.983577
\(133\) −8.44978 −0.732689
\(134\) 5.69785 0.492219
\(135\) 0 0
\(136\) 4.16688 0.357307
\(137\) −16.0494 −1.37119 −0.685596 0.727983i \(-0.740458\pi\)
−0.685596 + 0.727983i \(0.740458\pi\)
\(138\) 19.2975 1.64272
\(139\) −17.7302 −1.50386 −0.751930 0.659243i \(-0.770877\pi\)
−0.751930 + 0.659243i \(0.770877\pi\)
\(140\) 0 0
\(141\) −31.9452 −2.69027
\(142\) −10.1438 −0.851246
\(143\) 0 0
\(144\) 3.51288 0.292740
\(145\) 0 0
\(146\) −4.10663 −0.339867
\(147\) −8.94773 −0.737997
\(148\) −0.488194 −0.0401293
\(149\) 9.94873 0.815032 0.407516 0.913198i \(-0.366395\pi\)
0.407516 + 0.913198i \(0.366395\pi\)
\(150\) 0 0
\(151\) 11.9580 0.973130 0.486565 0.873644i \(-0.338250\pi\)
0.486565 + 0.873644i \(0.338250\pi\)
\(152\) −4.52055 −0.366665
\(153\) 14.6377 1.18339
\(154\) −8.27681 −0.666964
\(155\) 0 0
\(156\) 0 0
\(157\) 6.72590 0.536785 0.268392 0.963310i \(-0.413508\pi\)
0.268392 + 0.963310i \(0.413508\pi\)
\(158\) −2.33064 −0.185415
\(159\) −0.488443 −0.0387361
\(160\) 0 0
\(161\) 14.1341 1.11393
\(162\) −7.19832 −0.565553
\(163\) −0.00838925 −0.000657097 0 −0.000328549 1.00000i \(-0.500105\pi\)
−0.000328549 1.00000i \(0.500105\pi\)
\(164\) 10.9095 0.851888
\(165\) 0 0
\(166\) 2.49654 0.193769
\(167\) −8.77138 −0.678749 −0.339375 0.940651i \(-0.610215\pi\)
−0.339375 + 0.940651i \(0.610215\pi\)
\(168\) 4.77024 0.368032
\(169\) 0 0
\(170\) 0 0
\(171\) −15.8801 −1.21439
\(172\) 4.38872 0.334637
\(173\) −5.17428 −0.393393 −0.196697 0.980464i \(-0.563021\pi\)
−0.196697 + 0.980464i \(0.563021\pi\)
\(174\) 8.22163 0.623280
\(175\) 0 0
\(176\) −4.42801 −0.333774
\(177\) 28.7831 2.16347
\(178\) −11.9415 −0.895050
\(179\) −7.82042 −0.584526 −0.292263 0.956338i \(-0.594408\pi\)
−0.292263 + 0.956338i \(0.594408\pi\)
\(180\) 0 0
\(181\) −12.2270 −0.908823 −0.454411 0.890792i \(-0.650150\pi\)
−0.454411 + 0.890792i \(0.650150\pi\)
\(182\) 0 0
\(183\) 16.0443 1.18603
\(184\) 7.56163 0.557451
\(185\) 0 0
\(186\) 21.7210 1.59266
\(187\) −18.4510 −1.34927
\(188\) −12.5176 −0.912937
\(189\) 2.44656 0.177961
\(190\) 0 0
\(191\) 18.1313 1.31194 0.655968 0.754789i \(-0.272261\pi\)
0.655968 + 0.754789i \(0.272261\pi\)
\(192\) 2.55203 0.184177
\(193\) 6.34605 0.456799 0.228399 0.973568i \(-0.426651\pi\)
0.228399 + 0.973568i \(0.426651\pi\)
\(194\) −1.91384 −0.137406
\(195\) 0 0
\(196\) −3.50612 −0.250437
\(197\) 2.19339 0.156273 0.0781364 0.996943i \(-0.475103\pi\)
0.0781364 + 0.996943i \(0.475103\pi\)
\(198\) −15.5551 −1.10545
\(199\) −4.80668 −0.340737 −0.170368 0.985380i \(-0.554496\pi\)
−0.170368 + 0.985380i \(0.554496\pi\)
\(200\) 0 0
\(201\) 14.5411 1.02565
\(202\) 16.3092 1.14751
\(203\) 6.02179 0.422646
\(204\) 10.6340 0.744530
\(205\) 0 0
\(206\) 14.5800 1.01584
\(207\) 26.5631 1.84626
\(208\) 0 0
\(209\) 20.0171 1.38461
\(210\) 0 0
\(211\) −1.98463 −0.136628 −0.0683139 0.997664i \(-0.521762\pi\)
−0.0683139 + 0.997664i \(0.521762\pi\)
\(212\) −0.191394 −0.0131450
\(213\) −25.8872 −1.77376
\(214\) −11.4218 −0.780775
\(215\) 0 0
\(216\) 1.30889 0.0890584
\(217\) 15.9092 1.07998
\(218\) 10.3606 0.701706
\(219\) −10.4803 −0.708191
\(220\) 0 0
\(221\) 0 0
\(222\) −1.24589 −0.0836185
\(223\) −6.23337 −0.417417 −0.208709 0.977978i \(-0.566926\pi\)
−0.208709 + 0.977978i \(0.566926\pi\)
\(224\) 1.86919 0.124891
\(225\) 0 0
\(226\) −0.559115 −0.0371917
\(227\) 13.3667 0.887180 0.443590 0.896230i \(-0.353705\pi\)
0.443590 + 0.896230i \(0.353705\pi\)
\(228\) −11.5366 −0.764030
\(229\) 5.10916 0.337623 0.168811 0.985648i \(-0.446007\pi\)
0.168811 + 0.985648i \(0.446007\pi\)
\(230\) 0 0
\(231\) −21.1227 −1.38977
\(232\) 3.22160 0.211508
\(233\) 25.7364 1.68605 0.843025 0.537874i \(-0.180772\pi\)
0.843025 + 0.537874i \(0.180772\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.2785 0.734166
\(237\) −5.94786 −0.386355
\(238\) 7.78870 0.504866
\(239\) −9.42688 −0.609774 −0.304887 0.952389i \(-0.598619\pi\)
−0.304887 + 0.952389i \(0.598619\pi\)
\(240\) 0 0
\(241\) 8.55884 0.551324 0.275662 0.961255i \(-0.411103\pi\)
0.275662 + 0.961255i \(0.411103\pi\)
\(242\) 8.60730 0.553298
\(243\) −22.2970 −1.43035
\(244\) 6.28685 0.402474
\(245\) 0 0
\(246\) 27.8414 1.77510
\(247\) 0 0
\(248\) 8.51124 0.540464
\(249\) 6.37126 0.403762
\(250\) 0 0
\(251\) −2.91331 −0.183887 −0.0919433 0.995764i \(-0.529308\pi\)
−0.0919433 + 0.995764i \(0.529308\pi\)
\(252\) 6.56625 0.413635
\(253\) −33.4830 −2.10506
\(254\) −1.52200 −0.0954986
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −28.3335 −1.76740 −0.883698 0.468057i \(-0.844954\pi\)
−0.883698 + 0.468057i \(0.844954\pi\)
\(258\) 11.2002 0.697292
\(259\) −0.912528 −0.0567017
\(260\) 0 0
\(261\) 11.3171 0.700510
\(262\) 7.16465 0.442634
\(263\) −6.57342 −0.405335 −0.202667 0.979248i \(-0.564961\pi\)
−0.202667 + 0.979248i \(0.564961\pi\)
\(264\) −11.3004 −0.695494
\(265\) 0 0
\(266\) −8.44978 −0.518089
\(267\) −30.4750 −1.86504
\(268\) 5.69785 0.348051
\(269\) 13.1504 0.801797 0.400898 0.916123i \(-0.368698\pi\)
0.400898 + 0.916123i \(0.368698\pi\)
\(270\) 0 0
\(271\) −22.3779 −1.35936 −0.679682 0.733507i \(-0.737882\pi\)
−0.679682 + 0.733507i \(0.737882\pi\)
\(272\) 4.16688 0.252654
\(273\) 0 0
\(274\) −16.0494 −0.969579
\(275\) 0 0
\(276\) 19.2975 1.16158
\(277\) 11.0451 0.663634 0.331817 0.943344i \(-0.392338\pi\)
0.331817 + 0.943344i \(0.392338\pi\)
\(278\) −17.7302 −1.06339
\(279\) 29.8990 1.79000
\(280\) 0 0
\(281\) −20.1064 −1.19945 −0.599724 0.800207i \(-0.704723\pi\)
−0.599724 + 0.800207i \(0.704723\pi\)
\(282\) −31.9452 −1.90231
\(283\) −20.2670 −1.20475 −0.602373 0.798215i \(-0.705778\pi\)
−0.602373 + 0.798215i \(0.705778\pi\)
\(284\) −10.1438 −0.601922
\(285\) 0 0
\(286\) 0 0
\(287\) 20.3919 1.20370
\(288\) 3.51288 0.206998
\(289\) 0.362874 0.0213455
\(290\) 0 0
\(291\) −4.88420 −0.286317
\(292\) −4.10663 −0.240323
\(293\) −29.8007 −1.74097 −0.870487 0.492191i \(-0.836196\pi\)
−0.870487 + 0.492191i \(0.836196\pi\)
\(294\) −8.94773 −0.521842
\(295\) 0 0
\(296\) −0.488194 −0.0283757
\(297\) −5.79577 −0.336304
\(298\) 9.94873 0.576315
\(299\) 0 0
\(300\) 0 0
\(301\) 8.20337 0.472834
\(302\) 11.9580 0.688107
\(303\) 41.6215 2.39109
\(304\) −4.52055 −0.259271
\(305\) 0 0
\(306\) 14.6377 0.836784
\(307\) −9.13426 −0.521320 −0.260660 0.965431i \(-0.583940\pi\)
−0.260660 + 0.965431i \(0.583940\pi\)
\(308\) −8.27681 −0.471615
\(309\) 37.2087 2.11673
\(310\) 0 0
\(311\) −5.34622 −0.303157 −0.151578 0.988445i \(-0.548436\pi\)
−0.151578 + 0.988445i \(0.548436\pi\)
\(312\) 0 0
\(313\) 1.32226 0.0747385 0.0373692 0.999302i \(-0.488102\pi\)
0.0373692 + 0.999302i \(0.488102\pi\)
\(314\) 6.72590 0.379564
\(315\) 0 0
\(316\) −2.33064 −0.131108
\(317\) 3.84953 0.216211 0.108106 0.994139i \(-0.465522\pi\)
0.108106 + 0.994139i \(0.465522\pi\)
\(318\) −0.488443 −0.0273905
\(319\) −14.2653 −0.798702
\(320\) 0 0
\(321\) −29.1487 −1.62692
\(322\) 14.1341 0.787665
\(323\) −18.8366 −1.04810
\(324\) −7.19832 −0.399906
\(325\) 0 0
\(326\) −0.00838925 −0.000464638 0
\(327\) 26.4405 1.46216
\(328\) 10.9095 0.602376
\(329\) −23.3977 −1.28996
\(330\) 0 0
\(331\) −4.96398 −0.272845 −0.136423 0.990651i \(-0.543561\pi\)
−0.136423 + 0.990651i \(0.543561\pi\)
\(332\) 2.49654 0.137016
\(333\) −1.71497 −0.0939795
\(334\) −8.77138 −0.479948
\(335\) 0 0
\(336\) 4.77024 0.260238
\(337\) 11.2699 0.613911 0.306956 0.951724i \(-0.400690\pi\)
0.306956 + 0.951724i \(0.400690\pi\)
\(338\) 0 0
\(339\) −1.42688 −0.0774975
\(340\) 0 0
\(341\) −37.6879 −2.04091
\(342\) −15.8801 −0.858700
\(343\) −19.6380 −1.06035
\(344\) 4.38872 0.236624
\(345\) 0 0
\(346\) −5.17428 −0.278171
\(347\) −15.6806 −0.841781 −0.420890 0.907112i \(-0.638282\pi\)
−0.420890 + 0.907112i \(0.638282\pi\)
\(348\) 8.22163 0.440725
\(349\) 0.557452 0.0298397 0.0149198 0.999889i \(-0.495251\pi\)
0.0149198 + 0.999889i \(0.495251\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.42801 −0.236014
\(353\) −24.1725 −1.28657 −0.643285 0.765627i \(-0.722429\pi\)
−0.643285 + 0.765627i \(0.722429\pi\)
\(354\) 28.7831 1.52980
\(355\) 0 0
\(356\) −11.9415 −0.632896
\(357\) 19.8770 1.05200
\(358\) −7.82042 −0.413322
\(359\) −0.910208 −0.0480389 −0.0240195 0.999711i \(-0.507646\pi\)
−0.0240195 + 0.999711i \(0.507646\pi\)
\(360\) 0 0
\(361\) 1.43537 0.0755457
\(362\) −12.2270 −0.642635
\(363\) 21.9661 1.15292
\(364\) 0 0
\(365\) 0 0
\(366\) 16.0443 0.838647
\(367\) 4.41148 0.230277 0.115139 0.993349i \(-0.463269\pi\)
0.115139 + 0.993349i \(0.463269\pi\)
\(368\) 7.56163 0.394177
\(369\) 38.3237 1.99505
\(370\) 0 0
\(371\) −0.357752 −0.0185735
\(372\) 21.7210 1.12618
\(373\) 7.59431 0.393219 0.196609 0.980482i \(-0.437007\pi\)
0.196609 + 0.980482i \(0.437007\pi\)
\(374\) −18.4510 −0.954078
\(375\) 0 0
\(376\) −12.5176 −0.645544
\(377\) 0 0
\(378\) 2.44656 0.125838
\(379\) −30.3412 −1.55852 −0.779262 0.626698i \(-0.784406\pi\)
−0.779262 + 0.626698i \(0.784406\pi\)
\(380\) 0 0
\(381\) −3.88419 −0.198993
\(382\) 18.1313 0.927679
\(383\) 7.99851 0.408705 0.204352 0.978897i \(-0.434491\pi\)
0.204352 + 0.978897i \(0.434491\pi\)
\(384\) 2.55203 0.130233
\(385\) 0 0
\(386\) 6.34605 0.323006
\(387\) 15.4170 0.783693
\(388\) −1.91384 −0.0971608
\(389\) 22.4951 1.14055 0.570273 0.821455i \(-0.306837\pi\)
0.570273 + 0.821455i \(0.306837\pi\)
\(390\) 0 0
\(391\) 31.5084 1.59345
\(392\) −3.50612 −0.177086
\(393\) 18.2844 0.922328
\(394\) 2.19339 0.110502
\(395\) 0 0
\(396\) −15.5551 −0.781672
\(397\) −29.6953 −1.49036 −0.745181 0.666862i \(-0.767637\pi\)
−0.745181 + 0.666862i \(0.767637\pi\)
\(398\) −4.80668 −0.240937
\(399\) −21.5641 −1.07956
\(400\) 0 0
\(401\) 26.3944 1.31807 0.659037 0.752110i \(-0.270964\pi\)
0.659037 + 0.752110i \(0.270964\pi\)
\(402\) 14.5411 0.725244
\(403\) 0 0
\(404\) 16.3092 0.811411
\(405\) 0 0
\(406\) 6.02179 0.298856
\(407\) 2.16173 0.107153
\(408\) 10.6340 0.526462
\(409\) −9.89433 −0.489243 −0.244622 0.969619i \(-0.578664\pi\)
−0.244622 + 0.969619i \(0.578664\pi\)
\(410\) 0 0
\(411\) −40.9586 −2.02034
\(412\) 14.5800 0.718305
\(413\) 21.0817 1.03736
\(414\) 26.5631 1.30550
\(415\) 0 0
\(416\) 0 0
\(417\) −45.2482 −2.21581
\(418\) 20.0171 0.979066
\(419\) −17.9386 −0.876359 −0.438179 0.898888i \(-0.644377\pi\)
−0.438179 + 0.898888i \(0.644377\pi\)
\(420\) 0 0
\(421\) −15.5977 −0.760184 −0.380092 0.924949i \(-0.624108\pi\)
−0.380092 + 0.924949i \(0.624108\pi\)
\(422\) −1.98463 −0.0966105
\(423\) −43.9727 −2.13802
\(424\) −0.191394 −0.00929490
\(425\) 0 0
\(426\) −25.8872 −1.25424
\(427\) 11.7513 0.568687
\(428\) −11.4218 −0.552091
\(429\) 0 0
\(430\) 0 0
\(431\) −30.0631 −1.44809 −0.724045 0.689753i \(-0.757719\pi\)
−0.724045 + 0.689753i \(0.757719\pi\)
\(432\) 1.30889 0.0629738
\(433\) 22.5878 1.08550 0.542750 0.839894i \(-0.317383\pi\)
0.542750 + 0.839894i \(0.317383\pi\)
\(434\) 15.9092 0.763664
\(435\) 0 0
\(436\) 10.3606 0.496181
\(437\) −34.1827 −1.63518
\(438\) −10.4803 −0.500767
\(439\) −34.8184 −1.66179 −0.830895 0.556429i \(-0.812171\pi\)
−0.830895 + 0.556429i \(0.812171\pi\)
\(440\) 0 0
\(441\) −12.3166 −0.586503
\(442\) 0 0
\(443\) 15.5022 0.736533 0.368267 0.929720i \(-0.379951\pi\)
0.368267 + 0.929720i \(0.379951\pi\)
\(444\) −1.24589 −0.0591272
\(445\) 0 0
\(446\) −6.23337 −0.295159
\(447\) 25.3895 1.20088
\(448\) 1.86919 0.0883111
\(449\) 0.894606 0.0422191 0.0211095 0.999777i \(-0.493280\pi\)
0.0211095 + 0.999777i \(0.493280\pi\)
\(450\) 0 0
\(451\) −48.3074 −2.27471
\(452\) −0.559115 −0.0262985
\(453\) 30.5173 1.43383
\(454\) 13.3667 0.627331
\(455\) 0 0
\(456\) −11.5366 −0.540251
\(457\) −10.7958 −0.505007 −0.252504 0.967596i \(-0.581254\pi\)
−0.252504 + 0.967596i \(0.581254\pi\)
\(458\) 5.10916 0.238735
\(459\) 5.45397 0.254570
\(460\) 0 0
\(461\) 10.8827 0.506859 0.253429 0.967354i \(-0.418441\pi\)
0.253429 + 0.967354i \(0.418441\pi\)
\(462\) −21.1227 −0.982717
\(463\) −3.15999 −0.146857 −0.0734287 0.997300i \(-0.523394\pi\)
−0.0734287 + 0.997300i \(0.523394\pi\)
\(464\) 3.22160 0.149559
\(465\) 0 0
\(466\) 25.7364 1.19222
\(467\) 23.0475 1.06651 0.533256 0.845954i \(-0.320968\pi\)
0.533256 + 0.845954i \(0.320968\pi\)
\(468\) 0 0
\(469\) 10.6504 0.491789
\(470\) 0 0
\(471\) 17.1647 0.790908
\(472\) 11.2785 0.519134
\(473\) −19.4333 −0.893545
\(474\) −5.94786 −0.273194
\(475\) 0 0
\(476\) 7.78870 0.356994
\(477\) −0.672343 −0.0307845
\(478\) −9.42688 −0.431175
\(479\) 9.16688 0.418845 0.209423 0.977825i \(-0.432842\pi\)
0.209423 + 0.977825i \(0.432842\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 8.55884 0.389845
\(483\) 36.0708 1.64128
\(484\) 8.60730 0.391241
\(485\) 0 0
\(486\) −22.2970 −1.01141
\(487\) −24.1155 −1.09278 −0.546389 0.837531i \(-0.683998\pi\)
−0.546389 + 0.837531i \(0.683998\pi\)
\(488\) 6.28685 0.284592
\(489\) −0.0214097 −0.000968178 0
\(490\) 0 0
\(491\) 5.68528 0.256573 0.128286 0.991737i \(-0.459052\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(492\) 27.8414 1.25519
\(493\) 13.4240 0.604587
\(494\) 0 0
\(495\) 0 0
\(496\) 8.51124 0.382166
\(497\) −18.9607 −0.850501
\(498\) 6.37126 0.285503
\(499\) −6.68270 −0.299159 −0.149579 0.988750i \(-0.547792\pi\)
−0.149579 + 0.988750i \(0.547792\pi\)
\(500\) 0 0
\(501\) −22.3849 −1.00008
\(502\) −2.91331 −0.130027
\(503\) −17.4365 −0.777455 −0.388727 0.921353i \(-0.627085\pi\)
−0.388727 + 0.921353i \(0.627085\pi\)
\(504\) 6.56625 0.292484
\(505\) 0 0
\(506\) −33.4830 −1.48850
\(507\) 0 0
\(508\) −1.52200 −0.0675277
\(509\) 28.6424 1.26955 0.634776 0.772696i \(-0.281092\pi\)
0.634776 + 0.772696i \(0.281092\pi\)
\(510\) 0 0
\(511\) −7.67609 −0.339570
\(512\) 1.00000 0.0441942
\(513\) −5.91689 −0.261237
\(514\) −28.3335 −1.24974
\(515\) 0 0
\(516\) 11.2002 0.493060
\(517\) 55.4279 2.43772
\(518\) −0.912528 −0.0400942
\(519\) −13.2049 −0.579632
\(520\) 0 0
\(521\) −24.2436 −1.06213 −0.531066 0.847331i \(-0.678208\pi\)
−0.531066 + 0.847331i \(0.678208\pi\)
\(522\) 11.3171 0.495335
\(523\) −7.25966 −0.317443 −0.158721 0.987323i \(-0.550737\pi\)
−0.158721 + 0.987323i \(0.550737\pi\)
\(524\) 7.16465 0.312989
\(525\) 0 0
\(526\) −6.57342 −0.286615
\(527\) 35.4653 1.54489
\(528\) −11.3004 −0.491789
\(529\) 34.1782 1.48601
\(530\) 0 0
\(531\) 39.6199 1.71936
\(532\) −8.44978 −0.366344
\(533\) 0 0
\(534\) −30.4750 −1.31878
\(535\) 0 0
\(536\) 5.69785 0.246109
\(537\) −19.9580 −0.861251
\(538\) 13.1504 0.566956
\(539\) 15.5251 0.668715
\(540\) 0 0
\(541\) 9.90908 0.426025 0.213012 0.977049i \(-0.431673\pi\)
0.213012 + 0.977049i \(0.431673\pi\)
\(542\) −22.3779 −0.961215
\(543\) −31.2036 −1.33908
\(544\) 4.16688 0.178653
\(545\) 0 0
\(546\) 0 0
\(547\) −15.7348 −0.672769 −0.336385 0.941725i \(-0.609204\pi\)
−0.336385 + 0.941725i \(0.609204\pi\)
\(548\) −16.0494 −0.685596
\(549\) 22.0850 0.942563
\(550\) 0 0
\(551\) −14.5634 −0.620421
\(552\) 19.2975 0.821358
\(553\) −4.35641 −0.185253
\(554\) 11.0451 0.469260
\(555\) 0 0
\(556\) −17.7302 −0.751930
\(557\) 11.6684 0.494408 0.247204 0.968963i \(-0.420488\pi\)
0.247204 + 0.968963i \(0.420488\pi\)
\(558\) 29.8990 1.26572
\(559\) 0 0
\(560\) 0 0
\(561\) −47.0876 −1.98804
\(562\) −20.1064 −0.848138
\(563\) 34.0262 1.43403 0.717017 0.697056i \(-0.245507\pi\)
0.717017 + 0.697056i \(0.245507\pi\)
\(564\) −31.9452 −1.34514
\(565\) 0 0
\(566\) −20.2670 −0.851884
\(567\) −13.4550 −0.565059
\(568\) −10.1438 −0.425623
\(569\) −44.3266 −1.85827 −0.929135 0.369741i \(-0.879446\pi\)
−0.929135 + 0.369741i \(0.879446\pi\)
\(570\) 0 0
\(571\) 15.3587 0.642740 0.321370 0.946954i \(-0.395857\pi\)
0.321370 + 0.946954i \(0.395857\pi\)
\(572\) 0 0
\(573\) 46.2717 1.93303
\(574\) 20.3919 0.851143
\(575\) 0 0
\(576\) 3.51288 0.146370
\(577\) −31.5537 −1.31360 −0.656799 0.754065i \(-0.728090\pi\)
−0.656799 + 0.754065i \(0.728090\pi\)
\(578\) 0.362874 0.0150936
\(579\) 16.1953 0.673056
\(580\) 0 0
\(581\) 4.66652 0.193600
\(582\) −4.88420 −0.202457
\(583\) 0.847494 0.0350996
\(584\) −4.10663 −0.169934
\(585\) 0 0
\(586\) −29.8007 −1.23106
\(587\) −22.9587 −0.947607 −0.473803 0.880631i \(-0.657119\pi\)
−0.473803 + 0.880631i \(0.657119\pi\)
\(588\) −8.94773 −0.368998
\(589\) −38.4755 −1.58535
\(590\) 0 0
\(591\) 5.59761 0.230255
\(592\) −0.488194 −0.0200646
\(593\) 27.6241 1.13439 0.567194 0.823584i \(-0.308029\pi\)
0.567194 + 0.823584i \(0.308029\pi\)
\(594\) −5.79577 −0.237803
\(595\) 0 0
\(596\) 9.94873 0.407516
\(597\) −12.2668 −0.502048
\(598\) 0 0
\(599\) −1.54774 −0.0632389 −0.0316194 0.999500i \(-0.510066\pi\)
−0.0316194 + 0.999500i \(0.510066\pi\)
\(600\) 0 0
\(601\) 25.3606 1.03448 0.517241 0.855840i \(-0.326959\pi\)
0.517241 + 0.855840i \(0.326959\pi\)
\(602\) 8.20337 0.334344
\(603\) 20.0158 0.815108
\(604\) 11.9580 0.486565
\(605\) 0 0
\(606\) 41.6215 1.69076
\(607\) 19.1839 0.778652 0.389326 0.921100i \(-0.372708\pi\)
0.389326 + 0.921100i \(0.372708\pi\)
\(608\) −4.52055 −0.183332
\(609\) 15.3678 0.622735
\(610\) 0 0
\(611\) 0 0
\(612\) 14.6377 0.591696
\(613\) −3.32275 −0.134205 −0.0671024 0.997746i \(-0.521375\pi\)
−0.0671024 + 0.997746i \(0.521375\pi\)
\(614\) −9.13426 −0.368629
\(615\) 0 0
\(616\) −8.27681 −0.333482
\(617\) 13.7220 0.552425 0.276213 0.961097i \(-0.410921\pi\)
0.276213 + 0.961097i \(0.410921\pi\)
\(618\) 37.2087 1.49675
\(619\) 40.9597 1.64631 0.823155 0.567817i \(-0.192212\pi\)
0.823155 + 0.567817i \(0.192212\pi\)
\(620\) 0 0
\(621\) 9.89731 0.397166
\(622\) −5.34622 −0.214364
\(623\) −22.3209 −0.894267
\(624\) 0 0
\(625\) 0 0
\(626\) 1.32226 0.0528481
\(627\) 51.0842 2.04011
\(628\) 6.72590 0.268392
\(629\) −2.03424 −0.0811106
\(630\) 0 0
\(631\) −14.9553 −0.595361 −0.297680 0.954666i \(-0.596213\pi\)
−0.297680 + 0.954666i \(0.596213\pi\)
\(632\) −2.33064 −0.0927077
\(633\) −5.06485 −0.201310
\(634\) 3.84953 0.152885
\(635\) 0 0
\(636\) −0.488443 −0.0193680
\(637\) 0 0
\(638\) −14.2653 −0.564768
\(639\) −35.6338 −1.40965
\(640\) 0 0
\(641\) −36.5876 −1.44512 −0.722562 0.691306i \(-0.757036\pi\)
−0.722562 + 0.691306i \(0.757036\pi\)
\(642\) −29.1487 −1.15041
\(643\) 43.3819 1.71082 0.855408 0.517954i \(-0.173306\pi\)
0.855408 + 0.517954i \(0.173306\pi\)
\(644\) 14.1341 0.556963
\(645\) 0 0
\(646\) −18.8366 −0.741115
\(647\) −42.6622 −1.67722 −0.838611 0.544730i \(-0.816632\pi\)
−0.838611 + 0.544730i \(0.816632\pi\)
\(648\) −7.19832 −0.282777
\(649\) −49.9413 −1.96037
\(650\) 0 0
\(651\) 40.6007 1.59127
\(652\) −0.00838925 −0.000328549 0
\(653\) −44.8543 −1.75528 −0.877642 0.479316i \(-0.840885\pi\)
−0.877642 + 0.479316i \(0.840885\pi\)
\(654\) 26.4405 1.03391
\(655\) 0 0
\(656\) 10.9095 0.425944
\(657\) −14.4261 −0.562816
\(658\) −23.3977 −0.912138
\(659\) −28.7835 −1.12125 −0.560624 0.828071i \(-0.689439\pi\)
−0.560624 + 0.828071i \(0.689439\pi\)
\(660\) 0 0
\(661\) 9.90351 0.385202 0.192601 0.981277i \(-0.438308\pi\)
0.192601 + 0.981277i \(0.438308\pi\)
\(662\) −4.96398 −0.192931
\(663\) 0 0
\(664\) 2.49654 0.0968846
\(665\) 0 0
\(666\) −1.71497 −0.0664536
\(667\) 24.3605 0.943243
\(668\) −8.77138 −0.339375
\(669\) −15.9078 −0.615030
\(670\) 0 0
\(671\) −27.8383 −1.07468
\(672\) 4.77024 0.184016
\(673\) 46.6987 1.80010 0.900051 0.435784i \(-0.143529\pi\)
0.900051 + 0.435784i \(0.143529\pi\)
\(674\) 11.2699 0.434101
\(675\) 0 0
\(676\) 0 0
\(677\) 15.1897 0.583787 0.291893 0.956451i \(-0.405715\pi\)
0.291893 + 0.956451i \(0.405715\pi\)
\(678\) −1.42688 −0.0547990
\(679\) −3.57735 −0.137286
\(680\) 0 0
\(681\) 34.1123 1.30719
\(682\) −37.6879 −1.44314
\(683\) −5.91381 −0.226286 −0.113143 0.993579i \(-0.536092\pi\)
−0.113143 + 0.993579i \(0.536092\pi\)
\(684\) −15.8801 −0.607193
\(685\) 0 0
\(686\) −19.6380 −0.749781
\(687\) 13.0387 0.497459
\(688\) 4.38872 0.167318
\(689\) 0 0
\(690\) 0 0
\(691\) 23.5531 0.896004 0.448002 0.894033i \(-0.352136\pi\)
0.448002 + 0.894033i \(0.352136\pi\)
\(692\) −5.17428 −0.196697
\(693\) −29.0754 −1.10448
\(694\) −15.6806 −0.595229
\(695\) 0 0
\(696\) 8.22163 0.311640
\(697\) 45.4585 1.72186
\(698\) 0.557452 0.0210999
\(699\) 65.6803 2.48426
\(700\) 0 0
\(701\) −39.9205 −1.50778 −0.753888 0.657003i \(-0.771824\pi\)
−0.753888 + 0.657003i \(0.771824\pi\)
\(702\) 0 0
\(703\) 2.20690 0.0832349
\(704\) −4.42801 −0.166887
\(705\) 0 0
\(706\) −24.1725 −0.909742
\(707\) 30.4850 1.14650
\(708\) 28.7831 1.08173
\(709\) −8.96987 −0.336870 −0.168435 0.985713i \(-0.553871\pi\)
−0.168435 + 0.985713i \(0.553871\pi\)
\(710\) 0 0
\(711\) −8.18724 −0.307046
\(712\) −11.9415 −0.447525
\(713\) 64.3589 2.41026
\(714\) 19.8770 0.743879
\(715\) 0 0
\(716\) −7.82042 −0.292263
\(717\) −24.0577 −0.898452
\(718\) −0.910208 −0.0339687
\(719\) 19.5515 0.729149 0.364575 0.931174i \(-0.381214\pi\)
0.364575 + 0.931174i \(0.381214\pi\)
\(720\) 0 0
\(721\) 27.2528 1.01495
\(722\) 1.43537 0.0534189
\(723\) 21.8425 0.812330
\(724\) −12.2270 −0.454411
\(725\) 0 0
\(726\) 21.9661 0.815240
\(727\) 21.2591 0.788458 0.394229 0.919012i \(-0.371012\pi\)
0.394229 + 0.919012i \(0.371012\pi\)
\(728\) 0 0
\(729\) −35.3078 −1.30770
\(730\) 0 0
\(731\) 18.2873 0.676379
\(732\) 16.0443 0.593013
\(733\) 51.7515 1.91149 0.955743 0.294203i \(-0.0950542\pi\)
0.955743 + 0.294203i \(0.0950542\pi\)
\(734\) 4.41148 0.162831
\(735\) 0 0
\(736\) 7.56163 0.278725
\(737\) −25.2301 −0.929364
\(738\) 38.3237 1.41072
\(739\) 2.48566 0.0914364 0.0457182 0.998954i \(-0.485442\pi\)
0.0457182 + 0.998954i \(0.485442\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.357752 −0.0131335
\(743\) 41.9532 1.53911 0.769557 0.638578i \(-0.220477\pi\)
0.769557 + 0.638578i \(0.220477\pi\)
\(744\) 21.7210 0.796330
\(745\) 0 0
\(746\) 7.59431 0.278048
\(747\) 8.77005 0.320879
\(748\) −18.4510 −0.674635
\(749\) −21.3495 −0.780092
\(750\) 0 0
\(751\) 4.26126 0.155496 0.0777478 0.996973i \(-0.475227\pi\)
0.0777478 + 0.996973i \(0.475227\pi\)
\(752\) −12.5176 −0.456468
\(753\) −7.43487 −0.270942
\(754\) 0 0
\(755\) 0 0
\(756\) 2.44656 0.0889806
\(757\) −32.1223 −1.16750 −0.583752 0.811932i \(-0.698416\pi\)
−0.583752 + 0.811932i \(0.698416\pi\)
\(758\) −30.3412 −1.10204
\(759\) −85.4498 −3.10163
\(760\) 0 0
\(761\) −50.8769 −1.84429 −0.922143 0.386850i \(-0.873563\pi\)
−0.922143 + 0.386850i \(0.873563\pi\)
\(762\) −3.88419 −0.140709
\(763\) 19.3659 0.701093
\(764\) 18.1313 0.655968
\(765\) 0 0
\(766\) 7.99851 0.288998
\(767\) 0 0
\(768\) 2.55203 0.0920886
\(769\) −10.8452 −0.391089 −0.195545 0.980695i \(-0.562647\pi\)
−0.195545 + 0.980695i \(0.562647\pi\)
\(770\) 0 0
\(771\) −72.3081 −2.60411
\(772\) 6.34605 0.228399
\(773\) −17.0142 −0.611959 −0.305979 0.952038i \(-0.598984\pi\)
−0.305979 + 0.952038i \(0.598984\pi\)
\(774\) 15.4170 0.554154
\(775\) 0 0
\(776\) −1.91384 −0.0687030
\(777\) −2.32880 −0.0835453
\(778\) 22.4951 0.806488
\(779\) −49.3169 −1.76696
\(780\) 0 0
\(781\) 44.9167 1.60725
\(782\) 31.5084 1.12674
\(783\) 4.21670 0.150693
\(784\) −3.50612 −0.125219
\(785\) 0 0
\(786\) 18.2844 0.652184
\(787\) 27.0297 0.963505 0.481752 0.876307i \(-0.340000\pi\)
0.481752 + 0.876307i \(0.340000\pi\)
\(788\) 2.19339 0.0781364
\(789\) −16.7756 −0.597227
\(790\) 0 0
\(791\) −1.04509 −0.0371592
\(792\) −15.5551 −0.552726
\(793\) 0 0
\(794\) −29.6953 −1.05385
\(795\) 0 0
\(796\) −4.80668 −0.170368
\(797\) 15.1585 0.536942 0.268471 0.963288i \(-0.413482\pi\)
0.268471 + 0.963288i \(0.413482\pi\)
\(798\) −21.5641 −0.763362
\(799\) −52.1591 −1.84526
\(800\) 0 0
\(801\) −41.9489 −1.48219
\(802\) 26.3944 0.932019
\(803\) 18.1842 0.641708
\(804\) 14.5411 0.512825
\(805\) 0 0
\(806\) 0 0
\(807\) 33.5604 1.18138
\(808\) 16.3092 0.573754
\(809\) −39.3369 −1.38301 −0.691506 0.722371i \(-0.743052\pi\)
−0.691506 + 0.722371i \(0.743052\pi\)
\(810\) 0 0
\(811\) −9.57933 −0.336376 −0.168188 0.985755i \(-0.553792\pi\)
−0.168188 + 0.985755i \(0.553792\pi\)
\(812\) 6.02179 0.211323
\(813\) −57.1093 −2.00291
\(814\) 2.16173 0.0757685
\(815\) 0 0
\(816\) 10.6340 0.372265
\(817\) −19.8394 −0.694094
\(818\) −9.89433 −0.345947
\(819\) 0 0
\(820\) 0 0
\(821\) 7.82037 0.272933 0.136466 0.990645i \(-0.456425\pi\)
0.136466 + 0.990645i \(0.456425\pi\)
\(822\) −40.9586 −1.42859
\(823\) −34.1839 −1.19158 −0.595788 0.803142i \(-0.703160\pi\)
−0.595788 + 0.803142i \(0.703160\pi\)
\(824\) 14.5800 0.507919
\(825\) 0 0
\(826\) 21.0817 0.733524
\(827\) 3.47145 0.120714 0.0603570 0.998177i \(-0.480776\pi\)
0.0603570 + 0.998177i \(0.480776\pi\)
\(828\) 26.5631 0.923131
\(829\) 13.3557 0.463864 0.231932 0.972732i \(-0.425495\pi\)
0.231932 + 0.972732i \(0.425495\pi\)
\(830\) 0 0
\(831\) 28.1874 0.977811
\(832\) 0 0
\(833\) −14.6096 −0.506192
\(834\) −45.2482 −1.56682
\(835\) 0 0
\(836\) 20.0171 0.692304
\(837\) 11.1402 0.385063
\(838\) −17.9386 −0.619679
\(839\) −47.9304 −1.65474 −0.827370 0.561657i \(-0.810164\pi\)
−0.827370 + 0.561657i \(0.810164\pi\)
\(840\) 0 0
\(841\) −18.6213 −0.642114
\(842\) −15.5977 −0.537532
\(843\) −51.3123 −1.76729
\(844\) −1.98463 −0.0683139
\(845\) 0 0
\(846\) −43.9727 −1.51181
\(847\) 16.0887 0.552814
\(848\) −0.191394 −0.00657249
\(849\) −51.7220 −1.77509
\(850\) 0 0
\(851\) −3.69154 −0.126544
\(852\) −25.8872 −0.886882
\(853\) 36.4405 1.24770 0.623850 0.781544i \(-0.285568\pi\)
0.623850 + 0.781544i \(0.285568\pi\)
\(854\) 11.7513 0.402123
\(855\) 0 0
\(856\) −11.4218 −0.390388
\(857\) −29.9745 −1.02391 −0.511954 0.859013i \(-0.671078\pi\)
−0.511954 + 0.859013i \(0.671078\pi\)
\(858\) 0 0
\(859\) 34.8453 1.18891 0.594454 0.804130i \(-0.297368\pi\)
0.594454 + 0.804130i \(0.297368\pi\)
\(860\) 0 0
\(861\) 52.0409 1.77355
\(862\) −30.0631 −1.02395
\(863\) −25.2753 −0.860381 −0.430190 0.902738i \(-0.641554\pi\)
−0.430190 + 0.902738i \(0.641554\pi\)
\(864\) 1.30889 0.0445292
\(865\) 0 0
\(866\) 22.5878 0.767565
\(867\) 0.926067 0.0314509
\(868\) 15.9092 0.539992
\(869\) 10.3201 0.350085
\(870\) 0 0
\(871\) 0 0
\(872\) 10.3606 0.350853
\(873\) −6.72311 −0.227543
\(874\) −34.1827 −1.15625
\(875\) 0 0
\(876\) −10.4803 −0.354096
\(877\) −6.44566 −0.217654 −0.108827 0.994061i \(-0.534710\pi\)
−0.108827 + 0.994061i \(0.534710\pi\)
\(878\) −34.8184 −1.17506
\(879\) −76.0524 −2.56518
\(880\) 0 0
\(881\) −12.5890 −0.424133 −0.212066 0.977255i \(-0.568019\pi\)
−0.212066 + 0.977255i \(0.568019\pi\)
\(882\) −12.3166 −0.414721
\(883\) 17.7501 0.597339 0.298669 0.954357i \(-0.403457\pi\)
0.298669 + 0.954357i \(0.403457\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 15.5022 0.520808
\(887\) 6.79925 0.228296 0.114148 0.993464i \(-0.463586\pi\)
0.114148 + 0.993464i \(0.463586\pi\)
\(888\) −1.24589 −0.0418092
\(889\) −2.84491 −0.0954151
\(890\) 0 0
\(891\) 31.8742 1.06783
\(892\) −6.23337 −0.208709
\(893\) 56.5862 1.89359
\(894\) 25.3895 0.849152
\(895\) 0 0
\(896\) 1.86919 0.0624453
\(897\) 0 0
\(898\) 0.894606 0.0298534
\(899\) 27.4198 0.914501
\(900\) 0 0
\(901\) −0.797514 −0.0265691
\(902\) −48.3074 −1.60846
\(903\) 20.9353 0.696682
\(904\) −0.559115 −0.0185959
\(905\) 0 0
\(906\) 30.5173 1.01387
\(907\) −10.4184 −0.345937 −0.172969 0.984927i \(-0.555336\pi\)
−0.172969 + 0.984927i \(0.555336\pi\)
\(908\) 13.3667 0.443590
\(909\) 57.2921 1.90026
\(910\) 0 0
\(911\) −9.38030 −0.310783 −0.155392 0.987853i \(-0.549664\pi\)
−0.155392 + 0.987853i \(0.549664\pi\)
\(912\) −11.5366 −0.382015
\(913\) −11.0547 −0.365858
\(914\) −10.7958 −0.357094
\(915\) 0 0
\(916\) 5.10916 0.168811
\(917\) 13.3921 0.442247
\(918\) 5.45397 0.180008
\(919\) 39.0419 1.28787 0.643937 0.765078i \(-0.277300\pi\)
0.643937 + 0.765078i \(0.277300\pi\)
\(920\) 0 0
\(921\) −23.3109 −0.768121
\(922\) 10.8827 0.358403
\(923\) 0 0
\(924\) −21.1227 −0.694886
\(925\) 0 0
\(926\) −3.15999 −0.103844
\(927\) 51.2178 1.68221
\(928\) 3.22160 0.105754
\(929\) −29.3209 −0.961988 −0.480994 0.876724i \(-0.659724\pi\)
−0.480994 + 0.876724i \(0.659724\pi\)
\(930\) 0 0
\(931\) 15.8496 0.519449
\(932\) 25.7364 0.843025
\(933\) −13.6437 −0.446676
\(934\) 23.0475 0.754138
\(935\) 0 0
\(936\) 0 0
\(937\) 55.0322 1.79782 0.898911 0.438130i \(-0.144359\pi\)
0.898911 + 0.438130i \(0.144359\pi\)
\(938\) 10.6504 0.347747
\(939\) 3.37445 0.110121
\(940\) 0 0
\(941\) 12.9833 0.423243 0.211621 0.977352i \(-0.432126\pi\)
0.211621 + 0.977352i \(0.432126\pi\)
\(942\) 17.1647 0.559257
\(943\) 82.4935 2.68636
\(944\) 11.2785 0.367083
\(945\) 0 0
\(946\) −19.4333 −0.631832
\(947\) 43.0090 1.39760 0.698802 0.715316i \(-0.253717\pi\)
0.698802 + 0.715316i \(0.253717\pi\)
\(948\) −5.94786 −0.193178
\(949\) 0 0
\(950\) 0 0
\(951\) 9.82414 0.318570
\(952\) 7.78870 0.252433
\(953\) −26.9615 −0.873369 −0.436684 0.899615i \(-0.643847\pi\)
−0.436684 + 0.899615i \(0.643847\pi\)
\(954\) −0.672343 −0.0217679
\(955\) 0 0
\(956\) −9.42688 −0.304887
\(957\) −36.4055 −1.17682
\(958\) 9.16688 0.296168
\(959\) −29.9994 −0.968731
\(960\) 0 0
\(961\) 41.4412 1.33681
\(962\) 0 0
\(963\) −40.1232 −1.29295
\(964\) 8.55884 0.275662
\(965\) 0 0
\(966\) 36.0708 1.16056
\(967\) −3.03699 −0.0976630 −0.0488315 0.998807i \(-0.515550\pi\)
−0.0488315 + 0.998807i \(0.515550\pi\)
\(968\) 8.60730 0.276649
\(969\) −48.0716 −1.54428
\(970\) 0 0
\(971\) 29.5149 0.947180 0.473590 0.880746i \(-0.342958\pi\)
0.473590 + 0.880746i \(0.342958\pi\)
\(972\) −22.2970 −0.715177
\(973\) −33.1412 −1.06246
\(974\) −24.1155 −0.772711
\(975\) 0 0
\(976\) 6.28685 0.201237
\(977\) 38.3621 1.22731 0.613656 0.789574i \(-0.289698\pi\)
0.613656 + 0.789574i \(0.289698\pi\)
\(978\) −0.0214097 −0.000684606 0
\(979\) 52.8769 1.68995
\(980\) 0 0
\(981\) 36.3954 1.16202
\(982\) 5.68528 0.181424
\(983\) −30.0081 −0.957109 −0.478554 0.878058i \(-0.658839\pi\)
−0.478554 + 0.878058i \(0.658839\pi\)
\(984\) 27.8414 0.887551
\(985\) 0 0
\(986\) 13.4240 0.427507
\(987\) −59.7118 −1.90065
\(988\) 0 0
\(989\) 33.1859 1.05525
\(990\) 0 0
\(991\) −24.3851 −0.774618 −0.387309 0.921950i \(-0.626595\pi\)
−0.387309 + 0.921950i \(0.626595\pi\)
\(992\) 8.51124 0.270232
\(993\) −12.6683 −0.402015
\(994\) −18.9607 −0.601395
\(995\) 0 0
\(996\) 6.37126 0.201881
\(997\) −29.2603 −0.926681 −0.463341 0.886180i \(-0.653349\pi\)
−0.463341 + 0.886180i \(0.653349\pi\)
\(998\) −6.68270 −0.211537
\(999\) −0.638990 −0.0202167
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.da.1.7 9
5.2 odd 4 1690.2.b.g.339.12 yes 18
5.3 odd 4 1690.2.b.g.339.7 yes 18
5.4 even 2 8450.2.a.ct.1.3 9
13.12 even 2 8450.2.a.cw.1.7 9
65.8 even 4 1690.2.c.h.1689.16 18
65.12 odd 4 1690.2.b.f.339.3 18
65.18 even 4 1690.2.c.g.1689.16 18
65.38 odd 4 1690.2.b.f.339.16 yes 18
65.47 even 4 1690.2.c.g.1689.3 18
65.57 even 4 1690.2.c.h.1689.3 18
65.64 even 2 8450.2.a.cx.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.3 18 65.12 odd 4
1690.2.b.f.339.16 yes 18 65.38 odd 4
1690.2.b.g.339.7 yes 18 5.3 odd 4
1690.2.b.g.339.12 yes 18 5.2 odd 4
1690.2.c.g.1689.3 18 65.47 even 4
1690.2.c.g.1689.16 18 65.18 even 4
1690.2.c.h.1689.3 18 65.57 even 4
1690.2.c.h.1689.16 18 65.8 even 4
8450.2.a.ct.1.3 9 5.4 even 2
8450.2.a.cw.1.7 9 13.12 even 2
8450.2.a.cx.1.3 9 65.64 even 2
8450.2.a.da.1.7 9 1.1 even 1 trivial