Properties

Label 1690.2.b.g.339.7
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-18,0,14,0,0,-16,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.7
Root \(-0.430845i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.g.339.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +2.55203i q^{3} -1.00000 q^{4} +(-1.58997 - 1.57226i) q^{5} +2.55203 q^{6} -1.86919i q^{7} +1.00000i q^{8} -3.51288 q^{9} +(-1.57226 + 1.58997i) q^{10} -4.42801 q^{11} -2.55203i q^{12} -1.86919 q^{14} +(4.01247 - 4.05765i) q^{15} +1.00000 q^{16} -4.16688i q^{17} +3.51288i q^{18} +4.52055 q^{19} +(1.58997 + 1.57226i) q^{20} +4.77024 q^{21} +4.42801i q^{22} +7.56163i q^{23} -2.55203 q^{24} +(0.0559819 + 4.99969i) q^{25} -1.30889i q^{27} +1.86919i q^{28} -3.22160 q^{29} +(-4.05765 - 4.01247i) q^{30} +8.51124 q^{31} -1.00000i q^{32} -11.3004i q^{33} -4.16688 q^{34} +(-2.93886 + 2.97195i) q^{35} +3.51288 q^{36} +0.488194i q^{37} -4.52055i q^{38} +(1.57226 - 1.58997i) q^{40} +10.9095 q^{41} -4.77024i q^{42} +4.38872i q^{43} +4.42801 q^{44} +(5.58536 + 5.52317i) q^{45} +7.56163 q^{46} +12.5176i q^{47} +2.55203i q^{48} +3.50612 q^{49} +(4.99969 - 0.0559819i) q^{50} +10.6340 q^{51} -0.191394i q^{53} -1.30889 q^{54} +(7.04039 + 6.96200i) q^{55} +1.86919 q^{56} +11.5366i q^{57} +3.22160i q^{58} -11.2785 q^{59} +(-4.01247 + 4.05765i) q^{60} +6.28685 q^{61} -8.51124i q^{62} +6.56625i q^{63} -1.00000 q^{64} -11.3004 q^{66} -5.69785i q^{67} +4.16688i q^{68} -19.2975 q^{69} +(2.97195 + 2.93886i) q^{70} -10.1438 q^{71} -3.51288i q^{72} -4.10663i q^{73} +0.488194 q^{74} +(-12.7594 + 0.142868i) q^{75} -4.52055 q^{76} +8.27681i q^{77} +2.33064 q^{79} +(-1.58997 - 1.57226i) q^{80} -7.19832 q^{81} -10.9095i q^{82} +2.49654i q^{83} -4.77024 q^{84} +(-6.55143 + 6.62519i) q^{85} +4.38872 q^{86} -8.22163i q^{87} -4.42801i q^{88} +11.9415 q^{89} +(5.52317 - 5.58536i) q^{90} -7.56163i q^{92} +21.7210i q^{93} +12.5176 q^{94} +(-7.18752 - 7.10749i) q^{95} +2.55203 q^{96} +1.91384i q^{97} -3.50612i q^{98} +15.5551 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{4} + 14 q^{6} - 16 q^{9} + 2 q^{10} + 8 q^{11} - 2 q^{14} + 8 q^{15} + 18 q^{16} - 12 q^{19} + 16 q^{21} - 14 q^{24} + 22 q^{25} - 30 q^{29} - 14 q^{30} - 12 q^{31} - 24 q^{34} - 4 q^{35} + 16 q^{36}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.55203i 1.47342i 0.676210 + 0.736709i \(0.263621\pi\)
−0.676210 + 0.736709i \(0.736379\pi\)
\(4\) −1.00000 −0.500000
\(5\) −1.58997 1.57226i −0.711054 0.703137i
\(6\) 2.55203 1.04186
\(7\) 1.86919i 0.706488i −0.935531 0.353244i \(-0.885078\pi\)
0.935531 0.353244i \(-0.114922\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −3.51288 −1.17096
\(10\) −1.57226 + 1.58997i −0.497193 + 0.502791i
\(11\) −4.42801 −1.33510 −0.667548 0.744567i \(-0.732656\pi\)
−0.667548 + 0.744567i \(0.732656\pi\)
\(12\) 2.55203i 0.736709i
\(13\) 0 0
\(14\) −1.86919 −0.499563
\(15\) 4.01247 4.05765i 1.03601 1.04768i
\(16\) 1.00000 0.250000
\(17\) 4.16688i 1.01062i −0.862939 0.505308i \(-0.831379\pi\)
0.862939 0.505308i \(-0.168621\pi\)
\(18\) 3.51288i 0.827994i
\(19\) 4.52055 1.03709 0.518543 0.855052i \(-0.326475\pi\)
0.518543 + 0.855052i \(0.326475\pi\)
\(20\) 1.58997 + 1.57226i 0.355527 + 0.351569i
\(21\) 4.77024 1.04095
\(22\) 4.42801i 0.944056i
\(23\) 7.56163i 1.57671i 0.615221 + 0.788354i \(0.289067\pi\)
−0.615221 + 0.788354i \(0.710933\pi\)
\(24\) −2.55203 −0.520932
\(25\) 0.0559819 + 4.99969i 0.0111964 + 0.999937i
\(26\) 0 0
\(27\) 1.30889i 0.251895i
\(28\) 1.86919i 0.353244i
\(29\) −3.22160 −0.598236 −0.299118 0.954216i \(-0.596692\pi\)
−0.299118 + 0.954216i \(0.596692\pi\)
\(30\) −4.05765 4.01247i −0.740822 0.732573i
\(31\) 8.51124 1.52866 0.764332 0.644823i \(-0.223069\pi\)
0.764332 + 0.644823i \(0.223069\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 11.3004i 1.96715i
\(34\) −4.16688 −0.714614
\(35\) −2.93886 + 2.97195i −0.496758 + 0.502352i
\(36\) 3.51288 0.585480
\(37\) 0.488194i 0.0802585i 0.999194 + 0.0401293i \(0.0127770\pi\)
−0.999194 + 0.0401293i \(0.987223\pi\)
\(38\) 4.52055i 0.733330i
\(39\) 0 0
\(40\) 1.57226 1.58997i 0.248597 0.251396i
\(41\) 10.9095 1.70378 0.851888 0.523724i \(-0.175458\pi\)
0.851888 + 0.523724i \(0.175458\pi\)
\(42\) 4.77024i 0.736065i
\(43\) 4.38872i 0.669274i 0.942347 + 0.334637i \(0.108614\pi\)
−0.942347 + 0.334637i \(0.891386\pi\)
\(44\) 4.42801 0.667548
\(45\) 5.58536 + 5.52317i 0.832616 + 0.823345i
\(46\) 7.56163 1.11490
\(47\) 12.5176i 1.82587i 0.408101 + 0.912937i \(0.366191\pi\)
−0.408101 + 0.912937i \(0.633809\pi\)
\(48\) 2.55203i 0.368354i
\(49\) 3.50612 0.500874
\(50\) 4.99969 0.0559819i 0.707062 0.00791703i
\(51\) 10.6340 1.48906
\(52\) 0 0
\(53\) 0.191394i 0.0262900i −0.999914 0.0131450i \(-0.995816\pi\)
0.999914 0.0131450i \(-0.00418430\pi\)
\(54\) −1.30889 −0.178117
\(55\) 7.04039 + 6.96200i 0.949326 + 0.938756i
\(56\) 1.86919 0.249781
\(57\) 11.5366i 1.52806i
\(58\) 3.22160i 0.423016i
\(59\) −11.2785 −1.46833 −0.734166 0.678970i \(-0.762427\pi\)
−0.734166 + 0.678970i \(0.762427\pi\)
\(60\) −4.01247 + 4.05765i −0.518007 + 0.523840i
\(61\) 6.28685 0.804949 0.402474 0.915431i \(-0.368150\pi\)
0.402474 + 0.915431i \(0.368150\pi\)
\(62\) 8.51124i 1.08093i
\(63\) 6.56625i 0.827270i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −11.3004 −1.39099
\(67\) 5.69785i 0.696103i −0.937475 0.348051i \(-0.886843\pi\)
0.937475 0.348051i \(-0.113157\pi\)
\(68\) 4.16688i 0.505308i
\(69\) −19.2975 −2.32315
\(70\) 2.97195 + 2.93886i 0.355216 + 0.351261i
\(71\) −10.1438 −1.20384 −0.601922 0.798555i \(-0.705598\pi\)
−0.601922 + 0.798555i \(0.705598\pi\)
\(72\) 3.51288i 0.413997i
\(73\) 4.10663i 0.480645i −0.970693 0.240323i \(-0.922747\pi\)
0.970693 0.240323i \(-0.0772532\pi\)
\(74\) 0.488194 0.0567514
\(75\) −12.7594 + 0.142868i −1.47333 + 0.0164969i
\(76\) −4.52055 −0.518543
\(77\) 8.27681i 0.943230i
\(78\) 0 0
\(79\) 2.33064 0.262217 0.131108 0.991368i \(-0.458146\pi\)
0.131108 + 0.991368i \(0.458146\pi\)
\(80\) −1.58997 1.57226i −0.177764 0.175784i
\(81\) −7.19832 −0.799813
\(82\) 10.9095i 1.20475i
\(83\) 2.49654i 0.274031i 0.990569 + 0.137016i \(0.0437510\pi\)
−0.990569 + 0.137016i \(0.956249\pi\)
\(84\) −4.77024 −0.520476
\(85\) −6.55143 + 6.62519i −0.710602 + 0.718603i
\(86\) 4.38872 0.473248
\(87\) 8.22163i 0.881451i
\(88\) 4.42801i 0.472028i
\(89\) 11.9415 1.26579 0.632896 0.774237i \(-0.281866\pi\)
0.632896 + 0.774237i \(0.281866\pi\)
\(90\) 5.52317 5.58536i 0.582193 0.588748i
\(91\) 0 0
\(92\) 7.56163i 0.788354i
\(93\) 21.7210i 2.25236i
\(94\) 12.5176 1.29109
\(95\) −7.18752 7.10749i −0.737424 0.729213i
\(96\) 2.55203 0.260466
\(97\) 1.91384i 0.194322i 0.995269 + 0.0971608i \(0.0309761\pi\)
−0.995269 + 0.0971608i \(0.969024\pi\)
\(98\) 3.50612i 0.354171i
\(99\) 15.5551 1.56334
\(100\) −0.0559819 4.99969i −0.00559819 0.499969i
\(101\) 16.3092 1.62282 0.811411 0.584476i \(-0.198700\pi\)
0.811411 + 0.584476i \(0.198700\pi\)
\(102\) 10.6340i 1.05292i
\(103\) 14.5800i 1.43661i 0.695728 + 0.718305i \(0.255082\pi\)
−0.695728 + 0.718305i \(0.744918\pi\)
\(104\) 0 0
\(105\) −7.58452 7.50008i −0.740174 0.731932i
\(106\) −0.191394 −0.0185898
\(107\) 11.4218i 1.10418i 0.833784 + 0.552091i \(0.186170\pi\)
−0.833784 + 0.552091i \(0.813830\pi\)
\(108\) 1.30889i 0.125948i
\(109\) −10.3606 −0.992363 −0.496181 0.868219i \(-0.665265\pi\)
−0.496181 + 0.868219i \(0.665265\pi\)
\(110\) 6.96200 7.04039i 0.663801 0.671275i
\(111\) −1.24589 −0.118254
\(112\) 1.86919i 0.176622i
\(113\) 0.559115i 0.0525971i −0.999654 0.0262985i \(-0.991628\pi\)
0.999654 0.0262985i \(-0.00837205\pi\)
\(114\) 11.5366 1.08050
\(115\) 11.8889 12.0227i 1.10864 1.12113i
\(116\) 3.22160 0.299118
\(117\) 0 0
\(118\) 11.2785i 1.03827i
\(119\) −7.78870 −0.713989
\(120\) 4.05765 + 4.01247i 0.370411 + 0.366287i
\(121\) 8.60730 0.782482
\(122\) 6.28685i 0.569185i
\(123\) 27.8414i 2.51037i
\(124\) −8.51124 −0.764332
\(125\) 7.77181 8.03735i 0.695132 0.718882i
\(126\) 6.56625 0.584968
\(127\) 1.52200i 0.135055i 0.997717 + 0.0675277i \(0.0215111\pi\)
−0.997717 + 0.0675277i \(0.978489\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −11.2002 −0.986120
\(130\) 0 0
\(131\) 7.16465 0.625979 0.312989 0.949757i \(-0.398670\pi\)
0.312989 + 0.949757i \(0.398670\pi\)
\(132\) 11.3004i 0.983577i
\(133\) 8.44978i 0.732689i
\(134\) −5.69785 −0.492219
\(135\) −2.05791 + 2.08108i −0.177117 + 0.179111i
\(136\) 4.16688 0.357307
\(137\) 16.0494i 1.37119i 0.727983 + 0.685596i \(0.240458\pi\)
−0.727983 + 0.685596i \(0.759542\pi\)
\(138\) 19.2975i 1.64272i
\(139\) 17.7302 1.50386 0.751930 0.659243i \(-0.229123\pi\)
0.751930 + 0.659243i \(0.229123\pi\)
\(140\) 2.93886 2.97195i 0.248379 0.251176i
\(141\) −31.9452 −2.69027
\(142\) 10.1438i 0.851246i
\(143\) 0 0
\(144\) −3.51288 −0.292740
\(145\) 5.12223 + 5.06520i 0.425378 + 0.420642i
\(146\) −4.10663 −0.339867
\(147\) 8.94773i 0.737997i
\(148\) 0.488194i 0.0401293i
\(149\) −9.94873 −0.815032 −0.407516 0.913198i \(-0.633605\pi\)
−0.407516 + 0.913198i \(0.633605\pi\)
\(150\) 0.142868 + 12.7594i 0.0116651 + 1.04180i
\(151\) 11.9580 0.973130 0.486565 0.873644i \(-0.338250\pi\)
0.486565 + 0.873644i \(0.338250\pi\)
\(152\) 4.52055i 0.366665i
\(153\) 14.6377i 1.18339i
\(154\) 8.27681 0.666964
\(155\) −13.5326 13.3819i −1.08696 1.07486i
\(156\) 0 0
\(157\) 6.72590i 0.536785i −0.963310 0.268392i \(-0.913508\pi\)
0.963310 0.268392i \(-0.0864924\pi\)
\(158\) 2.33064i 0.185415i
\(159\) 0.488443 0.0387361
\(160\) −1.57226 + 1.58997i −0.124298 + 0.125698i
\(161\) 14.1341 1.11393
\(162\) 7.19832i 0.565553i
\(163\) 0.00838925i 0.000657097i −1.00000 0.000328549i \(-0.999895\pi\)
1.00000 0.000328549i \(-0.000104580\pi\)
\(164\) −10.9095 −0.851888
\(165\) −17.7673 + 17.9673i −1.38318 + 1.39875i
\(166\) 2.49654 0.193769
\(167\) 8.77138i 0.678749i 0.940651 + 0.339375i \(0.110215\pi\)
−0.940651 + 0.339375i \(0.889785\pi\)
\(168\) 4.77024i 0.368032i
\(169\) 0 0
\(170\) 6.62519 + 6.55143i 0.508129 + 0.502471i
\(171\) −15.8801 −1.21439
\(172\) 4.38872i 0.334637i
\(173\) 5.17428i 0.393393i −0.980464 0.196697i \(-0.936979\pi\)
0.980464 0.196697i \(-0.0630214\pi\)
\(174\) −8.22163 −0.623280
\(175\) 9.34538 0.104641i 0.706444 0.00791011i
\(176\) −4.42801 −0.333774
\(177\) 28.7831i 2.16347i
\(178\) 11.9415i 0.895050i
\(179\) 7.82042 0.584526 0.292263 0.956338i \(-0.405592\pi\)
0.292263 + 0.956338i \(0.405592\pi\)
\(180\) −5.58536 5.52317i −0.416308 0.411673i
\(181\) −12.2270 −0.908823 −0.454411 0.890792i \(-0.650150\pi\)
−0.454411 + 0.890792i \(0.650150\pi\)
\(182\) 0 0
\(183\) 16.0443i 1.18603i
\(184\) −7.56163 −0.557451
\(185\) 0.767568 0.776211i 0.0564328 0.0570682i
\(186\) 21.7210 1.59266
\(187\) 18.4510i 1.34927i
\(188\) 12.5176i 0.912937i
\(189\) −2.44656 −0.177961
\(190\) −7.10749 + 7.18752i −0.515632 + 0.521437i
\(191\) 18.1313 1.31194 0.655968 0.754789i \(-0.272261\pi\)
0.655968 + 0.754789i \(0.272261\pi\)
\(192\) 2.55203i 0.184177i
\(193\) 6.34605i 0.456799i 0.973568 + 0.228399i \(0.0733492\pi\)
−0.973568 + 0.228399i \(0.926651\pi\)
\(194\) 1.91384 0.137406
\(195\) 0 0
\(196\) −3.50612 −0.250437
\(197\) 2.19339i 0.156273i −0.996943 0.0781364i \(-0.975103\pi\)
0.996943 0.0781364i \(-0.0248970\pi\)
\(198\) 15.5551i 1.10545i
\(199\) 4.80668 0.340737 0.170368 0.985380i \(-0.445504\pi\)
0.170368 + 0.985380i \(0.445504\pi\)
\(200\) −4.99969 + 0.0559819i −0.353531 + 0.00395852i
\(201\) 14.5411 1.02565
\(202\) 16.3092i 1.14751i
\(203\) 6.02179i 0.422646i
\(204\) −10.6340 −0.744530
\(205\) −17.3457 17.1526i −1.21148 1.19799i
\(206\) 14.5800 1.01584
\(207\) 26.5631i 1.84626i
\(208\) 0 0
\(209\) −20.0171 −1.38461
\(210\) −7.50008 + 7.58452i −0.517554 + 0.523382i
\(211\) −1.98463 −0.136628 −0.0683139 0.997664i \(-0.521762\pi\)
−0.0683139 + 0.997664i \(0.521762\pi\)
\(212\) 0.191394i 0.0131450i
\(213\) 25.8872i 1.77376i
\(214\) 11.4218 0.780775
\(215\) 6.90022 6.97792i 0.470591 0.475890i
\(216\) 1.30889 0.0890584
\(217\) 15.9092i 1.07998i
\(218\) 10.3606i 0.701706i
\(219\) 10.4803 0.708191
\(220\) −7.04039 6.96200i −0.474663 0.469378i
\(221\) 0 0
\(222\) 1.24589i 0.0836185i
\(223\) 6.23337i 0.417417i −0.977978 0.208709i \(-0.933074\pi\)
0.977978 0.208709i \(-0.0669260\pi\)
\(224\) −1.86919 −0.124891
\(225\) −0.196658 17.5633i −0.0131105 1.17089i
\(226\) −0.559115 −0.0371917
\(227\) 13.3667i 0.887180i −0.896230 0.443590i \(-0.853705\pi\)
0.896230 0.443590i \(-0.146295\pi\)
\(228\) 11.5366i 0.764030i
\(229\) −5.10916 −0.337623 −0.168811 0.985648i \(-0.553993\pi\)
−0.168811 + 0.985648i \(0.553993\pi\)
\(230\) −12.0227 11.8889i −0.792755 0.783929i
\(231\) −21.1227 −1.38977
\(232\) 3.22160i 0.211508i
\(233\) 25.7364i 1.68605i 0.537874 + 0.843025i \(0.319228\pi\)
−0.537874 + 0.843025i \(0.680772\pi\)
\(234\) 0 0
\(235\) 19.6809 19.9025i 1.28384 1.29830i
\(236\) 11.2785 0.734166
\(237\) 5.94786i 0.386355i
\(238\) 7.78870i 0.504866i
\(239\) 9.42688 0.609774 0.304887 0.952389i \(-0.401381\pi\)
0.304887 + 0.952389i \(0.401381\pi\)
\(240\) 4.01247 4.05765i 0.259004 0.261920i
\(241\) 8.55884 0.551324 0.275662 0.961255i \(-0.411103\pi\)
0.275662 + 0.961255i \(0.411103\pi\)
\(242\) 8.60730i 0.553298i
\(243\) 22.2970i 1.43035i
\(244\) −6.28685 −0.402474
\(245\) −5.57461 5.51254i −0.356149 0.352183i
\(246\) 27.8414 1.77510
\(247\) 0 0
\(248\) 8.51124i 0.540464i
\(249\) −6.37126 −0.403762
\(250\) −8.03735 7.77181i −0.508327 0.491532i
\(251\) −2.91331 −0.183887 −0.0919433 0.995764i \(-0.529308\pi\)
−0.0919433 + 0.995764i \(0.529308\pi\)
\(252\) 6.56625i 0.413635i
\(253\) 33.4830i 2.10506i
\(254\) 1.52200 0.0954986
\(255\) −16.9077 16.7195i −1.05880 1.04701i
\(256\) 1.00000 0.0625000
\(257\) 28.3335i 1.76740i 0.468057 + 0.883698i \(0.344954\pi\)
−0.468057 + 0.883698i \(0.655046\pi\)
\(258\) 11.2002i 0.697292i
\(259\) 0.912528 0.0567017
\(260\) 0 0
\(261\) 11.3171 0.700510
\(262\) 7.16465i 0.442634i
\(263\) 6.57342i 0.405335i −0.979248 0.202667i \(-0.935039\pi\)
0.979248 0.202667i \(-0.0649610\pi\)
\(264\) 11.3004 0.695494
\(265\) −0.300921 + 0.304309i −0.0184854 + 0.0186936i
\(266\) −8.44978 −0.518089
\(267\) 30.4750i 1.86504i
\(268\) 5.69785i 0.348051i
\(269\) −13.1504 −0.801797 −0.400898 0.916123i \(-0.631302\pi\)
−0.400898 + 0.916123i \(0.631302\pi\)
\(270\) 2.08108 + 2.05791i 0.126651 + 0.125241i
\(271\) −22.3779 −1.35936 −0.679682 0.733507i \(-0.737882\pi\)
−0.679682 + 0.733507i \(0.737882\pi\)
\(272\) 4.16688i 0.252654i
\(273\) 0 0
\(274\) 16.0494 0.969579
\(275\) −0.247888 22.1387i −0.0149482 1.33501i
\(276\) 19.2975 1.16158
\(277\) 11.0451i 0.663634i −0.943344 0.331817i \(-0.892338\pi\)
0.943344 0.331817i \(-0.107662\pi\)
\(278\) 17.7302i 1.06339i
\(279\) −29.8990 −1.79000
\(280\) −2.97195 2.93886i −0.177608 0.175631i
\(281\) −20.1064 −1.19945 −0.599724 0.800207i \(-0.704723\pi\)
−0.599724 + 0.800207i \(0.704723\pi\)
\(282\) 31.9452i 1.90231i
\(283\) 20.2670i 1.20475i −0.798215 0.602373i \(-0.794222\pi\)
0.798215 0.602373i \(-0.205778\pi\)
\(284\) 10.1438 0.601922
\(285\) 18.1386 18.3428i 1.07444 1.08653i
\(286\) 0 0
\(287\) 20.3919i 1.20370i
\(288\) 3.51288i 0.206998i
\(289\) −0.362874 −0.0213455
\(290\) 5.06520 5.12223i 0.297439 0.300788i
\(291\) −4.88420 −0.286317
\(292\) 4.10663i 0.240323i
\(293\) 29.8007i 1.74097i −0.492191 0.870487i \(-0.663804\pi\)
0.492191 0.870487i \(-0.336196\pi\)
\(294\) 8.94773 0.521842
\(295\) 17.9324 + 17.7327i 1.04406 + 1.03244i
\(296\) −0.488194 −0.0283757
\(297\) 5.79577i 0.336304i
\(298\) 9.94873i 0.576315i
\(299\) 0 0
\(300\) 12.7594 0.142868i 0.736663 0.00824847i
\(301\) 8.20337 0.472834
\(302\) 11.9580i 0.688107i
\(303\) 41.6215i 2.39109i
\(304\) 4.52055 0.259271
\(305\) −9.99588 9.88458i −0.572362 0.565989i
\(306\) 14.6377 0.836784
\(307\) 9.13426i 0.521320i 0.965431 + 0.260660i \(0.0839401\pi\)
−0.965431 + 0.260660i \(0.916060\pi\)
\(308\) 8.27681i 0.471615i
\(309\) −37.2087 −2.11673
\(310\) −13.3819 + 13.5326i −0.760041 + 0.768599i
\(311\) −5.34622 −0.303157 −0.151578 0.988445i \(-0.548436\pi\)
−0.151578 + 0.988445i \(0.548436\pi\)
\(312\) 0 0
\(313\) 1.32226i 0.0747385i 0.999302 + 0.0373692i \(0.0118978\pi\)
−0.999302 + 0.0373692i \(0.988102\pi\)
\(314\) −6.72590 −0.379564
\(315\) 10.3239 10.4401i 0.581684 0.588234i
\(316\) −2.33064 −0.131108
\(317\) 3.84953i 0.216211i −0.994139 0.108106i \(-0.965522\pi\)
0.994139 0.108106i \(-0.0344785\pi\)
\(318\) 0.488443i 0.0273905i
\(319\) 14.2653 0.798702
\(320\) 1.58997 + 1.57226i 0.0888818 + 0.0878921i
\(321\) −29.1487 −1.62692
\(322\) 14.1341i 0.787665i
\(323\) 18.8366i 1.04810i
\(324\) 7.19832 0.399906
\(325\) 0 0
\(326\) −0.00838925 −0.000464638
\(327\) 26.4405i 1.46216i
\(328\) 10.9095i 0.602376i
\(329\) 23.3977 1.28996
\(330\) 17.9673 + 17.7673i 0.989068 + 0.978055i
\(331\) −4.96398 −0.272845 −0.136423 0.990651i \(-0.543561\pi\)
−0.136423 + 0.990651i \(0.543561\pi\)
\(332\) 2.49654i 0.137016i
\(333\) 1.71497i 0.0939795i
\(334\) 8.77138 0.479948
\(335\) −8.95851 + 9.05938i −0.489456 + 0.494967i
\(336\) 4.77024 0.260238
\(337\) 11.2699i 0.613911i −0.951724 0.306956i \(-0.900690\pi\)
0.951724 0.306956i \(-0.0993103\pi\)
\(338\) 0 0
\(339\) 1.42688 0.0774975
\(340\) 6.55143 6.62519i 0.355301 0.359302i
\(341\) −37.6879 −2.04091
\(342\) 15.8801i 0.858700i
\(343\) 19.6380i 1.06035i
\(344\) −4.38872 −0.236624
\(345\) 30.6824 + 30.3408i 1.65189 + 1.63349i
\(346\) −5.17428 −0.278171
\(347\) 15.6806i 0.841781i 0.907112 + 0.420890i \(0.138282\pi\)
−0.907112 + 0.420890i \(0.861718\pi\)
\(348\) 8.22163i 0.440725i
\(349\) −0.557452 −0.0298397 −0.0149198 0.999889i \(-0.504749\pi\)
−0.0149198 + 0.999889i \(0.504749\pi\)
\(350\) −0.104641 9.34538i −0.00559329 0.499531i
\(351\) 0 0
\(352\) 4.42801i 0.236014i
\(353\) 24.1725i 1.28657i −0.765627 0.643285i \(-0.777571\pi\)
0.765627 0.643285i \(-0.222429\pi\)
\(354\) −28.7831 −1.52980
\(355\) 16.1282 + 15.9487i 0.855998 + 0.846467i
\(356\) −11.9415 −0.632896
\(357\) 19.8770i 1.05200i
\(358\) 7.82042i 0.413322i
\(359\) 0.910208 0.0480389 0.0240195 0.999711i \(-0.492354\pi\)
0.0240195 + 0.999711i \(0.492354\pi\)
\(360\) −5.52317 + 5.58536i −0.291097 + 0.294374i
\(361\) 1.43537 0.0755457
\(362\) 12.2270i 0.642635i
\(363\) 21.9661i 1.15292i
\(364\) 0 0
\(365\) −6.45671 + 6.52941i −0.337959 + 0.341765i
\(366\) 16.0443 0.838647
\(367\) 4.41148i 0.230277i −0.993349 0.115139i \(-0.963269\pi\)
0.993349 0.115139i \(-0.0367312\pi\)
\(368\) 7.56163i 0.394177i
\(369\) −38.3237 −1.99505
\(370\) −0.776211 0.767568i −0.0403533 0.0399040i
\(371\) −0.357752 −0.0185735
\(372\) 21.7210i 1.12618i
\(373\) 7.59431i 0.393219i 0.980482 + 0.196609i \(0.0629931\pi\)
−0.980482 + 0.196609i \(0.937007\pi\)
\(374\) 18.4510 0.954078
\(375\) 20.5116 + 19.8339i 1.05921 + 1.02422i
\(376\) −12.5176 −0.645544
\(377\) 0 0
\(378\) 2.44656i 0.125838i
\(379\) 30.3412 1.55852 0.779262 0.626698i \(-0.215594\pi\)
0.779262 + 0.626698i \(0.215594\pi\)
\(380\) 7.18752 + 7.10749i 0.368712 + 0.364607i
\(381\) −3.88419 −0.198993
\(382\) 18.1313i 0.927679i
\(383\) 7.99851i 0.408705i 0.978897 + 0.204352i \(0.0655088\pi\)
−0.978897 + 0.204352i \(0.934491\pi\)
\(384\) −2.55203 −0.130233
\(385\) 13.0133 13.1598i 0.663220 0.670688i
\(386\) 6.34605 0.323006
\(387\) 15.4170i 0.783693i
\(388\) 1.91384i 0.0971608i
\(389\) −22.4951 −1.14055 −0.570273 0.821455i \(-0.693163\pi\)
−0.570273 + 0.821455i \(0.693163\pi\)
\(390\) 0 0
\(391\) 31.5084 1.59345
\(392\) 3.50612i 0.177086i
\(393\) 18.2844i 0.922328i
\(394\) −2.19339 −0.110502
\(395\) −3.70563 3.66437i −0.186451 0.184374i
\(396\) −15.5551 −0.781672
\(397\) 29.6953i 1.49036i 0.666862 + 0.745181i \(0.267637\pi\)
−0.666862 + 0.745181i \(0.732363\pi\)
\(398\) 4.80668i 0.240937i
\(399\) 21.5641 1.07956
\(400\) 0.0559819 + 4.99969i 0.00279909 + 0.249984i
\(401\) 26.3944 1.31807 0.659037 0.752110i \(-0.270964\pi\)
0.659037 + 0.752110i \(0.270964\pi\)
\(402\) 14.5411i 0.725244i
\(403\) 0 0
\(404\) −16.3092 −0.811411
\(405\) 11.4451 + 11.3176i 0.568710 + 0.562378i
\(406\) 6.02179 0.298856
\(407\) 2.16173i 0.107153i
\(408\) 10.6340i 0.526462i
\(409\) 9.89433 0.489243 0.244622 0.969619i \(-0.421336\pi\)
0.244622 + 0.969619i \(0.421336\pi\)
\(410\) −17.1526 + 17.3457i −0.847106 + 0.856644i
\(411\) −40.9586 −2.02034
\(412\) 14.5800i 0.718305i
\(413\) 21.0817i 1.03736i
\(414\) −26.5631 −1.30550
\(415\) 3.92522 3.96942i 0.192681 0.194851i
\(416\) 0 0
\(417\) 45.2482i 2.21581i
\(418\) 20.0171i 0.979066i
\(419\) 17.9386 0.876359 0.438179 0.898888i \(-0.355623\pi\)
0.438179 + 0.898888i \(0.355623\pi\)
\(420\) 7.58452 + 7.50008i 0.370087 + 0.365966i
\(421\) −15.5977 −0.760184 −0.380092 0.924949i \(-0.624108\pi\)
−0.380092 + 0.924949i \(0.624108\pi\)
\(422\) 1.98463i 0.0966105i
\(423\) 43.9727i 2.13802i
\(424\) 0.191394 0.00929490
\(425\) 20.8331 0.233270i 1.01055 0.0113152i
\(426\) −25.8872 −1.25424
\(427\) 11.7513i 0.568687i
\(428\) 11.4218i 0.552091i
\(429\) 0 0
\(430\) −6.97792 6.90022i −0.336505 0.332758i
\(431\) −30.0631 −1.44809 −0.724045 0.689753i \(-0.757719\pi\)
−0.724045 + 0.689753i \(0.757719\pi\)
\(432\) 1.30889i 0.0629738i
\(433\) 22.5878i 1.08550i 0.839894 + 0.542750i \(0.182617\pi\)
−0.839894 + 0.542750i \(0.817383\pi\)
\(434\) −15.9092 −0.763664
\(435\) −12.9266 + 13.0721i −0.619781 + 0.626759i
\(436\) 10.3606 0.496181
\(437\) 34.1827i 1.63518i
\(438\) 10.4803i 0.500767i
\(439\) 34.8184 1.66179 0.830895 0.556429i \(-0.187829\pi\)
0.830895 + 0.556429i \(0.187829\pi\)
\(440\) −6.96200 + 7.04039i −0.331900 + 0.335637i
\(441\) −12.3166 −0.586503
\(442\) 0 0
\(443\) 15.5022i 0.736533i 0.929720 + 0.368267i \(0.120049\pi\)
−0.929720 + 0.368267i \(0.879951\pi\)
\(444\) 1.24589 0.0591272
\(445\) −18.9865 18.7751i −0.900047 0.890025i
\(446\) −6.23337 −0.295159
\(447\) 25.3895i 1.20088i
\(448\) 1.86919i 0.0883111i
\(449\) −0.894606 −0.0422191 −0.0211095 0.999777i \(-0.506720\pi\)
−0.0211095 + 0.999777i \(0.506720\pi\)
\(450\) −17.5633 + 0.196658i −0.827942 + 0.00927053i
\(451\) −48.3074 −2.27471
\(452\) 0.559115i 0.0262985i
\(453\) 30.5173i 1.43383i
\(454\) −13.3667 −0.627331
\(455\) 0 0
\(456\) −11.5366 −0.540251
\(457\) 10.7958i 0.505007i 0.967596 + 0.252504i \(0.0812540\pi\)
−0.967596 + 0.252504i \(0.918746\pi\)
\(458\) 5.10916i 0.238735i
\(459\) −5.45397 −0.254570
\(460\) −11.8889 + 12.0227i −0.554321 + 0.560563i
\(461\) 10.8827 0.506859 0.253429 0.967354i \(-0.418441\pi\)
0.253429 + 0.967354i \(0.418441\pi\)
\(462\) 21.1227i 0.982717i
\(463\) 3.15999i 0.146857i −0.997300 0.0734287i \(-0.976606\pi\)
0.997300 0.0734287i \(-0.0233941\pi\)
\(464\) −3.22160 −0.149559
\(465\) 34.1511 34.5356i 1.58372 1.60155i
\(466\) 25.7364 1.19222
\(467\) 23.0475i 1.06651i −0.845954 0.533256i \(-0.820968\pi\)
0.845954 0.533256i \(-0.179032\pi\)
\(468\) 0 0
\(469\) −10.6504 −0.491789
\(470\) −19.9025 19.6809i −0.918033 0.907812i
\(471\) 17.1647 0.790908
\(472\) 11.2785i 0.519134i
\(473\) 19.4333i 0.893545i
\(474\) 5.94786 0.273194
\(475\) 0.253069 + 22.6013i 0.0116116 + 1.03702i
\(476\) 7.78870 0.356994
\(477\) 0.672343i 0.0307845i
\(478\) 9.42688i 0.431175i
\(479\) −9.16688 −0.418845 −0.209423 0.977825i \(-0.567158\pi\)
−0.209423 + 0.977825i \(0.567158\pi\)
\(480\) −4.05765 4.01247i −0.185205 0.183143i
\(481\) 0 0
\(482\) 8.55884i 0.389845i
\(483\) 36.0708i 1.64128i
\(484\) −8.60730 −0.391241
\(485\) 3.00907 3.04295i 0.136635 0.138173i
\(486\) −22.2970 −1.01141
\(487\) 24.1155i 1.09278i 0.837531 + 0.546389i \(0.183998\pi\)
−0.837531 + 0.546389i \(0.816002\pi\)
\(488\) 6.28685i 0.284592i
\(489\) 0.0214097 0.000968178
\(490\) −5.51254 + 5.57461i −0.249031 + 0.251835i
\(491\) 5.68528 0.256573 0.128286 0.991737i \(-0.459052\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(492\) 27.8414i 1.25519i
\(493\) 13.4240i 0.604587i
\(494\) 0 0
\(495\) −24.7320 24.4567i −1.11162 1.09925i
\(496\) 8.51124 0.382166
\(497\) 18.9607i 0.850501i
\(498\) 6.37126i 0.285503i
\(499\) 6.68270 0.299159 0.149579 0.988750i \(-0.452208\pi\)
0.149579 + 0.988750i \(0.452208\pi\)
\(500\) −7.77181 + 8.03735i −0.347566 + 0.359441i
\(501\) −22.3849 −1.00008
\(502\) 2.91331i 0.130027i
\(503\) 17.4365i 0.777455i −0.921353 0.388727i \(-0.872915\pi\)
0.921353 0.388727i \(-0.127085\pi\)
\(504\) −6.56625 −0.292484
\(505\) −25.9310 25.6423i −1.15391 1.14107i
\(506\) −33.4830 −1.48850
\(507\) 0 0
\(508\) 1.52200i 0.0675277i
\(509\) −28.6424 −1.26955 −0.634776 0.772696i \(-0.718908\pi\)
−0.634776 + 0.772696i \(0.718908\pi\)
\(510\) −16.7195 + 16.9077i −0.740350 + 0.748686i
\(511\) −7.67609 −0.339570
\(512\) 1.00000i 0.0441942i
\(513\) 5.91689i 0.261237i
\(514\) 28.3335 1.24974
\(515\) 22.9236 23.1817i 1.01013 1.02151i
\(516\) 11.2002 0.493060
\(517\) 55.4279i 2.43772i
\(518\) 0.912528i 0.0400942i
\(519\) 13.2049 0.579632
\(520\) 0 0
\(521\) −24.2436 −1.06213 −0.531066 0.847331i \(-0.678208\pi\)
−0.531066 + 0.847331i \(0.678208\pi\)
\(522\) 11.3171i 0.495335i
\(523\) 7.25966i 0.317443i −0.987323 0.158721i \(-0.949263\pi\)
0.987323 0.158721i \(-0.0507372\pi\)
\(524\) −7.16465 −0.312989
\(525\) 0.267047 + 23.8497i 0.0116549 + 1.04089i
\(526\) −6.57342 −0.286615
\(527\) 35.4653i 1.54489i
\(528\) 11.3004i 0.491789i
\(529\) −34.1782 −1.48601
\(530\) 0.304309 + 0.300921i 0.0132184 + 0.0130712i
\(531\) 39.6199 1.71936
\(532\) 8.44978i 0.366344i
\(533\) 0 0
\(534\) 30.4750 1.31878
\(535\) 17.9580 18.1602i 0.776392 0.785134i
\(536\) 5.69785 0.246109
\(537\) 19.9580i 0.861251i
\(538\) 13.1504i 0.566956i
\(539\) −15.5251 −0.668715
\(540\) 2.05791 2.08108i 0.0885585 0.0895556i
\(541\) 9.90908 0.426025 0.213012 0.977049i \(-0.431673\pi\)
0.213012 + 0.977049i \(0.431673\pi\)
\(542\) 22.3779i 0.961215i
\(543\) 31.2036i 1.33908i
\(544\) −4.16688 −0.178653
\(545\) 16.4730 + 16.2895i 0.705624 + 0.697767i
\(546\) 0 0
\(547\) 15.7348i 0.672769i 0.941725 + 0.336385i \(0.109204\pi\)
−0.941725 + 0.336385i \(0.890796\pi\)
\(548\) 16.0494i 0.685596i
\(549\) −22.0850 −0.942563
\(550\) −22.1387 + 0.247888i −0.943996 + 0.0105700i
\(551\) −14.5634 −0.620421
\(552\) 19.2975i 0.821358i
\(553\) 4.35641i 0.185253i
\(554\) −11.0451 −0.469260
\(555\) 1.98092 + 1.95886i 0.0840853 + 0.0831490i
\(556\) −17.7302 −0.751930
\(557\) 11.6684i 0.494408i −0.968963 0.247204i \(-0.920488\pi\)
0.968963 0.247204i \(-0.0795117\pi\)
\(558\) 29.8990i 1.26572i
\(559\) 0 0
\(560\) −2.93886 + 2.97195i −0.124190 + 0.125588i
\(561\) −47.0876 −1.98804
\(562\) 20.1064i 0.848138i
\(563\) 34.0262i 1.43403i 0.697056 + 0.717017i \(0.254493\pi\)
−0.697056 + 0.717017i \(0.745507\pi\)
\(564\) 31.9452 1.34514
\(565\) −0.879075 + 0.888973i −0.0369830 + 0.0373994i
\(566\) −20.2670 −0.851884
\(567\) 13.4550i 0.565059i
\(568\) 10.1438i 0.425623i
\(569\) 44.3266 1.85827 0.929135 0.369741i \(-0.120554\pi\)
0.929135 + 0.369741i \(0.120554\pi\)
\(570\) −18.3428 18.1386i −0.768295 0.759741i
\(571\) 15.3587 0.642740 0.321370 0.946954i \(-0.395857\pi\)
0.321370 + 0.946954i \(0.395857\pi\)
\(572\) 0 0
\(573\) 46.2717i 1.93303i
\(574\) −20.3919 −0.851143
\(575\) −37.8058 + 0.423314i −1.57661 + 0.0176534i
\(576\) 3.51288 0.146370
\(577\) 31.5537i 1.31360i 0.754065 + 0.656799i \(0.228090\pi\)
−0.754065 + 0.656799i \(0.771910\pi\)
\(578\) 0.362874i 0.0150936i
\(579\) −16.1953 −0.673056
\(580\) −5.12223 5.06520i −0.212689 0.210321i
\(581\) 4.66652 0.193600
\(582\) 4.88420i 0.202457i
\(583\) 0.847494i 0.0350996i
\(584\) 4.10663 0.169934
\(585\) 0 0
\(586\) −29.8007 −1.23106
\(587\) 22.9587i 0.947607i 0.880631 + 0.473803i \(0.157119\pi\)
−0.880631 + 0.473803i \(0.842881\pi\)
\(588\) 8.94773i 0.368998i
\(589\) 38.4755 1.58535
\(590\) 17.7327 17.9324i 0.730045 0.738265i
\(591\) 5.59761 0.230255
\(592\) 0.488194i 0.0200646i
\(593\) 27.6241i 1.13439i 0.823584 + 0.567194i \(0.191971\pi\)
−0.823584 + 0.567194i \(0.808029\pi\)
\(594\) 5.79577 0.237803
\(595\) 12.3838 + 12.2459i 0.507685 + 0.502032i
\(596\) 9.94873 0.407516
\(597\) 12.2668i 0.502048i
\(598\) 0 0
\(599\) 1.54774 0.0632389 0.0316194 0.999500i \(-0.489934\pi\)
0.0316194 + 0.999500i \(0.489934\pi\)
\(600\) −0.142868 12.7594i −0.00583255 0.520899i
\(601\) 25.3606 1.03448 0.517241 0.855840i \(-0.326959\pi\)
0.517241 + 0.855840i \(0.326959\pi\)
\(602\) 8.20337i 0.334344i
\(603\) 20.0158i 0.815108i
\(604\) −11.9580 −0.486565
\(605\) −13.6853 13.5329i −0.556387 0.550192i
\(606\) 41.6215 1.69076
\(607\) 19.1839i 0.778652i −0.921100 0.389326i \(-0.872708\pi\)
0.921100 0.389326i \(-0.127292\pi\)
\(608\) 4.52055i 0.183332i
\(609\) −15.3678 −0.622735
\(610\) −9.88458 + 9.99588i −0.400215 + 0.404721i
\(611\) 0 0
\(612\) 14.6377i 0.591696i
\(613\) 3.32275i 0.134205i −0.997746 0.0671024i \(-0.978625\pi\)
0.997746 0.0671024i \(-0.0213754\pi\)
\(614\) 9.13426 0.368629
\(615\) 43.7740 44.2669i 1.76514 1.78501i
\(616\) −8.27681 −0.333482
\(617\) 13.7220i 0.552425i −0.961097 0.276213i \(-0.910921\pi\)
0.961097 0.276213i \(-0.0890794\pi\)
\(618\) 37.2087i 1.49675i
\(619\) −40.9597 −1.64631 −0.823155 0.567817i \(-0.807788\pi\)
−0.823155 + 0.567817i \(0.807788\pi\)
\(620\) 13.5326 + 13.3819i 0.543482 + 0.537430i
\(621\) 9.89731 0.397166
\(622\) 5.34622i 0.214364i
\(623\) 22.3209i 0.894267i
\(624\) 0 0
\(625\) −24.9937 + 0.559784i −0.999749 + 0.0223913i
\(626\) 1.32226 0.0528481
\(627\) 51.0842i 2.04011i
\(628\) 6.72590i 0.268392i
\(629\) 2.03424 0.0811106
\(630\) −10.4401 10.3239i −0.415944 0.411313i
\(631\) −14.9553 −0.595361 −0.297680 0.954666i \(-0.596213\pi\)
−0.297680 + 0.954666i \(0.596213\pi\)
\(632\) 2.33064i 0.0927077i
\(633\) 5.06485i 0.201310i
\(634\) −3.84953 −0.152885
\(635\) 2.39298 2.41992i 0.0949624 0.0960317i
\(636\) −0.488443 −0.0193680
\(637\) 0 0
\(638\) 14.2653i 0.564768i
\(639\) 35.6338 1.40965
\(640\) 1.57226 1.58997i 0.0621491 0.0628489i
\(641\) −36.5876 −1.44512 −0.722562 0.691306i \(-0.757036\pi\)
−0.722562 + 0.691306i \(0.757036\pi\)
\(642\) 29.1487i 1.15041i
\(643\) 43.3819i 1.71082i 0.517954 + 0.855408i \(0.326694\pi\)
−0.517954 + 0.855408i \(0.673306\pi\)
\(644\) −14.1341 −0.556963
\(645\) 17.8079 + 17.6096i 0.701185 + 0.693377i
\(646\) −18.8366 −0.741115
\(647\) 42.6622i 1.67722i 0.544730 + 0.838611i \(0.316632\pi\)
−0.544730 + 0.838611i \(0.683368\pi\)
\(648\) 7.19832i 0.282777i
\(649\) 49.9413 1.96037
\(650\) 0 0
\(651\) 40.6007 1.59127
\(652\) 0.00838925i 0.000328549i
\(653\) 44.8543i 1.75528i −0.479316 0.877642i \(-0.659115\pi\)
0.479316 0.877642i \(-0.340885\pi\)
\(654\) −26.4405 −1.03391
\(655\) −11.3916 11.2647i −0.445105 0.440149i
\(656\) 10.9095 0.425944
\(657\) 14.4261i 0.562816i
\(658\) 23.3977i 0.912138i
\(659\) 28.7835 1.12125 0.560624 0.828071i \(-0.310561\pi\)
0.560624 + 0.828071i \(0.310561\pi\)
\(660\) 17.7673 17.9673i 0.691590 0.699377i
\(661\) 9.90351 0.385202 0.192601 0.981277i \(-0.438308\pi\)
0.192601 + 0.981277i \(0.438308\pi\)
\(662\) 4.96398i 0.192931i
\(663\) 0 0
\(664\) −2.49654 −0.0968846
\(665\) −13.2853 + 13.4349i −0.515181 + 0.520981i
\(666\) −1.71497 −0.0664536
\(667\) 24.3605i 0.943243i
\(668\) 8.77138i 0.339375i
\(669\) 15.9078 0.615030
\(670\) 9.05938 + 8.95851i 0.349994 + 0.346097i
\(671\) −27.8383 −1.07468
\(672\) 4.77024i 0.184016i
\(673\) 46.6987i 1.80010i 0.435784 + 0.900051i \(0.356471\pi\)
−0.435784 + 0.900051i \(0.643529\pi\)
\(674\) −11.2699 −0.434101
\(675\) 6.54402 0.0732739i 0.251880 0.00282031i
\(676\) 0 0
\(677\) 15.1897i 0.583787i −0.956451 0.291893i \(-0.905715\pi\)
0.956451 0.291893i \(-0.0942852\pi\)
\(678\) 1.42688i 0.0547990i
\(679\) 3.57735 0.137286
\(680\) −6.62519 6.55143i −0.254065 0.251236i
\(681\) 34.1123 1.30719
\(682\) 37.6879i 1.44314i
\(683\) 5.91381i 0.226286i −0.993579 0.113143i \(-0.963908\pi\)
0.993579 0.113143i \(-0.0360918\pi\)
\(684\) 15.8801 0.607193
\(685\) 25.2338 25.5180i 0.964135 0.974991i
\(686\) −19.6380 −0.749781
\(687\) 13.0387i 0.497459i
\(688\) 4.38872i 0.167318i
\(689\) 0 0
\(690\) 30.3408 30.6824i 1.15505 1.16806i
\(691\) 23.5531 0.896004 0.448002 0.894033i \(-0.352136\pi\)
0.448002 + 0.894033i \(0.352136\pi\)
\(692\) 5.17428i 0.196697i
\(693\) 29.0754i 1.10448i
\(694\) 15.6806 0.595229
\(695\) −28.1905 27.8766i −1.06933 1.05742i
\(696\) 8.22163 0.311640
\(697\) 45.4585i 1.72186i
\(698\) 0.557452i 0.0210999i
\(699\) −65.6803 −2.48426
\(700\) −9.34538 + 0.104641i −0.353222 + 0.00395505i
\(701\) −39.9205 −1.50778 −0.753888 0.657003i \(-0.771824\pi\)
−0.753888 + 0.657003i \(0.771824\pi\)
\(702\) 0 0
\(703\) 2.20690i 0.0832349i
\(704\) 4.42801 0.166887
\(705\) 50.7918 + 50.2263i 1.91293 + 1.89163i
\(706\) −24.1725 −0.909742
\(707\) 30.4850i 1.14650i
\(708\) 28.7831i 1.08173i
\(709\) 8.96987 0.336870 0.168435 0.985713i \(-0.446129\pi\)
0.168435 + 0.985713i \(0.446129\pi\)
\(710\) 15.9487 16.1282i 0.598543 0.605282i
\(711\) −8.18724 −0.307046
\(712\) 11.9415i 0.447525i
\(713\) 64.3589i 2.41026i
\(714\) −19.8770 −0.743879
\(715\) 0 0
\(716\) −7.82042 −0.292263
\(717\) 24.0577i 0.898452i
\(718\) 0.910208i 0.0339687i
\(719\) −19.5515 −0.729149 −0.364575 0.931174i \(-0.618786\pi\)
−0.364575 + 0.931174i \(0.618786\pi\)
\(720\) 5.58536 + 5.52317i 0.208154 + 0.205836i
\(721\) 27.2528 1.01495
\(722\) 1.43537i 0.0534189i
\(723\) 21.8425i 0.812330i
\(724\) 12.2270 0.454411
\(725\) −0.180351 16.1070i −0.00669807 0.598198i
\(726\) 21.9661 0.815240
\(727\) 21.2591i 0.788458i −0.919012 0.394229i \(-0.871012\pi\)
0.919012 0.394229i \(-0.128988\pi\)
\(728\) 0 0
\(729\) 35.3078 1.30770
\(730\) 6.52941 + 6.45671i 0.241664 + 0.238973i
\(731\) 18.2873 0.676379
\(732\) 16.0443i 0.593013i
\(733\) 51.7515i 1.91149i 0.294203 + 0.955743i \(0.404946\pi\)
−0.294203 + 0.955743i \(0.595054\pi\)
\(734\) −4.41148 −0.162831
\(735\) 14.0682 14.2266i 0.518913 0.524756i
\(736\) 7.56163 0.278725
\(737\) 25.2301i 0.929364i
\(738\) 38.3237i 1.41072i
\(739\) −2.48566 −0.0914364 −0.0457182 0.998954i \(-0.514558\pi\)
−0.0457182 + 0.998954i \(0.514558\pi\)
\(740\) −0.767568 + 0.776211i −0.0282164 + 0.0285341i
\(741\) 0 0
\(742\) 0.357752i 0.0131335i
\(743\) 41.9532i 1.53911i 0.638578 + 0.769557i \(0.279523\pi\)
−0.638578 + 0.769557i \(0.720477\pi\)
\(744\) −21.7210 −0.796330
\(745\) 15.8181 + 15.6420i 0.579532 + 0.573079i
\(746\) 7.59431 0.278048
\(747\) 8.77005i 0.320879i
\(748\) 18.4510i 0.674635i
\(749\) 21.3495 0.780092
\(750\) 19.8339 20.5116i 0.724233 0.748977i
\(751\) 4.26126 0.155496 0.0777478 0.996973i \(-0.475227\pi\)
0.0777478 + 0.996973i \(0.475227\pi\)
\(752\) 12.5176i 0.456468i
\(753\) 7.43487i 0.270942i
\(754\) 0 0
\(755\) −19.0128 18.8011i −0.691948 0.684244i
\(756\) 2.44656 0.0889806
\(757\) 32.1223i 1.16750i 0.811932 + 0.583752i \(0.198416\pi\)
−0.811932 + 0.583752i \(0.801584\pi\)
\(758\) 30.3412i 1.10204i
\(759\) 85.4498 3.10163
\(760\) 7.10749 7.18752i 0.257816 0.260719i
\(761\) −50.8769 −1.84429 −0.922143 0.386850i \(-0.873563\pi\)
−0.922143 + 0.386850i \(0.873563\pi\)
\(762\) 3.88419i 0.140709i
\(763\) 19.3659i 0.701093i
\(764\) −18.1313 −0.655968
\(765\) 23.0144 23.2735i 0.832086 0.841455i
\(766\) 7.99851 0.288998
\(767\) 0 0
\(768\) 2.55203i 0.0920886i
\(769\) 10.8452 0.391089 0.195545 0.980695i \(-0.437353\pi\)
0.195545 + 0.980695i \(0.437353\pi\)
\(770\) −13.1598 13.0133i −0.474248 0.468967i
\(771\) −72.3081 −2.60411
\(772\) 6.34605i 0.228399i
\(773\) 17.0142i 0.611959i −0.952038 0.305979i \(-0.901016\pi\)
0.952038 0.305979i \(-0.0989838\pi\)
\(774\) −15.4170 −0.554154
\(775\) 0.476475 + 42.5535i 0.0171155 + 1.52857i
\(776\) −1.91384 −0.0687030
\(777\) 2.32880i 0.0835453i
\(778\) 22.4951i 0.806488i
\(779\) 49.3169 1.76696
\(780\) 0 0
\(781\) 44.9167 1.60725
\(782\) 31.5084i 1.12674i
\(783\) 4.21670i 0.150693i
\(784\) 3.50612 0.125219
\(785\) −10.5749 + 10.6939i −0.377433 + 0.381683i
\(786\) 18.2844 0.652184
\(787\) 27.0297i 0.963505i −0.876307 0.481752i \(-0.840000\pi\)
0.876307 0.481752i \(-0.160000\pi\)
\(788\) 2.19339i 0.0781364i
\(789\) 16.7756 0.597227
\(790\) −3.66437 + 3.70563i −0.130372 + 0.131840i
\(791\) −1.04509 −0.0371592
\(792\) 15.5551i 0.552726i
\(793\) 0 0
\(794\) 29.6953 1.05385
\(795\) −0.776608 0.767961i −0.0275435 0.0272368i
\(796\) −4.80668 −0.170368
\(797\) 15.1585i 0.536942i −0.963288 0.268471i \(-0.913482\pi\)
0.963288 0.268471i \(-0.0865183\pi\)
\(798\) 21.5641i 0.763362i
\(799\) 52.1591 1.84526
\(800\) 4.99969 0.0559819i 0.176766 0.00197926i
\(801\) −41.9489 −1.48219
\(802\) 26.3944i 0.932019i
\(803\) 18.1842i 0.641708i
\(804\) −14.5411 −0.512825
\(805\) −22.4728 22.2226i −0.792062 0.783243i
\(806\) 0 0
\(807\) 33.5604i 1.18138i
\(808\) 16.3092i 0.573754i
\(809\) 39.3369 1.38301 0.691506 0.722371i \(-0.256948\pi\)
0.691506 + 0.722371i \(0.256948\pi\)
\(810\) 11.3176 11.4451i 0.397661 0.402139i
\(811\) −9.57933 −0.336376 −0.168188 0.985755i \(-0.553792\pi\)
−0.168188 + 0.985755i \(0.553792\pi\)
\(812\) 6.02179i 0.211323i
\(813\) 57.1093i 2.00291i
\(814\) −2.16173 −0.0757685
\(815\) −0.0131901 + 0.0133386i −0.000462029 + 0.000467232i
\(816\) 10.6340 0.372265
\(817\) 19.8394i 0.694094i
\(818\) 9.89433i 0.345947i
\(819\) 0 0
\(820\) 17.3457 + 17.1526i 0.605739 + 0.598994i
\(821\) 7.82037 0.272933 0.136466 0.990645i \(-0.456425\pi\)
0.136466 + 0.990645i \(0.456425\pi\)
\(822\) 40.9586i 1.42859i
\(823\) 34.1839i 1.19158i −0.803142 0.595788i \(-0.796840\pi\)
0.803142 0.595788i \(-0.203160\pi\)
\(824\) −14.5800 −0.507919
\(825\) 56.4987 0.632620i 1.96703 0.0220250i
\(826\) 21.0817 0.733524
\(827\) 3.47145i 0.120714i −0.998177 0.0603570i \(-0.980776\pi\)
0.998177 0.0603570i \(-0.0192239\pi\)
\(828\) 26.5631i 0.923131i
\(829\) −13.3557 −0.463864 −0.231932 0.972732i \(-0.574505\pi\)
−0.231932 + 0.972732i \(0.574505\pi\)
\(830\) −3.96942 3.92522i −0.137780 0.136246i
\(831\) 28.1874 0.977811
\(832\) 0 0
\(833\) 14.6096i 0.506192i
\(834\) 45.2482 1.56682
\(835\) 13.7909 13.9462i 0.477254 0.482628i
\(836\) 20.0171 0.692304
\(837\) 11.1402i 0.385063i
\(838\) 17.9386i 0.619679i
\(839\) 47.9304 1.65474 0.827370 0.561657i \(-0.189836\pi\)
0.827370 + 0.561657i \(0.189836\pi\)
\(840\) 7.50008 7.58452i 0.258777 0.261691i
\(841\) −18.6213 −0.642114
\(842\) 15.5977i 0.537532i
\(843\) 51.3123i 1.76729i
\(844\) 1.98463 0.0683139
\(845\) 0 0
\(846\) −43.9727 −1.51181
\(847\) 16.0887i 0.552814i
\(848\) 0.191394i 0.00657249i
\(849\) 51.7220 1.77509
\(850\) −0.233270 20.8331i −0.00800108 0.714569i
\(851\) −3.69154 −0.126544
\(852\) 25.8872i 0.886882i
\(853\) 36.4405i 1.24770i 0.781544 + 0.623850i \(0.214432\pi\)
−0.781544 + 0.623850i \(0.785568\pi\)
\(854\) −11.7513 −0.402123
\(855\) 25.2489 + 24.9678i 0.863494 + 0.853879i
\(856\) −11.4218 −0.390388
\(857\) 29.9745i 1.02391i 0.859013 + 0.511954i \(0.171078\pi\)
−0.859013 + 0.511954i \(0.828922\pi\)
\(858\) 0 0
\(859\) −34.8453 −1.18891 −0.594454 0.804130i \(-0.702632\pi\)
−0.594454 + 0.804130i \(0.702632\pi\)
\(860\) −6.90022 + 6.97792i −0.235296 + 0.237945i
\(861\) 52.0409 1.77355
\(862\) 30.0631i 1.02395i
\(863\) 25.2753i 0.860381i −0.902738 0.430190i \(-0.858446\pi\)
0.902738 0.430190i \(-0.141554\pi\)
\(864\) −1.30889 −0.0445292
\(865\) −8.13532 + 8.22692i −0.276609 + 0.279724i
\(866\) 22.5878 0.767565
\(867\) 0.926067i 0.0314509i
\(868\) 15.9092i 0.539992i
\(869\) −10.3201 −0.350085
\(870\) 13.0721 + 12.9266i 0.443186 + 0.438251i
\(871\) 0 0
\(872\) 10.3606i 0.350853i
\(873\) 6.72311i 0.227543i
\(874\) 34.1827 1.15625
\(875\) −15.0234 14.5270i −0.507882 0.491103i
\(876\) −10.4803 −0.354096
\(877\) 6.44566i 0.217654i 0.994061 + 0.108827i \(0.0347095\pi\)
−0.994061 + 0.108827i \(0.965290\pi\)
\(878\) 34.8184i 1.17506i
\(879\) 76.0524 2.56518
\(880\) 7.04039 + 6.96200i 0.237331 + 0.234689i
\(881\) −12.5890 −0.424133 −0.212066 0.977255i \(-0.568019\pi\)
−0.212066 + 0.977255i \(0.568019\pi\)
\(882\) 12.3166i 0.414721i
\(883\) 17.7501i 0.597339i 0.954357 + 0.298669i \(0.0965428\pi\)
−0.954357 + 0.298669i \(0.903457\pi\)
\(884\) 0 0
\(885\) −45.2545 + 45.7641i −1.52121 + 1.53834i
\(886\) 15.5022 0.520808
\(887\) 6.79925i 0.228296i −0.993464 0.114148i \(-0.963586\pi\)
0.993464 0.114148i \(-0.0364139\pi\)
\(888\) 1.24589i 0.0418092i
\(889\) 2.84491 0.0954151
\(890\) −18.7751 + 18.9865i −0.629343 + 0.636429i
\(891\) 31.8742 1.06783
\(892\) 6.23337i 0.208709i
\(893\) 56.5862i 1.89359i
\(894\) −25.3895 −0.849152
\(895\) −12.4342 12.2958i −0.415630 0.411002i
\(896\) 1.86919 0.0624453
\(897\) 0 0
\(898\) 0.894606i 0.0298534i
\(899\) −27.4198 −0.914501
\(900\) 0.196658 + 17.5633i 0.00655525 + 0.585443i
\(901\) −0.797514 −0.0265691
\(902\) 48.3074i 1.60846i
\(903\) 20.9353i 0.696682i
\(904\) 0.559115 0.0185959
\(905\) 19.4404 + 19.2240i 0.646222 + 0.639027i
\(906\) 30.5173 1.01387
\(907\) 10.4184i 0.345937i 0.984927 + 0.172969i \(0.0553359\pi\)
−0.984927 + 0.172969i \(0.944664\pi\)
\(908\) 13.3667i 0.443590i
\(909\) −57.2921 −1.90026
\(910\) 0 0
\(911\) −9.38030 −0.310783 −0.155392 0.987853i \(-0.549664\pi\)
−0.155392 + 0.987853i \(0.549664\pi\)
\(912\) 11.5366i 0.382015i
\(913\) 11.0547i 0.365858i
\(914\) 10.7958 0.357094
\(915\) 25.2258 25.5098i 0.833939 0.843329i
\(916\) 5.10916 0.168811
\(917\) 13.3921i 0.442247i
\(918\) 5.45397i 0.180008i
\(919\) −39.0419 −1.28787 −0.643937 0.765078i \(-0.722700\pi\)
−0.643937 + 0.765078i \(0.722700\pi\)
\(920\) 12.0227 + 11.8889i 0.396378 + 0.391964i
\(921\) −23.3109 −0.768121
\(922\) 10.8827i 0.358403i
\(923\) 0 0
\(924\) 21.1227 0.694886
\(925\) −2.44081 + 0.0273300i −0.0802535 + 0.000898605i
\(926\) −3.15999 −0.103844
\(927\) 51.2178i 1.68221i
\(928\) 3.22160i 0.105754i
\(929\) 29.3209 0.961988 0.480994 0.876724i \(-0.340276\pi\)
0.480994 + 0.876724i \(0.340276\pi\)
\(930\) −34.5356 34.1511i −1.13247 1.11986i
\(931\) 15.8496 0.519449
\(932\) 25.7364i 0.843025i
\(933\) 13.6437i 0.446676i
\(934\) −23.0475 −0.754138
\(935\) 29.0098 29.3364i 0.948722 0.959404i
\(936\) 0 0
\(937\) 55.0322i 1.79782i −0.438130 0.898911i \(-0.644359\pi\)
0.438130 0.898911i \(-0.355641\pi\)
\(938\) 10.6504i 0.347747i
\(939\) −3.37445 −0.110121
\(940\) −19.6809 + 19.9025i −0.641920 + 0.649148i
\(941\) 12.9833 0.423243 0.211621 0.977352i \(-0.432126\pi\)
0.211621 + 0.977352i \(0.432126\pi\)
\(942\) 17.1647i 0.559257i
\(943\) 82.4935i 2.68636i
\(944\) −11.2785 −0.367083
\(945\) 3.88995 + 3.84664i 0.126540 + 0.125131i
\(946\) −19.4333 −0.631832
\(947\) 43.0090i 1.39760i −0.715316 0.698802i \(-0.753717\pi\)
0.715316 0.698802i \(-0.246283\pi\)
\(948\) 5.94786i 0.193178i
\(949\) 0 0
\(950\) 22.6013 0.253069i 0.733284 0.00821064i
\(951\) 9.82414 0.318570
\(952\) 7.78870i 0.252433i
\(953\) 26.9615i 0.873369i −0.899615 0.436684i \(-0.856153\pi\)
0.899615 0.436684i \(-0.143847\pi\)
\(954\) 0.672343 0.0217679
\(955\) −28.8282 28.5072i −0.932858 0.922471i
\(956\) −9.42688 −0.304887
\(957\) 36.4055i 1.17682i
\(958\) 9.16688i 0.296168i
\(959\) 29.9994 0.968731
\(960\) −4.01247 + 4.05765i −0.129502 + 0.130960i
\(961\) 41.4412 1.33681
\(962\) 0 0
\(963\) 40.1232i 1.29295i
\(964\) −8.55884 −0.275662
\(965\) 9.97766 10.0900i 0.321192 0.324809i
\(966\) 36.0708 1.16056
\(967\) 3.03699i 0.0976630i 0.998807 + 0.0488315i \(0.0155497\pi\)
−0.998807 + 0.0488315i \(0.984450\pi\)
\(968\) 8.60730i 0.276649i
\(969\) 48.0716 1.54428
\(970\) −3.04295 3.00907i −0.0977032 0.0966153i
\(971\) 29.5149 0.947180 0.473590 0.880746i \(-0.342958\pi\)
0.473590 + 0.880746i \(0.342958\pi\)
\(972\) 22.2970i 0.715177i
\(973\) 33.1412i 1.06246i
\(974\) 24.1155 0.772711
\(975\) 0 0
\(976\) 6.28685 0.201237
\(977\) 38.3621i 1.22731i −0.789574 0.613656i \(-0.789698\pi\)
0.789574 0.613656i \(-0.210302\pi\)
\(978\) 0.0214097i 0.000684606i
\(979\) −52.8769 −1.68995
\(980\) 5.57461 + 5.51254i 0.178074 + 0.176092i
\(981\) 36.3954 1.16202
\(982\) 5.68528i 0.181424i
\(983\) 30.0081i 0.957109i −0.878058 0.478554i \(-0.841161\pi\)
0.878058 0.478554i \(-0.158839\pi\)
\(984\) −27.8414 −0.887551
\(985\) −3.44859 + 3.48742i −0.109881 + 0.111118i
\(986\) 13.4240 0.427507
\(987\) 59.7118i 1.90065i
\(988\) 0 0
\(989\) −33.1859 −1.05525
\(990\) −24.4567 + 24.7320i −0.777284 + 0.786036i
\(991\) −24.3851 −0.774618 −0.387309 0.921950i \(-0.626595\pi\)
−0.387309 + 0.921950i \(0.626595\pi\)
\(992\) 8.51124i 0.270232i
\(993\) 12.6683i 0.402015i
\(994\) 18.9607 0.601395
\(995\) −7.64246 7.55737i −0.242282 0.239585i
\(996\) 6.37126 0.201881
\(997\) 29.2603i 0.926681i 0.886180 + 0.463341i \(0.153349\pi\)
−0.886180 + 0.463341i \(0.846651\pi\)
\(998\) 6.68270i 0.211537i
\(999\) 0.638990 0.0202167
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.g.339.7 yes 18
5.2 odd 4 8450.2.a.da.1.7 9
5.3 odd 4 8450.2.a.ct.1.3 9
5.4 even 2 inner 1690.2.b.g.339.12 yes 18
13.5 odd 4 1690.2.c.g.1689.16 18
13.8 odd 4 1690.2.c.h.1689.16 18
13.12 even 2 1690.2.b.f.339.16 yes 18
65.12 odd 4 8450.2.a.cw.1.7 9
65.34 odd 4 1690.2.c.g.1689.3 18
65.38 odd 4 8450.2.a.cx.1.3 9
65.44 odd 4 1690.2.c.h.1689.3 18
65.64 even 2 1690.2.b.f.339.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.3 18 65.64 even 2
1690.2.b.f.339.16 yes 18 13.12 even 2
1690.2.b.g.339.7 yes 18 1.1 even 1 trivial
1690.2.b.g.339.12 yes 18 5.4 even 2 inner
1690.2.c.g.1689.3 18 65.34 odd 4
1690.2.c.g.1689.16 18 13.5 odd 4
1690.2.c.h.1689.3 18 65.44 odd 4
1690.2.c.h.1689.16 18 13.8 odd 4
8450.2.a.ct.1.3 9 5.3 odd 4
8450.2.a.cw.1.7 9 65.12 odd 4
8450.2.a.cx.1.3 9 65.38 odd 4
8450.2.a.da.1.7 9 5.2 odd 4