L(s) = 1 | − i·2-s + 2.55i·3-s − 4-s + (−1.58 − 1.57i)5-s + 2.55·6-s − 1.86i·7-s + i·8-s − 3.51·9-s + (−1.57 + 1.58i)10-s − 4.42·11-s − 2.55i·12-s − 1.86·14-s + (4.01 − 4.05i)15-s + 16-s − 4.16i·17-s + 3.51i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.47i·3-s − 0.5·4-s + (−0.711 − 0.703i)5-s + 1.04·6-s − 0.706i·7-s + 0.353i·8-s − 1.17·9-s + (−0.497 + 0.502i)10-s − 1.33·11-s − 0.736i·12-s − 0.499·14-s + (1.03 − 1.04i)15-s + 0.250·16-s − 1.01i·17-s + 0.827i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.703 - 0.711i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.703 - 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.032048928\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.032048928\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (1.58 + 1.57i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 2.55iT - 3T^{2} \) |
| 7 | \( 1 + 1.86iT - 7T^{2} \) |
| 11 | \( 1 + 4.42T + 11T^{2} \) |
| 17 | \( 1 + 4.16iT - 17T^{2} \) |
| 19 | \( 1 - 4.52T + 19T^{2} \) |
| 23 | \( 1 - 7.56iT - 23T^{2} \) |
| 29 | \( 1 + 3.22T + 29T^{2} \) |
| 31 | \( 1 - 8.51T + 31T^{2} \) |
| 37 | \( 1 - 0.488iT - 37T^{2} \) |
| 41 | \( 1 - 10.9T + 41T^{2} \) |
| 43 | \( 1 - 4.38iT - 43T^{2} \) |
| 47 | \( 1 - 12.5iT - 47T^{2} \) |
| 53 | \( 1 + 0.191iT - 53T^{2} \) |
| 59 | \( 1 + 11.2T + 59T^{2} \) |
| 61 | \( 1 - 6.28T + 61T^{2} \) |
| 67 | \( 1 + 5.69iT - 67T^{2} \) |
| 71 | \( 1 + 10.1T + 71T^{2} \) |
| 73 | \( 1 + 4.10iT - 73T^{2} \) |
| 79 | \( 1 - 2.33T + 79T^{2} \) |
| 83 | \( 1 - 2.49iT - 83T^{2} \) |
| 89 | \( 1 - 11.9T + 89T^{2} \) |
| 97 | \( 1 - 1.91iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.470954192391537662538556971152, −9.131198600003348777184996384696, −7.75039153769495408894472625582, −7.63357356806836437299638011624, −5.71800146621541393230747967598, −4.91205615235040276140644270342, −4.50233045315626862306813148698, −3.54546442082419377134629186505, −2.86450064540920758269247867495, −0.942969854750463373466764066242,
0.51684312798472444812812462662, 2.22567714941725294386444392202, 2.98727980854025165005434542094, 4.35140846544923080027599880106, 5.55467215506882928729778364230, 6.18032146010623467011041404236, 6.98140183965252194339644719705, 7.60184482469971276539734006128, 8.181846000693457975880910929907, 8.718294255121929469512258066446