Properties

Label 1690.2.c.g.1689.16
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,-18,0,18,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.16
Root \(-0.430845i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.g.1689.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.55203i q^{3} +1.00000 q^{4} +(-1.57226 + 1.58997i) q^{5} -2.55203i q^{6} +1.86919 q^{7} -1.00000 q^{8} -3.51288 q^{9} +(1.57226 - 1.58997i) q^{10} -4.42801i q^{11} +2.55203i q^{12} -1.86919 q^{14} +(-4.05765 - 4.01247i) q^{15} +1.00000 q^{16} +4.16688i q^{17} +3.51288 q^{18} -4.52055i q^{19} +(-1.57226 + 1.58997i) q^{20} +4.77024i q^{21} +4.42801i q^{22} -7.56163i q^{23} -2.55203i q^{24} +(-0.0559819 - 4.99969i) q^{25} -1.30889i q^{27} +1.86919 q^{28} -3.22160 q^{29} +(4.05765 + 4.01247i) q^{30} -8.51124i q^{31} -1.00000 q^{32} +11.3004 q^{33} -4.16688i q^{34} +(-2.93886 + 2.97195i) q^{35} -3.51288 q^{36} -0.488194 q^{37} +4.52055i q^{38} +(1.57226 - 1.58997i) q^{40} -10.9095i q^{41} -4.77024i q^{42} -4.38872i q^{43} -4.42801i q^{44} +(5.52317 - 5.58536i) q^{45} +7.56163i q^{46} -12.5176 q^{47} +2.55203i q^{48} -3.50612 q^{49} +(0.0559819 + 4.99969i) q^{50} -10.6340 q^{51} -0.191394i q^{53} +1.30889i q^{54} +(7.04039 + 6.96200i) q^{55} -1.86919 q^{56} +11.5366 q^{57} +3.22160 q^{58} -11.2785i q^{59} +(-4.05765 - 4.01247i) q^{60} +6.28685 q^{61} +8.51124i q^{62} -6.56625 q^{63} +1.00000 q^{64} -11.3004 q^{66} -5.69785 q^{67} +4.16688i q^{68} +19.2975 q^{69} +(2.93886 - 2.97195i) q^{70} +10.1438i q^{71} +3.51288 q^{72} +4.10663 q^{73} +0.488194 q^{74} +(12.7594 - 0.142868i) q^{75} -4.52055i q^{76} -8.27681i q^{77} +2.33064 q^{79} +(-1.57226 + 1.58997i) q^{80} -7.19832 q^{81} +10.9095i q^{82} +2.49654 q^{83} +4.77024i q^{84} +(-6.62519 - 6.55143i) q^{85} +4.38872i q^{86} -8.22163i q^{87} +4.42801i q^{88} +11.9415i q^{89} +(-5.52317 + 5.58536i) q^{90} -7.56163i q^{92} +21.7210 q^{93} +12.5176 q^{94} +(7.18752 + 7.10749i) q^{95} -2.55203i q^{96} +1.91384 q^{97} +3.50612 q^{98} +15.5551i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{2} + 18 q^{4} + 2 q^{5} + 2 q^{7} - 18 q^{8} - 16 q^{9} - 2 q^{10} - 2 q^{14} - 14 q^{15} + 18 q^{16} + 16 q^{18} + 2 q^{20} - 22 q^{25} + 2 q^{28} - 30 q^{29} + 14 q^{30} - 18 q^{32} + 28 q^{33}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.55203i 1.47342i 0.676210 + 0.736709i \(0.263621\pi\)
−0.676210 + 0.736709i \(0.736379\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.57226 + 1.58997i −0.703137 + 0.711054i
\(6\) 2.55203i 1.04186i
\(7\) 1.86919 0.706488 0.353244 0.935531i \(-0.385078\pi\)
0.353244 + 0.935531i \(0.385078\pi\)
\(8\) −1.00000 −0.353553
\(9\) −3.51288 −1.17096
\(10\) 1.57226 1.58997i 0.497193 0.502791i
\(11\) 4.42801i 1.33510i −0.744567 0.667548i \(-0.767344\pi\)
0.744567 0.667548i \(-0.232656\pi\)
\(12\) 2.55203i 0.736709i
\(13\) 0 0
\(14\) −1.86919 −0.499563
\(15\) −4.05765 4.01247i −1.04768 1.03601i
\(16\) 1.00000 0.250000
\(17\) 4.16688i 1.01062i 0.862939 + 0.505308i \(0.168621\pi\)
−0.862939 + 0.505308i \(0.831379\pi\)
\(18\) 3.51288 0.827994
\(19\) 4.52055i 1.03709i −0.855052 0.518543i \(-0.826475\pi\)
0.855052 0.518543i \(-0.173525\pi\)
\(20\) −1.57226 + 1.58997i −0.351569 + 0.355527i
\(21\) 4.77024i 1.04095i
\(22\) 4.42801i 0.944056i
\(23\) 7.56163i 1.57671i −0.615221 0.788354i \(-0.710933\pi\)
0.615221 0.788354i \(-0.289067\pi\)
\(24\) 2.55203i 0.520932i
\(25\) −0.0559819 4.99969i −0.0111964 0.999937i
\(26\) 0 0
\(27\) 1.30889i 0.251895i
\(28\) 1.86919 0.353244
\(29\) −3.22160 −0.598236 −0.299118 0.954216i \(-0.596692\pi\)
−0.299118 + 0.954216i \(0.596692\pi\)
\(30\) 4.05765 + 4.01247i 0.740822 + 0.732573i
\(31\) 8.51124i 1.52866i −0.644823 0.764332i \(-0.723069\pi\)
0.644823 0.764332i \(-0.276931\pi\)
\(32\) −1.00000 −0.176777
\(33\) 11.3004 1.96715
\(34\) 4.16688i 0.714614i
\(35\) −2.93886 + 2.97195i −0.496758 + 0.502352i
\(36\) −3.51288 −0.585480
\(37\) −0.488194 −0.0802585 −0.0401293 0.999194i \(-0.512777\pi\)
−0.0401293 + 0.999194i \(0.512777\pi\)
\(38\) 4.52055i 0.733330i
\(39\) 0 0
\(40\) 1.57226 1.58997i 0.248597 0.251396i
\(41\) 10.9095i 1.70378i −0.523724 0.851888i \(-0.675458\pi\)
0.523724 0.851888i \(-0.324542\pi\)
\(42\) 4.77024i 0.736065i
\(43\) 4.38872i 0.669274i −0.942347 0.334637i \(-0.891386\pi\)
0.942347 0.334637i \(-0.108614\pi\)
\(44\) 4.42801i 0.667548i
\(45\) 5.52317 5.58536i 0.823345 0.832616i
\(46\) 7.56163i 1.11490i
\(47\) −12.5176 −1.82587 −0.912937 0.408101i \(-0.866191\pi\)
−0.912937 + 0.408101i \(0.866191\pi\)
\(48\) 2.55203i 0.368354i
\(49\) −3.50612 −0.500874
\(50\) 0.0559819 + 4.99969i 0.00791703 + 0.707062i
\(51\) −10.6340 −1.48906
\(52\) 0 0
\(53\) 0.191394i 0.0262900i −0.999914 0.0131450i \(-0.995816\pi\)
0.999914 0.0131450i \(-0.00418430\pi\)
\(54\) 1.30889i 0.178117i
\(55\) 7.04039 + 6.96200i 0.949326 + 0.938756i
\(56\) −1.86919 −0.249781
\(57\) 11.5366 1.52806
\(58\) 3.22160 0.423016
\(59\) 11.2785i 1.46833i −0.678970 0.734166i \(-0.737573\pi\)
0.678970 0.734166i \(-0.262427\pi\)
\(60\) −4.05765 4.01247i −0.523840 0.518007i
\(61\) 6.28685 0.804949 0.402474 0.915431i \(-0.368150\pi\)
0.402474 + 0.915431i \(0.368150\pi\)
\(62\) 8.51124i 1.08093i
\(63\) −6.56625 −0.827270
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −11.3004 −1.39099
\(67\) −5.69785 −0.696103 −0.348051 0.937475i \(-0.613157\pi\)
−0.348051 + 0.937475i \(0.613157\pi\)
\(68\) 4.16688i 0.505308i
\(69\) 19.2975 2.32315
\(70\) 2.93886 2.97195i 0.351261 0.355216i
\(71\) 10.1438i 1.20384i 0.798555 + 0.601922i \(0.205598\pi\)
−0.798555 + 0.601922i \(0.794402\pi\)
\(72\) 3.51288 0.413997
\(73\) 4.10663 0.480645 0.240323 0.970693i \(-0.422747\pi\)
0.240323 + 0.970693i \(0.422747\pi\)
\(74\) 0.488194 0.0567514
\(75\) 12.7594 0.142868i 1.47333 0.0164969i
\(76\) 4.52055i 0.518543i
\(77\) 8.27681i 0.943230i
\(78\) 0 0
\(79\) 2.33064 0.262217 0.131108 0.991368i \(-0.458146\pi\)
0.131108 + 0.991368i \(0.458146\pi\)
\(80\) −1.57226 + 1.58997i −0.175784 + 0.177764i
\(81\) −7.19832 −0.799813
\(82\) 10.9095i 1.20475i
\(83\) 2.49654 0.274031 0.137016 0.990569i \(-0.456249\pi\)
0.137016 + 0.990569i \(0.456249\pi\)
\(84\) 4.77024i 0.520476i
\(85\) −6.62519 6.55143i −0.718603 0.710602i
\(86\) 4.38872i 0.473248i
\(87\) 8.22163i 0.881451i
\(88\) 4.42801i 0.472028i
\(89\) 11.9415i 1.26579i 0.774237 + 0.632896i \(0.218134\pi\)
−0.774237 + 0.632896i \(0.781866\pi\)
\(90\) −5.52317 + 5.58536i −0.582193 + 0.588748i
\(91\) 0 0
\(92\) 7.56163i 0.788354i
\(93\) 21.7210 2.25236
\(94\) 12.5176 1.29109
\(95\) 7.18752 + 7.10749i 0.737424 + 0.729213i
\(96\) 2.55203i 0.260466i
\(97\) 1.91384 0.194322 0.0971608 0.995269i \(-0.469024\pi\)
0.0971608 + 0.995269i \(0.469024\pi\)
\(98\) 3.50612 0.354171
\(99\) 15.5551i 1.56334i
\(100\) −0.0559819 4.99969i −0.00559819 0.499969i
\(101\) −16.3092 −1.62282 −0.811411 0.584476i \(-0.801300\pi\)
−0.811411 + 0.584476i \(0.801300\pi\)
\(102\) 10.6340 1.05292
\(103\) 14.5800i 1.43661i −0.695728 0.718305i \(-0.744918\pi\)
0.695728 0.718305i \(-0.255082\pi\)
\(104\) 0 0
\(105\) −7.58452 7.50008i −0.740174 0.731932i
\(106\) 0.191394i 0.0185898i
\(107\) 11.4218i 1.10418i 0.833784 + 0.552091i \(0.186170\pi\)
−0.833784 + 0.552091i \(0.813830\pi\)
\(108\) 1.30889i 0.125948i
\(109\) 10.3606i 0.992363i 0.868219 + 0.496181i \(0.165265\pi\)
−0.868219 + 0.496181i \(0.834735\pi\)
\(110\) −7.04039 6.96200i −0.671275 0.663801i
\(111\) 1.24589i 0.118254i
\(112\) 1.86919 0.176622
\(113\) 0.559115i 0.0525971i −0.999654 0.0262985i \(-0.991628\pi\)
0.999654 0.0262985i \(-0.00837205\pi\)
\(114\) −11.5366 −1.08050
\(115\) 12.0227 + 11.8889i 1.12113 + 1.10864i
\(116\) −3.22160 −0.299118
\(117\) 0 0
\(118\) 11.2785i 1.03827i
\(119\) 7.78870i 0.713989i
\(120\) 4.05765 + 4.01247i 0.370411 + 0.366287i
\(121\) −8.60730 −0.782482
\(122\) −6.28685 −0.569185
\(123\) 27.8414 2.51037
\(124\) 8.51124i 0.764332i
\(125\) 8.03735 + 7.77181i 0.718882 + 0.695132i
\(126\) 6.56625 0.584968
\(127\) 1.52200i 0.135055i −0.997717 0.0675277i \(-0.978489\pi\)
0.997717 0.0675277i \(-0.0215111\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 11.2002 0.986120
\(130\) 0 0
\(131\) 7.16465 0.625979 0.312989 0.949757i \(-0.398670\pi\)
0.312989 + 0.949757i \(0.398670\pi\)
\(132\) 11.3004 0.983577
\(133\) 8.44978i 0.732689i
\(134\) 5.69785 0.492219
\(135\) 2.08108 + 2.05791i 0.179111 + 0.177117i
\(136\) 4.16688i 0.357307i
\(137\) −16.0494 −1.37119 −0.685596 0.727983i \(-0.740458\pi\)
−0.685596 + 0.727983i \(0.740458\pi\)
\(138\) −19.2975 −1.64272
\(139\) 17.7302 1.50386 0.751930 0.659243i \(-0.229123\pi\)
0.751930 + 0.659243i \(0.229123\pi\)
\(140\) −2.93886 + 2.97195i −0.248379 + 0.251176i
\(141\) 31.9452i 2.69027i
\(142\) 10.1438i 0.851246i
\(143\) 0 0
\(144\) −3.51288 −0.292740
\(145\) 5.06520 5.12223i 0.420642 0.425378i
\(146\) −4.10663 −0.339867
\(147\) 8.94773i 0.737997i
\(148\) −0.488194 −0.0401293
\(149\) 9.94873i 0.815032i 0.913198 + 0.407516i \(0.133605\pi\)
−0.913198 + 0.407516i \(0.866395\pi\)
\(150\) −12.7594 + 0.142868i −1.04180 + 0.0116651i
\(151\) 11.9580i 0.973130i 0.873644 + 0.486565i \(0.161750\pi\)
−0.873644 + 0.486565i \(0.838250\pi\)
\(152\) 4.52055i 0.366665i
\(153\) 14.6377i 1.18339i
\(154\) 8.27681i 0.666964i
\(155\) 13.5326 + 13.3819i 1.08696 + 1.07486i
\(156\) 0 0
\(157\) 6.72590i 0.536785i −0.963310 0.268392i \(-0.913508\pi\)
0.963310 0.268392i \(-0.0864924\pi\)
\(158\) −2.33064 −0.185415
\(159\) 0.488443 0.0387361
\(160\) 1.57226 1.58997i 0.124298 0.125698i
\(161\) 14.1341i 1.11393i
\(162\) 7.19832 0.565553
\(163\) 0.00838925 0.000657097 0.000328549 1.00000i \(-0.499895\pi\)
0.000328549 1.00000i \(0.499895\pi\)
\(164\) 10.9095i 0.851888i
\(165\) −17.7673 + 17.9673i −1.38318 + 1.39875i
\(166\) −2.49654 −0.193769
\(167\) −8.77138 −0.678749 −0.339375 0.940651i \(-0.610215\pi\)
−0.339375 + 0.940651i \(0.610215\pi\)
\(168\) 4.77024i 0.368032i
\(169\) 0 0
\(170\) 6.62519 + 6.55143i 0.508129 + 0.502471i
\(171\) 15.8801i 1.21439i
\(172\) 4.38872i 0.334637i
\(173\) 5.17428i 0.393393i 0.980464 + 0.196697i \(0.0630214\pi\)
−0.980464 + 0.196697i \(0.936979\pi\)
\(174\) 8.22163i 0.623280i
\(175\) −0.104641 9.34538i −0.00791011 0.706444i
\(176\) 4.42801i 0.333774i
\(177\) 28.7831 2.16347
\(178\) 11.9415i 0.895050i
\(179\) −7.82042 −0.584526 −0.292263 0.956338i \(-0.594408\pi\)
−0.292263 + 0.956338i \(0.594408\pi\)
\(180\) 5.52317 5.58536i 0.411673 0.416308i
\(181\) 12.2270 0.908823 0.454411 0.890792i \(-0.349850\pi\)
0.454411 + 0.890792i \(0.349850\pi\)
\(182\) 0 0
\(183\) 16.0443i 1.18603i
\(184\) 7.56163i 0.557451i
\(185\) 0.767568 0.776211i 0.0564328 0.0570682i
\(186\) −21.7210 −1.59266
\(187\) 18.4510 1.34927
\(188\) −12.5176 −0.912937
\(189\) 2.44656i 0.177961i
\(190\) −7.18752 7.10749i −0.521437 0.515632i
\(191\) 18.1313 1.31194 0.655968 0.754789i \(-0.272261\pi\)
0.655968 + 0.754789i \(0.272261\pi\)
\(192\) 2.55203i 0.184177i
\(193\) −6.34605 −0.456799 −0.228399 0.973568i \(-0.573349\pi\)
−0.228399 + 0.973568i \(0.573349\pi\)
\(194\) −1.91384 −0.137406
\(195\) 0 0
\(196\) −3.50612 −0.250437
\(197\) −2.19339 −0.156273 −0.0781364 0.996943i \(-0.524897\pi\)
−0.0781364 + 0.996943i \(0.524897\pi\)
\(198\) 15.5551i 1.10545i
\(199\) −4.80668 −0.340737 −0.170368 0.985380i \(-0.554496\pi\)
−0.170368 + 0.985380i \(0.554496\pi\)
\(200\) 0.0559819 + 4.99969i 0.00395852 + 0.353531i
\(201\) 14.5411i 1.02565i
\(202\) 16.3092 1.14751
\(203\) −6.02179 −0.422646
\(204\) −10.6340 −0.744530
\(205\) 17.3457 + 17.1526i 1.21148 + 1.19799i
\(206\) 14.5800i 1.01584i
\(207\) 26.5631i 1.84626i
\(208\) 0 0
\(209\) −20.0171 −1.38461
\(210\) 7.58452 + 7.50008i 0.523382 + 0.517554i
\(211\) −1.98463 −0.136628 −0.0683139 0.997664i \(-0.521762\pi\)
−0.0683139 + 0.997664i \(0.521762\pi\)
\(212\) 0.191394i 0.0131450i
\(213\) −25.8872 −1.77376
\(214\) 11.4218i 0.780775i
\(215\) 6.97792 + 6.90022i 0.475890 + 0.470591i
\(216\) 1.30889i 0.0890584i
\(217\) 15.9092i 1.07998i
\(218\) 10.3606i 0.701706i
\(219\) 10.4803i 0.708191i
\(220\) 7.04039 + 6.96200i 0.474663 + 0.469378i
\(221\) 0 0
\(222\) 1.24589i 0.0836185i
\(223\) −6.23337 −0.417417 −0.208709 0.977978i \(-0.566926\pi\)
−0.208709 + 0.977978i \(0.566926\pi\)
\(224\) −1.86919 −0.124891
\(225\) 0.196658 + 17.5633i 0.0131105 + 1.17089i
\(226\) 0.559115i 0.0371917i
\(227\) −13.3667 −0.887180 −0.443590 0.896230i \(-0.646295\pi\)
−0.443590 + 0.896230i \(0.646295\pi\)
\(228\) 11.5366 0.764030
\(229\) 5.10916i 0.337623i −0.985648 0.168811i \(-0.946007\pi\)
0.985648 0.168811i \(-0.0539928\pi\)
\(230\) −12.0227 11.8889i −0.792755 0.783929i
\(231\) 21.1227 1.38977
\(232\) 3.22160 0.211508
\(233\) 25.7364i 1.68605i −0.537874 0.843025i \(-0.680772\pi\)
0.537874 0.843025i \(-0.319228\pi\)
\(234\) 0 0
\(235\) 19.6809 19.9025i 1.28384 1.29830i
\(236\) 11.2785i 0.734166i
\(237\) 5.94786i 0.386355i
\(238\) 7.78870i 0.504866i
\(239\) 9.42688i 0.609774i −0.952389 0.304887i \(-0.901381\pi\)
0.952389 0.304887i \(-0.0986187\pi\)
\(240\) −4.05765 4.01247i −0.261920 0.259004i
\(241\) 8.55884i 0.551324i 0.961255 + 0.275662i \(0.0888970\pi\)
−0.961255 + 0.275662i \(0.911103\pi\)
\(242\) 8.60730 0.553298
\(243\) 22.2970i 1.43035i
\(244\) 6.28685 0.402474
\(245\) 5.51254 5.57461i 0.352183 0.356149i
\(246\) −27.8414 −1.77510
\(247\) 0 0
\(248\) 8.51124i 0.540464i
\(249\) 6.37126i 0.403762i
\(250\) −8.03735 7.77181i −0.508327 0.491532i
\(251\) 2.91331 0.183887 0.0919433 0.995764i \(-0.470692\pi\)
0.0919433 + 0.995764i \(0.470692\pi\)
\(252\) −6.56625 −0.413635
\(253\) −33.4830 −2.10506
\(254\) 1.52200i 0.0954986i
\(255\) 16.7195 16.9077i 1.04701 1.05880i
\(256\) 1.00000 0.0625000
\(257\) 28.3335i 1.76740i −0.468057 0.883698i \(-0.655046\pi\)
0.468057 0.883698i \(-0.344954\pi\)
\(258\) −11.2002 −0.697292
\(259\) −0.912528 −0.0567017
\(260\) 0 0
\(261\) 11.3171 0.700510
\(262\) −7.16465 −0.442634
\(263\) 6.57342i 0.405335i −0.979248 0.202667i \(-0.935039\pi\)
0.979248 0.202667i \(-0.0649610\pi\)
\(264\) −11.3004 −0.695494
\(265\) 0.304309 + 0.300921i 0.0186936 + 0.0184854i
\(266\) 8.44978i 0.518089i
\(267\) −30.4750 −1.86504
\(268\) −5.69785 −0.348051
\(269\) −13.1504 −0.801797 −0.400898 0.916123i \(-0.631302\pi\)
−0.400898 + 0.916123i \(0.631302\pi\)
\(270\) −2.08108 2.05791i −0.126651 0.125241i
\(271\) 22.3779i 1.35936i −0.733507 0.679682i \(-0.762118\pi\)
0.733507 0.679682i \(-0.237882\pi\)
\(272\) 4.16688i 0.252654i
\(273\) 0 0
\(274\) 16.0494 0.969579
\(275\) −22.1387 + 0.247888i −1.33501 + 0.0149482i
\(276\) 19.2975 1.16158
\(277\) 11.0451i 0.663634i 0.943344 + 0.331817i \(0.107662\pi\)
−0.943344 + 0.331817i \(0.892338\pi\)
\(278\) −17.7302 −1.06339
\(279\) 29.8990i 1.79000i
\(280\) 2.93886 2.97195i 0.175631 0.177608i
\(281\) 20.1064i 1.19945i −0.800207 0.599724i \(-0.795277\pi\)
0.800207 0.599724i \(-0.204723\pi\)
\(282\) 31.9452i 1.90231i
\(283\) 20.2670i 1.20475i 0.798215 + 0.602373i \(0.205778\pi\)
−0.798215 + 0.602373i \(0.794222\pi\)
\(284\) 10.1438i 0.601922i
\(285\) −18.1386 + 18.3428i −1.07444 + 1.08653i
\(286\) 0 0
\(287\) 20.3919i 1.20370i
\(288\) 3.51288 0.206998
\(289\) −0.362874 −0.0213455
\(290\) −5.06520 + 5.12223i −0.297439 + 0.300788i
\(291\) 4.88420i 0.286317i
\(292\) 4.10663 0.240323
\(293\) 29.8007 1.74097 0.870487 0.492191i \(-0.163804\pi\)
0.870487 + 0.492191i \(0.163804\pi\)
\(294\) 8.94773i 0.521842i
\(295\) 17.9324 + 17.7327i 1.04406 + 1.03244i
\(296\) 0.488194 0.0283757
\(297\) −5.79577 −0.336304
\(298\) 9.94873i 0.576315i
\(299\) 0 0
\(300\) 12.7594 0.142868i 0.736663 0.00824847i
\(301\) 8.20337i 0.472834i
\(302\) 11.9580i 0.688107i
\(303\) 41.6215i 2.39109i
\(304\) 4.52055i 0.259271i
\(305\) −9.88458 + 9.99588i −0.565989 + 0.572362i
\(306\) 14.6377i 0.836784i
\(307\) −9.13426 −0.521320 −0.260660 0.965431i \(-0.583940\pi\)
−0.260660 + 0.965431i \(0.583940\pi\)
\(308\) 8.27681i 0.471615i
\(309\) 37.2087 2.11673
\(310\) −13.5326 13.3819i −0.768599 0.760041i
\(311\) 5.34622 0.303157 0.151578 0.988445i \(-0.451564\pi\)
0.151578 + 0.988445i \(0.451564\pi\)
\(312\) 0 0
\(313\) 1.32226i 0.0747385i 0.999302 + 0.0373692i \(0.0118978\pi\)
−0.999302 + 0.0373692i \(0.988102\pi\)
\(314\) 6.72590i 0.379564i
\(315\) 10.3239 10.4401i 0.581684 0.588234i
\(316\) 2.33064 0.131108
\(317\) −3.84953 −0.216211 −0.108106 0.994139i \(-0.534478\pi\)
−0.108106 + 0.994139i \(0.534478\pi\)
\(318\) −0.488443 −0.0273905
\(319\) 14.2653i 0.798702i
\(320\) −1.57226 + 1.58997i −0.0878921 + 0.0888818i
\(321\) −29.1487 −1.62692
\(322\) 14.1341i 0.787665i
\(323\) 18.8366 1.04810
\(324\) −7.19832 −0.399906
\(325\) 0 0
\(326\) −0.00838925 −0.000464638
\(327\) −26.4405 −1.46216
\(328\) 10.9095i 0.602376i
\(329\) −23.3977 −1.28996
\(330\) 17.7673 17.9673i 0.978055 0.989068i
\(331\) 4.96398i 0.272845i 0.990651 + 0.136423i \(0.0435605\pi\)
−0.990651 + 0.136423i \(0.956439\pi\)
\(332\) 2.49654 0.137016
\(333\) 1.71497 0.0939795
\(334\) 8.77138 0.479948
\(335\) 8.95851 9.05938i 0.489456 0.494967i
\(336\) 4.77024i 0.260238i
\(337\) 11.2699i 0.613911i 0.951724 + 0.306956i \(0.0993103\pi\)
−0.951724 + 0.306956i \(0.900690\pi\)
\(338\) 0 0
\(339\) 1.42688 0.0774975
\(340\) −6.62519 6.55143i −0.359302 0.355301i
\(341\) −37.6879 −2.04091
\(342\) 15.8801i 0.858700i
\(343\) −19.6380 −1.06035
\(344\) 4.38872i 0.236624i
\(345\) −30.3408 + 30.6824i −1.63349 + 1.65189i
\(346\) 5.17428i 0.278171i
\(347\) 15.6806i 0.841781i 0.907112 + 0.420890i \(0.138282\pi\)
−0.907112 + 0.420890i \(0.861718\pi\)
\(348\) 8.22163i 0.440725i
\(349\) 0.557452i 0.0298397i −0.999889 0.0149198i \(-0.995251\pi\)
0.999889 0.0149198i \(-0.00474931\pi\)
\(350\) 0.104641 + 9.34538i 0.00559329 + 0.499531i
\(351\) 0 0
\(352\) 4.42801i 0.236014i
\(353\) −24.1725 −1.28657 −0.643285 0.765627i \(-0.722429\pi\)
−0.643285 + 0.765627i \(0.722429\pi\)
\(354\) −28.7831 −1.52980
\(355\) −16.1282 15.9487i −0.855998 0.846467i
\(356\) 11.9415i 0.632896i
\(357\) −19.8770 −1.05200
\(358\) 7.82042 0.413322
\(359\) 0.910208i 0.0480389i 0.999711 + 0.0240195i \(0.00764637\pi\)
−0.999711 + 0.0240195i \(0.992354\pi\)
\(360\) −5.52317 + 5.58536i −0.291097 + 0.294374i
\(361\) −1.43537 −0.0755457
\(362\) −12.2270 −0.642635
\(363\) 21.9661i 1.15292i
\(364\) 0 0
\(365\) −6.45671 + 6.52941i −0.337959 + 0.341765i
\(366\) 16.0443i 0.838647i
\(367\) 4.41148i 0.230277i −0.993349 0.115139i \(-0.963269\pi\)
0.993349 0.115139i \(-0.0367312\pi\)
\(368\) 7.56163i 0.394177i
\(369\) 38.3237i 1.99505i
\(370\) −0.767568 + 0.776211i −0.0399040 + 0.0403533i
\(371\) 0.357752i 0.0185735i
\(372\) 21.7210 1.12618
\(373\) 7.59431i 0.393219i 0.980482 + 0.196609i \(0.0629931\pi\)
−0.980482 + 0.196609i \(0.937007\pi\)
\(374\) −18.4510 −0.954078
\(375\) −19.8339 + 20.5116i −1.02422 + 1.05921i
\(376\) 12.5176 0.645544
\(377\) 0 0
\(378\) 2.44656i 0.125838i
\(379\) 30.3412i 1.55852i −0.626698 0.779262i \(-0.715594\pi\)
0.626698 0.779262i \(-0.284406\pi\)
\(380\) 7.18752 + 7.10749i 0.368712 + 0.364607i
\(381\) 3.88419 0.198993
\(382\) −18.1313 −0.927679
\(383\) 7.99851 0.408705 0.204352 0.978897i \(-0.434491\pi\)
0.204352 + 0.978897i \(0.434491\pi\)
\(384\) 2.55203i 0.130233i
\(385\) 13.1598 + 13.0133i 0.670688 + 0.663220i
\(386\) 6.34605 0.323006
\(387\) 15.4170i 0.783693i
\(388\) 1.91384 0.0971608
\(389\) 22.4951 1.14055 0.570273 0.821455i \(-0.306837\pi\)
0.570273 + 0.821455i \(0.306837\pi\)
\(390\) 0 0
\(391\) 31.5084 1.59345
\(392\) 3.50612 0.177086
\(393\) 18.2844i 0.922328i
\(394\) 2.19339 0.110502
\(395\) −3.66437 + 3.70563i −0.184374 + 0.186451i
\(396\) 15.5551i 0.781672i
\(397\) −29.6953 −1.49036 −0.745181 0.666862i \(-0.767637\pi\)
−0.745181 + 0.666862i \(0.767637\pi\)
\(398\) 4.80668 0.240937
\(399\) 21.5641 1.07956
\(400\) −0.0559819 4.99969i −0.00279909 0.249984i
\(401\) 26.3944i 1.31807i 0.752110 + 0.659037i \(0.229036\pi\)
−0.752110 + 0.659037i \(0.770964\pi\)
\(402\) 14.5411i 0.725244i
\(403\) 0 0
\(404\) −16.3092 −0.811411
\(405\) 11.3176 11.4451i 0.562378 0.568710i
\(406\) 6.02179 0.298856
\(407\) 2.16173i 0.107153i
\(408\) 10.6340 0.526462
\(409\) 9.89433i 0.489243i −0.969619 0.244622i \(-0.921336\pi\)
0.969619 0.244622i \(-0.0786637\pi\)
\(410\) −17.3457 17.1526i −0.856644 0.847106i
\(411\) 40.9586i 2.02034i
\(412\) 14.5800i 0.718305i
\(413\) 21.0817i 1.03736i
\(414\) 26.5631i 1.30550i
\(415\) −3.92522 + 3.96942i −0.192681 + 0.194851i
\(416\) 0 0
\(417\) 45.2482i 2.21581i
\(418\) 20.0171 0.979066
\(419\) 17.9386 0.876359 0.438179 0.898888i \(-0.355623\pi\)
0.438179 + 0.898888i \(0.355623\pi\)
\(420\) −7.58452 7.50008i −0.370087 0.365966i
\(421\) 15.5977i 0.760184i 0.924949 + 0.380092i \(0.124108\pi\)
−0.924949 + 0.380092i \(0.875892\pi\)
\(422\) 1.98463 0.0966105
\(423\) 43.9727 2.13802
\(424\) 0.191394i 0.00929490i
\(425\) 20.8331 0.233270i 1.01055 0.0113152i
\(426\) 25.8872 1.25424
\(427\) 11.7513 0.568687
\(428\) 11.4218i 0.552091i
\(429\) 0 0
\(430\) −6.97792 6.90022i −0.336505 0.332758i
\(431\) 30.0631i 1.44809i 0.689753 + 0.724045i \(0.257719\pi\)
−0.689753 + 0.724045i \(0.742281\pi\)
\(432\) 1.30889i 0.0629738i
\(433\) 22.5878i 1.08550i −0.839894 0.542750i \(-0.817383\pi\)
0.839894 0.542750i \(-0.182617\pi\)
\(434\) 15.9092i 0.763664i
\(435\) 13.0721 + 12.9266i 0.626759 + 0.619781i
\(436\) 10.3606i 0.496181i
\(437\) −34.1827 −1.63518
\(438\) 10.4803i 0.500767i
\(439\) −34.8184 −1.66179 −0.830895 0.556429i \(-0.812171\pi\)
−0.830895 + 0.556429i \(0.812171\pi\)
\(440\) −7.04039 6.96200i −0.335637 0.331900i
\(441\) 12.3166 0.586503
\(442\) 0 0
\(443\) 15.5022i 0.736533i 0.929720 + 0.368267i \(0.120049\pi\)
−0.929720 + 0.368267i \(0.879951\pi\)
\(444\) 1.24589i 0.0591272i
\(445\) −18.9865 18.7751i −0.900047 0.890025i
\(446\) 6.23337 0.295159
\(447\) −25.3895 −1.20088
\(448\) 1.86919 0.0883111
\(449\) 0.894606i 0.0422191i −0.999777 0.0211095i \(-0.993280\pi\)
0.999777 0.0211095i \(-0.00671987\pi\)
\(450\) −0.196658 17.5633i −0.00927053 0.827942i
\(451\) −48.3074 −2.27471
\(452\) 0.559115i 0.0262985i
\(453\) −30.5173 −1.43383
\(454\) 13.3667 0.627331
\(455\) 0 0
\(456\) −11.5366 −0.540251
\(457\) 10.7958 0.505007 0.252504 0.967596i \(-0.418746\pi\)
0.252504 + 0.967596i \(0.418746\pi\)
\(458\) 5.10916i 0.238735i
\(459\) 5.45397 0.254570
\(460\) 12.0227 + 11.8889i 0.560563 + 0.554321i
\(461\) 10.8827i 0.506859i −0.967354 0.253429i \(-0.918441\pi\)
0.967354 0.253429i \(-0.0815585\pi\)
\(462\) −21.1227 −0.982717
\(463\) 3.15999 0.146857 0.0734287 0.997300i \(-0.476606\pi\)
0.0734287 + 0.997300i \(0.476606\pi\)
\(464\) −3.22160 −0.149559
\(465\) −34.1511 + 34.5356i −1.58372 + 1.60155i
\(466\) 25.7364i 1.19222i
\(467\) 23.0475i 1.06651i 0.845954 + 0.533256i \(0.179032\pi\)
−0.845954 + 0.533256i \(0.820968\pi\)
\(468\) 0 0
\(469\) −10.6504 −0.491789
\(470\) −19.6809 + 19.9025i −0.907812 + 0.918033i
\(471\) 17.1647 0.790908
\(472\) 11.2785i 0.519134i
\(473\) −19.4333 −0.893545
\(474\) 5.94786i 0.273194i
\(475\) −22.6013 + 0.253069i −1.03702 + 0.0116116i
\(476\) 7.78870i 0.356994i
\(477\) 0.672343i 0.0307845i
\(478\) 9.42688i 0.431175i
\(479\) 9.16688i 0.418845i −0.977825 0.209423i \(-0.932842\pi\)
0.977825 0.209423i \(-0.0671584\pi\)
\(480\) 4.05765 + 4.01247i 0.185205 + 0.183143i
\(481\) 0 0
\(482\) 8.55884i 0.389845i
\(483\) 36.0708 1.64128
\(484\) −8.60730 −0.391241
\(485\) −3.00907 + 3.04295i −0.136635 + 0.138173i
\(486\) 22.2970i 1.01141i
\(487\) 24.1155 1.09278 0.546389 0.837531i \(-0.316002\pi\)
0.546389 + 0.837531i \(0.316002\pi\)
\(488\) −6.28685 −0.284592
\(489\) 0.0214097i 0.000968178i
\(490\) −5.51254 + 5.57461i −0.249031 + 0.251835i
\(491\) −5.68528 −0.256573 −0.128286 0.991737i \(-0.540948\pi\)
−0.128286 + 0.991737i \(0.540948\pi\)
\(492\) 27.8414 1.25519
\(493\) 13.4240i 0.604587i
\(494\) 0 0
\(495\) −24.7320 24.4567i −1.11162 1.09925i
\(496\) 8.51124i 0.382166i
\(497\) 18.9607i 0.850501i
\(498\) 6.37126i 0.285503i
\(499\) 6.68270i 0.299159i −0.988750 0.149579i \(-0.952208\pi\)
0.988750 0.149579i \(-0.0477920\pi\)
\(500\) 8.03735 + 7.77181i 0.359441 + 0.347566i
\(501\) 22.3849i 1.00008i
\(502\) −2.91331 −0.130027
\(503\) 17.4365i 0.777455i −0.921353 0.388727i \(-0.872915\pi\)
0.921353 0.388727i \(-0.127085\pi\)
\(504\) 6.56625 0.292484
\(505\) 25.6423 25.9310i 1.14107 1.15391i
\(506\) 33.4830 1.48850
\(507\) 0 0
\(508\) 1.52200i 0.0675277i
\(509\) 28.6424i 1.26955i 0.772696 + 0.634776i \(0.218908\pi\)
−0.772696 + 0.634776i \(0.781092\pi\)
\(510\) −16.7195 + 16.9077i −0.740350 + 0.748686i
\(511\) 7.67609 0.339570
\(512\) −1.00000 −0.0441942
\(513\) −5.91689 −0.261237
\(514\) 28.3335i 1.24974i
\(515\) 23.1817 + 22.9236i 1.02151 + 1.01013i
\(516\) 11.2002 0.493060
\(517\) 55.4279i 2.43772i
\(518\) 0.912528 0.0400942
\(519\) −13.2049 −0.579632
\(520\) 0 0
\(521\) −24.2436 −1.06213 −0.531066 0.847331i \(-0.678208\pi\)
−0.531066 + 0.847331i \(0.678208\pi\)
\(522\) −11.3171 −0.495335
\(523\) 7.25966i 0.317443i −0.987323 0.158721i \(-0.949263\pi\)
0.987323 0.158721i \(-0.0507372\pi\)
\(524\) 7.16465 0.312989
\(525\) 23.8497 0.267047i 1.04089 0.0116549i
\(526\) 6.57342i 0.286615i
\(527\) 35.4653 1.54489
\(528\) 11.3004 0.491789
\(529\) −34.1782 −1.48601
\(530\) −0.304309 0.300921i −0.0132184 0.0130712i
\(531\) 39.6199i 1.71936i
\(532\) 8.44978i 0.366344i
\(533\) 0 0
\(534\) 30.4750 1.31878
\(535\) −18.1602 17.9580i −0.785134 0.776392i
\(536\) 5.69785 0.246109
\(537\) 19.9580i 0.861251i
\(538\) 13.1504 0.566956
\(539\) 15.5251i 0.668715i
\(540\) 2.08108 + 2.05791i 0.0895556 + 0.0885585i
\(541\) 9.90908i 0.426025i 0.977049 + 0.213012i \(0.0683275\pi\)
−0.977049 + 0.213012i \(0.931673\pi\)
\(542\) 22.3779i 0.961215i
\(543\) 31.2036i 1.33908i
\(544\) 4.16688i 0.178653i
\(545\) −16.4730 16.2895i −0.705624 0.697767i
\(546\) 0 0
\(547\) 15.7348i 0.672769i 0.941725 + 0.336385i \(0.109204\pi\)
−0.941725 + 0.336385i \(0.890796\pi\)
\(548\) −16.0494 −0.685596
\(549\) −22.0850 −0.942563
\(550\) 22.1387 0.247888i 0.943996 0.0105700i
\(551\) 14.5634i 0.620421i
\(552\) −19.2975 −0.821358
\(553\) 4.35641 0.185253
\(554\) 11.0451i 0.469260i
\(555\) 1.98092 + 1.95886i 0.0840853 + 0.0831490i
\(556\) 17.7302 0.751930
\(557\) 11.6684 0.494408 0.247204 0.968963i \(-0.420488\pi\)
0.247204 + 0.968963i \(0.420488\pi\)
\(558\) 29.8990i 1.26572i
\(559\) 0 0
\(560\) −2.93886 + 2.97195i −0.124190 + 0.125588i
\(561\) 47.0876i 1.98804i
\(562\) 20.1064i 0.848138i
\(563\) 34.0262i 1.43403i −0.697056 0.717017i \(-0.745507\pi\)
0.697056 0.717017i \(-0.254493\pi\)
\(564\) 31.9452i 1.34514i
\(565\) 0.888973 + 0.879075i 0.0373994 + 0.0369830i
\(566\) 20.2670i 0.851884i
\(567\) −13.4550 −0.565059
\(568\) 10.1438i 0.425623i
\(569\) −44.3266 −1.85827 −0.929135 0.369741i \(-0.879446\pi\)
−0.929135 + 0.369741i \(0.879446\pi\)
\(570\) 18.1386 18.3428i 0.759741 0.768295i
\(571\) −15.3587 −0.642740 −0.321370 0.946954i \(-0.604143\pi\)
−0.321370 + 0.946954i \(0.604143\pi\)
\(572\) 0 0
\(573\) 46.2717i 1.93303i
\(574\) 20.3919i 0.851143i
\(575\) −37.8058 + 0.423314i −1.57661 + 0.0176534i
\(576\) −3.51288 −0.146370
\(577\) 31.5537 1.31360 0.656799 0.754065i \(-0.271910\pi\)
0.656799 + 0.754065i \(0.271910\pi\)
\(578\) 0.362874 0.0150936
\(579\) 16.1953i 0.673056i
\(580\) 5.06520 5.12223i 0.210321 0.212689i
\(581\) 4.66652 0.193600
\(582\) 4.88420i 0.202457i
\(583\) −0.847494 −0.0350996
\(584\) −4.10663 −0.169934
\(585\) 0 0
\(586\) −29.8007 −1.23106
\(587\) 22.9587 0.947607 0.473803 0.880631i \(-0.342881\pi\)
0.473803 + 0.880631i \(0.342881\pi\)
\(588\) 8.94773i 0.368998i
\(589\) −38.4755 −1.58535
\(590\) −17.9324 17.7327i −0.738265 0.730045i
\(591\) 5.59761i 0.230255i
\(592\) −0.488194 −0.0200646
\(593\) −27.6241 −1.13439 −0.567194 0.823584i \(-0.691971\pi\)
−0.567194 + 0.823584i \(0.691971\pi\)
\(594\) 5.79577 0.237803
\(595\) −12.3838 12.2459i −0.507685 0.502032i
\(596\) 9.94873i 0.407516i
\(597\) 12.2668i 0.502048i
\(598\) 0 0
\(599\) 1.54774 0.0632389 0.0316194 0.999500i \(-0.489934\pi\)
0.0316194 + 0.999500i \(0.489934\pi\)
\(600\) −12.7594 + 0.142868i −0.520899 + 0.00583255i
\(601\) 25.3606 1.03448 0.517241 0.855840i \(-0.326959\pi\)
0.517241 + 0.855840i \(0.326959\pi\)
\(602\) 8.20337i 0.334344i
\(603\) 20.0158 0.815108
\(604\) 11.9580i 0.486565i
\(605\) 13.5329 13.6853i 0.550192 0.556387i
\(606\) 41.6215i 1.69076i
\(607\) 19.1839i 0.778652i −0.921100 0.389326i \(-0.872708\pi\)
0.921100 0.389326i \(-0.127292\pi\)
\(608\) 4.52055i 0.183332i
\(609\) 15.3678i 0.622735i
\(610\) 9.88458 9.99588i 0.400215 0.404721i
\(611\) 0 0
\(612\) 14.6377i 0.591696i
\(613\) −3.32275 −0.134205 −0.0671024 0.997746i \(-0.521375\pi\)
−0.0671024 + 0.997746i \(0.521375\pi\)
\(614\) 9.13426 0.368629
\(615\) −43.7740 + 44.2669i −1.76514 + 1.78501i
\(616\) 8.27681i 0.333482i
\(617\) −13.7220 −0.552425 −0.276213 0.961097i \(-0.589079\pi\)
−0.276213 + 0.961097i \(0.589079\pi\)
\(618\) −37.2087 −1.49675
\(619\) 40.9597i 1.64631i −0.567817 0.823155i \(-0.692212\pi\)
0.567817 0.823155i \(-0.307788\pi\)
\(620\) 13.5326 + 13.3819i 0.543482 + 0.537430i
\(621\) −9.89731 −0.397166
\(622\) −5.34622 −0.214364
\(623\) 22.3209i 0.894267i
\(624\) 0 0
\(625\) −24.9937 + 0.559784i −0.999749 + 0.0223913i
\(626\) 1.32226i 0.0528481i
\(627\) 51.0842i 2.04011i
\(628\) 6.72590i 0.268392i
\(629\) 2.03424i 0.0811106i
\(630\) −10.3239 + 10.4401i −0.411313 + 0.415944i
\(631\) 14.9553i 0.595361i −0.954666 0.297680i \(-0.903787\pi\)
0.954666 0.297680i \(-0.0962130\pi\)
\(632\) −2.33064 −0.0927077
\(633\) 5.06485i 0.201310i
\(634\) 3.84953 0.152885
\(635\) 2.41992 + 2.39298i 0.0960317 + 0.0949624i
\(636\) 0.488443 0.0193680
\(637\) 0 0
\(638\) 14.2653i 0.564768i
\(639\) 35.6338i 1.40965i
\(640\) 1.57226 1.58997i 0.0621491 0.0628489i
\(641\) 36.5876 1.44512 0.722562 0.691306i \(-0.242964\pi\)
0.722562 + 0.691306i \(0.242964\pi\)
\(642\) 29.1487 1.15041
\(643\) 43.3819 1.71082 0.855408 0.517954i \(-0.173306\pi\)
0.855408 + 0.517954i \(0.173306\pi\)
\(644\) 14.1341i 0.556963i
\(645\) −17.6096 + 17.8079i −0.693377 + 0.701185i
\(646\) −18.8366 −0.741115
\(647\) 42.6622i 1.67722i −0.544730 0.838611i \(-0.683368\pi\)
0.544730 0.838611i \(-0.316632\pi\)
\(648\) 7.19832 0.282777
\(649\) −49.9413 −1.96037
\(650\) 0 0
\(651\) 40.6007 1.59127
\(652\) 0.00838925 0.000328549
\(653\) 44.8543i 1.75528i −0.479316 0.877642i \(-0.659115\pi\)
0.479316 0.877642i \(-0.340885\pi\)
\(654\) 26.4405 1.03391
\(655\) −11.2647 + 11.3916i −0.440149 + 0.445105i
\(656\) 10.9095i 0.425944i
\(657\) −14.4261 −0.562816
\(658\) 23.3977 0.912138
\(659\) 28.7835 1.12125 0.560624 0.828071i \(-0.310561\pi\)
0.560624 + 0.828071i \(0.310561\pi\)
\(660\) −17.7673 + 17.9673i −0.691590 + 0.699377i
\(661\) 9.90351i 0.385202i 0.981277 + 0.192601i \(0.0616923\pi\)
−0.981277 + 0.192601i \(0.938308\pi\)
\(662\) 4.96398i 0.192931i
\(663\) 0 0
\(664\) −2.49654 −0.0968846
\(665\) 13.4349 + 13.2853i 0.520981 + 0.515181i
\(666\) −1.71497 −0.0664536
\(667\) 24.3605i 0.943243i
\(668\) −8.77138 −0.339375
\(669\) 15.9078i 0.615030i
\(670\) −8.95851 + 9.05938i −0.346097 + 0.349994i
\(671\) 27.8383i 1.07468i
\(672\) 4.77024i 0.184016i
\(673\) 46.6987i 1.80010i −0.435784 0.900051i \(-0.643529\pi\)
0.435784 0.900051i \(-0.356471\pi\)
\(674\) 11.2699i 0.434101i
\(675\) −6.54402 + 0.0732739i −0.251880 + 0.00282031i
\(676\) 0 0
\(677\) 15.1897i 0.583787i −0.956451 0.291893i \(-0.905715\pi\)
0.956451 0.291893i \(-0.0942852\pi\)
\(678\) −1.42688 −0.0547990
\(679\) 3.57735 0.137286
\(680\) 6.62519 + 6.55143i 0.254065 + 0.251236i
\(681\) 34.1123i 1.30719i
\(682\) 37.6879 1.44314
\(683\) 5.91381 0.226286 0.113143 0.993579i \(-0.463908\pi\)
0.113143 + 0.993579i \(0.463908\pi\)
\(684\) 15.8801i 0.607193i
\(685\) 25.2338 25.5180i 0.964135 0.974991i
\(686\) 19.6380 0.749781
\(687\) 13.0387 0.497459
\(688\) 4.38872i 0.167318i
\(689\) 0 0
\(690\) 30.3408 30.6824i 1.15505 1.16806i
\(691\) 23.5531i 0.896004i −0.894033 0.448002i \(-0.852136\pi\)
0.894033 0.448002i \(-0.147864\pi\)
\(692\) 5.17428i 0.196697i
\(693\) 29.0754i 1.10448i
\(694\) 15.6806i 0.595229i
\(695\) −27.8766 + 28.1905i −1.05742 + 1.06933i
\(696\) 8.22163i 0.311640i
\(697\) 45.4585 1.72186
\(698\) 0.557452i 0.0210999i
\(699\) 65.6803 2.48426
\(700\) −0.104641 9.34538i −0.00395505 0.353222i
\(701\) 39.9205 1.50778 0.753888 0.657003i \(-0.228176\pi\)
0.753888 + 0.657003i \(0.228176\pi\)
\(702\) 0 0
\(703\) 2.20690i 0.0832349i
\(704\) 4.42801i 0.166887i
\(705\) 50.7918 + 50.2263i 1.91293 + 1.89163i
\(706\) 24.1725 0.909742
\(707\) −30.4850 −1.14650
\(708\) 28.7831 1.08173
\(709\) 8.96987i 0.336870i 0.985713 + 0.168435i \(0.0538714\pi\)
−0.985713 + 0.168435i \(0.946129\pi\)
\(710\) 16.1282 + 15.9487i 0.605282 + 0.598543i
\(711\) −8.18724 −0.307046
\(712\) 11.9415i 0.447525i
\(713\) −64.3589 −2.41026
\(714\) 19.8770 0.743879
\(715\) 0 0
\(716\) −7.82042 −0.292263
\(717\) 24.0577 0.898452
\(718\) 0.910208i 0.0339687i
\(719\) 19.5515 0.729149 0.364575 0.931174i \(-0.381214\pi\)
0.364575 + 0.931174i \(0.381214\pi\)
\(720\) 5.52317 5.58536i 0.205836 0.208154i
\(721\) 27.2528i 1.01495i
\(722\) 1.43537 0.0534189
\(723\) −21.8425 −0.812330
\(724\) 12.2270 0.454411
\(725\) 0.180351 + 16.1070i 0.00669807 + 0.598198i
\(726\) 21.9661i 0.815240i
\(727\) 21.2591i 0.788458i 0.919012 + 0.394229i \(0.128988\pi\)
−0.919012 + 0.394229i \(0.871012\pi\)
\(728\) 0 0
\(729\) 35.3078 1.30770
\(730\) 6.45671 6.52941i 0.238973 0.241664i
\(731\) 18.2873 0.676379
\(732\) 16.0443i 0.593013i
\(733\) 51.7515 1.91149 0.955743 0.294203i \(-0.0950542\pi\)
0.955743 + 0.294203i \(0.0950542\pi\)
\(734\) 4.41148i 0.162831i
\(735\) 14.2266 + 14.0682i 0.524756 + 0.518913i
\(736\) 7.56163i 0.278725i
\(737\) 25.2301i 0.929364i
\(738\) 38.3237i 1.41072i
\(739\) 2.48566i 0.0914364i −0.998954 0.0457182i \(-0.985442\pi\)
0.998954 0.0457182i \(-0.0145576\pi\)
\(740\) 0.767568 0.776211i 0.0282164 0.0285341i
\(741\) 0 0
\(742\) 0.357752i 0.0131335i
\(743\) 41.9532 1.53911 0.769557 0.638578i \(-0.220477\pi\)
0.769557 + 0.638578i \(0.220477\pi\)
\(744\) −21.7210 −0.796330
\(745\) −15.8181 15.6420i −0.579532 0.573079i
\(746\) 7.59431i 0.278048i
\(747\) −8.77005 −0.320879
\(748\) 18.4510 0.674635
\(749\) 21.3495i 0.780092i
\(750\) 19.8339 20.5116i 0.724233 0.748977i
\(751\) −4.26126 −0.155496 −0.0777478 0.996973i \(-0.524773\pi\)
−0.0777478 + 0.996973i \(0.524773\pi\)
\(752\) −12.5176 −0.456468
\(753\) 7.43487i 0.270942i
\(754\) 0 0
\(755\) −19.0128 18.8011i −0.691948 0.684244i
\(756\) 2.44656i 0.0889806i
\(757\) 32.1223i 1.16750i 0.811932 + 0.583752i \(0.198416\pi\)
−0.811932 + 0.583752i \(0.801584\pi\)
\(758\) 30.3412i 1.10204i
\(759\) 85.4498i 3.10163i
\(760\) −7.18752 7.10749i −0.260719 0.257816i
\(761\) 50.8769i 1.84429i −0.386850 0.922143i \(-0.626437\pi\)
0.386850 0.922143i \(-0.373563\pi\)
\(762\) −3.88419 −0.140709
\(763\) 19.3659i 0.701093i
\(764\) 18.1313 0.655968
\(765\) 23.2735 + 23.0144i 0.841455 + 0.832086i
\(766\) −7.99851 −0.288998
\(767\) 0 0
\(768\) 2.55203i 0.0920886i
\(769\) 10.8452i 0.391089i −0.980695 0.195545i \(-0.937353\pi\)
0.980695 0.195545i \(-0.0626475\pi\)
\(770\) −13.1598 13.0133i −0.474248 0.468967i
\(771\) 72.3081 2.60411
\(772\) −6.34605 −0.228399
\(773\) −17.0142 −0.611959 −0.305979 0.952038i \(-0.598984\pi\)
−0.305979 + 0.952038i \(0.598984\pi\)
\(774\) 15.4170i 0.554154i
\(775\) −42.5535 + 0.476475i −1.52857 + 0.0171155i
\(776\) −1.91384 −0.0687030
\(777\) 2.32880i 0.0835453i
\(778\) −22.4951 −0.806488
\(779\) −49.3169 −1.76696
\(780\) 0 0
\(781\) 44.9167 1.60725
\(782\) −31.5084 −1.12674
\(783\) 4.21670i 0.150693i
\(784\) −3.50612 −0.125219
\(785\) 10.6939 + 10.5749i 0.381683 + 0.377433i
\(786\) 18.2844i 0.652184i
\(787\) 27.0297 0.963505 0.481752 0.876307i \(-0.340000\pi\)
0.481752 + 0.876307i \(0.340000\pi\)
\(788\) −2.19339 −0.0781364
\(789\) 16.7756 0.597227
\(790\) 3.66437 3.70563i 0.130372 0.131840i
\(791\) 1.04509i 0.0371592i
\(792\) 15.5551i 0.552726i
\(793\) 0 0
\(794\) 29.6953 1.05385
\(795\) −0.767961 + 0.776608i −0.0272368 + 0.0275435i
\(796\) −4.80668 −0.170368
\(797\) 15.1585i 0.536942i 0.963288 + 0.268471i \(0.0865183\pi\)
−0.963288 + 0.268471i \(0.913482\pi\)
\(798\) −21.5641 −0.763362
\(799\) 52.1591i 1.84526i
\(800\) 0.0559819 + 4.99969i 0.00197926 + 0.176766i
\(801\) 41.9489i 1.48219i
\(802\) 26.3944i 0.932019i
\(803\) 18.1842i 0.641708i
\(804\) 14.5411i 0.512825i
\(805\) 22.4728 + 22.2226i 0.792062 + 0.783243i
\(806\) 0 0
\(807\) 33.5604i 1.18138i
\(808\) 16.3092 0.573754
\(809\) 39.3369 1.38301 0.691506 0.722371i \(-0.256948\pi\)
0.691506 + 0.722371i \(0.256948\pi\)
\(810\) −11.3176 + 11.4451i −0.397661 + 0.402139i
\(811\) 9.57933i 0.336376i 0.985755 + 0.168188i \(0.0537915\pi\)
−0.985755 + 0.168188i \(0.946208\pi\)
\(812\) −6.02179 −0.211323
\(813\) 57.1093 2.00291
\(814\) 2.16173i 0.0757685i
\(815\) −0.0131901 + 0.0133386i −0.000462029 + 0.000467232i
\(816\) −10.6340 −0.372265
\(817\) −19.8394 −0.694094
\(818\) 9.89433i 0.345947i
\(819\) 0 0
\(820\) 17.3457 + 17.1526i 0.605739 + 0.598994i
\(821\) 7.82037i 0.272933i −0.990645 0.136466i \(-0.956425\pi\)
0.990645 0.136466i \(-0.0435745\pi\)
\(822\) 40.9586i 1.42859i
\(823\) 34.1839i 1.19158i 0.803142 + 0.595788i \(0.203160\pi\)
−0.803142 + 0.595788i \(0.796840\pi\)
\(824\) 14.5800i 0.507919i
\(825\) −0.632620 56.4987i −0.0220250 1.96703i
\(826\) 21.0817i 0.733524i
\(827\) 3.47145 0.120714 0.0603570 0.998177i \(-0.480776\pi\)
0.0603570 + 0.998177i \(0.480776\pi\)
\(828\) 26.5631i 0.923131i
\(829\) 13.3557 0.463864 0.231932 0.972732i \(-0.425495\pi\)
0.231932 + 0.972732i \(0.425495\pi\)
\(830\) 3.92522 3.96942i 0.136246 0.137780i
\(831\) −28.1874 −0.977811
\(832\) 0 0
\(833\) 14.6096i 0.506192i
\(834\) 45.2482i 1.56682i
\(835\) 13.7909 13.9462i 0.477254 0.482628i
\(836\) −20.0171 −0.692304
\(837\) −11.1402 −0.385063
\(838\) −17.9386 −0.619679
\(839\) 47.9304i 1.65474i 0.561657 + 0.827370i \(0.310164\pi\)
−0.561657 + 0.827370i \(0.689836\pi\)
\(840\) 7.58452 + 7.50008i 0.261691 + 0.258777i
\(841\) −18.6213 −0.642114
\(842\) 15.5977i 0.537532i
\(843\) 51.3123 1.76729
\(844\) −1.98463 −0.0683139
\(845\) 0 0
\(846\) −43.9727 −1.51181
\(847\) −16.0887 −0.552814
\(848\) 0.191394i 0.00657249i
\(849\) −51.7220 −1.77509
\(850\) −20.8331 + 0.233270i −0.714569 + 0.00800108i
\(851\) 3.69154i 0.126544i
\(852\) −25.8872 −0.886882
\(853\) −36.4405 −1.24770 −0.623850 0.781544i \(-0.714432\pi\)
−0.623850 + 0.781544i \(0.714432\pi\)
\(854\) −11.7513 −0.402123
\(855\) −25.2489 24.9678i −0.863494 0.853879i
\(856\) 11.4218i 0.390388i
\(857\) 29.9745i 1.02391i −0.859013 0.511954i \(-0.828922\pi\)
0.859013 0.511954i \(-0.171078\pi\)
\(858\) 0 0
\(859\) −34.8453 −1.18891 −0.594454 0.804130i \(-0.702632\pi\)
−0.594454 + 0.804130i \(0.702632\pi\)
\(860\) 6.97792 + 6.90022i 0.237945 + 0.235296i
\(861\) 52.0409 1.77355
\(862\) 30.0631i 1.02395i
\(863\) −25.2753 −0.860381 −0.430190 0.902738i \(-0.641554\pi\)
−0.430190 + 0.902738i \(0.641554\pi\)
\(864\) 1.30889i 0.0445292i
\(865\) −8.22692 8.13532i −0.279724 0.276609i
\(866\) 22.5878i 0.767565i
\(867\) 0.926067i 0.0314509i
\(868\) 15.9092i 0.539992i
\(869\) 10.3201i 0.350085i
\(870\) −13.0721 12.9266i −0.443186 0.438251i
\(871\) 0 0
\(872\) 10.3606i 0.350853i
\(873\) −6.72311 −0.227543
\(874\) 34.1827 1.15625
\(875\) 15.0234 + 14.5270i 0.507882 + 0.491103i
\(876\) 10.4803i 0.354096i
\(877\) 6.44566 0.217654 0.108827 0.994061i \(-0.465290\pi\)
0.108827 + 0.994061i \(0.465290\pi\)
\(878\) 34.8184 1.17506
\(879\) 76.0524i 2.56518i
\(880\) 7.04039 + 6.96200i 0.237331 + 0.234689i
\(881\) 12.5890 0.424133 0.212066 0.977255i \(-0.431981\pi\)
0.212066 + 0.977255i \(0.431981\pi\)
\(882\) −12.3166 −0.414721
\(883\) 17.7501i 0.597339i −0.954357 0.298669i \(-0.903457\pi\)
0.954357 0.298669i \(-0.0965428\pi\)
\(884\) 0 0
\(885\) −45.2545 + 45.7641i −1.52121 + 1.53834i
\(886\) 15.5022i 0.520808i
\(887\) 6.79925i 0.228296i −0.993464 0.114148i \(-0.963586\pi\)
0.993464 0.114148i \(-0.0364139\pi\)
\(888\) 1.24589i 0.0418092i
\(889\) 2.84491i 0.0954151i
\(890\) 18.9865 + 18.7751i 0.636429 + 0.629343i
\(891\) 31.8742i 1.06783i
\(892\) −6.23337 −0.208709
\(893\) 56.5862i 1.89359i
\(894\) 25.3895 0.849152
\(895\) 12.2958 12.4342i 0.411002 0.415630i
\(896\) −1.86919 −0.0624453
\(897\) 0 0
\(898\) 0.894606i 0.0298534i
\(899\) 27.4198i 0.914501i
\(900\) 0.196658 + 17.5633i 0.00655525 + 0.585443i
\(901\) 0.797514 0.0265691
\(902\) 48.3074 1.60846
\(903\) 20.9353 0.696682
\(904\) 0.559115i 0.0185959i
\(905\) −19.2240 + 19.4404i −0.639027 + 0.646222i
\(906\) 30.5173 1.01387
\(907\) 10.4184i 0.345937i −0.984927 0.172969i \(-0.944664\pi\)
0.984927 0.172969i \(-0.0553359\pi\)
\(908\) −13.3667 −0.443590
\(909\) 57.2921 1.90026
\(910\) 0 0
\(911\) −9.38030 −0.310783 −0.155392 0.987853i \(-0.549664\pi\)
−0.155392 + 0.987853i \(0.549664\pi\)
\(912\) 11.5366 0.382015
\(913\) 11.0547i 0.365858i
\(914\) −10.7958 −0.357094
\(915\) −25.5098 25.2258i −0.843329 0.833939i
\(916\) 5.10916i 0.168811i
\(917\) 13.3921 0.442247
\(918\) −5.45397 −0.180008
\(919\) −39.0419 −1.28787 −0.643937 0.765078i \(-0.722700\pi\)
−0.643937 + 0.765078i \(0.722700\pi\)
\(920\) −12.0227 11.8889i −0.396378 0.391964i
\(921\) 23.3109i 0.768121i
\(922\) 10.8827i 0.358403i
\(923\) 0 0
\(924\) 21.1227 0.694886
\(925\) 0.0273300 + 2.44081i 0.000898605 + 0.0802535i
\(926\) −3.15999 −0.103844
\(927\) 51.2178i 1.68221i
\(928\) 3.22160 0.105754
\(929\) 29.3209i 0.961988i −0.876724 0.480994i \(-0.840276\pi\)
0.876724 0.480994i \(-0.159724\pi\)
\(930\) 34.1511 34.5356i 1.11986 1.13247i
\(931\) 15.8496i 0.519449i
\(932\) 25.7364i 0.843025i
\(933\) 13.6437i 0.446676i
\(934\) 23.0475i 0.754138i
\(935\) −29.0098 + 29.3364i −0.948722 + 0.959404i
\(936\) 0 0
\(937\) 55.0322i 1.79782i −0.438130 0.898911i \(-0.644359\pi\)
0.438130 0.898911i \(-0.355641\pi\)
\(938\) 10.6504 0.347747
\(939\) −3.37445 −0.110121
\(940\) 19.6809 19.9025i 0.641920 0.649148i
\(941\) 12.9833i 0.423243i −0.977352 0.211621i \(-0.932126\pi\)
0.977352 0.211621i \(-0.0678744\pi\)
\(942\) −17.1647 −0.559257
\(943\) −82.4935 −2.68636
\(944\) 11.2785i 0.367083i
\(945\) 3.88995 + 3.84664i 0.126540 + 0.125131i
\(946\) 19.4333 0.631832
\(947\) 43.0090 1.39760 0.698802 0.715316i \(-0.253717\pi\)
0.698802 + 0.715316i \(0.253717\pi\)
\(948\) 5.94786i 0.193178i
\(949\) 0 0
\(950\) 22.6013 0.253069i 0.733284 0.00821064i
\(951\) 9.82414i 0.318570i
\(952\) 7.78870i 0.252433i
\(953\) 26.9615i 0.873369i 0.899615 + 0.436684i \(0.143847\pi\)
−0.899615 + 0.436684i \(0.856153\pi\)
\(954\) 0.672343i 0.0217679i
\(955\) −28.5072 + 28.8282i −0.922471 + 0.932858i
\(956\) 9.42688i 0.304887i
\(957\) −36.4055 −1.17682
\(958\) 9.16688i 0.296168i
\(959\) −29.9994 −0.968731
\(960\) −4.05765 4.01247i −0.130960 0.129502i
\(961\) −41.4412 −1.33681
\(962\) 0 0
\(963\) 40.1232i 1.29295i
\(964\) 8.55884i 0.275662i
\(965\) 9.97766 10.0900i 0.321192 0.324809i
\(966\) −36.0708 −1.16056
\(967\) 3.03699 0.0976630 0.0488315 0.998807i \(-0.484450\pi\)
0.0488315 + 0.998807i \(0.484450\pi\)
\(968\) 8.60730 0.276649
\(969\) 48.0716i 1.54428i
\(970\) 3.00907 3.04295i 0.0966153 0.0977032i
\(971\) 29.5149 0.947180 0.473590 0.880746i \(-0.342958\pi\)
0.473590 + 0.880746i \(0.342958\pi\)
\(972\) 22.2970i 0.715177i
\(973\) 33.1412 1.06246
\(974\) −24.1155 −0.772711
\(975\) 0 0
\(976\) 6.28685 0.201237
\(977\) −38.3621 −1.22731 −0.613656 0.789574i \(-0.710302\pi\)
−0.613656 + 0.789574i \(0.710302\pi\)
\(978\) 0.0214097i 0.000684606i
\(979\) 52.8769 1.68995
\(980\) 5.51254 5.57461i 0.176092 0.178074i
\(981\) 36.3954i 1.16202i
\(982\) 5.68528 0.181424
\(983\) 30.0081 0.957109 0.478554 0.878058i \(-0.341161\pi\)
0.478554 + 0.878058i \(0.341161\pi\)
\(984\) −27.8414 −0.887551
\(985\) 3.44859 3.48742i 0.109881 0.111118i
\(986\) 13.4240i 0.427507i
\(987\) 59.7118i 1.90065i
\(988\) 0 0
\(989\) −33.1859 −1.05525
\(990\) 24.7320 + 24.4567i 0.786036 + 0.777284i
\(991\) −24.3851 −0.774618 −0.387309 0.921950i \(-0.626595\pi\)
−0.387309 + 0.921950i \(0.626595\pi\)
\(992\) 8.51124i 0.270232i
\(993\) −12.6683 −0.402015
\(994\) 18.9607i 0.601395i
\(995\) 7.55737 7.64246i 0.239585 0.242282i
\(996\) 6.37126i 0.201881i
\(997\) 29.2603i 0.926681i 0.886180 + 0.463341i \(0.153349\pi\)
−0.886180 + 0.463341i \(0.846651\pi\)
\(998\) 6.68270i 0.211537i
\(999\) 0.638990i 0.0202167i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.g.1689.16 18
5.4 even 2 1690.2.c.h.1689.3 18
13.5 odd 4 1690.2.b.f.339.16 yes 18
13.8 odd 4 1690.2.b.g.339.7 yes 18
13.12 even 2 1690.2.c.h.1689.16 18
65.8 even 4 8450.2.a.ct.1.3 9
65.18 even 4 8450.2.a.cx.1.3 9
65.34 odd 4 1690.2.b.g.339.12 yes 18
65.44 odd 4 1690.2.b.f.339.3 18
65.47 even 4 8450.2.a.da.1.7 9
65.57 even 4 8450.2.a.cw.1.7 9
65.64 even 2 inner 1690.2.c.g.1689.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.3 18 65.44 odd 4
1690.2.b.f.339.16 yes 18 13.5 odd 4
1690.2.b.g.339.7 yes 18 13.8 odd 4
1690.2.b.g.339.12 yes 18 65.34 odd 4
1690.2.c.g.1689.3 18 65.64 even 2 inner
1690.2.c.g.1689.16 18 1.1 even 1 trivial
1690.2.c.h.1689.3 18 5.4 even 2
1690.2.c.h.1689.16 18 13.12 even 2
8450.2.a.ct.1.3 9 65.8 even 4
8450.2.a.cw.1.7 9 65.57 even 4
8450.2.a.cx.1.3 9 65.18 even 4
8450.2.a.da.1.7 9 65.47 even 4