Properties

Label 8450.2.a.cx.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,-7,9,0,-7,1,9,8,0,-4,-7,0,1,0,9,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.430845\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.55203 q^{3} +1.00000 q^{4} -2.55203 q^{6} +1.86919 q^{7} +1.00000 q^{8} +3.51288 q^{9} +4.42801 q^{11} -2.55203 q^{12} +1.86919 q^{14} +1.00000 q^{16} -4.16688 q^{17} +3.51288 q^{18} +4.52055 q^{19} -4.77024 q^{21} +4.42801 q^{22} -7.56163 q^{23} -2.55203 q^{24} -1.30889 q^{27} +1.86919 q^{28} +3.22160 q^{29} -8.51124 q^{31} +1.00000 q^{32} -11.3004 q^{33} -4.16688 q^{34} +3.51288 q^{36} -0.488194 q^{37} +4.52055 q^{38} -10.9095 q^{41} -4.77024 q^{42} -4.38872 q^{43} +4.42801 q^{44} -7.56163 q^{46} -12.5176 q^{47} -2.55203 q^{48} -3.50612 q^{49} +10.6340 q^{51} +0.191394 q^{53} -1.30889 q^{54} +1.86919 q^{56} -11.5366 q^{57} +3.22160 q^{58} -11.2785 q^{59} +6.28685 q^{61} -8.51124 q^{62} +6.56625 q^{63} +1.00000 q^{64} -11.3004 q^{66} +5.69785 q^{67} -4.16688 q^{68} +19.2975 q^{69} +10.1438 q^{71} +3.51288 q^{72} -4.10663 q^{73} -0.488194 q^{74} +4.52055 q^{76} +8.27681 q^{77} -2.33064 q^{79} -7.19832 q^{81} -10.9095 q^{82} +2.49654 q^{83} -4.77024 q^{84} -4.38872 q^{86} -8.22163 q^{87} +4.42801 q^{88} +11.9415 q^{89} -7.56163 q^{92} +21.7210 q^{93} -12.5176 q^{94} -2.55203 q^{96} -1.91384 q^{97} -3.50612 q^{98} +15.5551 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} - 7 q^{3} + 9 q^{4} - 7 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} - 4 q^{11} - 7 q^{12} + q^{14} + 9 q^{16} - 12 q^{17} + 8 q^{18} - 6 q^{19} - 8 q^{21} - 4 q^{22} - 11 q^{23} - 7 q^{24} - 34 q^{27}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.55203 −1.47342 −0.736709 0.676210i \(-0.763621\pi\)
−0.736709 + 0.676210i \(0.763621\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.55203 −1.04186
\(7\) 1.86919 0.706488 0.353244 0.935531i \(-0.385078\pi\)
0.353244 + 0.935531i \(0.385078\pi\)
\(8\) 1.00000 0.353553
\(9\) 3.51288 1.17096
\(10\) 0 0
\(11\) 4.42801 1.33510 0.667548 0.744567i \(-0.267344\pi\)
0.667548 + 0.744567i \(0.267344\pi\)
\(12\) −2.55203 −0.736709
\(13\) 0 0
\(14\) 1.86919 0.499563
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.16688 −1.01062 −0.505308 0.862939i \(-0.668621\pi\)
−0.505308 + 0.862939i \(0.668621\pi\)
\(18\) 3.51288 0.827994
\(19\) 4.52055 1.03709 0.518543 0.855052i \(-0.326475\pi\)
0.518543 + 0.855052i \(0.326475\pi\)
\(20\) 0 0
\(21\) −4.77024 −1.04095
\(22\) 4.42801 0.944056
\(23\) −7.56163 −1.57671 −0.788354 0.615221i \(-0.789067\pi\)
−0.788354 + 0.615221i \(0.789067\pi\)
\(24\) −2.55203 −0.520932
\(25\) 0 0
\(26\) 0 0
\(27\) −1.30889 −0.251895
\(28\) 1.86919 0.353244
\(29\) 3.22160 0.598236 0.299118 0.954216i \(-0.403308\pi\)
0.299118 + 0.954216i \(0.403308\pi\)
\(30\) 0 0
\(31\) −8.51124 −1.52866 −0.764332 0.644823i \(-0.776931\pi\)
−0.764332 + 0.644823i \(0.776931\pi\)
\(32\) 1.00000 0.176777
\(33\) −11.3004 −1.96715
\(34\) −4.16688 −0.714614
\(35\) 0 0
\(36\) 3.51288 0.585480
\(37\) −0.488194 −0.0802585 −0.0401293 0.999194i \(-0.512777\pi\)
−0.0401293 + 0.999194i \(0.512777\pi\)
\(38\) 4.52055 0.733330
\(39\) 0 0
\(40\) 0 0
\(41\) −10.9095 −1.70378 −0.851888 0.523724i \(-0.824542\pi\)
−0.851888 + 0.523724i \(0.824542\pi\)
\(42\) −4.77024 −0.736065
\(43\) −4.38872 −0.669274 −0.334637 0.942347i \(-0.608614\pi\)
−0.334637 + 0.942347i \(0.608614\pi\)
\(44\) 4.42801 0.667548
\(45\) 0 0
\(46\) −7.56163 −1.11490
\(47\) −12.5176 −1.82587 −0.912937 0.408101i \(-0.866191\pi\)
−0.912937 + 0.408101i \(0.866191\pi\)
\(48\) −2.55203 −0.368354
\(49\) −3.50612 −0.500874
\(50\) 0 0
\(51\) 10.6340 1.48906
\(52\) 0 0
\(53\) 0.191394 0.0262900 0.0131450 0.999914i \(-0.495816\pi\)
0.0131450 + 0.999914i \(0.495816\pi\)
\(54\) −1.30889 −0.178117
\(55\) 0 0
\(56\) 1.86919 0.249781
\(57\) −11.5366 −1.52806
\(58\) 3.22160 0.423016
\(59\) −11.2785 −1.46833 −0.734166 0.678970i \(-0.762427\pi\)
−0.734166 + 0.678970i \(0.762427\pi\)
\(60\) 0 0
\(61\) 6.28685 0.804949 0.402474 0.915431i \(-0.368150\pi\)
0.402474 + 0.915431i \(0.368150\pi\)
\(62\) −8.51124 −1.08093
\(63\) 6.56625 0.827270
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −11.3004 −1.39099
\(67\) 5.69785 0.696103 0.348051 0.937475i \(-0.386843\pi\)
0.348051 + 0.937475i \(0.386843\pi\)
\(68\) −4.16688 −0.505308
\(69\) 19.2975 2.32315
\(70\) 0 0
\(71\) 10.1438 1.20384 0.601922 0.798555i \(-0.294402\pi\)
0.601922 + 0.798555i \(0.294402\pi\)
\(72\) 3.51288 0.413997
\(73\) −4.10663 −0.480645 −0.240323 0.970693i \(-0.577253\pi\)
−0.240323 + 0.970693i \(0.577253\pi\)
\(74\) −0.488194 −0.0567514
\(75\) 0 0
\(76\) 4.52055 0.518543
\(77\) 8.27681 0.943230
\(78\) 0 0
\(79\) −2.33064 −0.262217 −0.131108 0.991368i \(-0.541854\pi\)
−0.131108 + 0.991368i \(0.541854\pi\)
\(80\) 0 0
\(81\) −7.19832 −0.799813
\(82\) −10.9095 −1.20475
\(83\) 2.49654 0.274031 0.137016 0.990569i \(-0.456249\pi\)
0.137016 + 0.990569i \(0.456249\pi\)
\(84\) −4.77024 −0.520476
\(85\) 0 0
\(86\) −4.38872 −0.473248
\(87\) −8.22163 −0.881451
\(88\) 4.42801 0.472028
\(89\) 11.9415 1.26579 0.632896 0.774237i \(-0.281866\pi\)
0.632896 + 0.774237i \(0.281866\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.56163 −0.788354
\(93\) 21.7210 2.25236
\(94\) −12.5176 −1.29109
\(95\) 0 0
\(96\) −2.55203 −0.260466
\(97\) −1.91384 −0.194322 −0.0971608 0.995269i \(-0.530976\pi\)
−0.0971608 + 0.995269i \(0.530976\pi\)
\(98\) −3.50612 −0.354171
\(99\) 15.5551 1.56334
\(100\) 0 0
\(101\) 16.3092 1.62282 0.811411 0.584476i \(-0.198700\pi\)
0.811411 + 0.584476i \(0.198700\pi\)
\(102\) 10.6340 1.05292
\(103\) −14.5800 −1.43661 −0.718305 0.695728i \(-0.755082\pi\)
−0.718305 + 0.695728i \(0.755082\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.191394 0.0185898
\(107\) 11.4218 1.10418 0.552091 0.833784i \(-0.313830\pi\)
0.552091 + 0.833784i \(0.313830\pi\)
\(108\) −1.30889 −0.125948
\(109\) −10.3606 −0.992363 −0.496181 0.868219i \(-0.665265\pi\)
−0.496181 + 0.868219i \(0.665265\pi\)
\(110\) 0 0
\(111\) 1.24589 0.118254
\(112\) 1.86919 0.176622
\(113\) 0.559115 0.0525971 0.0262985 0.999654i \(-0.491628\pi\)
0.0262985 + 0.999654i \(0.491628\pi\)
\(114\) −11.5366 −1.08050
\(115\) 0 0
\(116\) 3.22160 0.299118
\(117\) 0 0
\(118\) −11.2785 −1.03827
\(119\) −7.78870 −0.713989
\(120\) 0 0
\(121\) 8.60730 0.782482
\(122\) 6.28685 0.569185
\(123\) 27.8414 2.51037
\(124\) −8.51124 −0.764332
\(125\) 0 0
\(126\) 6.56625 0.584968
\(127\) 1.52200 0.135055 0.0675277 0.997717i \(-0.478489\pi\)
0.0675277 + 0.997717i \(0.478489\pi\)
\(128\) 1.00000 0.0883883
\(129\) 11.2002 0.986120
\(130\) 0 0
\(131\) 7.16465 0.625979 0.312989 0.949757i \(-0.398670\pi\)
0.312989 + 0.949757i \(0.398670\pi\)
\(132\) −11.3004 −0.983577
\(133\) 8.44978 0.732689
\(134\) 5.69785 0.492219
\(135\) 0 0
\(136\) −4.16688 −0.357307
\(137\) −16.0494 −1.37119 −0.685596 0.727983i \(-0.740458\pi\)
−0.685596 + 0.727983i \(0.740458\pi\)
\(138\) 19.2975 1.64272
\(139\) −17.7302 −1.50386 −0.751930 0.659243i \(-0.770877\pi\)
−0.751930 + 0.659243i \(0.770877\pi\)
\(140\) 0 0
\(141\) 31.9452 2.69027
\(142\) 10.1438 0.851246
\(143\) 0 0
\(144\) 3.51288 0.292740
\(145\) 0 0
\(146\) −4.10663 −0.339867
\(147\) 8.94773 0.737997
\(148\) −0.488194 −0.0401293
\(149\) −9.94873 −0.815032 −0.407516 0.913198i \(-0.633605\pi\)
−0.407516 + 0.913198i \(0.633605\pi\)
\(150\) 0 0
\(151\) −11.9580 −0.973130 −0.486565 0.873644i \(-0.661750\pi\)
−0.486565 + 0.873644i \(0.661750\pi\)
\(152\) 4.52055 0.366665
\(153\) −14.6377 −1.18339
\(154\) 8.27681 0.666964
\(155\) 0 0
\(156\) 0 0
\(157\) −6.72590 −0.536785 −0.268392 0.963310i \(-0.586492\pi\)
−0.268392 + 0.963310i \(0.586492\pi\)
\(158\) −2.33064 −0.185415
\(159\) −0.488443 −0.0387361
\(160\) 0 0
\(161\) −14.1341 −1.11393
\(162\) −7.19832 −0.565553
\(163\) −0.00838925 −0.000657097 0 −0.000328549 1.00000i \(-0.500105\pi\)
−0.000328549 1.00000i \(0.500105\pi\)
\(164\) −10.9095 −0.851888
\(165\) 0 0
\(166\) 2.49654 0.193769
\(167\) −8.77138 −0.678749 −0.339375 0.940651i \(-0.610215\pi\)
−0.339375 + 0.940651i \(0.610215\pi\)
\(168\) −4.77024 −0.368032
\(169\) 0 0
\(170\) 0 0
\(171\) 15.8801 1.21439
\(172\) −4.38872 −0.334637
\(173\) 5.17428 0.393393 0.196697 0.980464i \(-0.436979\pi\)
0.196697 + 0.980464i \(0.436979\pi\)
\(174\) −8.22163 −0.623280
\(175\) 0 0
\(176\) 4.42801 0.333774
\(177\) 28.7831 2.16347
\(178\) 11.9415 0.895050
\(179\) −7.82042 −0.584526 −0.292263 0.956338i \(-0.594408\pi\)
−0.292263 + 0.956338i \(0.594408\pi\)
\(180\) 0 0
\(181\) −12.2270 −0.908823 −0.454411 0.890792i \(-0.650150\pi\)
−0.454411 + 0.890792i \(0.650150\pi\)
\(182\) 0 0
\(183\) −16.0443 −1.18603
\(184\) −7.56163 −0.557451
\(185\) 0 0
\(186\) 21.7210 1.59266
\(187\) −18.4510 −1.34927
\(188\) −12.5176 −0.912937
\(189\) −2.44656 −0.177961
\(190\) 0 0
\(191\) 18.1313 1.31194 0.655968 0.754789i \(-0.272261\pi\)
0.655968 + 0.754789i \(0.272261\pi\)
\(192\) −2.55203 −0.184177
\(193\) 6.34605 0.456799 0.228399 0.973568i \(-0.426651\pi\)
0.228399 + 0.973568i \(0.426651\pi\)
\(194\) −1.91384 −0.137406
\(195\) 0 0
\(196\) −3.50612 −0.250437
\(197\) 2.19339 0.156273 0.0781364 0.996943i \(-0.475103\pi\)
0.0781364 + 0.996943i \(0.475103\pi\)
\(198\) 15.5551 1.10545
\(199\) −4.80668 −0.340737 −0.170368 0.985380i \(-0.554496\pi\)
−0.170368 + 0.985380i \(0.554496\pi\)
\(200\) 0 0
\(201\) −14.5411 −1.02565
\(202\) 16.3092 1.14751
\(203\) 6.02179 0.422646
\(204\) 10.6340 0.744530
\(205\) 0 0
\(206\) −14.5800 −1.01584
\(207\) −26.5631 −1.84626
\(208\) 0 0
\(209\) 20.0171 1.38461
\(210\) 0 0
\(211\) −1.98463 −0.136628 −0.0683139 0.997664i \(-0.521762\pi\)
−0.0683139 + 0.997664i \(0.521762\pi\)
\(212\) 0.191394 0.0131450
\(213\) −25.8872 −1.77376
\(214\) 11.4218 0.780775
\(215\) 0 0
\(216\) −1.30889 −0.0890584
\(217\) −15.9092 −1.07998
\(218\) −10.3606 −0.701706
\(219\) 10.4803 0.708191
\(220\) 0 0
\(221\) 0 0
\(222\) 1.24589 0.0836185
\(223\) −6.23337 −0.417417 −0.208709 0.977978i \(-0.566926\pi\)
−0.208709 + 0.977978i \(0.566926\pi\)
\(224\) 1.86919 0.124891
\(225\) 0 0
\(226\) 0.559115 0.0371917
\(227\) 13.3667 0.887180 0.443590 0.896230i \(-0.353705\pi\)
0.443590 + 0.896230i \(0.353705\pi\)
\(228\) −11.5366 −0.764030
\(229\) −5.10916 −0.337623 −0.168811 0.985648i \(-0.553993\pi\)
−0.168811 + 0.985648i \(0.553993\pi\)
\(230\) 0 0
\(231\) −21.1227 −1.38977
\(232\) 3.22160 0.211508
\(233\) −25.7364 −1.68605 −0.843025 0.537874i \(-0.819228\pi\)
−0.843025 + 0.537874i \(0.819228\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11.2785 −0.734166
\(237\) 5.94786 0.386355
\(238\) −7.78870 −0.504866
\(239\) 9.42688 0.609774 0.304887 0.952389i \(-0.401381\pi\)
0.304887 + 0.952389i \(0.401381\pi\)
\(240\) 0 0
\(241\) −8.55884 −0.551324 −0.275662 0.961255i \(-0.588897\pi\)
−0.275662 + 0.961255i \(0.588897\pi\)
\(242\) 8.60730 0.553298
\(243\) 22.2970 1.43035
\(244\) 6.28685 0.402474
\(245\) 0 0
\(246\) 27.8414 1.77510
\(247\) 0 0
\(248\) −8.51124 −0.540464
\(249\) −6.37126 −0.403762
\(250\) 0 0
\(251\) −2.91331 −0.183887 −0.0919433 0.995764i \(-0.529308\pi\)
−0.0919433 + 0.995764i \(0.529308\pi\)
\(252\) 6.56625 0.413635
\(253\) −33.4830 −2.10506
\(254\) 1.52200 0.0954986
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 28.3335 1.76740 0.883698 0.468057i \(-0.155046\pi\)
0.883698 + 0.468057i \(0.155046\pi\)
\(258\) 11.2002 0.697292
\(259\) −0.912528 −0.0567017
\(260\) 0 0
\(261\) 11.3171 0.700510
\(262\) 7.16465 0.442634
\(263\) 6.57342 0.405335 0.202667 0.979248i \(-0.435039\pi\)
0.202667 + 0.979248i \(0.435039\pi\)
\(264\) −11.3004 −0.695494
\(265\) 0 0
\(266\) 8.44978 0.518089
\(267\) −30.4750 −1.86504
\(268\) 5.69785 0.348051
\(269\) 13.1504 0.801797 0.400898 0.916123i \(-0.368698\pi\)
0.400898 + 0.916123i \(0.368698\pi\)
\(270\) 0 0
\(271\) 22.3779 1.35936 0.679682 0.733507i \(-0.262118\pi\)
0.679682 + 0.733507i \(0.262118\pi\)
\(272\) −4.16688 −0.252654
\(273\) 0 0
\(274\) −16.0494 −0.969579
\(275\) 0 0
\(276\) 19.2975 1.16158
\(277\) −11.0451 −0.663634 −0.331817 0.943344i \(-0.607662\pi\)
−0.331817 + 0.943344i \(0.607662\pi\)
\(278\) −17.7302 −1.06339
\(279\) −29.8990 −1.79000
\(280\) 0 0
\(281\) 20.1064 1.19945 0.599724 0.800207i \(-0.295277\pi\)
0.599724 + 0.800207i \(0.295277\pi\)
\(282\) 31.9452 1.90231
\(283\) 20.2670 1.20475 0.602373 0.798215i \(-0.294222\pi\)
0.602373 + 0.798215i \(0.294222\pi\)
\(284\) 10.1438 0.601922
\(285\) 0 0
\(286\) 0 0
\(287\) −20.3919 −1.20370
\(288\) 3.51288 0.206998
\(289\) 0.362874 0.0213455
\(290\) 0 0
\(291\) 4.88420 0.286317
\(292\) −4.10663 −0.240323
\(293\) −29.8007 −1.74097 −0.870487 0.492191i \(-0.836196\pi\)
−0.870487 + 0.492191i \(0.836196\pi\)
\(294\) 8.94773 0.521842
\(295\) 0 0
\(296\) −0.488194 −0.0283757
\(297\) −5.79577 −0.336304
\(298\) −9.94873 −0.576315
\(299\) 0 0
\(300\) 0 0
\(301\) −8.20337 −0.472834
\(302\) −11.9580 −0.688107
\(303\) −41.6215 −2.39109
\(304\) 4.52055 0.259271
\(305\) 0 0
\(306\) −14.6377 −0.836784
\(307\) −9.13426 −0.521320 −0.260660 0.965431i \(-0.583940\pi\)
−0.260660 + 0.965431i \(0.583940\pi\)
\(308\) 8.27681 0.471615
\(309\) 37.2087 2.11673
\(310\) 0 0
\(311\) −5.34622 −0.303157 −0.151578 0.988445i \(-0.548436\pi\)
−0.151578 + 0.988445i \(0.548436\pi\)
\(312\) 0 0
\(313\) −1.32226 −0.0747385 −0.0373692 0.999302i \(-0.511898\pi\)
−0.0373692 + 0.999302i \(0.511898\pi\)
\(314\) −6.72590 −0.379564
\(315\) 0 0
\(316\) −2.33064 −0.131108
\(317\) 3.84953 0.216211 0.108106 0.994139i \(-0.465522\pi\)
0.108106 + 0.994139i \(0.465522\pi\)
\(318\) −0.488443 −0.0273905
\(319\) 14.2653 0.798702
\(320\) 0 0
\(321\) −29.1487 −1.62692
\(322\) −14.1341 −0.787665
\(323\) −18.8366 −1.04810
\(324\) −7.19832 −0.399906
\(325\) 0 0
\(326\) −0.00838925 −0.000464638 0
\(327\) 26.4405 1.46216
\(328\) −10.9095 −0.602376
\(329\) −23.3977 −1.28996
\(330\) 0 0
\(331\) 4.96398 0.272845 0.136423 0.990651i \(-0.456439\pi\)
0.136423 + 0.990651i \(0.456439\pi\)
\(332\) 2.49654 0.137016
\(333\) −1.71497 −0.0939795
\(334\) −8.77138 −0.479948
\(335\) 0 0
\(336\) −4.77024 −0.260238
\(337\) −11.2699 −0.613911 −0.306956 0.951724i \(-0.599310\pi\)
−0.306956 + 0.951724i \(0.599310\pi\)
\(338\) 0 0
\(339\) −1.42688 −0.0774975
\(340\) 0 0
\(341\) −37.6879 −2.04091
\(342\) 15.8801 0.858700
\(343\) −19.6380 −1.06035
\(344\) −4.38872 −0.236624
\(345\) 0 0
\(346\) 5.17428 0.278171
\(347\) 15.6806 0.841781 0.420890 0.907112i \(-0.361718\pi\)
0.420890 + 0.907112i \(0.361718\pi\)
\(348\) −8.22163 −0.440725
\(349\) −0.557452 −0.0298397 −0.0149198 0.999889i \(-0.504749\pi\)
−0.0149198 + 0.999889i \(0.504749\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.42801 0.236014
\(353\) −24.1725 −1.28657 −0.643285 0.765627i \(-0.722429\pi\)
−0.643285 + 0.765627i \(0.722429\pi\)
\(354\) 28.7831 1.52980
\(355\) 0 0
\(356\) 11.9415 0.632896
\(357\) 19.8770 1.05200
\(358\) −7.82042 −0.413322
\(359\) 0.910208 0.0480389 0.0240195 0.999711i \(-0.492354\pi\)
0.0240195 + 0.999711i \(0.492354\pi\)
\(360\) 0 0
\(361\) 1.43537 0.0755457
\(362\) −12.2270 −0.642635
\(363\) −21.9661 −1.15292
\(364\) 0 0
\(365\) 0 0
\(366\) −16.0443 −0.838647
\(367\) −4.41148 −0.230277 −0.115139 0.993349i \(-0.536731\pi\)
−0.115139 + 0.993349i \(0.536731\pi\)
\(368\) −7.56163 −0.394177
\(369\) −38.3237 −1.99505
\(370\) 0 0
\(371\) 0.357752 0.0185735
\(372\) 21.7210 1.12618
\(373\) −7.59431 −0.393219 −0.196609 0.980482i \(-0.562993\pi\)
−0.196609 + 0.980482i \(0.562993\pi\)
\(374\) −18.4510 −0.954078
\(375\) 0 0
\(376\) −12.5176 −0.645544
\(377\) 0 0
\(378\) −2.44656 −0.125838
\(379\) 30.3412 1.55852 0.779262 0.626698i \(-0.215594\pi\)
0.779262 + 0.626698i \(0.215594\pi\)
\(380\) 0 0
\(381\) −3.88419 −0.198993
\(382\) 18.1313 0.927679
\(383\) 7.99851 0.408705 0.204352 0.978897i \(-0.434491\pi\)
0.204352 + 0.978897i \(0.434491\pi\)
\(384\) −2.55203 −0.130233
\(385\) 0 0
\(386\) 6.34605 0.323006
\(387\) −15.4170 −0.783693
\(388\) −1.91384 −0.0971608
\(389\) 22.4951 1.14055 0.570273 0.821455i \(-0.306837\pi\)
0.570273 + 0.821455i \(0.306837\pi\)
\(390\) 0 0
\(391\) 31.5084 1.59345
\(392\) −3.50612 −0.177086
\(393\) −18.2844 −0.922328
\(394\) 2.19339 0.110502
\(395\) 0 0
\(396\) 15.5551 0.781672
\(397\) −29.6953 −1.49036 −0.745181 0.666862i \(-0.767637\pi\)
−0.745181 + 0.666862i \(0.767637\pi\)
\(398\) −4.80668 −0.240937
\(399\) −21.5641 −1.07956
\(400\) 0 0
\(401\) −26.3944 −1.31807 −0.659037 0.752110i \(-0.729036\pi\)
−0.659037 + 0.752110i \(0.729036\pi\)
\(402\) −14.5411 −0.725244
\(403\) 0 0
\(404\) 16.3092 0.811411
\(405\) 0 0
\(406\) 6.02179 0.298856
\(407\) −2.16173 −0.107153
\(408\) 10.6340 0.526462
\(409\) 9.89433 0.489243 0.244622 0.969619i \(-0.421336\pi\)
0.244622 + 0.969619i \(0.421336\pi\)
\(410\) 0 0
\(411\) 40.9586 2.02034
\(412\) −14.5800 −0.718305
\(413\) −21.0817 −1.03736
\(414\) −26.5631 −1.30550
\(415\) 0 0
\(416\) 0 0
\(417\) 45.2482 2.21581
\(418\) 20.0171 0.979066
\(419\) −17.9386 −0.876359 −0.438179 0.898888i \(-0.644377\pi\)
−0.438179 + 0.898888i \(0.644377\pi\)
\(420\) 0 0
\(421\) 15.5977 0.760184 0.380092 0.924949i \(-0.375892\pi\)
0.380092 + 0.924949i \(0.375892\pi\)
\(422\) −1.98463 −0.0966105
\(423\) −43.9727 −2.13802
\(424\) 0.191394 0.00929490
\(425\) 0 0
\(426\) −25.8872 −1.25424
\(427\) 11.7513 0.568687
\(428\) 11.4218 0.552091
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0631 1.44809 0.724045 0.689753i \(-0.242281\pi\)
0.724045 + 0.689753i \(0.242281\pi\)
\(432\) −1.30889 −0.0629738
\(433\) −22.5878 −1.08550 −0.542750 0.839894i \(-0.682617\pi\)
−0.542750 + 0.839894i \(0.682617\pi\)
\(434\) −15.9092 −0.763664
\(435\) 0 0
\(436\) −10.3606 −0.496181
\(437\) −34.1827 −1.63518
\(438\) 10.4803 0.500767
\(439\) −34.8184 −1.66179 −0.830895 0.556429i \(-0.812171\pi\)
−0.830895 + 0.556429i \(0.812171\pi\)
\(440\) 0 0
\(441\) −12.3166 −0.586503
\(442\) 0 0
\(443\) −15.5022 −0.736533 −0.368267 0.929720i \(-0.620049\pi\)
−0.368267 + 0.929720i \(0.620049\pi\)
\(444\) 1.24589 0.0591272
\(445\) 0 0
\(446\) −6.23337 −0.295159
\(447\) 25.3895 1.20088
\(448\) 1.86919 0.0883111
\(449\) −0.894606 −0.0422191 −0.0211095 0.999777i \(-0.506720\pi\)
−0.0211095 + 0.999777i \(0.506720\pi\)
\(450\) 0 0
\(451\) −48.3074 −2.27471
\(452\) 0.559115 0.0262985
\(453\) 30.5173 1.43383
\(454\) 13.3667 0.627331
\(455\) 0 0
\(456\) −11.5366 −0.540251
\(457\) −10.7958 −0.505007 −0.252504 0.967596i \(-0.581254\pi\)
−0.252504 + 0.967596i \(0.581254\pi\)
\(458\) −5.10916 −0.238735
\(459\) 5.45397 0.254570
\(460\) 0 0
\(461\) −10.8827 −0.506859 −0.253429 0.967354i \(-0.581559\pi\)
−0.253429 + 0.967354i \(0.581559\pi\)
\(462\) −21.1227 −0.982717
\(463\) −3.15999 −0.146857 −0.0734287 0.997300i \(-0.523394\pi\)
−0.0734287 + 0.997300i \(0.523394\pi\)
\(464\) 3.22160 0.149559
\(465\) 0 0
\(466\) −25.7364 −1.19222
\(467\) −23.0475 −1.06651 −0.533256 0.845954i \(-0.679032\pi\)
−0.533256 + 0.845954i \(0.679032\pi\)
\(468\) 0 0
\(469\) 10.6504 0.491789
\(470\) 0 0
\(471\) 17.1647 0.790908
\(472\) −11.2785 −0.519134
\(473\) −19.4333 −0.893545
\(474\) 5.94786 0.273194
\(475\) 0 0
\(476\) −7.78870 −0.356994
\(477\) 0.672343 0.0307845
\(478\) 9.42688 0.431175
\(479\) −9.16688 −0.418845 −0.209423 0.977825i \(-0.567158\pi\)
−0.209423 + 0.977825i \(0.567158\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −8.55884 −0.389845
\(483\) 36.0708 1.64128
\(484\) 8.60730 0.391241
\(485\) 0 0
\(486\) 22.2970 1.01141
\(487\) −24.1155 −1.09278 −0.546389 0.837531i \(-0.683998\pi\)
−0.546389 + 0.837531i \(0.683998\pi\)
\(488\) 6.28685 0.284592
\(489\) 0.0214097 0.000968178 0
\(490\) 0 0
\(491\) 5.68528 0.256573 0.128286 0.991737i \(-0.459052\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(492\) 27.8414 1.25519
\(493\) −13.4240 −0.604587
\(494\) 0 0
\(495\) 0 0
\(496\) −8.51124 −0.382166
\(497\) 18.9607 0.850501
\(498\) −6.37126 −0.285503
\(499\) 6.68270 0.299159 0.149579 0.988750i \(-0.452208\pi\)
0.149579 + 0.988750i \(0.452208\pi\)
\(500\) 0 0
\(501\) 22.3849 1.00008
\(502\) −2.91331 −0.130027
\(503\) 17.4365 0.777455 0.388727 0.921353i \(-0.372915\pi\)
0.388727 + 0.921353i \(0.372915\pi\)
\(504\) 6.56625 0.292484
\(505\) 0 0
\(506\) −33.4830 −1.48850
\(507\) 0 0
\(508\) 1.52200 0.0675277
\(509\) −28.6424 −1.26955 −0.634776 0.772696i \(-0.718908\pi\)
−0.634776 + 0.772696i \(0.718908\pi\)
\(510\) 0 0
\(511\) −7.67609 −0.339570
\(512\) 1.00000 0.0441942
\(513\) −5.91689 −0.261237
\(514\) 28.3335 1.24974
\(515\) 0 0
\(516\) 11.2002 0.493060
\(517\) −55.4279 −2.43772
\(518\) −0.912528 −0.0400942
\(519\) −13.2049 −0.579632
\(520\) 0 0
\(521\) −24.2436 −1.06213 −0.531066 0.847331i \(-0.678208\pi\)
−0.531066 + 0.847331i \(0.678208\pi\)
\(522\) 11.3171 0.495335
\(523\) 7.25966 0.317443 0.158721 0.987323i \(-0.449263\pi\)
0.158721 + 0.987323i \(0.449263\pi\)
\(524\) 7.16465 0.312989
\(525\) 0 0
\(526\) 6.57342 0.286615
\(527\) 35.4653 1.54489
\(528\) −11.3004 −0.491789
\(529\) 34.1782 1.48601
\(530\) 0 0
\(531\) −39.6199 −1.71936
\(532\) 8.44978 0.366344
\(533\) 0 0
\(534\) −30.4750 −1.31878
\(535\) 0 0
\(536\) 5.69785 0.246109
\(537\) 19.9580 0.861251
\(538\) 13.1504 0.566956
\(539\) −15.5251 −0.668715
\(540\) 0 0
\(541\) −9.90908 −0.426025 −0.213012 0.977049i \(-0.568327\pi\)
−0.213012 + 0.977049i \(0.568327\pi\)
\(542\) 22.3779 0.961215
\(543\) 31.2036 1.33908
\(544\) −4.16688 −0.178653
\(545\) 0 0
\(546\) 0 0
\(547\) 15.7348 0.672769 0.336385 0.941725i \(-0.390796\pi\)
0.336385 + 0.941725i \(0.390796\pi\)
\(548\) −16.0494 −0.685596
\(549\) 22.0850 0.942563
\(550\) 0 0
\(551\) 14.5634 0.620421
\(552\) 19.2975 0.821358
\(553\) −4.35641 −0.185253
\(554\) −11.0451 −0.469260
\(555\) 0 0
\(556\) −17.7302 −0.751930
\(557\) 11.6684 0.494408 0.247204 0.968963i \(-0.420488\pi\)
0.247204 + 0.968963i \(0.420488\pi\)
\(558\) −29.8990 −1.26572
\(559\) 0 0
\(560\) 0 0
\(561\) 47.0876 1.98804
\(562\) 20.1064 0.848138
\(563\) −34.0262 −1.43403 −0.717017 0.697056i \(-0.754493\pi\)
−0.717017 + 0.697056i \(0.754493\pi\)
\(564\) 31.9452 1.34514
\(565\) 0 0
\(566\) 20.2670 0.851884
\(567\) −13.4550 −0.565059
\(568\) 10.1438 0.425623
\(569\) −44.3266 −1.85827 −0.929135 0.369741i \(-0.879446\pi\)
−0.929135 + 0.369741i \(0.879446\pi\)
\(570\) 0 0
\(571\) 15.3587 0.642740 0.321370 0.946954i \(-0.395857\pi\)
0.321370 + 0.946954i \(0.395857\pi\)
\(572\) 0 0
\(573\) −46.2717 −1.93303
\(574\) −20.3919 −0.851143
\(575\) 0 0
\(576\) 3.51288 0.146370
\(577\) −31.5537 −1.31360 −0.656799 0.754065i \(-0.728090\pi\)
−0.656799 + 0.754065i \(0.728090\pi\)
\(578\) 0.362874 0.0150936
\(579\) −16.1953 −0.673056
\(580\) 0 0
\(581\) 4.66652 0.193600
\(582\) 4.88420 0.202457
\(583\) 0.847494 0.0350996
\(584\) −4.10663 −0.169934
\(585\) 0 0
\(586\) −29.8007 −1.23106
\(587\) −22.9587 −0.947607 −0.473803 0.880631i \(-0.657119\pi\)
−0.473803 + 0.880631i \(0.657119\pi\)
\(588\) 8.94773 0.368998
\(589\) −38.4755 −1.58535
\(590\) 0 0
\(591\) −5.59761 −0.230255
\(592\) −0.488194 −0.0200646
\(593\) 27.6241 1.13439 0.567194 0.823584i \(-0.308029\pi\)
0.567194 + 0.823584i \(0.308029\pi\)
\(594\) −5.79577 −0.237803
\(595\) 0 0
\(596\) −9.94873 −0.407516
\(597\) 12.2668 0.502048
\(598\) 0 0
\(599\) −1.54774 −0.0632389 −0.0316194 0.999500i \(-0.510066\pi\)
−0.0316194 + 0.999500i \(0.510066\pi\)
\(600\) 0 0
\(601\) 25.3606 1.03448 0.517241 0.855840i \(-0.326959\pi\)
0.517241 + 0.855840i \(0.326959\pi\)
\(602\) −8.20337 −0.334344
\(603\) 20.0158 0.815108
\(604\) −11.9580 −0.486565
\(605\) 0 0
\(606\) −41.6215 −1.69076
\(607\) −19.1839 −0.778652 −0.389326 0.921100i \(-0.627292\pi\)
−0.389326 + 0.921100i \(0.627292\pi\)
\(608\) 4.52055 0.183332
\(609\) −15.3678 −0.622735
\(610\) 0 0
\(611\) 0 0
\(612\) −14.6377 −0.591696
\(613\) −3.32275 −0.134205 −0.0671024 0.997746i \(-0.521375\pi\)
−0.0671024 + 0.997746i \(0.521375\pi\)
\(614\) −9.13426 −0.368629
\(615\) 0 0
\(616\) 8.27681 0.333482
\(617\) 13.7220 0.552425 0.276213 0.961097i \(-0.410921\pi\)
0.276213 + 0.961097i \(0.410921\pi\)
\(618\) 37.2087 1.49675
\(619\) −40.9597 −1.64631 −0.823155 0.567817i \(-0.807788\pi\)
−0.823155 + 0.567817i \(0.807788\pi\)
\(620\) 0 0
\(621\) 9.89731 0.397166
\(622\) −5.34622 −0.214364
\(623\) 22.3209 0.894267
\(624\) 0 0
\(625\) 0 0
\(626\) −1.32226 −0.0528481
\(627\) −51.0842 −2.04011
\(628\) −6.72590 −0.268392
\(629\) 2.03424 0.0811106
\(630\) 0 0
\(631\) 14.9553 0.595361 0.297680 0.954666i \(-0.403787\pi\)
0.297680 + 0.954666i \(0.403787\pi\)
\(632\) −2.33064 −0.0927077
\(633\) 5.06485 0.201310
\(634\) 3.84953 0.152885
\(635\) 0 0
\(636\) −0.488443 −0.0193680
\(637\) 0 0
\(638\) 14.2653 0.564768
\(639\) 35.6338 1.40965
\(640\) 0 0
\(641\) −36.5876 −1.44512 −0.722562 0.691306i \(-0.757036\pi\)
−0.722562 + 0.691306i \(0.757036\pi\)
\(642\) −29.1487 −1.15041
\(643\) 43.3819 1.71082 0.855408 0.517954i \(-0.173306\pi\)
0.855408 + 0.517954i \(0.173306\pi\)
\(644\) −14.1341 −0.556963
\(645\) 0 0
\(646\) −18.8366 −0.741115
\(647\) 42.6622 1.67722 0.838611 0.544730i \(-0.183368\pi\)
0.838611 + 0.544730i \(0.183368\pi\)
\(648\) −7.19832 −0.282777
\(649\) −49.9413 −1.96037
\(650\) 0 0
\(651\) 40.6007 1.59127
\(652\) −0.00838925 −0.000328549 0
\(653\) 44.8543 1.75528 0.877642 0.479316i \(-0.159115\pi\)
0.877642 + 0.479316i \(0.159115\pi\)
\(654\) 26.4405 1.03391
\(655\) 0 0
\(656\) −10.9095 −0.425944
\(657\) −14.4261 −0.562816
\(658\) −23.3977 −0.912138
\(659\) −28.7835 −1.12125 −0.560624 0.828071i \(-0.689439\pi\)
−0.560624 + 0.828071i \(0.689439\pi\)
\(660\) 0 0
\(661\) −9.90351 −0.385202 −0.192601 0.981277i \(-0.561692\pi\)
−0.192601 + 0.981277i \(0.561692\pi\)
\(662\) 4.96398 0.192931
\(663\) 0 0
\(664\) 2.49654 0.0968846
\(665\) 0 0
\(666\) −1.71497 −0.0664536
\(667\) −24.3605 −0.943243
\(668\) −8.77138 −0.339375
\(669\) 15.9078 0.615030
\(670\) 0 0
\(671\) 27.8383 1.07468
\(672\) −4.77024 −0.184016
\(673\) −46.6987 −1.80010 −0.900051 0.435784i \(-0.856471\pi\)
−0.900051 + 0.435784i \(0.856471\pi\)
\(674\) −11.2699 −0.434101
\(675\) 0 0
\(676\) 0 0
\(677\) −15.1897 −0.583787 −0.291893 0.956451i \(-0.594285\pi\)
−0.291893 + 0.956451i \(0.594285\pi\)
\(678\) −1.42688 −0.0547990
\(679\) −3.57735 −0.137286
\(680\) 0 0
\(681\) −34.1123 −1.30719
\(682\) −37.6879 −1.44314
\(683\) −5.91381 −0.226286 −0.113143 0.993579i \(-0.536092\pi\)
−0.113143 + 0.993579i \(0.536092\pi\)
\(684\) 15.8801 0.607193
\(685\) 0 0
\(686\) −19.6380 −0.749781
\(687\) 13.0387 0.497459
\(688\) −4.38872 −0.167318
\(689\) 0 0
\(690\) 0 0
\(691\) −23.5531 −0.896004 −0.448002 0.894033i \(-0.647864\pi\)
−0.448002 + 0.894033i \(0.647864\pi\)
\(692\) 5.17428 0.196697
\(693\) 29.0754 1.10448
\(694\) 15.6806 0.595229
\(695\) 0 0
\(696\) −8.22163 −0.311640
\(697\) 45.4585 1.72186
\(698\) −0.557452 −0.0210999
\(699\) 65.6803 2.48426
\(700\) 0 0
\(701\) −39.9205 −1.50778 −0.753888 0.657003i \(-0.771824\pi\)
−0.753888 + 0.657003i \(0.771824\pi\)
\(702\) 0 0
\(703\) −2.20690 −0.0832349
\(704\) 4.42801 0.166887
\(705\) 0 0
\(706\) −24.1725 −0.909742
\(707\) 30.4850 1.14650
\(708\) 28.7831 1.08173
\(709\) 8.96987 0.336870 0.168435 0.985713i \(-0.446129\pi\)
0.168435 + 0.985713i \(0.446129\pi\)
\(710\) 0 0
\(711\) −8.18724 −0.307046
\(712\) 11.9415 0.447525
\(713\) 64.3589 2.41026
\(714\) 19.8770 0.743879
\(715\) 0 0
\(716\) −7.82042 −0.292263
\(717\) −24.0577 −0.898452
\(718\) 0.910208 0.0339687
\(719\) 19.5515 0.729149 0.364575 0.931174i \(-0.381214\pi\)
0.364575 + 0.931174i \(0.381214\pi\)
\(720\) 0 0
\(721\) −27.2528 −1.01495
\(722\) 1.43537 0.0534189
\(723\) 21.8425 0.812330
\(724\) −12.2270 −0.454411
\(725\) 0 0
\(726\) −21.9661 −0.815240
\(727\) −21.2591 −0.788458 −0.394229 0.919012i \(-0.628988\pi\)
−0.394229 + 0.919012i \(0.628988\pi\)
\(728\) 0 0
\(729\) −35.3078 −1.30770
\(730\) 0 0
\(731\) 18.2873 0.676379
\(732\) −16.0443 −0.593013
\(733\) 51.7515 1.91149 0.955743 0.294203i \(-0.0950542\pi\)
0.955743 + 0.294203i \(0.0950542\pi\)
\(734\) −4.41148 −0.162831
\(735\) 0 0
\(736\) −7.56163 −0.278725
\(737\) 25.2301 0.929364
\(738\) −38.3237 −1.41072
\(739\) −2.48566 −0.0914364 −0.0457182 0.998954i \(-0.514558\pi\)
−0.0457182 + 0.998954i \(0.514558\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.357752 0.0131335
\(743\) 41.9532 1.53911 0.769557 0.638578i \(-0.220477\pi\)
0.769557 + 0.638578i \(0.220477\pi\)
\(744\) 21.7210 0.796330
\(745\) 0 0
\(746\) −7.59431 −0.278048
\(747\) 8.77005 0.320879
\(748\) −18.4510 −0.674635
\(749\) 21.3495 0.780092
\(750\) 0 0
\(751\) 4.26126 0.155496 0.0777478 0.996973i \(-0.475227\pi\)
0.0777478 + 0.996973i \(0.475227\pi\)
\(752\) −12.5176 −0.456468
\(753\) 7.43487 0.270942
\(754\) 0 0
\(755\) 0 0
\(756\) −2.44656 −0.0889806
\(757\) 32.1223 1.16750 0.583752 0.811932i \(-0.301584\pi\)
0.583752 + 0.811932i \(0.301584\pi\)
\(758\) 30.3412 1.10204
\(759\) 85.4498 3.10163
\(760\) 0 0
\(761\) 50.8769 1.84429 0.922143 0.386850i \(-0.126437\pi\)
0.922143 + 0.386850i \(0.126437\pi\)
\(762\) −3.88419 −0.140709
\(763\) −19.3659 −0.701093
\(764\) 18.1313 0.655968
\(765\) 0 0
\(766\) 7.99851 0.288998
\(767\) 0 0
\(768\) −2.55203 −0.0920886
\(769\) 10.8452 0.391089 0.195545 0.980695i \(-0.437353\pi\)
0.195545 + 0.980695i \(0.437353\pi\)
\(770\) 0 0
\(771\) −72.3081 −2.60411
\(772\) 6.34605 0.228399
\(773\) −17.0142 −0.611959 −0.305979 0.952038i \(-0.598984\pi\)
−0.305979 + 0.952038i \(0.598984\pi\)
\(774\) −15.4170 −0.554154
\(775\) 0 0
\(776\) −1.91384 −0.0687030
\(777\) 2.32880 0.0835453
\(778\) 22.4951 0.806488
\(779\) −49.3169 −1.76696
\(780\) 0 0
\(781\) 44.9167 1.60725
\(782\) 31.5084 1.12674
\(783\) −4.21670 −0.150693
\(784\) −3.50612 −0.125219
\(785\) 0 0
\(786\) −18.2844 −0.652184
\(787\) 27.0297 0.963505 0.481752 0.876307i \(-0.340000\pi\)
0.481752 + 0.876307i \(0.340000\pi\)
\(788\) 2.19339 0.0781364
\(789\) −16.7756 −0.597227
\(790\) 0 0
\(791\) 1.04509 0.0371592
\(792\) 15.5551 0.552726
\(793\) 0 0
\(794\) −29.6953 −1.05385
\(795\) 0 0
\(796\) −4.80668 −0.170368
\(797\) −15.1585 −0.536942 −0.268471 0.963288i \(-0.586518\pi\)
−0.268471 + 0.963288i \(0.586518\pi\)
\(798\) −21.5641 −0.763362
\(799\) 52.1591 1.84526
\(800\) 0 0
\(801\) 41.9489 1.48219
\(802\) −26.3944 −0.932019
\(803\) −18.1842 −0.641708
\(804\) −14.5411 −0.512825
\(805\) 0 0
\(806\) 0 0
\(807\) −33.5604 −1.18138
\(808\) 16.3092 0.573754
\(809\) −39.3369 −1.38301 −0.691506 0.722371i \(-0.743052\pi\)
−0.691506 + 0.722371i \(0.743052\pi\)
\(810\) 0 0
\(811\) 9.57933 0.336376 0.168188 0.985755i \(-0.446208\pi\)
0.168188 + 0.985755i \(0.446208\pi\)
\(812\) 6.02179 0.211323
\(813\) −57.1093 −2.00291
\(814\) −2.16173 −0.0757685
\(815\) 0 0
\(816\) 10.6340 0.372265
\(817\) −19.8394 −0.694094
\(818\) 9.89433 0.345947
\(819\) 0 0
\(820\) 0 0
\(821\) −7.82037 −0.272933 −0.136466 0.990645i \(-0.543575\pi\)
−0.136466 + 0.990645i \(0.543575\pi\)
\(822\) 40.9586 1.42859
\(823\) 34.1839 1.19158 0.595788 0.803142i \(-0.296840\pi\)
0.595788 + 0.803142i \(0.296840\pi\)
\(824\) −14.5800 −0.507919
\(825\) 0 0
\(826\) −21.0817 −0.733524
\(827\) 3.47145 0.120714 0.0603570 0.998177i \(-0.480776\pi\)
0.0603570 + 0.998177i \(0.480776\pi\)
\(828\) −26.5631 −0.923131
\(829\) 13.3557 0.463864 0.231932 0.972732i \(-0.425495\pi\)
0.231932 + 0.972732i \(0.425495\pi\)
\(830\) 0 0
\(831\) 28.1874 0.977811
\(832\) 0 0
\(833\) 14.6096 0.506192
\(834\) 45.2482 1.56682
\(835\) 0 0
\(836\) 20.0171 0.692304
\(837\) 11.1402 0.385063
\(838\) −17.9386 −0.619679
\(839\) 47.9304 1.65474 0.827370 0.561657i \(-0.189836\pi\)
0.827370 + 0.561657i \(0.189836\pi\)
\(840\) 0 0
\(841\) −18.6213 −0.642114
\(842\) 15.5977 0.537532
\(843\) −51.3123 −1.76729
\(844\) −1.98463 −0.0683139
\(845\) 0 0
\(846\) −43.9727 −1.51181
\(847\) 16.0887 0.552814
\(848\) 0.191394 0.00657249
\(849\) −51.7220 −1.77509
\(850\) 0 0
\(851\) 3.69154 0.126544
\(852\) −25.8872 −0.886882
\(853\) 36.4405 1.24770 0.623850 0.781544i \(-0.285568\pi\)
0.623850 + 0.781544i \(0.285568\pi\)
\(854\) 11.7513 0.402123
\(855\) 0 0
\(856\) 11.4218 0.390388
\(857\) 29.9745 1.02391 0.511954 0.859013i \(-0.328922\pi\)
0.511954 + 0.859013i \(0.328922\pi\)
\(858\) 0 0
\(859\) 34.8453 1.18891 0.594454 0.804130i \(-0.297368\pi\)
0.594454 + 0.804130i \(0.297368\pi\)
\(860\) 0 0
\(861\) 52.0409 1.77355
\(862\) 30.0631 1.02395
\(863\) −25.2753 −0.860381 −0.430190 0.902738i \(-0.641554\pi\)
−0.430190 + 0.902738i \(0.641554\pi\)
\(864\) −1.30889 −0.0445292
\(865\) 0 0
\(866\) −22.5878 −0.767565
\(867\) −0.926067 −0.0314509
\(868\) −15.9092 −0.539992
\(869\) −10.3201 −0.350085
\(870\) 0 0
\(871\) 0 0
\(872\) −10.3606 −0.350853
\(873\) −6.72311 −0.227543
\(874\) −34.1827 −1.15625
\(875\) 0 0
\(876\) 10.4803 0.354096
\(877\) −6.44566 −0.217654 −0.108827 0.994061i \(-0.534710\pi\)
−0.108827 + 0.994061i \(0.534710\pi\)
\(878\) −34.8184 −1.17506
\(879\) 76.0524 2.56518
\(880\) 0 0
\(881\) −12.5890 −0.424133 −0.212066 0.977255i \(-0.568019\pi\)
−0.212066 + 0.977255i \(0.568019\pi\)
\(882\) −12.3166 −0.414721
\(883\) −17.7501 −0.597339 −0.298669 0.954357i \(-0.596543\pi\)
−0.298669 + 0.954357i \(0.596543\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −15.5022 −0.520808
\(887\) −6.79925 −0.228296 −0.114148 0.993464i \(-0.536414\pi\)
−0.114148 + 0.993464i \(0.536414\pi\)
\(888\) 1.24589 0.0418092
\(889\) 2.84491 0.0954151
\(890\) 0 0
\(891\) −31.8742 −1.06783
\(892\) −6.23337 −0.208709
\(893\) −56.5862 −1.89359
\(894\) 25.3895 0.849152
\(895\) 0 0
\(896\) 1.86919 0.0624453
\(897\) 0 0
\(898\) −0.894606 −0.0298534
\(899\) −27.4198 −0.914501
\(900\) 0 0
\(901\) −0.797514 −0.0265691
\(902\) −48.3074 −1.60846
\(903\) 20.9353 0.696682
\(904\) 0.559115 0.0185959
\(905\) 0 0
\(906\) 30.5173 1.01387
\(907\) 10.4184 0.345937 0.172969 0.984927i \(-0.444664\pi\)
0.172969 + 0.984927i \(0.444664\pi\)
\(908\) 13.3667 0.443590
\(909\) 57.2921 1.90026
\(910\) 0 0
\(911\) −9.38030 −0.310783 −0.155392 0.987853i \(-0.549664\pi\)
−0.155392 + 0.987853i \(0.549664\pi\)
\(912\) −11.5366 −0.382015
\(913\) 11.0547 0.365858
\(914\) −10.7958 −0.357094
\(915\) 0 0
\(916\) −5.10916 −0.168811
\(917\) 13.3921 0.442247
\(918\) 5.45397 0.180008
\(919\) 39.0419 1.28787 0.643937 0.765078i \(-0.277300\pi\)
0.643937 + 0.765078i \(0.277300\pi\)
\(920\) 0 0
\(921\) 23.3109 0.768121
\(922\) −10.8827 −0.358403
\(923\) 0 0
\(924\) −21.1227 −0.694886
\(925\) 0 0
\(926\) −3.15999 −0.103844
\(927\) −51.2178 −1.68221
\(928\) 3.22160 0.105754
\(929\) 29.3209 0.961988 0.480994 0.876724i \(-0.340276\pi\)
0.480994 + 0.876724i \(0.340276\pi\)
\(930\) 0 0
\(931\) −15.8496 −0.519449
\(932\) −25.7364 −0.843025
\(933\) 13.6437 0.446676
\(934\) −23.0475 −0.754138
\(935\) 0 0
\(936\) 0 0
\(937\) −55.0322 −1.79782 −0.898911 0.438130i \(-0.855641\pi\)
−0.898911 + 0.438130i \(0.855641\pi\)
\(938\) 10.6504 0.347747
\(939\) 3.37445 0.110121
\(940\) 0 0
\(941\) −12.9833 −0.423243 −0.211621 0.977352i \(-0.567874\pi\)
−0.211621 + 0.977352i \(0.567874\pi\)
\(942\) 17.1647 0.559257
\(943\) 82.4935 2.68636
\(944\) −11.2785 −0.367083
\(945\) 0 0
\(946\) −19.4333 −0.631832
\(947\) 43.0090 1.39760 0.698802 0.715316i \(-0.253717\pi\)
0.698802 + 0.715316i \(0.253717\pi\)
\(948\) 5.94786 0.193178
\(949\) 0 0
\(950\) 0 0
\(951\) −9.82414 −0.318570
\(952\) −7.78870 −0.252433
\(953\) 26.9615 0.873369 0.436684 0.899615i \(-0.356153\pi\)
0.436684 + 0.899615i \(0.356153\pi\)
\(954\) 0.672343 0.0217679
\(955\) 0 0
\(956\) 9.42688 0.304887
\(957\) −36.4055 −1.17682
\(958\) −9.16688 −0.296168
\(959\) −29.9994 −0.968731
\(960\) 0 0
\(961\) 41.4412 1.33681
\(962\) 0 0
\(963\) 40.1232 1.29295
\(964\) −8.55884 −0.275662
\(965\) 0 0
\(966\) 36.0708 1.16056
\(967\) −3.03699 −0.0976630 −0.0488315 0.998807i \(-0.515550\pi\)
−0.0488315 + 0.998807i \(0.515550\pi\)
\(968\) 8.60730 0.276649
\(969\) 48.0716 1.54428
\(970\) 0 0
\(971\) 29.5149 0.947180 0.473590 0.880746i \(-0.342958\pi\)
0.473590 + 0.880746i \(0.342958\pi\)
\(972\) 22.2970 0.715177
\(973\) −33.1412 −1.06246
\(974\) −24.1155 −0.772711
\(975\) 0 0
\(976\) 6.28685 0.201237
\(977\) 38.3621 1.22731 0.613656 0.789574i \(-0.289698\pi\)
0.613656 + 0.789574i \(0.289698\pi\)
\(978\) 0.0214097 0.000684606 0
\(979\) 52.8769 1.68995
\(980\) 0 0
\(981\) −36.3954 −1.16202
\(982\) 5.68528 0.181424
\(983\) −30.0081 −0.957109 −0.478554 0.878058i \(-0.658839\pi\)
−0.478554 + 0.878058i \(0.658839\pi\)
\(984\) 27.8414 0.887551
\(985\) 0 0
\(986\) −13.4240 −0.427507
\(987\) 59.7118 1.90065
\(988\) 0 0
\(989\) 33.1859 1.05525
\(990\) 0 0
\(991\) −24.3851 −0.774618 −0.387309 0.921950i \(-0.626595\pi\)
−0.387309 + 0.921950i \(0.626595\pi\)
\(992\) −8.51124 −0.270232
\(993\) −12.6683 −0.402015
\(994\) 18.9607 0.601395
\(995\) 0 0
\(996\) −6.37126 −0.201881
\(997\) 29.2603 0.926681 0.463341 0.886180i \(-0.346651\pi\)
0.463341 + 0.886180i \(0.346651\pi\)
\(998\) 6.68270 0.211537
\(999\) 0.638990 0.0202167
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cx.1.3 9
5.2 odd 4 1690.2.b.f.339.16 yes 18
5.3 odd 4 1690.2.b.f.339.3 18
5.4 even 2 8450.2.a.cw.1.7 9
13.12 even 2 8450.2.a.ct.1.3 9
65.8 even 4 1690.2.c.h.1689.3 18
65.12 odd 4 1690.2.b.g.339.7 yes 18
65.18 even 4 1690.2.c.g.1689.3 18
65.38 odd 4 1690.2.b.g.339.12 yes 18
65.47 even 4 1690.2.c.g.1689.16 18
65.57 even 4 1690.2.c.h.1689.16 18
65.64 even 2 8450.2.a.da.1.7 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.3 18 5.3 odd 4
1690.2.b.f.339.16 yes 18 5.2 odd 4
1690.2.b.g.339.7 yes 18 65.12 odd 4
1690.2.b.g.339.12 yes 18 65.38 odd 4
1690.2.c.g.1689.3 18 65.18 even 4
1690.2.c.g.1689.16 18 65.47 even 4
1690.2.c.h.1689.3 18 65.8 even 4
1690.2.c.h.1689.16 18 65.57 even 4
8450.2.a.ct.1.3 9 13.12 even 2
8450.2.a.cw.1.7 9 5.4 even 2
8450.2.a.cx.1.3 9 1.1 even 1 trivial
8450.2.a.da.1.7 9 65.64 even 2