Properties

Label 8450.2.a.da.1.6
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,7,9,0,7,1,9,8,0,4,7,0,1,0,9,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.17115\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.956446 q^{3} +1.00000 q^{4} +0.956446 q^{6} -2.15124 q^{7} +1.00000 q^{8} -2.08521 q^{9} +1.30608 q^{11} +0.956446 q^{12} -2.15124 q^{14} +1.00000 q^{16} -2.87416 q^{17} -2.08521 q^{18} -2.65614 q^{19} -2.05754 q^{21} +1.30608 q^{22} +5.11025 q^{23} +0.956446 q^{24} -4.86373 q^{27} -2.15124 q^{28} +7.96020 q^{29} -4.12897 q^{31} +1.00000 q^{32} +1.24919 q^{33} -2.87416 q^{34} -2.08521 q^{36} +2.98725 q^{37} -2.65614 q^{38} +8.69023 q^{41} -2.05754 q^{42} +3.35303 q^{43} +1.30608 q^{44} +5.11025 q^{46} +7.30423 q^{47} +0.956446 q^{48} -2.37217 q^{49} -2.74898 q^{51} +10.0804 q^{53} -4.86373 q^{54} -2.15124 q^{56} -2.54046 q^{57} +7.96020 q^{58} -14.6950 q^{59} +11.2009 q^{61} -4.12897 q^{62} +4.48579 q^{63} +1.00000 q^{64} +1.24919 q^{66} -11.0454 q^{67} -2.87416 q^{68} +4.88768 q^{69} +14.0739 q^{71} -2.08521 q^{72} -3.83547 q^{73} +2.98725 q^{74} -2.65614 q^{76} -2.80969 q^{77} -8.94252 q^{79} +1.60374 q^{81} +8.69023 q^{82} +13.9980 q^{83} -2.05754 q^{84} +3.35303 q^{86} +7.61350 q^{87} +1.30608 q^{88} +15.6235 q^{89} +5.11025 q^{92} -3.94914 q^{93} +7.30423 q^{94} +0.956446 q^{96} +5.05416 q^{97} -2.37217 q^{98} -2.72345 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} + 7 q^{3} + 9 q^{4} + 7 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} + 4 q^{11} + 7 q^{12} + q^{14} + 9 q^{16} + 12 q^{17} + 8 q^{18} + 6 q^{19} + 8 q^{21} + 4 q^{22} + 11 q^{23} + 7 q^{24} + 34 q^{27}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.956446 0.552204 0.276102 0.961128i \(-0.410957\pi\)
0.276102 + 0.961128i \(0.410957\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0.956446 0.390467
\(7\) −2.15124 −0.813092 −0.406546 0.913630i \(-0.633267\pi\)
−0.406546 + 0.913630i \(0.633267\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.08521 −0.695070
\(10\) 0 0
\(11\) 1.30608 0.393797 0.196899 0.980424i \(-0.436913\pi\)
0.196899 + 0.980424i \(0.436913\pi\)
\(12\) 0.956446 0.276102
\(13\) 0 0
\(14\) −2.15124 −0.574943
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.87416 −0.697086 −0.348543 0.937293i \(-0.613323\pi\)
−0.348543 + 0.937293i \(0.613323\pi\)
\(18\) −2.08521 −0.491489
\(19\) −2.65614 −0.609360 −0.304680 0.952455i \(-0.598550\pi\)
−0.304680 + 0.952455i \(0.598550\pi\)
\(20\) 0 0
\(21\) −2.05754 −0.448993
\(22\) 1.30608 0.278457
\(23\) 5.11025 1.06556 0.532780 0.846254i \(-0.321147\pi\)
0.532780 + 0.846254i \(0.321147\pi\)
\(24\) 0.956446 0.195234
\(25\) 0 0
\(26\) 0 0
\(27\) −4.86373 −0.936025
\(28\) −2.15124 −0.406546
\(29\) 7.96020 1.47817 0.739086 0.673611i \(-0.235258\pi\)
0.739086 + 0.673611i \(0.235258\pi\)
\(30\) 0 0
\(31\) −4.12897 −0.741585 −0.370792 0.928716i \(-0.620914\pi\)
−0.370792 + 0.928716i \(0.620914\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.24919 0.217457
\(34\) −2.87416 −0.492914
\(35\) 0 0
\(36\) −2.08521 −0.347535
\(37\) 2.98725 0.491101 0.245551 0.969384i \(-0.421031\pi\)
0.245551 + 0.969384i \(0.421031\pi\)
\(38\) −2.65614 −0.430883
\(39\) 0 0
\(40\) 0 0
\(41\) 8.69023 1.35719 0.678593 0.734514i \(-0.262590\pi\)
0.678593 + 0.734514i \(0.262590\pi\)
\(42\) −2.05754 −0.317486
\(43\) 3.35303 0.511332 0.255666 0.966765i \(-0.417705\pi\)
0.255666 + 0.966765i \(0.417705\pi\)
\(44\) 1.30608 0.196899
\(45\) 0 0
\(46\) 5.11025 0.753465
\(47\) 7.30423 1.06543 0.532716 0.846294i \(-0.321172\pi\)
0.532716 + 0.846294i \(0.321172\pi\)
\(48\) 0.956446 0.138051
\(49\) −2.37217 −0.338882
\(50\) 0 0
\(51\) −2.74898 −0.384934
\(52\) 0 0
\(53\) 10.0804 1.38465 0.692325 0.721586i \(-0.256587\pi\)
0.692325 + 0.721586i \(0.256587\pi\)
\(54\) −4.86373 −0.661870
\(55\) 0 0
\(56\) −2.15124 −0.287471
\(57\) −2.54046 −0.336491
\(58\) 7.96020 1.04523
\(59\) −14.6950 −1.91313 −0.956564 0.291522i \(-0.905838\pi\)
−0.956564 + 0.291522i \(0.905838\pi\)
\(60\) 0 0
\(61\) 11.2009 1.43412 0.717062 0.697009i \(-0.245486\pi\)
0.717062 + 0.697009i \(0.245486\pi\)
\(62\) −4.12897 −0.524380
\(63\) 4.48579 0.565156
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 1.24919 0.153765
\(67\) −11.0454 −1.34941 −0.674706 0.738087i \(-0.735730\pi\)
−0.674706 + 0.738087i \(0.735730\pi\)
\(68\) −2.87416 −0.348543
\(69\) 4.88768 0.588407
\(70\) 0 0
\(71\) 14.0739 1.67026 0.835130 0.550053i \(-0.185392\pi\)
0.835130 + 0.550053i \(0.185392\pi\)
\(72\) −2.08521 −0.245744
\(73\) −3.83547 −0.448907 −0.224454 0.974485i \(-0.572060\pi\)
−0.224454 + 0.974485i \(0.572060\pi\)
\(74\) 2.98725 0.347261
\(75\) 0 0
\(76\) −2.65614 −0.304680
\(77\) −2.80969 −0.320193
\(78\) 0 0
\(79\) −8.94252 −1.00611 −0.503056 0.864254i \(-0.667791\pi\)
−0.503056 + 0.864254i \(0.667791\pi\)
\(80\) 0 0
\(81\) 1.60374 0.178193
\(82\) 8.69023 0.959676
\(83\) 13.9980 1.53648 0.768239 0.640163i \(-0.221133\pi\)
0.768239 + 0.640163i \(0.221133\pi\)
\(84\) −2.05754 −0.224496
\(85\) 0 0
\(86\) 3.35303 0.361567
\(87\) 7.61350 0.816253
\(88\) 1.30608 0.139228
\(89\) 15.6235 1.65609 0.828043 0.560665i \(-0.189454\pi\)
0.828043 + 0.560665i \(0.189454\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 5.11025 0.532780
\(93\) −3.94914 −0.409506
\(94\) 7.30423 0.753374
\(95\) 0 0
\(96\) 0.956446 0.0976169
\(97\) 5.05416 0.513172 0.256586 0.966521i \(-0.417402\pi\)
0.256586 + 0.966521i \(0.417402\pi\)
\(98\) −2.37217 −0.239626
\(99\) −2.72345 −0.273717
\(100\) 0 0
\(101\) −2.02811 −0.201804 −0.100902 0.994896i \(-0.532173\pi\)
−0.100902 + 0.994896i \(0.532173\pi\)
\(102\) −2.74898 −0.272189
\(103\) −3.26212 −0.321426 −0.160713 0.987001i \(-0.551379\pi\)
−0.160713 + 0.987001i \(0.551379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 10.0804 0.979095
\(107\) 1.89051 0.182763 0.0913814 0.995816i \(-0.470872\pi\)
0.0913814 + 0.995816i \(0.470872\pi\)
\(108\) −4.86373 −0.468013
\(109\) 4.29397 0.411287 0.205644 0.978627i \(-0.434071\pi\)
0.205644 + 0.978627i \(0.434071\pi\)
\(110\) 0 0
\(111\) 2.85715 0.271188
\(112\) −2.15124 −0.203273
\(113\) 18.7154 1.76060 0.880300 0.474418i \(-0.157342\pi\)
0.880300 + 0.474418i \(0.157342\pi\)
\(114\) −2.54046 −0.237935
\(115\) 0 0
\(116\) 7.96020 0.739086
\(117\) 0 0
\(118\) −14.6950 −1.35279
\(119\) 6.18300 0.566795
\(120\) 0 0
\(121\) −9.29416 −0.844924
\(122\) 11.2009 1.01408
\(123\) 8.31174 0.749444
\(124\) −4.12897 −0.370792
\(125\) 0 0
\(126\) 4.48579 0.399626
\(127\) 17.6498 1.56617 0.783083 0.621918i \(-0.213646\pi\)
0.783083 + 0.621918i \(0.213646\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.20699 0.282360
\(130\) 0 0
\(131\) 8.59263 0.750742 0.375371 0.926875i \(-0.377515\pi\)
0.375371 + 0.926875i \(0.377515\pi\)
\(132\) 1.24919 0.108728
\(133\) 5.71399 0.495466
\(134\) −11.0454 −0.954178
\(135\) 0 0
\(136\) −2.87416 −0.246457
\(137\) −6.43023 −0.549372 −0.274686 0.961534i \(-0.588574\pi\)
−0.274686 + 0.961534i \(0.588574\pi\)
\(138\) 4.88768 0.416067
\(139\) 1.79435 0.152195 0.0760975 0.997100i \(-0.475754\pi\)
0.0760975 + 0.997100i \(0.475754\pi\)
\(140\) 0 0
\(141\) 6.98610 0.588336
\(142\) 14.0739 1.18105
\(143\) 0 0
\(144\) −2.08521 −0.173768
\(145\) 0 0
\(146\) −3.83547 −0.317426
\(147\) −2.26885 −0.187132
\(148\) 2.98725 0.245551
\(149\) −8.49082 −0.695595 −0.347798 0.937570i \(-0.613070\pi\)
−0.347798 + 0.937570i \(0.613070\pi\)
\(150\) 0 0
\(151\) −2.97802 −0.242347 −0.121174 0.992631i \(-0.538666\pi\)
−0.121174 + 0.992631i \(0.538666\pi\)
\(152\) −2.65614 −0.215441
\(153\) 5.99323 0.484524
\(154\) −2.80969 −0.226411
\(155\) 0 0
\(156\) 0 0
\(157\) 14.3503 1.14528 0.572639 0.819808i \(-0.305920\pi\)
0.572639 + 0.819808i \(0.305920\pi\)
\(158\) −8.94252 −0.711428
\(159\) 9.64136 0.764609
\(160\) 0 0
\(161\) −10.9934 −0.866398
\(162\) 1.60374 0.126002
\(163\) −12.7139 −0.995833 −0.497916 0.867225i \(-0.665901\pi\)
−0.497916 + 0.867225i \(0.665901\pi\)
\(164\) 8.69023 0.678593
\(165\) 0 0
\(166\) 13.9980 1.08645
\(167\) 1.32171 0.102277 0.0511387 0.998692i \(-0.483715\pi\)
0.0511387 + 0.998692i \(0.483715\pi\)
\(168\) −2.05754 −0.158743
\(169\) 0 0
\(170\) 0 0
\(171\) 5.53861 0.423548
\(172\) 3.35303 0.255666
\(173\) 23.9387 1.82002 0.910012 0.414581i \(-0.136072\pi\)
0.910012 + 0.414581i \(0.136072\pi\)
\(174\) 7.61350 0.577178
\(175\) 0 0
\(176\) 1.30608 0.0984493
\(177\) −14.0550 −1.05644
\(178\) 15.6235 1.17103
\(179\) −0.841778 −0.0629174 −0.0314587 0.999505i \(-0.510015\pi\)
−0.0314587 + 0.999505i \(0.510015\pi\)
\(180\) 0 0
\(181\) −6.20054 −0.460883 −0.230441 0.973086i \(-0.574017\pi\)
−0.230441 + 0.973086i \(0.574017\pi\)
\(182\) 0 0
\(183\) 10.7130 0.791930
\(184\) 5.11025 0.376732
\(185\) 0 0
\(186\) −3.94914 −0.289565
\(187\) −3.75387 −0.274511
\(188\) 7.30423 0.532716
\(189\) 10.4630 0.761074
\(190\) 0 0
\(191\) −10.7222 −0.775829 −0.387915 0.921695i \(-0.626804\pi\)
−0.387915 + 0.921695i \(0.626804\pi\)
\(192\) 0.956446 0.0690255
\(193\) −25.9564 −1.86838 −0.934191 0.356774i \(-0.883877\pi\)
−0.934191 + 0.356774i \(0.883877\pi\)
\(194\) 5.05416 0.362868
\(195\) 0 0
\(196\) −2.37217 −0.169441
\(197\) −5.14709 −0.366715 −0.183358 0.983046i \(-0.558697\pi\)
−0.183358 + 0.983046i \(0.558697\pi\)
\(198\) −2.72345 −0.193547
\(199\) −9.50447 −0.673754 −0.336877 0.941549i \(-0.609371\pi\)
−0.336877 + 0.941549i \(0.609371\pi\)
\(200\) 0 0
\(201\) −10.5643 −0.745151
\(202\) −2.02811 −0.142697
\(203\) −17.1243 −1.20189
\(204\) −2.74898 −0.192467
\(205\) 0 0
\(206\) −3.26212 −0.227283
\(207\) −10.6559 −0.740639
\(208\) 0 0
\(209\) −3.46913 −0.239964
\(210\) 0 0
\(211\) 25.8770 1.78145 0.890724 0.454545i \(-0.150198\pi\)
0.890724 + 0.454545i \(0.150198\pi\)
\(212\) 10.0804 0.692325
\(213\) 13.4609 0.922325
\(214\) 1.89051 0.129233
\(215\) 0 0
\(216\) −4.86373 −0.330935
\(217\) 8.88240 0.602977
\(218\) 4.29397 0.290824
\(219\) −3.66842 −0.247889
\(220\) 0 0
\(221\) 0 0
\(222\) 2.85715 0.191759
\(223\) −0.669364 −0.0448239 −0.0224120 0.999749i \(-0.507135\pi\)
−0.0224120 + 0.999749i \(0.507135\pi\)
\(224\) −2.15124 −0.143736
\(225\) 0 0
\(226\) 18.7154 1.24493
\(227\) −5.40643 −0.358837 −0.179419 0.983773i \(-0.557422\pi\)
−0.179419 + 0.983773i \(0.557422\pi\)
\(228\) −2.54046 −0.168246
\(229\) −2.23462 −0.147668 −0.0738340 0.997271i \(-0.523524\pi\)
−0.0738340 + 0.997271i \(0.523524\pi\)
\(230\) 0 0
\(231\) −2.68731 −0.176812
\(232\) 7.96020 0.522613
\(233\) 0.131688 0.00862719 0.00431360 0.999991i \(-0.498627\pi\)
0.00431360 + 0.999991i \(0.498627\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −14.6950 −0.956564
\(237\) −8.55303 −0.555579
\(238\) 6.18300 0.400784
\(239\) 22.7145 1.46928 0.734639 0.678458i \(-0.237351\pi\)
0.734639 + 0.678458i \(0.237351\pi\)
\(240\) 0 0
\(241\) −21.9809 −1.41591 −0.707956 0.706256i \(-0.750383\pi\)
−0.707956 + 0.706256i \(0.750383\pi\)
\(242\) −9.29416 −0.597451
\(243\) 16.1251 1.03442
\(244\) 11.2009 0.717062
\(245\) 0 0
\(246\) 8.31174 0.529937
\(247\) 0 0
\(248\) −4.12897 −0.262190
\(249\) 13.3883 0.848450
\(250\) 0 0
\(251\) 9.38645 0.592468 0.296234 0.955115i \(-0.404269\pi\)
0.296234 + 0.955115i \(0.404269\pi\)
\(252\) 4.48579 0.282578
\(253\) 6.67438 0.419615
\(254\) 17.6498 1.10745
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.36768 0.459583 0.229792 0.973240i \(-0.426195\pi\)
0.229792 + 0.973240i \(0.426195\pi\)
\(258\) 3.20699 0.199659
\(259\) −6.42630 −0.399311
\(260\) 0 0
\(261\) −16.5987 −1.02743
\(262\) 8.59263 0.530855
\(263\) −20.4624 −1.26177 −0.630884 0.775877i \(-0.717308\pi\)
−0.630884 + 0.775877i \(0.717308\pi\)
\(264\) 1.24919 0.0768825
\(265\) 0 0
\(266\) 5.71399 0.350347
\(267\) 14.9430 0.914498
\(268\) −11.0454 −0.674706
\(269\) 28.7835 1.75496 0.877480 0.479614i \(-0.159223\pi\)
0.877480 + 0.479614i \(0.159223\pi\)
\(270\) 0 0
\(271\) 1.82589 0.110915 0.0554575 0.998461i \(-0.482338\pi\)
0.0554575 + 0.998461i \(0.482338\pi\)
\(272\) −2.87416 −0.174271
\(273\) 0 0
\(274\) −6.43023 −0.388465
\(275\) 0 0
\(276\) 4.88768 0.294203
\(277\) −1.10372 −0.0663163 −0.0331581 0.999450i \(-0.510557\pi\)
−0.0331581 + 0.999450i \(0.510557\pi\)
\(278\) 1.79435 0.107618
\(279\) 8.60977 0.515454
\(280\) 0 0
\(281\) −2.66535 −0.159002 −0.0795008 0.996835i \(-0.525333\pi\)
−0.0795008 + 0.996835i \(0.525333\pi\)
\(282\) 6.98610 0.416016
\(283\) 24.5173 1.45740 0.728702 0.684831i \(-0.240124\pi\)
0.728702 + 0.684831i \(0.240124\pi\)
\(284\) 14.0739 0.835130
\(285\) 0 0
\(286\) 0 0
\(287\) −18.6948 −1.10352
\(288\) −2.08521 −0.122872
\(289\) −8.73921 −0.514071
\(290\) 0 0
\(291\) 4.83403 0.283376
\(292\) −3.83547 −0.224454
\(293\) −8.74457 −0.510863 −0.255432 0.966827i \(-0.582218\pi\)
−0.255432 + 0.966827i \(0.582218\pi\)
\(294\) −2.26885 −0.132322
\(295\) 0 0
\(296\) 2.98725 0.173631
\(297\) −6.35241 −0.368604
\(298\) −8.49082 −0.491860
\(299\) 0 0
\(300\) 0 0
\(301\) −7.21317 −0.415760
\(302\) −2.97802 −0.171366
\(303\) −1.93977 −0.111437
\(304\) −2.65614 −0.152340
\(305\) 0 0
\(306\) 5.99323 0.342610
\(307\) 12.4345 0.709674 0.354837 0.934928i \(-0.384536\pi\)
0.354837 + 0.934928i \(0.384536\pi\)
\(308\) −2.80969 −0.160097
\(309\) −3.12004 −0.177493
\(310\) 0 0
\(311\) −0.269313 −0.0152713 −0.00763567 0.999971i \(-0.502431\pi\)
−0.00763567 + 0.999971i \(0.502431\pi\)
\(312\) 0 0
\(313\) −10.5866 −0.598389 −0.299195 0.954192i \(-0.596718\pi\)
−0.299195 + 0.954192i \(0.596718\pi\)
\(314\) 14.3503 0.809833
\(315\) 0 0
\(316\) −8.94252 −0.503056
\(317\) 21.0117 1.18014 0.590068 0.807354i \(-0.299101\pi\)
0.590068 + 0.807354i \(0.299101\pi\)
\(318\) 9.64136 0.540661
\(319\) 10.3966 0.582100
\(320\) 0 0
\(321\) 1.80817 0.100922
\(322\) −10.9934 −0.612636
\(323\) 7.63417 0.424777
\(324\) 1.60374 0.0890966
\(325\) 0 0
\(326\) −12.7139 −0.704160
\(327\) 4.10695 0.227115
\(328\) 8.69023 0.479838
\(329\) −15.7131 −0.866293
\(330\) 0 0
\(331\) −26.6423 −1.46440 −0.732198 0.681092i \(-0.761505\pi\)
−0.732198 + 0.681092i \(0.761505\pi\)
\(332\) 13.9980 0.768239
\(333\) −6.22905 −0.341350
\(334\) 1.32171 0.0723210
\(335\) 0 0
\(336\) −2.05754 −0.112248
\(337\) −3.43601 −0.187171 −0.0935856 0.995611i \(-0.529833\pi\)
−0.0935856 + 0.995611i \(0.529833\pi\)
\(338\) 0 0
\(339\) 17.9003 0.972211
\(340\) 0 0
\(341\) −5.39276 −0.292034
\(342\) 5.53861 0.299494
\(343\) 20.1618 1.08863
\(344\) 3.35303 0.180783
\(345\) 0 0
\(346\) 23.9387 1.28695
\(347\) 13.6671 0.733686 0.366843 0.930283i \(-0.380439\pi\)
0.366843 + 0.930283i \(0.380439\pi\)
\(348\) 7.61350 0.408127
\(349\) −8.18464 −0.438114 −0.219057 0.975712i \(-0.570298\pi\)
−0.219057 + 0.975712i \(0.570298\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.30608 0.0696142
\(353\) −21.4420 −1.14124 −0.570621 0.821214i \(-0.693297\pi\)
−0.570621 + 0.821214i \(0.693297\pi\)
\(354\) −14.0550 −0.747014
\(355\) 0 0
\(356\) 15.6235 0.828043
\(357\) 5.91371 0.312987
\(358\) −0.841778 −0.0444893
\(359\) 7.09493 0.374456 0.187228 0.982316i \(-0.440050\pi\)
0.187228 + 0.982316i \(0.440050\pi\)
\(360\) 0 0
\(361\) −11.9449 −0.628680
\(362\) −6.20054 −0.325893
\(363\) −8.88936 −0.466571
\(364\) 0 0
\(365\) 0 0
\(366\) 10.7130 0.559979
\(367\) 23.9033 1.24774 0.623872 0.781526i \(-0.285559\pi\)
0.623872 + 0.781526i \(0.285559\pi\)
\(368\) 5.11025 0.266390
\(369\) −18.1210 −0.943340
\(370\) 0 0
\(371\) −21.6853 −1.12585
\(372\) −3.94914 −0.204753
\(373\) 11.5127 0.596105 0.298053 0.954549i \(-0.403663\pi\)
0.298053 + 0.954549i \(0.403663\pi\)
\(374\) −3.75387 −0.194108
\(375\) 0 0
\(376\) 7.30423 0.376687
\(377\) 0 0
\(378\) 10.4630 0.538161
\(379\) −2.64445 −0.135836 −0.0679180 0.997691i \(-0.521636\pi\)
−0.0679180 + 0.997691i \(0.521636\pi\)
\(380\) 0 0
\(381\) 16.8811 0.864843
\(382\) −10.7222 −0.548594
\(383\) 16.2424 0.829949 0.414975 0.909833i \(-0.363790\pi\)
0.414975 + 0.909833i \(0.363790\pi\)
\(384\) 0.956446 0.0488084
\(385\) 0 0
\(386\) −25.9564 −1.32115
\(387\) −6.99178 −0.355412
\(388\) 5.05416 0.256586
\(389\) −23.7722 −1.20530 −0.602649 0.798006i \(-0.705888\pi\)
−0.602649 + 0.798006i \(0.705888\pi\)
\(390\) 0 0
\(391\) −14.6877 −0.742787
\(392\) −2.37217 −0.119813
\(393\) 8.21839 0.414563
\(394\) −5.14709 −0.259307
\(395\) 0 0
\(396\) −2.72345 −0.136858
\(397\) −34.6274 −1.73790 −0.868949 0.494901i \(-0.835204\pi\)
−0.868949 + 0.494901i \(0.835204\pi\)
\(398\) −9.50447 −0.476416
\(399\) 5.46513 0.273598
\(400\) 0 0
\(401\) −4.37028 −0.218242 −0.109121 0.994028i \(-0.534804\pi\)
−0.109121 + 0.994028i \(0.534804\pi\)
\(402\) −10.5643 −0.526901
\(403\) 0 0
\(404\) −2.02811 −0.100902
\(405\) 0 0
\(406\) −17.1243 −0.849865
\(407\) 3.90159 0.193394
\(408\) −2.74898 −0.136095
\(409\) 11.2279 0.555186 0.277593 0.960699i \(-0.410463\pi\)
0.277593 + 0.960699i \(0.410463\pi\)
\(410\) 0 0
\(411\) −6.15017 −0.303366
\(412\) −3.26212 −0.160713
\(413\) 31.6125 1.55555
\(414\) −10.6559 −0.523711
\(415\) 0 0
\(416\) 0 0
\(417\) 1.71620 0.0840427
\(418\) −3.46913 −0.169681
\(419\) 18.3230 0.895137 0.447569 0.894250i \(-0.352290\pi\)
0.447569 + 0.894250i \(0.352290\pi\)
\(420\) 0 0
\(421\) −8.92506 −0.434981 −0.217490 0.976062i \(-0.569787\pi\)
−0.217490 + 0.976062i \(0.569787\pi\)
\(422\) 25.8770 1.25967
\(423\) −15.2309 −0.740550
\(424\) 10.0804 0.489548
\(425\) 0 0
\(426\) 13.4609 0.652182
\(427\) −24.0958 −1.16608
\(428\) 1.89051 0.0913814
\(429\) 0 0
\(430\) 0 0
\(431\) −34.8123 −1.67685 −0.838425 0.545017i \(-0.816523\pi\)
−0.838425 + 0.545017i \(0.816523\pi\)
\(432\) −4.86373 −0.234006
\(433\) 37.9777 1.82509 0.912547 0.408972i \(-0.134113\pi\)
0.912547 + 0.408972i \(0.134113\pi\)
\(434\) 8.88240 0.426369
\(435\) 0 0
\(436\) 4.29397 0.205644
\(437\) −13.5735 −0.649310
\(438\) −3.66842 −0.175284
\(439\) −16.6128 −0.792887 −0.396443 0.918059i \(-0.629756\pi\)
−0.396443 + 0.918059i \(0.629756\pi\)
\(440\) 0 0
\(441\) 4.94648 0.235547
\(442\) 0 0
\(443\) −16.5892 −0.788177 −0.394089 0.919072i \(-0.628940\pi\)
−0.394089 + 0.919072i \(0.628940\pi\)
\(444\) 2.85715 0.135594
\(445\) 0 0
\(446\) −0.669364 −0.0316953
\(447\) −8.12101 −0.384111
\(448\) −2.15124 −0.101636
\(449\) 19.4158 0.916287 0.458144 0.888878i \(-0.348515\pi\)
0.458144 + 0.888878i \(0.348515\pi\)
\(450\) 0 0
\(451\) 11.3501 0.534456
\(452\) 18.7154 0.880300
\(453\) −2.84831 −0.133825
\(454\) −5.40643 −0.253736
\(455\) 0 0
\(456\) −2.54046 −0.118968
\(457\) 8.84923 0.413950 0.206975 0.978346i \(-0.433638\pi\)
0.206975 + 0.978346i \(0.433638\pi\)
\(458\) −2.23462 −0.104417
\(459\) 13.9791 0.652490
\(460\) 0 0
\(461\) 17.3352 0.807380 0.403690 0.914896i \(-0.367727\pi\)
0.403690 + 0.914896i \(0.367727\pi\)
\(462\) −2.68731 −0.125025
\(463\) −17.0652 −0.793088 −0.396544 0.918016i \(-0.629791\pi\)
−0.396544 + 0.918016i \(0.629791\pi\)
\(464\) 7.96020 0.369543
\(465\) 0 0
\(466\) 0.131688 0.00610035
\(467\) −22.5357 −1.04283 −0.521415 0.853303i \(-0.674596\pi\)
−0.521415 + 0.853303i \(0.674596\pi\)
\(468\) 0 0
\(469\) 23.7613 1.09720
\(470\) 0 0
\(471\) 13.7253 0.632427
\(472\) −14.6950 −0.676393
\(473\) 4.37932 0.201361
\(474\) −8.55303 −0.392854
\(475\) 0 0
\(476\) 6.18300 0.283397
\(477\) −21.0198 −0.962429
\(478\) 22.7145 1.03894
\(479\) 33.3487 1.52374 0.761870 0.647731i \(-0.224282\pi\)
0.761870 + 0.647731i \(0.224282\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −21.9809 −1.00120
\(483\) −10.5146 −0.478429
\(484\) −9.29416 −0.422462
\(485\) 0 0
\(486\) 16.1251 0.731448
\(487\) 32.8658 1.48929 0.744647 0.667459i \(-0.232618\pi\)
0.744647 + 0.667459i \(0.232618\pi\)
\(488\) 11.2009 0.507040
\(489\) −12.1602 −0.549903
\(490\) 0 0
\(491\) −17.6525 −0.796645 −0.398322 0.917245i \(-0.630407\pi\)
−0.398322 + 0.917245i \(0.630407\pi\)
\(492\) 8.31174 0.374722
\(493\) −22.8789 −1.03041
\(494\) 0 0
\(495\) 0 0
\(496\) −4.12897 −0.185396
\(497\) −30.2762 −1.35807
\(498\) 13.3883 0.599945
\(499\) −37.3227 −1.67079 −0.835396 0.549648i \(-0.814762\pi\)
−0.835396 + 0.549648i \(0.814762\pi\)
\(500\) 0 0
\(501\) 1.26415 0.0564780
\(502\) 9.38645 0.418938
\(503\) 27.1489 1.21051 0.605254 0.796032i \(-0.293072\pi\)
0.605254 + 0.796032i \(0.293072\pi\)
\(504\) 4.48579 0.199813
\(505\) 0 0
\(506\) 6.67438 0.296712
\(507\) 0 0
\(508\) 17.6498 0.783083
\(509\) 11.3658 0.503781 0.251890 0.967756i \(-0.418948\pi\)
0.251890 + 0.967756i \(0.418948\pi\)
\(510\) 0 0
\(511\) 8.25101 0.365003
\(512\) 1.00000 0.0441942
\(513\) 12.9188 0.570377
\(514\) 7.36768 0.324975
\(515\) 0 0
\(516\) 3.20699 0.141180
\(517\) 9.53989 0.419564
\(518\) −6.42630 −0.282355
\(519\) 22.8961 1.00503
\(520\) 0 0
\(521\) 31.9131 1.39814 0.699069 0.715054i \(-0.253598\pi\)
0.699069 + 0.715054i \(0.253598\pi\)
\(522\) −16.5987 −0.726506
\(523\) 25.7706 1.12687 0.563435 0.826160i \(-0.309479\pi\)
0.563435 + 0.826160i \(0.309479\pi\)
\(524\) 8.59263 0.375371
\(525\) 0 0
\(526\) −20.4624 −0.892205
\(527\) 11.8673 0.516948
\(528\) 1.24919 0.0543641
\(529\) 3.11463 0.135419
\(530\) 0 0
\(531\) 30.6422 1.32976
\(532\) 5.71399 0.247733
\(533\) 0 0
\(534\) 14.9430 0.646648
\(535\) 0 0
\(536\) −11.0454 −0.477089
\(537\) −0.805115 −0.0347433
\(538\) 28.7835 1.24094
\(539\) −3.09824 −0.133451
\(540\) 0 0
\(541\) −29.0524 −1.24906 −0.624531 0.781000i \(-0.714710\pi\)
−0.624531 + 0.781000i \(0.714710\pi\)
\(542\) 1.82589 0.0784287
\(543\) −5.93048 −0.254501
\(544\) −2.87416 −0.123229
\(545\) 0 0
\(546\) 0 0
\(547\) −14.0848 −0.602221 −0.301111 0.953589i \(-0.597357\pi\)
−0.301111 + 0.953589i \(0.597357\pi\)
\(548\) −6.43023 −0.274686
\(549\) −23.3562 −0.996818
\(550\) 0 0
\(551\) −21.1434 −0.900740
\(552\) 4.88768 0.208033
\(553\) 19.2375 0.818061
\(554\) −1.10372 −0.0468927
\(555\) 0 0
\(556\) 1.79435 0.0760975
\(557\) −1.65529 −0.0701367 −0.0350683 0.999385i \(-0.511165\pi\)
−0.0350683 + 0.999385i \(0.511165\pi\)
\(558\) 8.60977 0.364481
\(559\) 0 0
\(560\) 0 0
\(561\) −3.59038 −0.151586
\(562\) −2.66535 −0.112431
\(563\) −36.3020 −1.52995 −0.764974 0.644061i \(-0.777248\pi\)
−0.764974 + 0.644061i \(0.777248\pi\)
\(564\) 6.98610 0.294168
\(565\) 0 0
\(566\) 24.5173 1.03054
\(567\) −3.45002 −0.144887
\(568\) 14.0739 0.590526
\(569\) −15.1125 −0.633548 −0.316774 0.948501i \(-0.602600\pi\)
−0.316774 + 0.948501i \(0.602600\pi\)
\(570\) 0 0
\(571\) −35.2350 −1.47454 −0.737269 0.675600i \(-0.763885\pi\)
−0.737269 + 0.675600i \(0.763885\pi\)
\(572\) 0 0
\(573\) −10.2552 −0.428416
\(574\) −18.6948 −0.780304
\(575\) 0 0
\(576\) −2.08521 −0.0868838
\(577\) 25.4407 1.05911 0.529556 0.848275i \(-0.322359\pi\)
0.529556 + 0.848275i \(0.322359\pi\)
\(578\) −8.73921 −0.363503
\(579\) −24.8259 −1.03173
\(580\) 0 0
\(581\) −30.1130 −1.24930
\(582\) 4.83403 0.200377
\(583\) 13.1658 0.545271
\(584\) −3.83547 −0.158713
\(585\) 0 0
\(586\) −8.74457 −0.361235
\(587\) −16.4237 −0.677877 −0.338938 0.940809i \(-0.610068\pi\)
−0.338938 + 0.940809i \(0.610068\pi\)
\(588\) −2.26885 −0.0935660
\(589\) 10.9671 0.451892
\(590\) 0 0
\(591\) −4.92291 −0.202502
\(592\) 2.98725 0.122775
\(593\) 23.1420 0.950327 0.475163 0.879898i \(-0.342389\pi\)
0.475163 + 0.879898i \(0.342389\pi\)
\(594\) −6.35241 −0.260643
\(595\) 0 0
\(596\) −8.49082 −0.347798
\(597\) −9.09052 −0.372050
\(598\) 0 0
\(599\) −27.7657 −1.13448 −0.567238 0.823554i \(-0.691988\pi\)
−0.567238 + 0.823554i \(0.691988\pi\)
\(600\) 0 0
\(601\) −13.2621 −0.540974 −0.270487 0.962724i \(-0.587185\pi\)
−0.270487 + 0.962724i \(0.587185\pi\)
\(602\) −7.21317 −0.293987
\(603\) 23.0320 0.937936
\(604\) −2.97802 −0.121174
\(605\) 0 0
\(606\) −1.93977 −0.0787979
\(607\) 37.9308 1.53957 0.769783 0.638306i \(-0.220365\pi\)
0.769783 + 0.638306i \(0.220365\pi\)
\(608\) −2.65614 −0.107721
\(609\) −16.3785 −0.663689
\(610\) 0 0
\(611\) 0 0
\(612\) 5.99323 0.242262
\(613\) −2.38979 −0.0965227 −0.0482614 0.998835i \(-0.515368\pi\)
−0.0482614 + 0.998835i \(0.515368\pi\)
\(614\) 12.4345 0.501815
\(615\) 0 0
\(616\) −2.80969 −0.113205
\(617\) −19.0583 −0.767259 −0.383630 0.923487i \(-0.625326\pi\)
−0.383630 + 0.923487i \(0.625326\pi\)
\(618\) −3.12004 −0.125506
\(619\) −18.6920 −0.751294 −0.375647 0.926763i \(-0.622579\pi\)
−0.375647 + 0.926763i \(0.622579\pi\)
\(620\) 0 0
\(621\) −24.8549 −0.997391
\(622\) −0.269313 −0.0107985
\(623\) −33.6098 −1.34655
\(624\) 0 0
\(625\) 0 0
\(626\) −10.5866 −0.423125
\(627\) −3.31803 −0.132509
\(628\) 14.3503 0.572639
\(629\) −8.58584 −0.342340
\(630\) 0 0
\(631\) −21.5119 −0.856377 −0.428188 0.903689i \(-0.640848\pi\)
−0.428188 + 0.903689i \(0.640848\pi\)
\(632\) −8.94252 −0.355714
\(633\) 24.7500 0.983723
\(634\) 21.0117 0.834482
\(635\) 0 0
\(636\) 9.64136 0.382305
\(637\) 0 0
\(638\) 10.3966 0.411607
\(639\) −29.3470 −1.16095
\(640\) 0 0
\(641\) 34.3509 1.35678 0.678390 0.734702i \(-0.262678\pi\)
0.678390 + 0.734702i \(0.262678\pi\)
\(642\) 1.80817 0.0713629
\(643\) 31.1063 1.22671 0.613356 0.789807i \(-0.289819\pi\)
0.613356 + 0.789807i \(0.289819\pi\)
\(644\) −10.9934 −0.433199
\(645\) 0 0
\(646\) 7.63417 0.300362
\(647\) −4.61263 −0.181341 −0.0906705 0.995881i \(-0.528901\pi\)
−0.0906705 + 0.995881i \(0.528901\pi\)
\(648\) 1.60374 0.0630008
\(649\) −19.1928 −0.753385
\(650\) 0 0
\(651\) 8.49554 0.332966
\(652\) −12.7139 −0.497916
\(653\) −15.0219 −0.587853 −0.293926 0.955828i \(-0.594962\pi\)
−0.293926 + 0.955828i \(0.594962\pi\)
\(654\) 4.10695 0.160594
\(655\) 0 0
\(656\) 8.69023 0.339297
\(657\) 7.99776 0.312022
\(658\) −15.7131 −0.612562
\(659\) −37.6385 −1.46619 −0.733095 0.680126i \(-0.761925\pi\)
−0.733095 + 0.680126i \(0.761925\pi\)
\(660\) 0 0
\(661\) 14.5505 0.565949 0.282974 0.959127i \(-0.408679\pi\)
0.282974 + 0.959127i \(0.408679\pi\)
\(662\) −26.6423 −1.03548
\(663\) 0 0
\(664\) 13.9980 0.543227
\(665\) 0 0
\(666\) −6.22905 −0.241371
\(667\) 40.6786 1.57508
\(668\) 1.32171 0.0511387
\(669\) −0.640210 −0.0247520
\(670\) 0 0
\(671\) 14.6292 0.564754
\(672\) −2.05754 −0.0793715
\(673\) −3.50799 −0.135223 −0.0676115 0.997712i \(-0.521538\pi\)
−0.0676115 + 0.997712i \(0.521538\pi\)
\(674\) −3.43601 −0.132350
\(675\) 0 0
\(676\) 0 0
\(677\) 33.5349 1.28885 0.644425 0.764668i \(-0.277097\pi\)
0.644425 + 0.764668i \(0.277097\pi\)
\(678\) 17.9003 0.687457
\(679\) −10.8727 −0.417256
\(680\) 0 0
\(681\) −5.17096 −0.198152
\(682\) −5.39276 −0.206499
\(683\) −39.6392 −1.51675 −0.758376 0.651817i \(-0.774007\pi\)
−0.758376 + 0.651817i \(0.774007\pi\)
\(684\) 5.53861 0.211774
\(685\) 0 0
\(686\) 20.1618 0.769780
\(687\) −2.13730 −0.0815429
\(688\) 3.35303 0.127833
\(689\) 0 0
\(690\) 0 0
\(691\) 17.6727 0.672300 0.336150 0.941808i \(-0.390875\pi\)
0.336150 + 0.941808i \(0.390875\pi\)
\(692\) 23.9387 0.910012
\(693\) 5.85879 0.222557
\(694\) 13.6671 0.518794
\(695\) 0 0
\(696\) 7.61350 0.288589
\(697\) −24.9771 −0.946075
\(698\) −8.18464 −0.309793
\(699\) 0.125953 0.00476397
\(700\) 0 0
\(701\) −46.5635 −1.75868 −0.879340 0.476194i \(-0.842016\pi\)
−0.879340 + 0.476194i \(0.842016\pi\)
\(702\) 0 0
\(703\) −7.93456 −0.299258
\(704\) 1.30608 0.0492247
\(705\) 0 0
\(706\) −21.4420 −0.806980
\(707\) 4.36294 0.164085
\(708\) −14.0550 −0.528219
\(709\) −26.2769 −0.986849 −0.493425 0.869789i \(-0.664255\pi\)
−0.493425 + 0.869789i \(0.664255\pi\)
\(710\) 0 0
\(711\) 18.6470 0.699318
\(712\) 15.6235 0.585515
\(713\) −21.1001 −0.790203
\(714\) 5.91371 0.221315
\(715\) 0 0
\(716\) −0.841778 −0.0314587
\(717\) 21.7252 0.811342
\(718\) 7.09493 0.264780
\(719\) 11.3458 0.423128 0.211564 0.977364i \(-0.432144\pi\)
0.211564 + 0.977364i \(0.432144\pi\)
\(720\) 0 0
\(721\) 7.01759 0.261349
\(722\) −11.9449 −0.444544
\(723\) −21.0235 −0.781873
\(724\) −6.20054 −0.230441
\(725\) 0 0
\(726\) −8.88936 −0.329915
\(727\) 33.1374 1.22900 0.614499 0.788918i \(-0.289358\pi\)
0.614499 + 0.788918i \(0.289358\pi\)
\(728\) 0 0
\(729\) 10.6116 0.393020
\(730\) 0 0
\(731\) −9.63714 −0.356443
\(732\) 10.7130 0.395965
\(733\) −32.4103 −1.19710 −0.598550 0.801085i \(-0.704256\pi\)
−0.598550 + 0.801085i \(0.704256\pi\)
\(734\) 23.9033 0.882289
\(735\) 0 0
\(736\) 5.11025 0.188366
\(737\) −14.4262 −0.531395
\(738\) −18.1210 −0.667042
\(739\) −19.0620 −0.701208 −0.350604 0.936524i \(-0.614024\pi\)
−0.350604 + 0.936524i \(0.614024\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −21.6853 −0.796094
\(743\) −25.4983 −0.935441 −0.467721 0.883876i \(-0.654925\pi\)
−0.467721 + 0.883876i \(0.654925\pi\)
\(744\) −3.94914 −0.144782
\(745\) 0 0
\(746\) 11.5127 0.421510
\(747\) −29.1887 −1.06796
\(748\) −3.75387 −0.137255
\(749\) −4.06694 −0.148603
\(750\) 0 0
\(751\) −19.5176 −0.712209 −0.356104 0.934446i \(-0.615895\pi\)
−0.356104 + 0.934446i \(0.615895\pi\)
\(752\) 7.30423 0.266358
\(753\) 8.97763 0.327163
\(754\) 0 0
\(755\) 0 0
\(756\) 10.4630 0.380537
\(757\) 23.6562 0.859801 0.429900 0.902876i \(-0.358549\pi\)
0.429900 + 0.902876i \(0.358549\pi\)
\(758\) −2.64445 −0.0960506
\(759\) 6.38368 0.231713
\(760\) 0 0
\(761\) 16.2681 0.589717 0.294859 0.955541i \(-0.404727\pi\)
0.294859 + 0.955541i \(0.404727\pi\)
\(762\) 16.8811 0.611537
\(763\) −9.23735 −0.334414
\(764\) −10.7222 −0.387915
\(765\) 0 0
\(766\) 16.2424 0.586863
\(767\) 0 0
\(768\) 0.956446 0.0345128
\(769\) −30.6878 −1.10663 −0.553314 0.832973i \(-0.686637\pi\)
−0.553314 + 0.832973i \(0.686637\pi\)
\(770\) 0 0
\(771\) 7.04679 0.253784
\(772\) −25.9564 −0.934191
\(773\) 37.4115 1.34560 0.672798 0.739826i \(-0.265092\pi\)
0.672798 + 0.739826i \(0.265092\pi\)
\(774\) −6.99178 −0.251314
\(775\) 0 0
\(776\) 5.05416 0.181434
\(777\) −6.14640 −0.220501
\(778\) −23.7722 −0.852275
\(779\) −23.0825 −0.827016
\(780\) 0 0
\(781\) 18.3816 0.657744
\(782\) −14.6877 −0.525230
\(783\) −38.7163 −1.38361
\(784\) −2.37217 −0.0847204
\(785\) 0 0
\(786\) 8.21839 0.293140
\(787\) 8.05503 0.287131 0.143565 0.989641i \(-0.454143\pi\)
0.143565 + 0.989641i \(0.454143\pi\)
\(788\) −5.14709 −0.183358
\(789\) −19.5712 −0.696754
\(790\) 0 0
\(791\) −40.2613 −1.43153
\(792\) −2.72345 −0.0967735
\(793\) 0 0
\(794\) −34.6274 −1.22888
\(795\) 0 0
\(796\) −9.50447 −0.336877
\(797\) −4.94210 −0.175058 −0.0875290 0.996162i \(-0.527897\pi\)
−0.0875290 + 0.996162i \(0.527897\pi\)
\(798\) 5.46513 0.193463
\(799\) −20.9935 −0.742697
\(800\) 0 0
\(801\) −32.5783 −1.15110
\(802\) −4.37028 −0.154320
\(803\) −5.00942 −0.176779
\(804\) −10.5643 −0.372576
\(805\) 0 0
\(806\) 0 0
\(807\) 27.5298 0.969096
\(808\) −2.02811 −0.0713485
\(809\) 14.0553 0.494160 0.247080 0.968995i \(-0.420529\pi\)
0.247080 + 0.968995i \(0.420529\pi\)
\(810\) 0 0
\(811\) −11.0393 −0.387644 −0.193822 0.981037i \(-0.562088\pi\)
−0.193822 + 0.981037i \(0.562088\pi\)
\(812\) −17.1243 −0.600945
\(813\) 1.74636 0.0612477
\(814\) 3.90159 0.136750
\(815\) 0 0
\(816\) −2.74898 −0.0962335
\(817\) −8.90612 −0.311586
\(818\) 11.2279 0.392575
\(819\) 0 0
\(820\) 0 0
\(821\) 4.13968 0.144476 0.0722379 0.997387i \(-0.476986\pi\)
0.0722379 + 0.997387i \(0.476986\pi\)
\(822\) −6.15017 −0.214512
\(823\) −27.7827 −0.968445 −0.484222 0.874945i \(-0.660897\pi\)
−0.484222 + 0.874945i \(0.660897\pi\)
\(824\) −3.26212 −0.113641
\(825\) 0 0
\(826\) 31.6125 1.09994
\(827\) 6.46886 0.224944 0.112472 0.993655i \(-0.464123\pi\)
0.112472 + 0.993655i \(0.464123\pi\)
\(828\) −10.6559 −0.370320
\(829\) 13.9415 0.484208 0.242104 0.970250i \(-0.422162\pi\)
0.242104 + 0.970250i \(0.422162\pi\)
\(830\) 0 0
\(831\) −1.05565 −0.0366201
\(832\) 0 0
\(833\) 6.81800 0.236230
\(834\) 1.71620 0.0594272
\(835\) 0 0
\(836\) −3.46913 −0.119982
\(837\) 20.0822 0.694142
\(838\) 18.3230 0.632958
\(839\) −41.0483 −1.41714 −0.708571 0.705639i \(-0.750660\pi\)
−0.708571 + 0.705639i \(0.750660\pi\)
\(840\) 0 0
\(841\) 34.3648 1.18499
\(842\) −8.92506 −0.307578
\(843\) −2.54927 −0.0878014
\(844\) 25.8770 0.890724
\(845\) 0 0
\(846\) −15.2309 −0.523648
\(847\) 19.9940 0.687001
\(848\) 10.0804 0.346162
\(849\) 23.4495 0.804785
\(850\) 0 0
\(851\) 15.2656 0.523298
\(852\) 13.4609 0.461162
\(853\) 41.4242 1.41834 0.709168 0.705039i \(-0.249071\pi\)
0.709168 + 0.705039i \(0.249071\pi\)
\(854\) −24.0958 −0.824540
\(855\) 0 0
\(856\) 1.89051 0.0646164
\(857\) 48.9642 1.67259 0.836293 0.548282i \(-0.184718\pi\)
0.836293 + 0.548282i \(0.184718\pi\)
\(858\) 0 0
\(859\) −17.0890 −0.583068 −0.291534 0.956560i \(-0.594166\pi\)
−0.291534 + 0.956560i \(0.594166\pi\)
\(860\) 0 0
\(861\) −17.8805 −0.609367
\(862\) −34.8123 −1.18571
\(863\) 12.3756 0.421269 0.210635 0.977565i \(-0.432447\pi\)
0.210635 + 0.977565i \(0.432447\pi\)
\(864\) −4.86373 −0.165467
\(865\) 0 0
\(866\) 37.9777 1.29054
\(867\) −8.35858 −0.283872
\(868\) 8.88240 0.301488
\(869\) −11.6796 −0.396204
\(870\) 0 0
\(871\) 0 0
\(872\) 4.29397 0.145412
\(873\) −10.5390 −0.356691
\(874\) −13.5735 −0.459132
\(875\) 0 0
\(876\) −3.66842 −0.123944
\(877\) 29.3663 0.991629 0.495814 0.868429i \(-0.334870\pi\)
0.495814 + 0.868429i \(0.334870\pi\)
\(878\) −16.6128 −0.560656
\(879\) −8.36371 −0.282101
\(880\) 0 0
\(881\) 6.22016 0.209563 0.104781 0.994495i \(-0.466586\pi\)
0.104781 + 0.994495i \(0.466586\pi\)
\(882\) 4.94648 0.166557
\(883\) 32.4762 1.09291 0.546456 0.837488i \(-0.315977\pi\)
0.546456 + 0.837488i \(0.315977\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −16.5892 −0.557325
\(887\) 36.5930 1.22867 0.614337 0.789044i \(-0.289424\pi\)
0.614337 + 0.789044i \(0.289424\pi\)
\(888\) 2.85715 0.0958796
\(889\) −37.9689 −1.27344
\(890\) 0 0
\(891\) 2.09461 0.0701720
\(892\) −0.669364 −0.0224120
\(893\) −19.4011 −0.649232
\(894\) −8.12101 −0.271607
\(895\) 0 0
\(896\) −2.15124 −0.0718678
\(897\) 0 0
\(898\) 19.4158 0.647913
\(899\) −32.8674 −1.09619
\(900\) 0 0
\(901\) −28.9727 −0.965220
\(902\) 11.3501 0.377918
\(903\) −6.89901 −0.229585
\(904\) 18.7154 0.622466
\(905\) 0 0
\(906\) −2.84831 −0.0946288
\(907\) 6.23158 0.206916 0.103458 0.994634i \(-0.467009\pi\)
0.103458 + 0.994634i \(0.467009\pi\)
\(908\) −5.40643 −0.179419
\(909\) 4.22903 0.140268
\(910\) 0 0
\(911\) 47.4457 1.57195 0.785973 0.618261i \(-0.212163\pi\)
0.785973 + 0.618261i \(0.212163\pi\)
\(912\) −2.54046 −0.0841229
\(913\) 18.2825 0.605061
\(914\) 8.84923 0.292707
\(915\) 0 0
\(916\) −2.23462 −0.0738340
\(917\) −18.4848 −0.610422
\(918\) 13.9791 0.461380
\(919\) −52.7882 −1.74132 −0.870661 0.491883i \(-0.836309\pi\)
−0.870661 + 0.491883i \(0.836309\pi\)
\(920\) 0 0
\(921\) 11.8929 0.391885
\(922\) 17.3352 0.570904
\(923\) 0 0
\(924\) −2.68731 −0.0884061
\(925\) 0 0
\(926\) −17.0652 −0.560798
\(927\) 6.80220 0.223414
\(928\) 7.96020 0.261306
\(929\) 7.11857 0.233553 0.116776 0.993158i \(-0.462744\pi\)
0.116776 + 0.993158i \(0.462744\pi\)
\(930\) 0 0
\(931\) 6.30082 0.206501
\(932\) 0.131688 0.00431360
\(933\) −0.257583 −0.00843290
\(934\) −22.5357 −0.737392
\(935\) 0 0
\(936\) 0 0
\(937\) 5.13448 0.167736 0.0838680 0.996477i \(-0.473273\pi\)
0.0838680 + 0.996477i \(0.473273\pi\)
\(938\) 23.7613 0.775834
\(939\) −10.1255 −0.330433
\(940\) 0 0
\(941\) −44.3630 −1.44619 −0.723096 0.690748i \(-0.757281\pi\)
−0.723096 + 0.690748i \(0.757281\pi\)
\(942\) 13.7253 0.447193
\(943\) 44.4092 1.44616
\(944\) −14.6950 −0.478282
\(945\) 0 0
\(946\) 4.37932 0.142384
\(947\) 54.3234 1.76527 0.882637 0.470056i \(-0.155766\pi\)
0.882637 + 0.470056i \(0.155766\pi\)
\(948\) −8.55303 −0.277790
\(949\) 0 0
\(950\) 0 0
\(951\) 20.0966 0.651676
\(952\) 6.18300 0.200392
\(953\) 37.8138 1.22491 0.612454 0.790506i \(-0.290182\pi\)
0.612454 + 0.790506i \(0.290182\pi\)
\(954\) −21.0198 −0.680540
\(955\) 0 0
\(956\) 22.7145 0.734639
\(957\) 9.94383 0.321438
\(958\) 33.3487 1.07745
\(959\) 13.8330 0.446690
\(960\) 0 0
\(961\) −13.9516 −0.450052
\(962\) 0 0
\(963\) −3.94212 −0.127033
\(964\) −21.9809 −0.707956
\(965\) 0 0
\(966\) −10.5146 −0.338300
\(967\) −8.18366 −0.263169 −0.131584 0.991305i \(-0.542006\pi\)
−0.131584 + 0.991305i \(0.542006\pi\)
\(968\) −9.29416 −0.298726
\(969\) 7.30167 0.234563
\(970\) 0 0
\(971\) −19.0931 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(972\) 16.1251 0.517212
\(973\) −3.86008 −0.123748
\(974\) 32.8658 1.05309
\(975\) 0 0
\(976\) 11.2009 0.358531
\(977\) −2.67273 −0.0855082 −0.0427541 0.999086i \(-0.513613\pi\)
−0.0427541 + 0.999086i \(0.513613\pi\)
\(978\) −12.1602 −0.388840
\(979\) 20.4055 0.652162
\(980\) 0 0
\(981\) −8.95383 −0.285874
\(982\) −17.6525 −0.563313
\(983\) 5.29656 0.168934 0.0844670 0.996426i \(-0.473081\pi\)
0.0844670 + 0.996426i \(0.473081\pi\)
\(984\) 8.31174 0.264969
\(985\) 0 0
\(986\) −22.8789 −0.728612
\(987\) −15.0288 −0.478371
\(988\) 0 0
\(989\) 17.1348 0.544855
\(990\) 0 0
\(991\) −26.1528 −0.830773 −0.415386 0.909645i \(-0.636354\pi\)
−0.415386 + 0.909645i \(0.636354\pi\)
\(992\) −4.12897 −0.131095
\(993\) −25.4820 −0.808646
\(994\) −30.2762 −0.960304
\(995\) 0 0
\(996\) 13.3883 0.424225
\(997\) −19.6903 −0.623597 −0.311799 0.950148i \(-0.600931\pi\)
−0.311799 + 0.950148i \(0.600931\pi\)
\(998\) −37.3227 −1.18143
\(999\) −14.5292 −0.459683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.da.1.6 9
5.2 odd 4 1690.2.b.g.339.13 yes 18
5.3 odd 4 1690.2.b.g.339.6 yes 18
5.4 even 2 8450.2.a.ct.1.4 9
13.12 even 2 8450.2.a.cw.1.6 9
65.8 even 4 1690.2.c.h.1689.13 18
65.12 odd 4 1690.2.b.f.339.4 18
65.18 even 4 1690.2.c.g.1689.13 18
65.38 odd 4 1690.2.b.f.339.15 yes 18
65.47 even 4 1690.2.c.g.1689.6 18
65.57 even 4 1690.2.c.h.1689.6 18
65.64 even 2 8450.2.a.cx.1.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.4 18 65.12 odd 4
1690.2.b.f.339.15 yes 18 65.38 odd 4
1690.2.b.g.339.6 yes 18 5.3 odd 4
1690.2.b.g.339.13 yes 18 5.2 odd 4
1690.2.c.g.1689.6 18 65.47 even 4
1690.2.c.g.1689.13 18 65.18 even 4
1690.2.c.h.1689.6 18 65.57 even 4
1690.2.c.h.1689.13 18 65.8 even 4
8450.2.a.ct.1.4 9 5.4 even 2
8450.2.a.cw.1.6 9 13.12 even 2
8450.2.a.cx.1.4 9 65.64 even 2
8450.2.a.da.1.6 9 1.1 even 1 trivial