Properties

Label 2-8450-1.1-c1-0-75
Degree $2$
Conductor $8450$
Sign $1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.956·3-s + 4-s + 0.956·6-s − 2.15·7-s + 8-s − 2.08·9-s + 1.30·11-s + 0.956·12-s − 2.15·14-s + 16-s − 2.87·17-s − 2.08·18-s − 2.65·19-s − 2.05·21-s + 1.30·22-s + 5.11·23-s + 0.956·24-s − 4.86·27-s − 2.15·28-s + 7.96·29-s − 4.12·31-s + 32-s + 1.24·33-s − 2.87·34-s − 2.08·36-s + 2.98·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.552·3-s + 0.5·4-s + 0.390·6-s − 0.813·7-s + 0.353·8-s − 0.695·9-s + 0.393·11-s + 0.276·12-s − 0.574·14-s + 0.250·16-s − 0.697·17-s − 0.491·18-s − 0.609·19-s − 0.448·21-s + 0.278·22-s + 1.06·23-s + 0.195·24-s − 0.936·27-s − 0.406·28-s + 1.47·29-s − 0.741·31-s + 0.176·32-s + 0.217·33-s − 0.492·34-s − 0.347·36-s + 0.491·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.318589962\)
\(L(\frac12)\) \(\approx\) \(3.318589962\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 - 0.956T + 3T^{2} \)
7 \( 1 + 2.15T + 7T^{2} \)
11 \( 1 - 1.30T + 11T^{2} \)
17 \( 1 + 2.87T + 17T^{2} \)
19 \( 1 + 2.65T + 19T^{2} \)
23 \( 1 - 5.11T + 23T^{2} \)
29 \( 1 - 7.96T + 29T^{2} \)
31 \( 1 + 4.12T + 31T^{2} \)
37 \( 1 - 2.98T + 37T^{2} \)
41 \( 1 - 8.69T + 41T^{2} \)
43 \( 1 - 3.35T + 43T^{2} \)
47 \( 1 - 7.30T + 47T^{2} \)
53 \( 1 - 10.0T + 53T^{2} \)
59 \( 1 + 14.6T + 59T^{2} \)
61 \( 1 - 11.2T + 61T^{2} \)
67 \( 1 + 11.0T + 67T^{2} \)
71 \( 1 - 14.0T + 71T^{2} \)
73 \( 1 + 3.83T + 73T^{2} \)
79 \( 1 + 8.94T + 79T^{2} \)
83 \( 1 - 13.9T + 83T^{2} \)
89 \( 1 - 15.6T + 89T^{2} \)
97 \( 1 - 5.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66583638811217237976868279781, −7.00955778557870299842054964828, −6.28844928851765446707344387373, −5.86921625413232632954151397445, −4.89091003134231618678886715723, −4.18742592056494692678593992685, −3.43737759158710336225807720783, −2.76093150666703162955871898913, −2.16636593548677153321948236334, −0.75436807116018258415843557168, 0.75436807116018258415843557168, 2.16636593548677153321948236334, 2.76093150666703162955871898913, 3.43737759158710336225807720783, 4.18742592056494692678593992685, 4.89091003134231618678886715723, 5.86921625413232632954151397445, 6.28844928851765446707344387373, 7.00955778557870299842054964828, 7.66583638811217237976868279781

Graph of the $Z$-function along the critical line