Properties

Label 1690.2.b.g.339.13
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-18,0,14,0,0,-16,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.13
Root \(-2.17115i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.g.339.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -0.956446i q^{3} -1.00000 q^{4} +(-0.426774 + 2.19496i) q^{5} +0.956446 q^{6} -2.15124i q^{7} -1.00000i q^{8} +2.08521 q^{9} +(-2.19496 - 0.426774i) q^{10} +1.30608 q^{11} +0.956446i q^{12} +2.15124 q^{14} +(2.09936 + 0.408187i) q^{15} +1.00000 q^{16} -2.87416i q^{17} +2.08521i q^{18} +2.65614 q^{19} +(0.426774 - 2.19496i) q^{20} -2.05754 q^{21} +1.30608i q^{22} -5.11025i q^{23} -0.956446 q^{24} +(-4.63573 - 1.87351i) q^{25} -4.86373i q^{27} +2.15124i q^{28} -7.96020 q^{29} +(-0.408187 + 2.09936i) q^{30} -4.12897 q^{31} +1.00000i q^{32} -1.24919i q^{33} +2.87416 q^{34} +(4.72189 + 0.918093i) q^{35} -2.08521 q^{36} +2.98725i q^{37} +2.65614i q^{38} +(2.19496 + 0.426774i) q^{40} +8.69023 q^{41} -2.05754i q^{42} -3.35303i q^{43} -1.30608 q^{44} +(-0.889915 + 4.57696i) q^{45} +5.11025 q^{46} +7.30423i q^{47} -0.956446i q^{48} +2.37217 q^{49} +(1.87351 - 4.63573i) q^{50} -2.74898 q^{51} -10.0804i q^{53} +4.86373 q^{54} +(-0.557400 + 2.86679i) q^{55} -2.15124 q^{56} -2.54046i q^{57} -7.96020i q^{58} +14.6950 q^{59} +(-2.09936 - 0.408187i) q^{60} +11.2009 q^{61} -4.12897i q^{62} -4.48579i q^{63} -1.00000 q^{64} +1.24919 q^{66} -11.0454i q^{67} +2.87416i q^{68} -4.88768 q^{69} +(-0.918093 + 4.72189i) q^{70} +14.0739 q^{71} -2.08521i q^{72} +3.83547i q^{73} -2.98725 q^{74} +(-1.79191 + 4.43382i) q^{75} -2.65614 q^{76} -2.80969i q^{77} +8.94252 q^{79} +(-0.426774 + 2.19496i) q^{80} +1.60374 q^{81} +8.69023i q^{82} -13.9980i q^{83} +2.05754 q^{84} +(6.30867 + 1.22662i) q^{85} +3.35303 q^{86} +7.61350i q^{87} -1.30608i q^{88} -15.6235 q^{89} +(-4.57696 - 0.889915i) q^{90} +5.11025i q^{92} +3.94914i q^{93} -7.30423 q^{94} +(-1.13357 + 5.83013i) q^{95} +0.956446 q^{96} +5.05416i q^{97} +2.37217i q^{98} +2.72345 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{4} + 14 q^{6} - 16 q^{9} + 2 q^{10} + 8 q^{11} - 2 q^{14} + 8 q^{15} + 18 q^{16} - 12 q^{19} + 16 q^{21} - 14 q^{24} + 22 q^{25} - 30 q^{29} - 14 q^{30} - 12 q^{31} - 24 q^{34} - 4 q^{35} + 16 q^{36}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.956446i 0.552204i −0.961128 0.276102i \(-0.910957\pi\)
0.961128 0.276102i \(-0.0890428\pi\)
\(4\) −1.00000 −0.500000
\(5\) −0.426774 + 2.19496i −0.190859 + 0.981617i
\(6\) 0.956446 0.390467
\(7\) 2.15124i 0.813092i −0.913630 0.406546i \(-0.866733\pi\)
0.913630 0.406546i \(-0.133267\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.08521 0.695070
\(10\) −2.19496 0.426774i −0.694108 0.134958i
\(11\) 1.30608 0.393797 0.196899 0.980424i \(-0.436913\pi\)
0.196899 + 0.980424i \(0.436913\pi\)
\(12\) 0.956446i 0.276102i
\(13\) 0 0
\(14\) 2.15124 0.574943
\(15\) 2.09936 + 0.408187i 0.542053 + 0.105393i
\(16\) 1.00000 0.250000
\(17\) 2.87416i 0.697086i −0.937293 0.348543i \(-0.886677\pi\)
0.937293 0.348543i \(-0.113323\pi\)
\(18\) 2.08521i 0.491489i
\(19\) 2.65614 0.609360 0.304680 0.952455i \(-0.401450\pi\)
0.304680 + 0.952455i \(0.401450\pi\)
\(20\) 0.426774 2.19496i 0.0954296 0.490809i
\(21\) −2.05754 −0.448993
\(22\) 1.30608i 0.278457i
\(23\) 5.11025i 1.06556i −0.846254 0.532780i \(-0.821147\pi\)
0.846254 0.532780i \(-0.178853\pi\)
\(24\) −0.956446 −0.195234
\(25\) −4.63573 1.87351i −0.927145 0.374702i
\(26\) 0 0
\(27\) 4.86373i 0.936025i
\(28\) 2.15124i 0.406546i
\(29\) −7.96020 −1.47817 −0.739086 0.673611i \(-0.764742\pi\)
−0.739086 + 0.673611i \(0.764742\pi\)
\(30\) −0.408187 + 2.09936i −0.0745243 + 0.383290i
\(31\) −4.12897 −0.741585 −0.370792 0.928716i \(-0.620914\pi\)
−0.370792 + 0.928716i \(0.620914\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.24919i 0.217457i
\(34\) 2.87416 0.492914
\(35\) 4.72189 + 0.918093i 0.798145 + 0.155186i
\(36\) −2.08521 −0.347535
\(37\) 2.98725i 0.491101i 0.969384 + 0.245551i \(0.0789688\pi\)
−0.969384 + 0.245551i \(0.921031\pi\)
\(38\) 2.65614i 0.430883i
\(39\) 0 0
\(40\) 2.19496 + 0.426774i 0.347054 + 0.0674789i
\(41\) 8.69023 1.35719 0.678593 0.734514i \(-0.262590\pi\)
0.678593 + 0.734514i \(0.262590\pi\)
\(42\) 2.05754i 0.317486i
\(43\) 3.35303i 0.511332i −0.966765 0.255666i \(-0.917705\pi\)
0.966765 0.255666i \(-0.0822948\pi\)
\(44\) −1.30608 −0.196899
\(45\) −0.889915 + 4.57696i −0.132661 + 0.682293i
\(46\) 5.11025 0.753465
\(47\) 7.30423i 1.06543i 0.846294 + 0.532716i \(0.178828\pi\)
−0.846294 + 0.532716i \(0.821172\pi\)
\(48\) 0.956446i 0.138051i
\(49\) 2.37217 0.338882
\(50\) 1.87351 4.63573i 0.264954 0.655591i
\(51\) −2.74898 −0.384934
\(52\) 0 0
\(53\) 10.0804i 1.38465i −0.721586 0.692325i \(-0.756587\pi\)
0.721586 0.692325i \(-0.243413\pi\)
\(54\) 4.86373 0.661870
\(55\) −0.557400 + 2.86679i −0.0751599 + 0.386558i
\(56\) −2.15124 −0.287471
\(57\) 2.54046i 0.336491i
\(58\) 7.96020i 1.04523i
\(59\) 14.6950 1.91313 0.956564 0.291522i \(-0.0941615\pi\)
0.956564 + 0.291522i \(0.0941615\pi\)
\(60\) −2.09936 0.408187i −0.271027 0.0526967i
\(61\) 11.2009 1.43412 0.717062 0.697009i \(-0.245486\pi\)
0.717062 + 0.697009i \(0.245486\pi\)
\(62\) 4.12897i 0.524380i
\(63\) 4.48579i 0.565156i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 1.24919 0.153765
\(67\) 11.0454i 1.34941i −0.738087 0.674706i \(-0.764270\pi\)
0.738087 0.674706i \(-0.235730\pi\)
\(68\) 2.87416i 0.348543i
\(69\) −4.88768 −0.588407
\(70\) −0.918093 + 4.72189i −0.109733 + 0.564374i
\(71\) 14.0739 1.67026 0.835130 0.550053i \(-0.185392\pi\)
0.835130 + 0.550053i \(0.185392\pi\)
\(72\) 2.08521i 0.245744i
\(73\) 3.83547i 0.448907i 0.974485 + 0.224454i \(0.0720598\pi\)
−0.974485 + 0.224454i \(0.927940\pi\)
\(74\) −2.98725 −0.347261
\(75\) −1.79191 + 4.43382i −0.206912 + 0.511974i
\(76\) −2.65614 −0.304680
\(77\) 2.80969i 0.320193i
\(78\) 0 0
\(79\) 8.94252 1.00611 0.503056 0.864254i \(-0.332209\pi\)
0.503056 + 0.864254i \(0.332209\pi\)
\(80\) −0.426774 + 2.19496i −0.0477148 + 0.245404i
\(81\) 1.60374 0.178193
\(82\) 8.69023i 0.959676i
\(83\) 13.9980i 1.53648i −0.640163 0.768239i \(-0.721133\pi\)
0.640163 0.768239i \(-0.278867\pi\)
\(84\) 2.05754 0.224496
\(85\) 6.30867 + 1.22662i 0.684272 + 0.133045i
\(86\) 3.35303 0.361567
\(87\) 7.61350i 0.816253i
\(88\) 1.30608i 0.139228i
\(89\) −15.6235 −1.65609 −0.828043 0.560665i \(-0.810546\pi\)
−0.828043 + 0.560665i \(0.810546\pi\)
\(90\) −4.57696 0.889915i −0.482454 0.0938052i
\(91\) 0 0
\(92\) 5.11025i 0.532780i
\(93\) 3.94914i 0.409506i
\(94\) −7.30423 −0.753374
\(95\) −1.13357 + 5.83013i −0.116302 + 0.598159i
\(96\) 0.956446 0.0976169
\(97\) 5.05416i 0.513172i 0.966521 + 0.256586i \(0.0825978\pi\)
−0.966521 + 0.256586i \(0.917402\pi\)
\(98\) 2.37217i 0.239626i
\(99\) 2.72345 0.273717
\(100\) 4.63573 + 1.87351i 0.463573 + 0.187351i
\(101\) −2.02811 −0.201804 −0.100902 0.994896i \(-0.532173\pi\)
−0.100902 + 0.994896i \(0.532173\pi\)
\(102\) 2.74898i 0.272189i
\(103\) 3.26212i 0.321426i 0.987001 + 0.160713i \(0.0513794\pi\)
−0.987001 + 0.160713i \(0.948621\pi\)
\(104\) 0 0
\(105\) 0.878107 4.51623i 0.0856945 0.440739i
\(106\) 10.0804 0.979095
\(107\) 1.89051i 0.182763i 0.995816 + 0.0913814i \(0.0291282\pi\)
−0.995816 + 0.0913814i \(0.970872\pi\)
\(108\) 4.86373i 0.468013i
\(109\) −4.29397 −0.411287 −0.205644 0.978627i \(-0.565929\pi\)
−0.205644 + 0.978627i \(0.565929\pi\)
\(110\) −2.86679 0.557400i −0.273338 0.0531461i
\(111\) 2.85715 0.271188
\(112\) 2.15124i 0.203273i
\(113\) 18.7154i 1.76060i −0.474418 0.880300i \(-0.657342\pi\)
0.474418 0.880300i \(-0.342658\pi\)
\(114\) 2.54046 0.237935
\(115\) 11.2168 + 2.18092i 1.04597 + 0.203372i
\(116\) 7.96020 0.739086
\(117\) 0 0
\(118\) 14.6950i 1.35279i
\(119\) −6.18300 −0.566795
\(120\) 0.408187 2.09936i 0.0372622 0.191645i
\(121\) −9.29416 −0.844924
\(122\) 11.2009i 1.01408i
\(123\) 8.31174i 0.749444i
\(124\) 4.12897 0.370792
\(125\) 6.09069 9.37569i 0.544768 0.838587i
\(126\) 4.48579 0.399626
\(127\) 17.6498i 1.56617i 0.621918 + 0.783083i \(0.286354\pi\)
−0.621918 + 0.783083i \(0.713646\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −3.20699 −0.282360
\(130\) 0 0
\(131\) 8.59263 0.750742 0.375371 0.926875i \(-0.377515\pi\)
0.375371 + 0.926875i \(0.377515\pi\)
\(132\) 1.24919i 0.108728i
\(133\) 5.71399i 0.495466i
\(134\) 11.0454 0.954178
\(135\) 10.6757 + 2.07572i 0.918819 + 0.178649i
\(136\) −2.87416 −0.246457
\(137\) 6.43023i 0.549372i −0.961534 0.274686i \(-0.911426\pi\)
0.961534 0.274686i \(-0.0885739\pi\)
\(138\) 4.88768i 0.416067i
\(139\) −1.79435 −0.152195 −0.0760975 0.997100i \(-0.524246\pi\)
−0.0760975 + 0.997100i \(0.524246\pi\)
\(140\) −4.72189 0.918093i −0.399073 0.0775931i
\(141\) 6.98610 0.588336
\(142\) 14.0739i 1.18105i
\(143\) 0 0
\(144\) 2.08521 0.173768
\(145\) 3.39721 17.4724i 0.282123 1.45100i
\(146\) −3.83547 −0.317426
\(147\) 2.26885i 0.187132i
\(148\) 2.98725i 0.245551i
\(149\) 8.49082 0.695595 0.347798 0.937570i \(-0.386930\pi\)
0.347798 + 0.937570i \(0.386930\pi\)
\(150\) −4.43382 1.79191i −0.362020 0.146309i
\(151\) −2.97802 −0.242347 −0.121174 0.992631i \(-0.538666\pi\)
−0.121174 + 0.992631i \(0.538666\pi\)
\(152\) 2.65614i 0.215441i
\(153\) 5.99323i 0.484524i
\(154\) 2.80969 0.226411
\(155\) 1.76214 9.06294i 0.141538 0.727953i
\(156\) 0 0
\(157\) 14.3503i 1.14528i 0.819808 + 0.572639i \(0.194080\pi\)
−0.819808 + 0.572639i \(0.805920\pi\)
\(158\) 8.94252i 0.711428i
\(159\) −9.64136 −0.764609
\(160\) −2.19496 0.426774i −0.173527 0.0337395i
\(161\) −10.9934 −0.866398
\(162\) 1.60374i 0.126002i
\(163\) 12.7139i 0.995833i 0.867225 + 0.497916i \(0.165901\pi\)
−0.867225 + 0.497916i \(0.834099\pi\)
\(164\) −8.69023 −0.678593
\(165\) 2.74193 + 0.533123i 0.213459 + 0.0415036i
\(166\) 13.9980 1.08645
\(167\) 1.32171i 0.102277i 0.998692 + 0.0511387i \(0.0162851\pi\)
−0.998692 + 0.0511387i \(0.983715\pi\)
\(168\) 2.05754i 0.158743i
\(169\) 0 0
\(170\) −1.22662 + 6.30867i −0.0940772 + 0.483853i
\(171\) 5.53861 0.423548
\(172\) 3.35303i 0.255666i
\(173\) 23.9387i 1.82002i −0.414581 0.910012i \(-0.636072\pi\)
0.414581 0.910012i \(-0.363928\pi\)
\(174\) −7.61350 −0.577178
\(175\) −4.03036 + 9.97256i −0.304667 + 0.753854i
\(176\) 1.30608 0.0984493
\(177\) 14.0550i 1.05644i
\(178\) 15.6235i 1.17103i
\(179\) 0.841778 0.0629174 0.0314587 0.999505i \(-0.489985\pi\)
0.0314587 + 0.999505i \(0.489985\pi\)
\(180\) 0.889915 4.57696i 0.0663303 0.341147i
\(181\) −6.20054 −0.460883 −0.230441 0.973086i \(-0.574017\pi\)
−0.230441 + 0.973086i \(0.574017\pi\)
\(182\) 0 0
\(183\) 10.7130i 0.791930i
\(184\) −5.11025 −0.376732
\(185\) −6.55691 1.27488i −0.482074 0.0937313i
\(186\) −3.94914 −0.289565
\(187\) 3.75387i 0.274511i
\(188\) 7.30423i 0.532716i
\(189\) −10.4630 −0.761074
\(190\) −5.83013 1.13357i −0.422962 0.0822380i
\(191\) −10.7222 −0.775829 −0.387915 0.921695i \(-0.626804\pi\)
−0.387915 + 0.921695i \(0.626804\pi\)
\(192\) 0.956446i 0.0690255i
\(193\) 25.9564i 1.86838i 0.356774 + 0.934191i \(0.383877\pi\)
−0.356774 + 0.934191i \(0.616123\pi\)
\(194\) −5.05416 −0.362868
\(195\) 0 0
\(196\) −2.37217 −0.169441
\(197\) 5.14709i 0.366715i −0.983046 0.183358i \(-0.941303\pi\)
0.983046 0.183358i \(-0.0586966\pi\)
\(198\) 2.72345i 0.193547i
\(199\) 9.50447 0.673754 0.336877 0.941549i \(-0.390629\pi\)
0.336877 + 0.941549i \(0.390629\pi\)
\(200\) −1.87351 + 4.63573i −0.132477 + 0.327795i
\(201\) −10.5643 −0.745151
\(202\) 2.02811i 0.142697i
\(203\) 17.1243i 1.20189i
\(204\) 2.74898 0.192467
\(205\) −3.70877 + 19.0747i −0.259032 + 1.33224i
\(206\) −3.26212 −0.227283
\(207\) 10.6559i 0.740639i
\(208\) 0 0
\(209\) 3.46913 0.239964
\(210\) 4.51623 + 0.878107i 0.311650 + 0.0605951i
\(211\) 25.8770 1.78145 0.890724 0.454545i \(-0.150198\pi\)
0.890724 + 0.454545i \(0.150198\pi\)
\(212\) 10.0804i 0.692325i
\(213\) 13.4609i 0.922325i
\(214\) −1.89051 −0.129233
\(215\) 7.35978 + 1.43099i 0.501933 + 0.0975925i
\(216\) −4.86373 −0.330935
\(217\) 8.88240i 0.602977i
\(218\) 4.29397i 0.290824i
\(219\) 3.66842 0.247889
\(220\) 0.557400 2.86679i 0.0375799 0.193279i
\(221\) 0 0
\(222\) 2.85715i 0.191759i
\(223\) 0.669364i 0.0448239i 0.999749 + 0.0224120i \(0.00713455\pi\)
−0.999749 + 0.0224120i \(0.992865\pi\)
\(224\) 2.15124 0.143736
\(225\) −9.66647 3.90666i −0.644431 0.260444i
\(226\) 18.7154 1.24493
\(227\) 5.40643i 0.358837i −0.983773 0.179419i \(-0.942578\pi\)
0.983773 0.179419i \(-0.0574217\pi\)
\(228\) 2.54046i 0.168246i
\(229\) 2.23462 0.147668 0.0738340 0.997271i \(-0.476476\pi\)
0.0738340 + 0.997271i \(0.476476\pi\)
\(230\) −2.18092 + 11.2168i −0.143806 + 0.739614i
\(231\) −2.68731 −0.176812
\(232\) 7.96020i 0.522613i
\(233\) 0.131688i 0.00862719i −0.999991 0.00431360i \(-0.998627\pi\)
0.999991 0.00431360i \(-0.00137306\pi\)
\(234\) 0 0
\(235\) −16.0325 3.11726i −1.04585 0.203347i
\(236\) −14.6950 −0.956564
\(237\) 8.55303i 0.555579i
\(238\) 6.18300i 0.400784i
\(239\) −22.7145 −1.46928 −0.734639 0.678458i \(-0.762649\pi\)
−0.734639 + 0.678458i \(0.762649\pi\)
\(240\) 2.09936 + 0.408187i 0.135513 + 0.0263483i
\(241\) −21.9809 −1.41591 −0.707956 0.706256i \(-0.750383\pi\)
−0.707956 + 0.706256i \(0.750383\pi\)
\(242\) 9.29416i 0.597451i
\(243\) 16.1251i 1.03442i
\(244\) −11.2009 −0.717062
\(245\) −1.01238 + 5.20683i −0.0646787 + 0.332652i
\(246\) 8.31174 0.529937
\(247\) 0 0
\(248\) 4.12897i 0.262190i
\(249\) −13.3883 −0.848450
\(250\) 9.37569 + 6.09069i 0.592970 + 0.385209i
\(251\) 9.38645 0.592468 0.296234 0.955115i \(-0.404269\pi\)
0.296234 + 0.955115i \(0.404269\pi\)
\(252\) 4.48579i 0.282578i
\(253\) 6.67438i 0.419615i
\(254\) −17.6498 −1.10745
\(255\) 1.17319 6.03390i 0.0734682 0.377858i
\(256\) 1.00000 0.0625000
\(257\) 7.36768i 0.459583i 0.973240 + 0.229792i \(0.0738045\pi\)
−0.973240 + 0.229792i \(0.926195\pi\)
\(258\) 3.20699i 0.199659i
\(259\) 6.42630 0.399311
\(260\) 0 0
\(261\) −16.5987 −1.02743
\(262\) 8.59263i 0.530855i
\(263\) 20.4624i 1.26177i 0.775877 + 0.630884i \(0.217308\pi\)
−0.775877 + 0.630884i \(0.782692\pi\)
\(264\) −1.24919 −0.0768825
\(265\) 22.1261 + 4.30206i 1.35920 + 0.264273i
\(266\) 5.71399 0.350347
\(267\) 14.9430i 0.914498i
\(268\) 11.0454i 0.674706i
\(269\) −28.7835 −1.75496 −0.877480 0.479614i \(-0.840777\pi\)
−0.877480 + 0.479614i \(0.840777\pi\)
\(270\) −2.07572 + 10.6757i −0.126324 + 0.649703i
\(271\) 1.82589 0.110915 0.0554575 0.998461i \(-0.482338\pi\)
0.0554575 + 0.998461i \(0.482338\pi\)
\(272\) 2.87416i 0.174271i
\(273\) 0 0
\(274\) 6.43023 0.388465
\(275\) −6.05462 2.44695i −0.365107 0.147556i
\(276\) 4.88768 0.294203
\(277\) 1.10372i 0.0663163i −0.999450 0.0331581i \(-0.989443\pi\)
0.999450 0.0331581i \(-0.0105565\pi\)
\(278\) 1.79435i 0.107618i
\(279\) −8.60977 −0.515454
\(280\) 0.918093 4.72189i 0.0548666 0.282187i
\(281\) −2.66535 −0.159002 −0.0795008 0.996835i \(-0.525333\pi\)
−0.0795008 + 0.996835i \(0.525333\pi\)
\(282\) 6.98610i 0.416016i
\(283\) 24.5173i 1.45740i −0.684831 0.728702i \(-0.740124\pi\)
0.684831 0.728702i \(-0.259876\pi\)
\(284\) −14.0739 −0.835130
\(285\) 5.57621 + 1.08420i 0.330306 + 0.0642225i
\(286\) 0 0
\(287\) 18.6948i 1.10352i
\(288\) 2.08521i 0.122872i
\(289\) 8.73921 0.514071
\(290\) 17.4724 + 3.39721i 1.02601 + 0.199491i
\(291\) 4.83403 0.283376
\(292\) 3.83547i 0.224454i
\(293\) 8.74457i 0.510863i 0.966827 + 0.255432i \(0.0822176\pi\)
−0.966827 + 0.255432i \(0.917782\pi\)
\(294\) 2.26885 0.132322
\(295\) −6.27146 + 32.2550i −0.365138 + 1.87796i
\(296\) 2.98725 0.173631
\(297\) 6.35241i 0.368604i
\(298\) 8.49082i 0.491860i
\(299\) 0 0
\(300\) 1.79191 4.43382i 0.103456 0.255987i
\(301\) −7.21317 −0.415760
\(302\) 2.97802i 0.171366i
\(303\) 1.93977i 0.111437i
\(304\) 2.65614 0.152340
\(305\) −4.78025 + 24.5855i −0.273716 + 1.40776i
\(306\) 5.99323 0.342610
\(307\) 12.4345i 0.709674i 0.934928 + 0.354837i \(0.115464\pi\)
−0.934928 + 0.354837i \(0.884536\pi\)
\(308\) 2.80969i 0.160097i
\(309\) 3.12004 0.177493
\(310\) 9.06294 + 1.76214i 0.514740 + 0.100083i
\(311\) −0.269313 −0.0152713 −0.00763567 0.999971i \(-0.502431\pi\)
−0.00763567 + 0.999971i \(0.502431\pi\)
\(312\) 0 0
\(313\) 10.5866i 0.598389i 0.954192 + 0.299195i \(0.0967180\pi\)
−0.954192 + 0.299195i \(0.903282\pi\)
\(314\) −14.3503 −0.809833
\(315\) 9.84614 + 1.91442i 0.554767 + 0.107865i
\(316\) −8.94252 −0.503056
\(317\) 21.0117i 1.18014i 0.807354 + 0.590068i \(0.200899\pi\)
−0.807354 + 0.590068i \(0.799101\pi\)
\(318\) 9.64136i 0.540661i
\(319\) −10.3966 −0.582100
\(320\) 0.426774 2.19496i 0.0238574 0.122702i
\(321\) 1.80817 0.100922
\(322\) 10.9934i 0.612636i
\(323\) 7.63417i 0.424777i
\(324\) −1.60374 −0.0890966
\(325\) 0 0
\(326\) −12.7139 −0.704160
\(327\) 4.10695i 0.227115i
\(328\) 8.69023i 0.479838i
\(329\) 15.7131 0.866293
\(330\) −0.533123 + 2.74193i −0.0293475 + 0.150938i
\(331\) −26.6423 −1.46440 −0.732198 0.681092i \(-0.761505\pi\)
−0.732198 + 0.681092i \(0.761505\pi\)
\(332\) 13.9980i 0.768239i
\(333\) 6.22905i 0.341350i
\(334\) −1.32171 −0.0723210
\(335\) 24.2443 + 4.71390i 1.32461 + 0.257548i
\(336\) −2.05754 −0.112248
\(337\) 3.43601i 0.187171i −0.995611 0.0935856i \(-0.970167\pi\)
0.995611 0.0935856i \(-0.0298329\pi\)
\(338\) 0 0
\(339\) −17.9003 −0.972211
\(340\) −6.30867 1.22662i −0.342136 0.0665227i
\(341\) −5.39276 −0.292034
\(342\) 5.53861i 0.299494i
\(343\) 20.1618i 1.08863i
\(344\) −3.35303 −0.180783
\(345\) 2.08593 10.7283i 0.112303 0.577591i
\(346\) 23.9387 1.28695
\(347\) 13.6671i 0.733686i 0.930283 + 0.366843i \(0.119561\pi\)
−0.930283 + 0.366843i \(0.880439\pi\)
\(348\) 7.61350i 0.408127i
\(349\) 8.18464 0.438114 0.219057 0.975712i \(-0.429702\pi\)
0.219057 + 0.975712i \(0.429702\pi\)
\(350\) −9.97256 4.03036i −0.533056 0.215432i
\(351\) 0 0
\(352\) 1.30608i 0.0696142i
\(353\) 21.4420i 1.14124i 0.821214 + 0.570621i \(0.193297\pi\)
−0.821214 + 0.570621i \(0.806703\pi\)
\(354\) 14.0550 0.747014
\(355\) −6.00636 + 30.8916i −0.318785 + 1.63956i
\(356\) 15.6235 0.828043
\(357\) 5.91371i 0.312987i
\(358\) 0.841778i 0.0444893i
\(359\) −7.09493 −0.374456 −0.187228 0.982316i \(-0.559950\pi\)
−0.187228 + 0.982316i \(0.559950\pi\)
\(360\) 4.57696 + 0.889915i 0.241227 + 0.0469026i
\(361\) −11.9449 −0.628680
\(362\) 6.20054i 0.325893i
\(363\) 8.88936i 0.466571i
\(364\) 0 0
\(365\) −8.41871 1.63688i −0.440655 0.0856782i
\(366\) 10.7130 0.559979
\(367\) 23.9033i 1.24774i 0.781526 + 0.623872i \(0.214441\pi\)
−0.781526 + 0.623872i \(0.785559\pi\)
\(368\) 5.11025i 0.266390i
\(369\) 18.1210 0.943340
\(370\) 1.27488 6.55691i 0.0662780 0.340878i
\(371\) −21.6853 −1.12585
\(372\) 3.94914i 0.204753i
\(373\) 11.5127i 0.596105i −0.954549 0.298053i \(-0.903663\pi\)
0.954549 0.298053i \(-0.0963371\pi\)
\(374\) 3.75387 0.194108
\(375\) −8.96734 5.82542i −0.463071 0.300823i
\(376\) 7.30423 0.376687
\(377\) 0 0
\(378\) 10.4630i 0.538161i
\(379\) 2.64445 0.135836 0.0679180 0.997691i \(-0.478364\pi\)
0.0679180 + 0.997691i \(0.478364\pi\)
\(380\) 1.13357 5.83013i 0.0581510 0.299079i
\(381\) 16.8811 0.864843
\(382\) 10.7222i 0.548594i
\(383\) 16.2424i 0.829949i −0.909833 0.414975i \(-0.863790\pi\)
0.909833 0.414975i \(-0.136210\pi\)
\(384\) −0.956446 −0.0488084
\(385\) 6.16716 + 1.19910i 0.314307 + 0.0611119i
\(386\) −25.9564 −1.32115
\(387\) 6.99178i 0.355412i
\(388\) 5.05416i 0.256586i
\(389\) 23.7722 1.20530 0.602649 0.798006i \(-0.294112\pi\)
0.602649 + 0.798006i \(0.294112\pi\)
\(390\) 0 0
\(391\) −14.6877 −0.742787
\(392\) 2.37217i 0.119813i
\(393\) 8.21839i 0.414563i
\(394\) 5.14709 0.259307
\(395\) −3.81644 + 19.6285i −0.192026 + 0.987617i
\(396\) −2.72345 −0.136858
\(397\) 34.6274i 1.73790i −0.494901 0.868949i \(-0.664796\pi\)
0.494901 0.868949i \(-0.335204\pi\)
\(398\) 9.50447i 0.476416i
\(399\) −5.46513 −0.273598
\(400\) −4.63573 1.87351i −0.231786 0.0936754i
\(401\) −4.37028 −0.218242 −0.109121 0.994028i \(-0.534804\pi\)
−0.109121 + 0.994028i \(0.534804\pi\)
\(402\) 10.5643i 0.526901i
\(403\) 0 0
\(404\) 2.02811 0.100902
\(405\) −0.684434 + 3.52015i −0.0340098 + 0.174917i
\(406\) −17.1243 −0.849865
\(407\) 3.90159i 0.193394i
\(408\) 2.74898i 0.136095i
\(409\) −11.2279 −0.555186 −0.277593 0.960699i \(-0.589537\pi\)
−0.277593 + 0.960699i \(0.589537\pi\)
\(410\) −19.0747 3.70877i −0.942034 0.183163i
\(411\) −6.15017 −0.303366
\(412\) 3.26212i 0.160713i
\(413\) 31.6125i 1.55555i
\(414\) 10.6559 0.523711
\(415\) 30.7251 + 5.97398i 1.50823 + 0.293251i
\(416\) 0 0
\(417\) 1.71620i 0.0840427i
\(418\) 3.46913i 0.169681i
\(419\) −18.3230 −0.895137 −0.447569 0.894250i \(-0.647710\pi\)
−0.447569 + 0.894250i \(0.647710\pi\)
\(420\) −0.878107 + 4.51623i −0.0428472 + 0.220370i
\(421\) −8.92506 −0.434981 −0.217490 0.976062i \(-0.569787\pi\)
−0.217490 + 0.976062i \(0.569787\pi\)
\(422\) 25.8770i 1.25967i
\(423\) 15.2309i 0.740550i
\(424\) −10.0804 −0.489548
\(425\) −5.38476 + 13.3238i −0.261199 + 0.646300i
\(426\) 13.4609 0.652182
\(427\) 24.0958i 1.16608i
\(428\) 1.89051i 0.0913814i
\(429\) 0 0
\(430\) −1.43099 + 7.35978i −0.0690083 + 0.354920i
\(431\) −34.8123 −1.67685 −0.838425 0.545017i \(-0.816523\pi\)
−0.838425 + 0.545017i \(0.816523\pi\)
\(432\) 4.86373i 0.234006i
\(433\) 37.9777i 1.82509i −0.408972 0.912547i \(-0.634113\pi\)
0.408972 0.912547i \(-0.365887\pi\)
\(434\) −8.88240 −0.426369
\(435\) −16.7114 3.24925i −0.801249 0.155790i
\(436\) 4.29397 0.205644
\(437\) 13.5735i 0.649310i
\(438\) 3.66842i 0.175284i
\(439\) 16.6128 0.792887 0.396443 0.918059i \(-0.370244\pi\)
0.396443 + 0.918059i \(0.370244\pi\)
\(440\) 2.86679 + 0.557400i 0.136669 + 0.0265730i
\(441\) 4.94648 0.235547
\(442\) 0 0
\(443\) 16.5892i 0.788177i 0.919072 + 0.394089i \(0.128940\pi\)
−0.919072 + 0.394089i \(0.871060\pi\)
\(444\) −2.85715 −0.135594
\(445\) 6.66770 34.2930i 0.316079 1.62564i
\(446\) −0.669364 −0.0316953
\(447\) 8.12101i 0.384111i
\(448\) 2.15124i 0.101636i
\(449\) −19.4158 −0.916287 −0.458144 0.888878i \(-0.651485\pi\)
−0.458144 + 0.888878i \(0.651485\pi\)
\(450\) 3.90666 9.66647i 0.184162 0.455682i
\(451\) 11.3501 0.534456
\(452\) 18.7154i 0.880300i
\(453\) 2.84831i 0.133825i
\(454\) 5.40643 0.253736
\(455\) 0 0
\(456\) −2.54046 −0.118968
\(457\) 8.84923i 0.413950i 0.978346 + 0.206975i \(0.0663618\pi\)
−0.978346 + 0.206975i \(0.933638\pi\)
\(458\) 2.23462i 0.104417i
\(459\) −13.9791 −0.652490
\(460\) −11.2168 2.18092i −0.522986 0.101686i
\(461\) 17.3352 0.807380 0.403690 0.914896i \(-0.367727\pi\)
0.403690 + 0.914896i \(0.367727\pi\)
\(462\) 2.68731i 0.125025i
\(463\) 17.0652i 0.793088i 0.918016 + 0.396544i \(0.129791\pi\)
−0.918016 + 0.396544i \(0.870209\pi\)
\(464\) −7.96020 −0.369543
\(465\) −8.66821 1.68539i −0.401979 0.0781581i
\(466\) 0.131688 0.00610035
\(467\) 22.5357i 1.04283i −0.853303 0.521415i \(-0.825404\pi\)
0.853303 0.521415i \(-0.174596\pi\)
\(468\) 0 0
\(469\) −23.7613 −1.09720
\(470\) 3.11726 16.0325i 0.143788 0.739525i
\(471\) 13.7253 0.632427
\(472\) 14.6950i 0.676393i
\(473\) 4.37932i 0.201361i
\(474\) 8.55303 0.392854
\(475\) −12.3131 4.97630i −0.564966 0.228328i
\(476\) 6.18300 0.283397
\(477\) 21.0198i 0.962429i
\(478\) 22.7145i 1.03894i
\(479\) −33.3487 −1.52374 −0.761870 0.647731i \(-0.775718\pi\)
−0.761870 + 0.647731i \(0.775718\pi\)
\(480\) −0.408187 + 2.09936i −0.0186311 + 0.0958224i
\(481\) 0 0
\(482\) 21.9809i 1.00120i
\(483\) 10.5146i 0.478429i
\(484\) 9.29416 0.422462
\(485\) −11.0937 2.15699i −0.503739 0.0979437i
\(486\) 16.1251 0.731448
\(487\) 32.8658i 1.48929i 0.667459 + 0.744647i \(0.267382\pi\)
−0.667459 + 0.744647i \(0.732618\pi\)
\(488\) 11.2009i 0.507040i
\(489\) 12.1602 0.549903
\(490\) −5.20683 1.01238i −0.235221 0.0457348i
\(491\) −17.6525 −0.796645 −0.398322 0.917245i \(-0.630407\pi\)
−0.398322 + 0.917245i \(0.630407\pi\)
\(492\) 8.31174i 0.374722i
\(493\) 22.8789i 1.03041i
\(494\) 0 0
\(495\) −1.16230 + 5.97787i −0.0522414 + 0.268685i
\(496\) −4.12897 −0.185396
\(497\) 30.2762i 1.35807i
\(498\) 13.3883i 0.599945i
\(499\) 37.3227 1.67079 0.835396 0.549648i \(-0.185238\pi\)
0.835396 + 0.549648i \(0.185238\pi\)
\(500\) −6.09069 + 9.37569i −0.272384 + 0.419293i
\(501\) 1.26415 0.0564780
\(502\) 9.38645i 0.418938i
\(503\) 27.1489i 1.21051i −0.796032 0.605254i \(-0.793072\pi\)
0.796032 0.605254i \(-0.206928\pi\)
\(504\) −4.48579 −0.199813
\(505\) 0.865544 4.45162i 0.0385162 0.198094i
\(506\) 6.67438 0.296712
\(507\) 0 0
\(508\) 17.6498i 0.783083i
\(509\) −11.3658 −0.503781 −0.251890 0.967756i \(-0.581052\pi\)
−0.251890 + 0.967756i \(0.581052\pi\)
\(510\) 6.03390 + 1.17319i 0.267186 + 0.0519499i
\(511\) 8.25101 0.365003
\(512\) 1.00000i 0.0441942i
\(513\) 12.9188i 0.570377i
\(514\) −7.36768 −0.324975
\(515\) −7.16023 1.39219i −0.315517 0.0613471i
\(516\) 3.20699 0.141180
\(517\) 9.53989i 0.419564i
\(518\) 6.42630i 0.282355i
\(519\) −22.8961 −1.00503
\(520\) 0 0
\(521\) 31.9131 1.39814 0.699069 0.715054i \(-0.253598\pi\)
0.699069 + 0.715054i \(0.253598\pi\)
\(522\) 16.5987i 0.726506i
\(523\) 25.7706i 1.12687i −0.826160 0.563435i \(-0.809479\pi\)
0.826160 0.563435i \(-0.190521\pi\)
\(524\) −8.59263 −0.375371
\(525\) 9.53821 + 3.85482i 0.416282 + 0.168238i
\(526\) −20.4624 −0.892205
\(527\) 11.8673i 0.516948i
\(528\) 1.24919i 0.0543641i
\(529\) −3.11463 −0.135419
\(530\) −4.30206 + 22.1261i −0.186869 + 0.961097i
\(531\) 30.6422 1.32976
\(532\) 5.71399i 0.247733i
\(533\) 0 0
\(534\) −14.9430 −0.646648
\(535\) −4.14961 0.806822i −0.179403 0.0348820i
\(536\) −11.0454 −0.477089
\(537\) 0.805115i 0.0347433i
\(538\) 28.7835i 1.24094i
\(539\) 3.09824 0.133451
\(540\) −10.6757 2.07572i −0.459409 0.0893246i
\(541\) −29.0524 −1.24906 −0.624531 0.781000i \(-0.714710\pi\)
−0.624531 + 0.781000i \(0.714710\pi\)
\(542\) 1.82589i 0.0784287i
\(543\) 5.93048i 0.254501i
\(544\) 2.87416 0.123229
\(545\) 1.83255 9.42510i 0.0784980 0.403727i
\(546\) 0 0
\(547\) 14.0848i 0.602221i −0.953589 0.301111i \(-0.902643\pi\)
0.953589 0.301111i \(-0.0973574\pi\)
\(548\) 6.43023i 0.274686i
\(549\) 23.3562 0.996818
\(550\) 2.44695 6.05462i 0.104338 0.258170i
\(551\) −21.1434 −0.900740
\(552\) 4.88768i 0.208033i
\(553\) 19.2375i 0.818061i
\(554\) 1.10372 0.0468927
\(555\) −1.21936 + 6.27133i −0.0517588 + 0.266203i
\(556\) 1.79435 0.0760975
\(557\) 1.65529i 0.0701367i −0.999385 0.0350683i \(-0.988835\pi\)
0.999385 0.0350683i \(-0.0111649\pi\)
\(558\) 8.60977i 0.364481i
\(559\) 0 0
\(560\) 4.72189 + 0.918093i 0.199536 + 0.0387965i
\(561\) −3.59038 −0.151586
\(562\) 2.66535i 0.112431i
\(563\) 36.3020i 1.52995i 0.644061 + 0.764974i \(0.277248\pi\)
−0.644061 + 0.764974i \(0.722752\pi\)
\(564\) −6.98610 −0.294168
\(565\) 41.0797 + 7.98726i 1.72823 + 0.336027i
\(566\) 24.5173 1.03054
\(567\) 3.45002i 0.144887i
\(568\) 14.0739i 0.590526i
\(569\) 15.1125 0.633548 0.316774 0.948501i \(-0.397400\pi\)
0.316774 + 0.948501i \(0.397400\pi\)
\(570\) −1.08420 + 5.57621i −0.0454122 + 0.233562i
\(571\) −35.2350 −1.47454 −0.737269 0.675600i \(-0.763885\pi\)
−0.737269 + 0.675600i \(0.763885\pi\)
\(572\) 0 0
\(573\) 10.2552i 0.428416i
\(574\) 18.6948 0.780304
\(575\) −9.57409 + 23.6897i −0.399267 + 0.987929i
\(576\) −2.08521 −0.0868838
\(577\) 25.4407i 1.05911i 0.848275 + 0.529556i \(0.177641\pi\)
−0.848275 + 0.529556i \(0.822359\pi\)
\(578\) 8.73921i 0.363503i
\(579\) 24.8259 1.03173
\(580\) −3.39721 + 17.4724i −0.141061 + 0.725500i
\(581\) −30.1130 −1.24930
\(582\) 4.83403i 0.200377i
\(583\) 13.1658i 0.545271i
\(584\) 3.83547 0.158713
\(585\) 0 0
\(586\) −8.74457 −0.361235
\(587\) 16.4237i 0.677877i −0.940809 0.338938i \(-0.889932\pi\)
0.940809 0.338938i \(-0.110068\pi\)
\(588\) 2.26885i 0.0935660i
\(589\) −10.9671 −0.451892
\(590\) −32.2550 6.27146i −1.32792 0.258192i
\(591\) −4.92291 −0.202502
\(592\) 2.98725i 0.122775i
\(593\) 23.1420i 0.950327i −0.879898 0.475163i \(-0.842389\pi\)
0.879898 0.475163i \(-0.157611\pi\)
\(594\) 6.35241 0.260643
\(595\) 2.63875 13.5715i 0.108178 0.556376i
\(596\) −8.49082 −0.347798
\(597\) 9.09052i 0.372050i
\(598\) 0 0
\(599\) 27.7657 1.13448 0.567238 0.823554i \(-0.308012\pi\)
0.567238 + 0.823554i \(0.308012\pi\)
\(600\) 4.43382 + 1.79191i 0.181010 + 0.0731544i
\(601\) −13.2621 −0.540974 −0.270487 0.962724i \(-0.587185\pi\)
−0.270487 + 0.962724i \(0.587185\pi\)
\(602\) 7.21317i 0.293987i
\(603\) 23.0320i 0.937936i
\(604\) 2.97802 0.121174
\(605\) 3.96651 20.4003i 0.161262 0.829392i
\(606\) −1.93977 −0.0787979
\(607\) 37.9308i 1.53957i 0.638306 + 0.769783i \(0.279635\pi\)
−0.638306 + 0.769783i \(0.720365\pi\)
\(608\) 2.65614i 0.107721i
\(609\) 16.3785 0.663689
\(610\) −24.5855 4.78025i −0.995438 0.193546i
\(611\) 0 0
\(612\) 5.99323i 0.242262i
\(613\) 2.38979i 0.0965227i 0.998835 + 0.0482614i \(0.0153680\pi\)
−0.998835 + 0.0482614i \(0.984632\pi\)
\(614\) −12.4345 −0.501815
\(615\) 18.2440 + 3.54724i 0.735667 + 0.143038i
\(616\) −2.80969 −0.113205
\(617\) 19.0583i 0.767259i −0.923487 0.383630i \(-0.874674\pi\)
0.923487 0.383630i \(-0.125326\pi\)
\(618\) 3.12004i 0.125506i
\(619\) 18.6920 0.751294 0.375647 0.926763i \(-0.377421\pi\)
0.375647 + 0.926763i \(0.377421\pi\)
\(620\) −1.76214 + 9.06294i −0.0707692 + 0.363976i
\(621\) −24.8549 −0.997391
\(622\) 0.269313i 0.0107985i
\(623\) 33.6098i 1.34655i
\(624\) 0 0
\(625\) 17.9799 + 17.3701i 0.719197 + 0.694806i
\(626\) −10.5866 −0.423125
\(627\) 3.31803i 0.132509i
\(628\) 14.3503i 0.572639i
\(629\) 8.58584 0.342340
\(630\) −1.91442 + 9.84614i −0.0762723 + 0.392279i
\(631\) −21.5119 −0.856377 −0.428188 0.903689i \(-0.640848\pi\)
−0.428188 + 0.903689i \(0.640848\pi\)
\(632\) 8.94252i 0.355714i
\(633\) 24.7500i 0.983723i
\(634\) −21.0117 −0.834482
\(635\) −38.7406 7.53248i −1.53738 0.298917i
\(636\) 9.64136 0.382305
\(637\) 0 0
\(638\) 10.3966i 0.411607i
\(639\) 29.3470 1.16095
\(640\) 2.19496 + 0.426774i 0.0867635 + 0.0168697i
\(641\) 34.3509 1.35678 0.678390 0.734702i \(-0.262678\pi\)
0.678390 + 0.734702i \(0.262678\pi\)
\(642\) 1.80817i 0.0713629i
\(643\) 31.1063i 1.22671i −0.789807 0.613356i \(-0.789819\pi\)
0.789807 0.613356i \(-0.210181\pi\)
\(644\) 10.9934 0.433199
\(645\) 1.36866 7.03923i 0.0538910 0.277169i
\(646\) 7.63417 0.300362
\(647\) 4.61263i 0.181341i −0.995881 0.0906705i \(-0.971099\pi\)
0.995881 0.0906705i \(-0.0289010\pi\)
\(648\) 1.60374i 0.0630008i
\(649\) 19.1928 0.753385
\(650\) 0 0
\(651\) 8.49554 0.332966
\(652\) 12.7139i 0.497916i
\(653\) 15.0219i 0.587853i 0.955828 + 0.293926i \(0.0949621\pi\)
−0.955828 + 0.293926i \(0.905038\pi\)
\(654\) −4.10695 −0.160594
\(655\) −3.66711 + 18.8605i −0.143286 + 0.736941i
\(656\) 8.69023 0.339297
\(657\) 7.99776i 0.312022i
\(658\) 15.7131i 0.612562i
\(659\) 37.6385 1.46619 0.733095 0.680126i \(-0.238075\pi\)
0.733095 + 0.680126i \(0.238075\pi\)
\(660\) −2.74193 0.533123i −0.106730 0.0207518i
\(661\) 14.5505 0.565949 0.282974 0.959127i \(-0.408679\pi\)
0.282974 + 0.959127i \(0.408679\pi\)
\(662\) 26.6423i 1.03548i
\(663\) 0 0
\(664\) −13.9980 −0.543227
\(665\) 12.5420 + 2.43859i 0.486358 + 0.0945643i
\(666\) −6.22905 −0.241371
\(667\) 40.6786i 1.57508i
\(668\) 1.32171i 0.0511387i
\(669\) 0.640210 0.0247520
\(670\) −4.71390 + 24.2443i −0.182114 + 0.936638i
\(671\) 14.6292 0.564754
\(672\) 2.05754i 0.0793715i
\(673\) 3.50799i 0.135223i 0.997712 + 0.0676115i \(0.0215378\pi\)
−0.997712 + 0.0676115i \(0.978462\pi\)
\(674\) 3.43601 0.132350
\(675\) −9.11224 + 22.5469i −0.350730 + 0.867832i
\(676\) 0 0
\(677\) 33.5349i 1.28885i 0.764668 + 0.644425i \(0.222903\pi\)
−0.764668 + 0.644425i \(0.777097\pi\)
\(678\) 17.9003i 0.687457i
\(679\) 10.8727 0.417256
\(680\) 1.22662 6.30867i 0.0470386 0.241927i
\(681\) −5.17096 −0.198152
\(682\) 5.39276i 0.206499i
\(683\) 39.6392i 1.51675i 0.651817 + 0.758376i \(0.274007\pi\)
−0.651817 + 0.758376i \(0.725993\pi\)
\(684\) −5.53861 −0.211774
\(685\) 14.1141 + 2.74426i 0.539273 + 0.104853i
\(686\) 20.1618 0.769780
\(687\) 2.13730i 0.0815429i
\(688\) 3.35303i 0.127833i
\(689\) 0 0
\(690\) 10.7283 + 2.08593i 0.408418 + 0.0794102i
\(691\) 17.6727 0.672300 0.336150 0.941808i \(-0.390875\pi\)
0.336150 + 0.941808i \(0.390875\pi\)
\(692\) 23.9387i 0.910012i
\(693\) 5.85879i 0.222557i
\(694\) −13.6671 −0.518794
\(695\) 0.765783 3.93854i 0.0290478 0.149397i
\(696\) 7.61350 0.288589
\(697\) 24.9771i 0.946075i
\(698\) 8.18464i 0.309793i
\(699\) −0.125953 −0.00476397
\(700\) 4.03036 9.97256i 0.152333 0.376927i
\(701\) −46.5635 −1.75868 −0.879340 0.476194i \(-0.842016\pi\)
−0.879340 + 0.476194i \(0.842016\pi\)
\(702\) 0 0
\(703\) 7.93456i 0.299258i
\(704\) −1.30608 −0.0492247
\(705\) −2.98149 + 15.3342i −0.112289 + 0.577521i
\(706\) −21.4420 −0.806980
\(707\) 4.36294i 0.164085i
\(708\) 14.0550i 0.528219i
\(709\) 26.2769 0.986849 0.493425 0.869789i \(-0.335745\pi\)
0.493425 + 0.869789i \(0.335745\pi\)
\(710\) −30.8916 6.00636i −1.15934 0.225415i
\(711\) 18.6470 0.699318
\(712\) 15.6235i 0.585515i
\(713\) 21.1001i 0.790203i
\(714\) −5.91371 −0.221315
\(715\) 0 0
\(716\) −0.841778 −0.0314587
\(717\) 21.7252i 0.811342i
\(718\) 7.09493i 0.264780i
\(719\) −11.3458 −0.423128 −0.211564 0.977364i \(-0.567856\pi\)
−0.211564 + 0.977364i \(0.567856\pi\)
\(720\) −0.889915 + 4.57696i −0.0331652 + 0.170573i
\(721\) 7.01759 0.261349
\(722\) 11.9449i 0.444544i
\(723\) 21.0235i 0.781873i
\(724\) 6.20054 0.230441
\(725\) 36.9013 + 14.9135i 1.37048 + 0.553874i
\(726\) −8.88936 −0.329915
\(727\) 33.1374i 1.22900i 0.788918 + 0.614499i \(0.210642\pi\)
−0.788918 + 0.614499i \(0.789358\pi\)
\(728\) 0 0
\(729\) −10.6116 −0.393020
\(730\) 1.63688 8.41871i 0.0605836 0.311590i
\(731\) −9.63714 −0.356443
\(732\) 10.7130i 0.395965i
\(733\) 32.4103i 1.19710i 0.801085 + 0.598550i \(0.204256\pi\)
−0.801085 + 0.598550i \(0.795744\pi\)
\(734\) −23.9033 −0.882289
\(735\) 4.98005 + 0.968289i 0.183692 + 0.0357159i
\(736\) 5.11025 0.188366
\(737\) 14.4262i 0.531395i
\(738\) 18.1210i 0.667042i
\(739\) 19.0620 0.701208 0.350604 0.936524i \(-0.385976\pi\)
0.350604 + 0.936524i \(0.385976\pi\)
\(740\) 6.55691 + 1.27488i 0.241037 + 0.0468656i
\(741\) 0 0
\(742\) 21.6853i 0.796094i
\(743\) 25.4983i 0.935441i 0.883876 + 0.467721i \(0.154925\pi\)
−0.883876 + 0.467721i \(0.845075\pi\)
\(744\) 3.94914 0.144782
\(745\) −3.62366 + 18.6370i −0.132761 + 0.682808i
\(746\) 11.5127 0.421510
\(747\) 29.1887i 1.06796i
\(748\) 3.75387i 0.137255i
\(749\) 4.06694 0.148603
\(750\) 5.82542 8.96734i 0.212714 0.327441i
\(751\) −19.5176 −0.712209 −0.356104 0.934446i \(-0.615895\pi\)
−0.356104 + 0.934446i \(0.615895\pi\)
\(752\) 7.30423i 0.266358i
\(753\) 8.97763i 0.327163i
\(754\) 0 0
\(755\) 1.27094 6.53663i 0.0462543 0.237893i
\(756\) 10.4630 0.380537
\(757\) 23.6562i 0.859801i 0.902876 + 0.429900i \(0.141451\pi\)
−0.902876 + 0.429900i \(0.858549\pi\)
\(758\) 2.64445i 0.0960506i
\(759\) −6.38368 −0.231713
\(760\) 5.83013 + 1.13357i 0.211481 + 0.0411190i
\(761\) 16.2681 0.589717 0.294859 0.955541i \(-0.404727\pi\)
0.294859 + 0.955541i \(0.404727\pi\)
\(762\) 16.8811i 0.611537i
\(763\) 9.23735i 0.334414i
\(764\) 10.7222 0.387915
\(765\) 13.1549 + 2.55776i 0.475617 + 0.0924758i
\(766\) 16.2424 0.586863
\(767\) 0 0
\(768\) 0.956446i 0.0345128i
\(769\) 30.6878 1.10663 0.553314 0.832973i \(-0.313363\pi\)
0.553314 + 0.832973i \(0.313363\pi\)
\(770\) −1.19910 + 6.16716i −0.0432126 + 0.222249i
\(771\) 7.04679 0.253784
\(772\) 25.9564i 0.934191i
\(773\) 37.4115i 1.34560i −0.739826 0.672798i \(-0.765092\pi\)
0.739826 0.672798i \(-0.234908\pi\)
\(774\) 6.99178 0.251314
\(775\) 19.1408 + 7.73566i 0.687557 + 0.277873i
\(776\) 5.05416 0.181434
\(777\) 6.14640i 0.220501i
\(778\) 23.7722i 0.852275i
\(779\) 23.0825 0.827016
\(780\) 0 0
\(781\) 18.3816 0.657744
\(782\) 14.6877i 0.525230i
\(783\) 38.7163i 1.38361i
\(784\) 2.37217 0.0847204
\(785\) −31.4983 6.12433i −1.12422 0.218587i
\(786\) 8.21839 0.293140
\(787\) 8.05503i 0.287131i 0.989641 + 0.143565i \(0.0458567\pi\)
−0.989641 + 0.143565i \(0.954143\pi\)
\(788\) 5.14709i 0.183358i
\(789\) 19.5712 0.696754
\(790\) −19.6285 3.81644i −0.698351 0.135783i
\(791\) −40.2613 −1.43153
\(792\) 2.72345i 0.0967735i
\(793\) 0 0
\(794\) 34.6274 1.22888
\(795\) 4.11468 21.1624i 0.145933 0.750554i
\(796\) −9.50447 −0.336877
\(797\) 4.94210i 0.175058i −0.996162 0.0875290i \(-0.972103\pi\)
0.996162 0.0875290i \(-0.0278971\pi\)
\(798\) 5.46513i 0.193463i
\(799\) 20.9935 0.742697
\(800\) 1.87351 4.63573i 0.0662385 0.163898i
\(801\) −32.5783 −1.15110
\(802\) 4.37028i 0.154320i
\(803\) 5.00942i 0.176779i
\(804\) 10.5643 0.372576
\(805\) 4.69168 24.1300i 0.165360 0.850472i
\(806\) 0 0
\(807\) 27.5298i 0.969096i
\(808\) 2.02811i 0.0713485i
\(809\) −14.0553 −0.494160 −0.247080 0.968995i \(-0.579471\pi\)
−0.247080 + 0.968995i \(0.579471\pi\)
\(810\) −3.52015 0.684434i −0.123685 0.0240486i
\(811\) −11.0393 −0.387644 −0.193822 0.981037i \(-0.562088\pi\)
−0.193822 + 0.981037i \(0.562088\pi\)
\(812\) 17.1243i 0.600945i
\(813\) 1.74636i 0.0612477i
\(814\) −3.90159 −0.136750
\(815\) −27.9066 5.42598i −0.977527 0.190064i
\(816\) −2.74898 −0.0962335
\(817\) 8.90612i 0.311586i
\(818\) 11.2279i 0.392575i
\(819\) 0 0
\(820\) 3.70877 19.0747i 0.129516 0.666119i
\(821\) 4.13968 0.144476 0.0722379 0.997387i \(-0.476986\pi\)
0.0722379 + 0.997387i \(0.476986\pi\)
\(822\) 6.15017i 0.214512i
\(823\) 27.7827i 0.968445i 0.874945 + 0.484222i \(0.160897\pi\)
−0.874945 + 0.484222i \(0.839103\pi\)
\(824\) 3.26212 0.113641
\(825\) −2.34037 + 5.79092i −0.0814813 + 0.201614i
\(826\) 31.6125 1.09994
\(827\) 6.46886i 0.224944i 0.993655 + 0.112472i \(0.0358769\pi\)
−0.993655 + 0.112472i \(0.964123\pi\)
\(828\) 10.6559i 0.370320i
\(829\) −13.9415 −0.484208 −0.242104 0.970250i \(-0.577838\pi\)
−0.242104 + 0.970250i \(0.577838\pi\)
\(830\) −5.97398 + 30.7251i −0.207360 + 1.06648i
\(831\) −1.05565 −0.0366201
\(832\) 0 0
\(833\) 6.81800i 0.236230i
\(834\) −1.71620 −0.0594272
\(835\) −2.90112 0.564074i −0.100397 0.0195206i
\(836\) −3.46913 −0.119982
\(837\) 20.0822i 0.694142i
\(838\) 18.3230i 0.632958i
\(839\) 41.0483 1.41714 0.708571 0.705639i \(-0.249340\pi\)
0.708571 + 0.705639i \(0.249340\pi\)
\(840\) −4.51623 0.878107i −0.155825 0.0302976i
\(841\) 34.3648 1.18499
\(842\) 8.92506i 0.307578i
\(843\) 2.54927i 0.0878014i
\(844\) −25.8770 −0.890724
\(845\) 0 0
\(846\) −15.2309 −0.523648
\(847\) 19.9940i 0.687001i
\(848\) 10.0804i 0.346162i
\(849\) −23.4495 −0.804785
\(850\) −13.3238 5.38476i −0.457003 0.184696i
\(851\) 15.2656 0.523298
\(852\) 13.4609i 0.461162i
\(853\) 41.4242i 1.41834i −0.705039 0.709168i \(-0.749071\pi\)
0.705039 0.709168i \(-0.250929\pi\)
\(854\) 24.0958 0.824540
\(855\) −2.36374 + 12.1571i −0.0808381 + 0.415762i
\(856\) 1.89051 0.0646164
\(857\) 48.9642i 1.67259i 0.548282 + 0.836293i \(0.315282\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(858\) 0 0
\(859\) 17.0890 0.583068 0.291534 0.956560i \(-0.405834\pi\)
0.291534 + 0.956560i \(0.405834\pi\)
\(860\) −7.35978 1.43099i −0.250966 0.0487963i
\(861\) −17.8805 −0.609367
\(862\) 34.8123i 1.18571i
\(863\) 12.3756i 0.421269i −0.977565 0.210635i \(-0.932447\pi\)
0.977565 0.210635i \(-0.0675530\pi\)
\(864\) 4.86373 0.165467
\(865\) 52.5445 + 10.2164i 1.78657 + 0.347369i
\(866\) 37.9777 1.29054
\(867\) 8.35858i 0.283872i
\(868\) 8.88240i 0.301488i
\(869\) 11.6796 0.396204
\(870\) 3.24925 16.7114i 0.110160 0.566568i
\(871\) 0 0
\(872\) 4.29397i 0.145412i
\(873\) 10.5390i 0.356691i
\(874\) 13.5735 0.459132
\(875\) −20.1693 13.1025i −0.681848 0.442946i
\(876\) −3.66842 −0.123944
\(877\) 29.3663i 0.991629i 0.868429 + 0.495814i \(0.165130\pi\)
−0.868429 + 0.495814i \(0.834870\pi\)
\(878\) 16.6128i 0.560656i
\(879\) 8.36371 0.282101
\(880\) −0.557400 + 2.86679i −0.0187900 + 0.0966396i
\(881\) 6.22016 0.209563 0.104781 0.994495i \(-0.466586\pi\)
0.104781 + 0.994495i \(0.466586\pi\)
\(882\) 4.94648i 0.166557i
\(883\) 32.4762i 1.09291i −0.837488 0.546456i \(-0.815977\pi\)
0.837488 0.546456i \(-0.184023\pi\)
\(884\) 0 0
\(885\) 30.8502 + 5.99831i 1.03702 + 0.201631i
\(886\) −16.5892 −0.557325
\(887\) 36.5930i 1.22867i 0.789044 + 0.614337i \(0.210576\pi\)
−0.789044 + 0.614337i \(0.789424\pi\)
\(888\) 2.85715i 0.0958796i
\(889\) 37.9689 1.27344
\(890\) 34.2930 + 6.66770i 1.14950 + 0.223502i
\(891\) 2.09461 0.0701720
\(892\) 0.669364i 0.0224120i
\(893\) 19.4011i 0.649232i
\(894\) 8.12101 0.271607
\(895\) −0.359249 + 1.84767i −0.0120084 + 0.0617608i
\(896\) −2.15124 −0.0718678
\(897\) 0 0
\(898\) 19.4158i 0.647913i
\(899\) 32.8674 1.09619
\(900\) 9.66647 + 3.90666i 0.322216 + 0.130222i
\(901\) −28.9727 −0.965220
\(902\) 11.3501i 0.377918i
\(903\) 6.89901i 0.229585i
\(904\) −18.7154 −0.622466
\(905\) 2.64623 13.6100i 0.0879637 0.452410i
\(906\) −2.84831 −0.0946288
\(907\) 6.23158i 0.206916i 0.994634 + 0.103458i \(0.0329908\pi\)
−0.994634 + 0.103458i \(0.967009\pi\)
\(908\) 5.40643i 0.179419i
\(909\) −4.22903 −0.140268
\(910\) 0 0
\(911\) 47.4457 1.57195 0.785973 0.618261i \(-0.212163\pi\)
0.785973 + 0.618261i \(0.212163\pi\)
\(912\) 2.54046i 0.0841229i
\(913\) 18.2825i 0.605061i
\(914\) −8.84923 −0.292707
\(915\) 23.5147 + 4.57205i 0.777372 + 0.151147i
\(916\) −2.23462 −0.0738340
\(917\) 18.4848i 0.610422i
\(918\) 13.9791i 0.461380i
\(919\) 52.7882 1.74132 0.870661 0.491883i \(-0.163691\pi\)
0.870661 + 0.491883i \(0.163691\pi\)
\(920\) 2.18092 11.2168i 0.0719029 0.369807i
\(921\) 11.8929 0.391885
\(922\) 17.3352i 0.570904i
\(923\) 0 0
\(924\) 2.68731 0.0884061
\(925\) 5.59664 13.8481i 0.184016 0.455322i
\(926\) −17.0652 −0.560798
\(927\) 6.80220i 0.223414i
\(928\) 7.96020i 0.261306i
\(929\) −7.11857 −0.233553 −0.116776 0.993158i \(-0.537256\pi\)
−0.116776 + 0.993158i \(0.537256\pi\)
\(930\) 1.68539 8.66821i 0.0552661 0.284242i
\(931\) 6.30082 0.206501
\(932\) 0.131688i 0.00431360i
\(933\) 0.257583i 0.00843290i
\(934\) 22.5357 0.737392
\(935\) 8.23962 + 1.60206i 0.269464 + 0.0523929i
\(936\) 0 0
\(937\) 5.13448i 0.167736i 0.996477 + 0.0838680i \(0.0267274\pi\)
−0.996477 + 0.0838680i \(0.973273\pi\)
\(938\) 23.7613i 0.775834i
\(939\) 10.1255 0.330433
\(940\) 16.0325 + 3.11726i 0.522923 + 0.101674i
\(941\) −44.3630 −1.44619 −0.723096 0.690748i \(-0.757281\pi\)
−0.723096 + 0.690748i \(0.757281\pi\)
\(942\) 13.7253i 0.447193i
\(943\) 44.4092i 1.44616i
\(944\) 14.6950 0.478282
\(945\) 4.46536 22.9660i 0.145258 0.747084i
\(946\) 4.37932 0.142384
\(947\) 54.3234i 1.76527i 0.470056 + 0.882637i \(0.344234\pi\)
−0.470056 + 0.882637i \(0.655766\pi\)
\(948\) 8.55303i 0.277790i
\(949\) 0 0
\(950\) 4.97630 12.3131i 0.161453 0.399491i
\(951\) 20.0966 0.651676
\(952\) 6.18300i 0.200392i
\(953\) 37.8138i 1.22491i −0.790506 0.612454i \(-0.790182\pi\)
0.790506 0.612454i \(-0.209818\pi\)
\(954\) 21.0198 0.680540
\(955\) 4.57595 23.5348i 0.148074 0.761567i
\(956\) 22.7145 0.734639
\(957\) 9.94383i 0.321438i
\(958\) 33.3487i 1.07745i
\(959\) −13.8330 −0.446690
\(960\) −2.09936 0.408187i −0.0677567 0.0131742i
\(961\) −13.9516 −0.450052
\(962\) 0 0
\(963\) 3.94212i 0.127033i
\(964\) 21.9809 0.707956
\(965\) −56.9733 11.0775i −1.83404 0.356598i
\(966\) −10.5146 −0.338300
\(967\) 8.18366i 0.263169i −0.991305 0.131584i \(-0.957994\pi\)
0.991305 0.131584i \(-0.0420065\pi\)
\(968\) 9.29416i 0.298726i
\(969\) −7.30167 −0.234563
\(970\) 2.15699 11.0937i 0.0692567 0.356197i
\(971\) −19.0931 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(972\) 16.1251i 0.517212i
\(973\) 3.86008i 0.123748i
\(974\) −32.8658 −1.05309
\(975\) 0 0
\(976\) 11.2009 0.358531
\(977\) 2.67273i 0.0855082i −0.999086 0.0427541i \(-0.986387\pi\)
0.999086 0.0427541i \(-0.0136132\pi\)
\(978\) 12.1602i 0.388840i
\(979\) −20.4055 −0.652162
\(980\) 1.01238 5.20683i 0.0323394 0.166326i
\(981\) −8.95383 −0.285874
\(982\) 17.6525i 0.563313i
\(983\) 5.29656i 0.168934i −0.996426 0.0844670i \(-0.973081\pi\)
0.996426 0.0844670i \(-0.0269188\pi\)
\(984\) −8.31174 −0.264969
\(985\) 11.2977 + 2.19665i 0.359974 + 0.0699910i
\(986\) −22.8789 −0.728612
\(987\) 15.0288i 0.478371i
\(988\) 0 0
\(989\) −17.1348 −0.544855
\(990\) −5.97787 1.16230i −0.189989 0.0369402i
\(991\) −26.1528 −0.830773 −0.415386 0.909645i \(-0.636354\pi\)
−0.415386 + 0.909645i \(0.636354\pi\)
\(992\) 4.12897i 0.131095i
\(993\) 25.4820i 0.808646i
\(994\) 30.2762 0.960304
\(995\) −4.05627 + 20.8620i −0.128592 + 0.661369i
\(996\) 13.3883 0.424225
\(997\) 19.6903i 0.623597i −0.950148 0.311799i \(-0.899069\pi\)
0.950148 0.311799i \(-0.100931\pi\)
\(998\) 37.3227i 1.18143i
\(999\) 14.5292 0.459683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.g.339.13 yes 18
5.2 odd 4 8450.2.a.ct.1.4 9
5.3 odd 4 8450.2.a.da.1.6 9
5.4 even 2 inner 1690.2.b.g.339.6 yes 18
13.5 odd 4 1690.2.c.h.1689.6 18
13.8 odd 4 1690.2.c.g.1689.6 18
13.12 even 2 1690.2.b.f.339.4 18
65.12 odd 4 8450.2.a.cx.1.4 9
65.34 odd 4 1690.2.c.h.1689.13 18
65.38 odd 4 8450.2.a.cw.1.6 9
65.44 odd 4 1690.2.c.g.1689.13 18
65.64 even 2 1690.2.b.f.339.15 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.4 18 13.12 even 2
1690.2.b.f.339.15 yes 18 65.64 even 2
1690.2.b.g.339.6 yes 18 5.4 even 2 inner
1690.2.b.g.339.13 yes 18 1.1 even 1 trivial
1690.2.c.g.1689.6 18 13.8 odd 4
1690.2.c.g.1689.13 18 65.44 odd 4
1690.2.c.h.1689.6 18 13.5 odd 4
1690.2.c.h.1689.13 18 65.34 odd 4
8450.2.a.ct.1.4 9 5.2 odd 4
8450.2.a.cw.1.6 9 65.38 odd 4
8450.2.a.cx.1.4 9 65.12 odd 4
8450.2.a.da.1.6 9 5.3 odd 4