Properties

Label 1690.2.c.g.1689.13
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,-18,0,18,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.13
Root \(2.17115i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.g.1689.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.956446i q^{3} +1.00000 q^{4} +(-2.19496 + 0.426774i) q^{5} -0.956446i q^{6} -2.15124 q^{7} -1.00000 q^{8} +2.08521 q^{9} +(2.19496 - 0.426774i) q^{10} +1.30608i q^{11} +0.956446i q^{12} +2.15124 q^{14} +(-0.408187 - 2.09936i) q^{15} +1.00000 q^{16} -2.87416i q^{17} -2.08521 q^{18} -2.65614i q^{19} +(-2.19496 + 0.426774i) q^{20} -2.05754i q^{21} -1.30608i q^{22} -5.11025i q^{23} -0.956446i q^{24} +(4.63573 - 1.87351i) q^{25} +4.86373i q^{27} -2.15124 q^{28} -7.96020 q^{29} +(0.408187 + 2.09936i) q^{30} +4.12897i q^{31} -1.00000 q^{32} -1.24919 q^{33} +2.87416i q^{34} +(4.72189 - 0.918093i) q^{35} +2.08521 q^{36} +2.98725 q^{37} +2.65614i q^{38} +(2.19496 - 0.426774i) q^{40} -8.69023i q^{41} +2.05754i q^{42} -3.35303i q^{43} +1.30608i q^{44} +(-4.57696 + 0.889915i) q^{45} +5.11025i q^{46} +7.30423 q^{47} +0.956446i q^{48} -2.37217 q^{49} +(-4.63573 + 1.87351i) q^{50} +2.74898 q^{51} +10.0804i q^{53} -4.86373i q^{54} +(-0.557400 - 2.86679i) q^{55} +2.15124 q^{56} +2.54046 q^{57} +7.96020 q^{58} +14.6950i q^{59} +(-0.408187 - 2.09936i) q^{60} +11.2009 q^{61} -4.12897i q^{62} -4.48579 q^{63} +1.00000 q^{64} +1.24919 q^{66} +11.0454 q^{67} -2.87416i q^{68} +4.88768 q^{69} +(-4.72189 + 0.918093i) q^{70} -14.0739i q^{71} -2.08521 q^{72} +3.83547 q^{73} -2.98725 q^{74} +(1.79191 + 4.43382i) q^{75} -2.65614i q^{76} -2.80969i q^{77} +8.94252 q^{79} +(-2.19496 + 0.426774i) q^{80} +1.60374 q^{81} +8.69023i q^{82} +13.9980 q^{83} -2.05754i q^{84} +(1.22662 + 6.30867i) q^{85} +3.35303i q^{86} -7.61350i q^{87} -1.30608i q^{88} -15.6235i q^{89} +(4.57696 - 0.889915i) q^{90} -5.11025i q^{92} -3.94914 q^{93} -7.30423 q^{94} +(1.13357 + 5.83013i) q^{95} -0.956446i q^{96} -5.05416 q^{97} +2.37217 q^{98} +2.72345i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{2} + 18 q^{4} + 2 q^{5} + 2 q^{7} - 18 q^{8} - 16 q^{9} - 2 q^{10} - 2 q^{14} - 14 q^{15} + 18 q^{16} + 16 q^{18} + 2 q^{20} - 22 q^{25} + 2 q^{28} - 30 q^{29} + 14 q^{30} - 18 q^{32} + 28 q^{33}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.956446i 0.552204i 0.961128 + 0.276102i \(0.0890428\pi\)
−0.961128 + 0.276102i \(0.910957\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.19496 + 0.426774i −0.981617 + 0.190859i
\(6\) 0.956446i 0.390467i
\(7\) −2.15124 −0.813092 −0.406546 0.913630i \(-0.633267\pi\)
−0.406546 + 0.913630i \(0.633267\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.08521 0.695070
\(10\) 2.19496 0.426774i 0.694108 0.134958i
\(11\) 1.30608i 0.393797i 0.980424 + 0.196899i \(0.0630870\pi\)
−0.980424 + 0.196899i \(0.936913\pi\)
\(12\) 0.956446i 0.276102i
\(13\) 0 0
\(14\) 2.15124 0.574943
\(15\) −0.408187 2.09936i −0.105393 0.542053i
\(16\) 1.00000 0.250000
\(17\) 2.87416i 0.697086i −0.937293 0.348543i \(-0.886677\pi\)
0.937293 0.348543i \(-0.113323\pi\)
\(18\) −2.08521 −0.491489
\(19\) 2.65614i 0.609360i −0.952455 0.304680i \(-0.901450\pi\)
0.952455 0.304680i \(-0.0985496\pi\)
\(20\) −2.19496 + 0.426774i −0.490809 + 0.0954296i
\(21\) 2.05754i 0.448993i
\(22\) 1.30608i 0.278457i
\(23\) 5.11025i 1.06556i −0.846254 0.532780i \(-0.821147\pi\)
0.846254 0.532780i \(-0.178853\pi\)
\(24\) 0.956446i 0.195234i
\(25\) 4.63573 1.87351i 0.927145 0.374702i
\(26\) 0 0
\(27\) 4.86373i 0.936025i
\(28\) −2.15124 −0.406546
\(29\) −7.96020 −1.47817 −0.739086 0.673611i \(-0.764742\pi\)
−0.739086 + 0.673611i \(0.764742\pi\)
\(30\) 0.408187 + 2.09936i 0.0745243 + 0.383290i
\(31\) 4.12897i 0.741585i 0.928716 + 0.370792i \(0.120914\pi\)
−0.928716 + 0.370792i \(0.879086\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.24919 −0.217457
\(34\) 2.87416i 0.492914i
\(35\) 4.72189 0.918093i 0.798145 0.155186i
\(36\) 2.08521 0.347535
\(37\) 2.98725 0.491101 0.245551 0.969384i \(-0.421031\pi\)
0.245551 + 0.969384i \(0.421031\pi\)
\(38\) 2.65614i 0.430883i
\(39\) 0 0
\(40\) 2.19496 0.426774i 0.347054 0.0674789i
\(41\) 8.69023i 1.35719i −0.734514 0.678593i \(-0.762590\pi\)
0.734514 0.678593i \(-0.237410\pi\)
\(42\) 2.05754i 0.317486i
\(43\) 3.35303i 0.511332i −0.966765 0.255666i \(-0.917705\pi\)
0.966765 0.255666i \(-0.0822948\pi\)
\(44\) 1.30608i 0.196899i
\(45\) −4.57696 + 0.889915i −0.682293 + 0.132661i
\(46\) 5.11025i 0.753465i
\(47\) 7.30423 1.06543 0.532716 0.846294i \(-0.321172\pi\)
0.532716 + 0.846294i \(0.321172\pi\)
\(48\) 0.956446i 0.138051i
\(49\) −2.37217 −0.338882
\(50\) −4.63573 + 1.87351i −0.655591 + 0.264954i
\(51\) 2.74898 0.384934
\(52\) 0 0
\(53\) 10.0804i 1.38465i 0.721586 + 0.692325i \(0.243413\pi\)
−0.721586 + 0.692325i \(0.756587\pi\)
\(54\) 4.86373i 0.661870i
\(55\) −0.557400 2.86679i −0.0751599 0.386558i
\(56\) 2.15124 0.287471
\(57\) 2.54046 0.336491
\(58\) 7.96020 1.04523
\(59\) 14.6950i 1.91313i 0.291522 + 0.956564i \(0.405838\pi\)
−0.291522 + 0.956564i \(0.594162\pi\)
\(60\) −0.408187 2.09936i −0.0526967 0.271027i
\(61\) 11.2009 1.43412 0.717062 0.697009i \(-0.245486\pi\)
0.717062 + 0.697009i \(0.245486\pi\)
\(62\) 4.12897i 0.524380i
\(63\) −4.48579 −0.565156
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 1.24919 0.153765
\(67\) 11.0454 1.34941 0.674706 0.738087i \(-0.264270\pi\)
0.674706 + 0.738087i \(0.264270\pi\)
\(68\) 2.87416i 0.348543i
\(69\) 4.88768 0.588407
\(70\) −4.72189 + 0.918093i −0.564374 + 0.109733i
\(71\) 14.0739i 1.67026i −0.550053 0.835130i \(-0.685392\pi\)
0.550053 0.835130i \(-0.314608\pi\)
\(72\) −2.08521 −0.245744
\(73\) 3.83547 0.448907 0.224454 0.974485i \(-0.427940\pi\)
0.224454 + 0.974485i \(0.427940\pi\)
\(74\) −2.98725 −0.347261
\(75\) 1.79191 + 4.43382i 0.206912 + 0.511974i
\(76\) 2.65614i 0.304680i
\(77\) 2.80969i 0.320193i
\(78\) 0 0
\(79\) 8.94252 1.00611 0.503056 0.864254i \(-0.332209\pi\)
0.503056 + 0.864254i \(0.332209\pi\)
\(80\) −2.19496 + 0.426774i −0.245404 + 0.0477148i
\(81\) 1.60374 0.178193
\(82\) 8.69023i 0.959676i
\(83\) 13.9980 1.53648 0.768239 0.640163i \(-0.221133\pi\)
0.768239 + 0.640163i \(0.221133\pi\)
\(84\) 2.05754i 0.224496i
\(85\) 1.22662 + 6.30867i 0.133045 + 0.684272i
\(86\) 3.35303i 0.361567i
\(87\) 7.61350i 0.816253i
\(88\) 1.30608i 0.139228i
\(89\) 15.6235i 1.65609i −0.560665 0.828043i \(-0.689454\pi\)
0.560665 0.828043i \(-0.310546\pi\)
\(90\) 4.57696 0.889915i 0.482454 0.0938052i
\(91\) 0 0
\(92\) 5.11025i 0.532780i
\(93\) −3.94914 −0.409506
\(94\) −7.30423 −0.753374
\(95\) 1.13357 + 5.83013i 0.116302 + 0.598159i
\(96\) 0.956446i 0.0976169i
\(97\) −5.05416 −0.513172 −0.256586 0.966521i \(-0.582598\pi\)
−0.256586 + 0.966521i \(0.582598\pi\)
\(98\) 2.37217 0.239626
\(99\) 2.72345i 0.273717i
\(100\) 4.63573 1.87351i 0.463573 0.187351i
\(101\) 2.02811 0.201804 0.100902 0.994896i \(-0.467827\pi\)
0.100902 + 0.994896i \(0.467827\pi\)
\(102\) −2.74898 −0.272189
\(103\) 3.26212i 0.321426i 0.987001 + 0.160713i \(0.0513794\pi\)
−0.987001 + 0.160713i \(0.948621\pi\)
\(104\) 0 0
\(105\) 0.878107 + 4.51623i 0.0856945 + 0.440739i
\(106\) 10.0804i 0.979095i
\(107\) 1.89051i 0.182763i −0.995816 0.0913814i \(-0.970872\pi\)
0.995816 0.0913814i \(-0.0291282\pi\)
\(108\) 4.86373i 0.468013i
\(109\) 4.29397i 0.411287i 0.978627 + 0.205644i \(0.0659288\pi\)
−0.978627 + 0.205644i \(0.934071\pi\)
\(110\) 0.557400 + 2.86679i 0.0531461 + 0.273338i
\(111\) 2.85715i 0.271188i
\(112\) −2.15124 −0.203273
\(113\) 18.7154i 1.76060i 0.474418 + 0.880300i \(0.342658\pi\)
−0.474418 + 0.880300i \(0.657342\pi\)
\(114\) −2.54046 −0.237935
\(115\) 2.18092 + 11.2168i 0.203372 + 1.04597i
\(116\) −7.96020 −0.739086
\(117\) 0 0
\(118\) 14.6950i 1.35279i
\(119\) 6.18300i 0.566795i
\(120\) 0.408187 + 2.09936i 0.0372622 + 0.191645i
\(121\) 9.29416 0.844924
\(122\) −11.2009 −1.01408
\(123\) 8.31174 0.749444
\(124\) 4.12897i 0.370792i
\(125\) −9.37569 + 6.09069i −0.838587 + 0.544768i
\(126\) 4.48579 0.399626
\(127\) 17.6498i 1.56617i 0.621918 + 0.783083i \(0.286354\pi\)
−0.621918 + 0.783083i \(0.713646\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 3.20699 0.282360
\(130\) 0 0
\(131\) 8.59263 0.750742 0.375371 0.926875i \(-0.377515\pi\)
0.375371 + 0.926875i \(0.377515\pi\)
\(132\) −1.24919 −0.108728
\(133\) 5.71399i 0.495466i
\(134\) −11.0454 −0.954178
\(135\) −2.07572 10.6757i −0.178649 0.918819i
\(136\) 2.87416i 0.246457i
\(137\) −6.43023 −0.549372 −0.274686 0.961534i \(-0.588574\pi\)
−0.274686 + 0.961534i \(0.588574\pi\)
\(138\) −4.88768 −0.416067
\(139\) −1.79435 −0.152195 −0.0760975 0.997100i \(-0.524246\pi\)
−0.0760975 + 0.997100i \(0.524246\pi\)
\(140\) 4.72189 0.918093i 0.399073 0.0775931i
\(141\) 6.98610i 0.588336i
\(142\) 14.0739i 1.18105i
\(143\) 0 0
\(144\) 2.08521 0.173768
\(145\) 17.4724 3.39721i 1.45100 0.282123i
\(146\) −3.83547 −0.317426
\(147\) 2.26885i 0.187132i
\(148\) 2.98725 0.245551
\(149\) 8.49082i 0.695595i −0.937570 0.347798i \(-0.886930\pi\)
0.937570 0.347798i \(-0.113070\pi\)
\(150\) −1.79191 4.43382i −0.146309 0.362020i
\(151\) 2.97802i 0.242347i −0.992631 0.121174i \(-0.961334\pi\)
0.992631 0.121174i \(-0.0386658\pi\)
\(152\) 2.65614i 0.215441i
\(153\) 5.99323i 0.484524i
\(154\) 2.80969i 0.226411i
\(155\) −1.76214 9.06294i −0.141538 0.727953i
\(156\) 0 0
\(157\) 14.3503i 1.14528i −0.819808 0.572639i \(-0.805920\pi\)
0.819808 0.572639i \(-0.194080\pi\)
\(158\) −8.94252 −0.711428
\(159\) −9.64136 −0.764609
\(160\) 2.19496 0.426774i 0.173527 0.0337395i
\(161\) 10.9934i 0.866398i
\(162\) −1.60374 −0.126002
\(163\) 12.7139 0.995833 0.497916 0.867225i \(-0.334099\pi\)
0.497916 + 0.867225i \(0.334099\pi\)
\(164\) 8.69023i 0.678593i
\(165\) 2.74193 0.533123i 0.213459 0.0415036i
\(166\) −13.9980 −1.08645
\(167\) 1.32171 0.102277 0.0511387 0.998692i \(-0.483715\pi\)
0.0511387 + 0.998692i \(0.483715\pi\)
\(168\) 2.05754i 0.158743i
\(169\) 0 0
\(170\) −1.22662 6.30867i −0.0940772 0.483853i
\(171\) 5.53861i 0.423548i
\(172\) 3.35303i 0.255666i
\(173\) 23.9387i 1.82002i −0.414581 0.910012i \(-0.636072\pi\)
0.414581 0.910012i \(-0.363928\pi\)
\(174\) 7.61350i 0.577178i
\(175\) −9.97256 + 4.03036i −0.753854 + 0.304667i
\(176\) 1.30608i 0.0984493i
\(177\) −14.0550 −1.05644
\(178\) 15.6235i 1.17103i
\(179\) −0.841778 −0.0629174 −0.0314587 0.999505i \(-0.510015\pi\)
−0.0314587 + 0.999505i \(0.510015\pi\)
\(180\) −4.57696 + 0.889915i −0.341147 + 0.0663303i
\(181\) 6.20054 0.460883 0.230441 0.973086i \(-0.425983\pi\)
0.230441 + 0.973086i \(0.425983\pi\)
\(182\) 0 0
\(183\) 10.7130i 0.791930i
\(184\) 5.11025i 0.376732i
\(185\) −6.55691 + 1.27488i −0.482074 + 0.0937313i
\(186\) 3.94914 0.289565
\(187\) 3.75387 0.274511
\(188\) 7.30423 0.532716
\(189\) 10.4630i 0.761074i
\(190\) −1.13357 5.83013i −0.0822380 0.422962i
\(191\) −10.7222 −0.775829 −0.387915 0.921695i \(-0.626804\pi\)
−0.387915 + 0.921695i \(0.626804\pi\)
\(192\) 0.956446i 0.0690255i
\(193\) 25.9564 1.86838 0.934191 0.356774i \(-0.116123\pi\)
0.934191 + 0.356774i \(0.116123\pi\)
\(194\) 5.05416 0.362868
\(195\) 0 0
\(196\) −2.37217 −0.169441
\(197\) 5.14709 0.366715 0.183358 0.983046i \(-0.441303\pi\)
0.183358 + 0.983046i \(0.441303\pi\)
\(198\) 2.72345i 0.193547i
\(199\) −9.50447 −0.673754 −0.336877 0.941549i \(-0.609371\pi\)
−0.336877 + 0.941549i \(0.609371\pi\)
\(200\) −4.63573 + 1.87351i −0.327795 + 0.132477i
\(201\) 10.5643i 0.745151i
\(202\) −2.02811 −0.142697
\(203\) 17.1243 1.20189
\(204\) 2.74898 0.192467
\(205\) 3.70877 + 19.0747i 0.259032 + 1.33224i
\(206\) 3.26212i 0.227283i
\(207\) 10.6559i 0.740639i
\(208\) 0 0
\(209\) 3.46913 0.239964
\(210\) −0.878107 4.51623i −0.0605951 0.311650i
\(211\) 25.8770 1.78145 0.890724 0.454545i \(-0.150198\pi\)
0.890724 + 0.454545i \(0.150198\pi\)
\(212\) 10.0804i 0.692325i
\(213\) 13.4609 0.922325
\(214\) 1.89051i 0.129233i
\(215\) 1.43099 + 7.35978i 0.0975925 + 0.501933i
\(216\) 4.86373i 0.330935i
\(217\) 8.88240i 0.602977i
\(218\) 4.29397i 0.290824i
\(219\) 3.66842i 0.247889i
\(220\) −0.557400 2.86679i −0.0375799 0.193279i
\(221\) 0 0
\(222\) 2.85715i 0.191759i
\(223\) −0.669364 −0.0448239 −0.0224120 0.999749i \(-0.507135\pi\)
−0.0224120 + 0.999749i \(0.507135\pi\)
\(224\) 2.15124 0.143736
\(225\) 9.66647 3.90666i 0.644431 0.260444i
\(226\) 18.7154i 1.24493i
\(227\) 5.40643 0.358837 0.179419 0.983773i \(-0.442578\pi\)
0.179419 + 0.983773i \(0.442578\pi\)
\(228\) 2.54046 0.168246
\(229\) 2.23462i 0.147668i 0.997271 + 0.0738340i \(0.0235235\pi\)
−0.997271 + 0.0738340i \(0.976476\pi\)
\(230\) −2.18092 11.2168i −0.143806 0.739614i
\(231\) 2.68731 0.176812
\(232\) 7.96020 0.522613
\(233\) 0.131688i 0.00862719i −0.999991 0.00431360i \(-0.998627\pi\)
0.999991 0.00431360i \(-0.00137306\pi\)
\(234\) 0 0
\(235\) −16.0325 + 3.11726i −1.04585 + 0.203347i
\(236\) 14.6950i 0.956564i
\(237\) 8.55303i 0.555579i
\(238\) 6.18300i 0.400784i
\(239\) 22.7145i 1.46928i 0.678458 + 0.734639i \(0.262649\pi\)
−0.678458 + 0.734639i \(0.737351\pi\)
\(240\) −0.408187 2.09936i −0.0263483 0.135513i
\(241\) 21.9809i 1.41591i −0.706256 0.707956i \(-0.749617\pi\)
0.706256 0.707956i \(-0.250383\pi\)
\(242\) −9.29416 −0.597451
\(243\) 16.1251i 1.03442i
\(244\) 11.2009 0.717062
\(245\) 5.20683 1.01238i 0.332652 0.0646787i
\(246\) −8.31174 −0.529937
\(247\) 0 0
\(248\) 4.12897i 0.262190i
\(249\) 13.3883i 0.848450i
\(250\) 9.37569 6.09069i 0.592970 0.385209i
\(251\) −9.38645 −0.592468 −0.296234 0.955115i \(-0.595731\pi\)
−0.296234 + 0.955115i \(0.595731\pi\)
\(252\) −4.48579 −0.282578
\(253\) 6.67438 0.419615
\(254\) 17.6498i 1.10745i
\(255\) −6.03390 + 1.17319i −0.377858 + 0.0734682i
\(256\) 1.00000 0.0625000
\(257\) 7.36768i 0.459583i 0.973240 + 0.229792i \(0.0738045\pi\)
−0.973240 + 0.229792i \(0.926195\pi\)
\(258\) −3.20699 −0.199659
\(259\) −6.42630 −0.399311
\(260\) 0 0
\(261\) −16.5987 −1.02743
\(262\) −8.59263 −0.530855
\(263\) 20.4624i 1.26177i −0.775877 0.630884i \(-0.782692\pi\)
0.775877 0.630884i \(-0.217308\pi\)
\(264\) 1.24919 0.0768825
\(265\) −4.30206 22.1261i −0.264273 1.35920i
\(266\) 5.71399i 0.350347i
\(267\) 14.9430 0.914498
\(268\) 11.0454 0.674706
\(269\) −28.7835 −1.75496 −0.877480 0.479614i \(-0.840777\pi\)
−0.877480 + 0.479614i \(0.840777\pi\)
\(270\) 2.07572 + 10.6757i 0.126324 + 0.649703i
\(271\) 1.82589i 0.110915i 0.998461 + 0.0554575i \(0.0176617\pi\)
−0.998461 + 0.0554575i \(0.982338\pi\)
\(272\) 2.87416i 0.174271i
\(273\) 0 0
\(274\) 6.43023 0.388465
\(275\) 2.44695 + 6.05462i 0.147556 + 0.365107i
\(276\) 4.88768 0.294203
\(277\) 1.10372i 0.0663163i −0.999450 0.0331581i \(-0.989443\pi\)
0.999450 0.0331581i \(-0.0105565\pi\)
\(278\) 1.79435 0.107618
\(279\) 8.60977i 0.515454i
\(280\) −4.72189 + 0.918093i −0.282187 + 0.0548666i
\(281\) 2.66535i 0.159002i −0.996835 0.0795008i \(-0.974667\pi\)
0.996835 0.0795008i \(-0.0253326\pi\)
\(282\) 6.98610i 0.416016i
\(283\) 24.5173i 1.45740i −0.684831 0.728702i \(-0.740124\pi\)
0.684831 0.728702i \(-0.259876\pi\)
\(284\) 14.0739i 0.835130i
\(285\) −5.57621 + 1.08420i −0.330306 + 0.0642225i
\(286\) 0 0
\(287\) 18.6948i 1.10352i
\(288\) −2.08521 −0.122872
\(289\) 8.73921 0.514071
\(290\) −17.4724 + 3.39721i −1.02601 + 0.199491i
\(291\) 4.83403i 0.283376i
\(292\) 3.83547 0.224454
\(293\) 8.74457 0.510863 0.255432 0.966827i \(-0.417782\pi\)
0.255432 + 0.966827i \(0.417782\pi\)
\(294\) 2.26885i 0.132322i
\(295\) −6.27146 32.2550i −0.365138 1.87796i
\(296\) −2.98725 −0.173631
\(297\) −6.35241 −0.368604
\(298\) 8.49082i 0.491860i
\(299\) 0 0
\(300\) 1.79191 + 4.43382i 0.103456 + 0.255987i
\(301\) 7.21317i 0.415760i
\(302\) 2.97802i 0.171366i
\(303\) 1.93977i 0.111437i
\(304\) 2.65614i 0.152340i
\(305\) −24.5855 + 4.78025i −1.40776 + 0.273716i
\(306\) 5.99323i 0.342610i
\(307\) 12.4345 0.709674 0.354837 0.934928i \(-0.384536\pi\)
0.354837 + 0.934928i \(0.384536\pi\)
\(308\) 2.80969i 0.160097i
\(309\) −3.12004 −0.177493
\(310\) 1.76214 + 9.06294i 0.100083 + 0.514740i
\(311\) 0.269313 0.0152713 0.00763567 0.999971i \(-0.497569\pi\)
0.00763567 + 0.999971i \(0.497569\pi\)
\(312\) 0 0
\(313\) 10.5866i 0.598389i −0.954192 0.299195i \(-0.903282\pi\)
0.954192 0.299195i \(-0.0967180\pi\)
\(314\) 14.3503i 0.809833i
\(315\) 9.84614 1.91442i 0.554767 0.107865i
\(316\) 8.94252 0.503056
\(317\) −21.0117 −1.18014 −0.590068 0.807354i \(-0.700899\pi\)
−0.590068 + 0.807354i \(0.700899\pi\)
\(318\) 9.64136 0.540661
\(319\) 10.3966i 0.582100i
\(320\) −2.19496 + 0.426774i −0.122702 + 0.0238574i
\(321\) 1.80817 0.100922
\(322\) 10.9934i 0.612636i
\(323\) −7.63417 −0.424777
\(324\) 1.60374 0.0890966
\(325\) 0 0
\(326\) −12.7139 −0.704160
\(327\) −4.10695 −0.227115
\(328\) 8.69023i 0.479838i
\(329\) −15.7131 −0.866293
\(330\) −2.74193 + 0.533123i −0.150938 + 0.0293475i
\(331\) 26.6423i 1.46440i 0.681092 + 0.732198i \(0.261505\pi\)
−0.681092 + 0.732198i \(0.738495\pi\)
\(332\) 13.9980 0.768239
\(333\) 6.22905 0.341350
\(334\) −1.32171 −0.0723210
\(335\) −24.2443 + 4.71390i −1.32461 + 0.257548i
\(336\) 2.05754i 0.112248i
\(337\) 3.43601i 0.187171i −0.995611 0.0935856i \(-0.970167\pi\)
0.995611 0.0935856i \(-0.0298329\pi\)
\(338\) 0 0
\(339\) −17.9003 −0.972211
\(340\) 1.22662 + 6.30867i 0.0665227 + 0.342136i
\(341\) −5.39276 −0.292034
\(342\) 5.53861i 0.299494i
\(343\) 20.1618 1.08863
\(344\) 3.35303i 0.180783i
\(345\) −10.7283 + 2.08593i −0.577591 + 0.112303i
\(346\) 23.9387i 1.28695i
\(347\) 13.6671i 0.733686i −0.930283 0.366843i \(-0.880439\pi\)
0.930283 0.366843i \(-0.119561\pi\)
\(348\) 7.61350i 0.408127i
\(349\) 8.18464i 0.438114i 0.975712 + 0.219057i \(0.0702981\pi\)
−0.975712 + 0.219057i \(0.929702\pi\)
\(350\) 9.97256 4.03036i 0.533056 0.215432i
\(351\) 0 0
\(352\) 1.30608i 0.0696142i
\(353\) −21.4420 −1.14124 −0.570621 0.821214i \(-0.693297\pi\)
−0.570621 + 0.821214i \(0.693297\pi\)
\(354\) 14.0550 0.747014
\(355\) 6.00636 + 30.8916i 0.318785 + 1.63956i
\(356\) 15.6235i 0.828043i
\(357\) −5.91371 −0.312987
\(358\) 0.841778 0.0444893
\(359\) 7.09493i 0.374456i −0.982316 0.187228i \(-0.940050\pi\)
0.982316 0.187228i \(-0.0599503\pi\)
\(360\) 4.57696 0.889915i 0.241227 0.0469026i
\(361\) 11.9449 0.628680
\(362\) −6.20054 −0.325893
\(363\) 8.88936i 0.466571i
\(364\) 0 0
\(365\) −8.41871 + 1.63688i −0.440655 + 0.0856782i
\(366\) 10.7130i 0.559979i
\(367\) 23.9033i 1.24774i −0.781526 0.623872i \(-0.785559\pi\)
0.781526 0.623872i \(-0.214441\pi\)
\(368\) 5.11025i 0.266390i
\(369\) 18.1210i 0.943340i
\(370\) 6.55691 1.27488i 0.340878 0.0662780i
\(371\) 21.6853i 1.12585i
\(372\) −3.94914 −0.204753
\(373\) 11.5127i 0.596105i 0.954549 + 0.298053i \(0.0963371\pi\)
−0.954549 + 0.298053i \(0.903663\pi\)
\(374\) −3.75387 −0.194108
\(375\) −5.82542 8.96734i −0.300823 0.463071i
\(376\) −7.30423 −0.376687
\(377\) 0 0
\(378\) 10.4630i 0.538161i
\(379\) 2.64445i 0.135836i −0.997691 0.0679180i \(-0.978364\pi\)
0.997691 0.0679180i \(-0.0216356\pi\)
\(380\) 1.13357 + 5.83013i 0.0581510 + 0.299079i
\(381\) −16.8811 −0.864843
\(382\) 10.7222 0.548594
\(383\) 16.2424 0.829949 0.414975 0.909833i \(-0.363790\pi\)
0.414975 + 0.909833i \(0.363790\pi\)
\(384\) 0.956446i 0.0488084i
\(385\) 1.19910 + 6.16716i 0.0611119 + 0.314307i
\(386\) −25.9564 −1.32115
\(387\) 6.99178i 0.355412i
\(388\) −5.05416 −0.256586
\(389\) −23.7722 −1.20530 −0.602649 0.798006i \(-0.705888\pi\)
−0.602649 + 0.798006i \(0.705888\pi\)
\(390\) 0 0
\(391\) −14.6877 −0.742787
\(392\) 2.37217 0.119813
\(393\) 8.21839i 0.414563i
\(394\) −5.14709 −0.259307
\(395\) −19.6285 + 3.81644i −0.987617 + 0.192026i
\(396\) 2.72345i 0.136858i
\(397\) −34.6274 −1.73790 −0.868949 0.494901i \(-0.835204\pi\)
−0.868949 + 0.494901i \(0.835204\pi\)
\(398\) 9.50447 0.476416
\(399\) −5.46513 −0.273598
\(400\) 4.63573 1.87351i 0.231786 0.0936754i
\(401\) 4.37028i 0.218242i −0.994028 0.109121i \(-0.965196\pi\)
0.994028 0.109121i \(-0.0348035\pi\)
\(402\) 10.5643i 0.526901i
\(403\) 0 0
\(404\) 2.02811 0.100902
\(405\) −3.52015 + 0.684434i −0.174917 + 0.0340098i
\(406\) −17.1243 −0.849865
\(407\) 3.90159i 0.193394i
\(408\) −2.74898 −0.136095
\(409\) 11.2279i 0.555186i 0.960699 + 0.277593i \(0.0895366\pi\)
−0.960699 + 0.277593i \(0.910463\pi\)
\(410\) −3.70877 19.0747i −0.183163 0.942034i
\(411\) 6.15017i 0.303366i
\(412\) 3.26212i 0.160713i
\(413\) 31.6125i 1.55555i
\(414\) 10.6559i 0.523711i
\(415\) −30.7251 + 5.97398i −1.50823 + 0.293251i
\(416\) 0 0
\(417\) 1.71620i 0.0840427i
\(418\) −3.46913 −0.169681
\(419\) −18.3230 −0.895137 −0.447569 0.894250i \(-0.647710\pi\)
−0.447569 + 0.894250i \(0.647710\pi\)
\(420\) 0.878107 + 4.51623i 0.0428472 + 0.220370i
\(421\) 8.92506i 0.434981i 0.976062 + 0.217490i \(0.0697871\pi\)
−0.976062 + 0.217490i \(0.930213\pi\)
\(422\) −25.8770 −1.25967
\(423\) 15.2309 0.740550
\(424\) 10.0804i 0.489548i
\(425\) −5.38476 13.3238i −0.261199 0.646300i
\(426\) −13.4609 −0.652182
\(427\) −24.0958 −1.16608
\(428\) 1.89051i 0.0913814i
\(429\) 0 0
\(430\) −1.43099 7.35978i −0.0690083 0.354920i
\(431\) 34.8123i 1.67685i 0.545017 + 0.838425i \(0.316523\pi\)
−0.545017 + 0.838425i \(0.683477\pi\)
\(432\) 4.86373i 0.234006i
\(433\) 37.9777i 1.82509i −0.408972 0.912547i \(-0.634113\pi\)
0.408972 0.912547i \(-0.365887\pi\)
\(434\) 8.88240i 0.426369i
\(435\) 3.24925 + 16.7114i 0.155790 + 0.801249i
\(436\) 4.29397i 0.205644i
\(437\) −13.5735 −0.649310
\(438\) 3.66842i 0.175284i
\(439\) −16.6128 −0.792887 −0.396443 0.918059i \(-0.629756\pi\)
−0.396443 + 0.918059i \(0.629756\pi\)
\(440\) 0.557400 + 2.86679i 0.0265730 + 0.136669i
\(441\) −4.94648 −0.235547
\(442\) 0 0
\(443\) 16.5892i 0.788177i −0.919072 0.394089i \(-0.871060\pi\)
0.919072 0.394089i \(-0.128940\pi\)
\(444\) 2.85715i 0.135594i
\(445\) 6.66770 + 34.2930i 0.316079 + 1.62564i
\(446\) 0.669364 0.0316953
\(447\) 8.12101 0.384111
\(448\) −2.15124 −0.101636
\(449\) 19.4158i 0.916287i −0.888878 0.458144i \(-0.848515\pi\)
0.888878 0.458144i \(-0.151485\pi\)
\(450\) −9.66647 + 3.90666i −0.455682 + 0.184162i
\(451\) 11.3501 0.534456
\(452\) 18.7154i 0.880300i
\(453\) 2.84831 0.133825
\(454\) −5.40643 −0.253736
\(455\) 0 0
\(456\) −2.54046 −0.118968
\(457\) −8.84923 −0.413950 −0.206975 0.978346i \(-0.566362\pi\)
−0.206975 + 0.978346i \(0.566362\pi\)
\(458\) 2.23462i 0.104417i
\(459\) 13.9791 0.652490
\(460\) 2.18092 + 11.2168i 0.101686 + 0.522986i
\(461\) 17.3352i 0.807380i −0.914896 0.403690i \(-0.867727\pi\)
0.914896 0.403690i \(-0.132273\pi\)
\(462\) −2.68731 −0.125025
\(463\) 17.0652 0.793088 0.396544 0.918016i \(-0.370209\pi\)
0.396544 + 0.918016i \(0.370209\pi\)
\(464\) −7.96020 −0.369543
\(465\) 8.66821 1.68539i 0.401979 0.0781581i
\(466\) 0.131688i 0.00610035i
\(467\) 22.5357i 1.04283i −0.853303 0.521415i \(-0.825404\pi\)
0.853303 0.521415i \(-0.174596\pi\)
\(468\) 0 0
\(469\) −23.7613 −1.09720
\(470\) 16.0325 3.11726i 0.739525 0.143788i
\(471\) 13.7253 0.632427
\(472\) 14.6950i 0.676393i
\(473\) 4.37932 0.201361
\(474\) 8.55303i 0.392854i
\(475\) −4.97630 12.3131i −0.228328 0.564966i
\(476\) 6.18300i 0.283397i
\(477\) 21.0198i 0.962429i
\(478\) 22.7145i 1.03894i
\(479\) 33.3487i 1.52374i −0.647731 0.761870i \(-0.724282\pi\)
0.647731 0.761870i \(-0.275718\pi\)
\(480\) 0.408187 + 2.09936i 0.0186311 + 0.0958224i
\(481\) 0 0
\(482\) 21.9809i 1.00120i
\(483\) −10.5146 −0.478429
\(484\) 9.29416 0.422462
\(485\) 11.0937 2.15699i 0.503739 0.0979437i
\(486\) 16.1251i 0.731448i
\(487\) −32.8658 −1.48929 −0.744647 0.667459i \(-0.767382\pi\)
−0.744647 + 0.667459i \(0.767382\pi\)
\(488\) −11.2009 −0.507040
\(489\) 12.1602i 0.549903i
\(490\) −5.20683 + 1.01238i −0.235221 + 0.0457348i
\(491\) 17.6525 0.796645 0.398322 0.917245i \(-0.369593\pi\)
0.398322 + 0.917245i \(0.369593\pi\)
\(492\) 8.31174 0.374722
\(493\) 22.8789i 1.03041i
\(494\) 0 0
\(495\) −1.16230 5.97787i −0.0522414 0.268685i
\(496\) 4.12897i 0.185396i
\(497\) 30.2762i 1.35807i
\(498\) 13.3883i 0.599945i
\(499\) 37.3227i 1.67079i −0.549648 0.835396i \(-0.685238\pi\)
0.549648 0.835396i \(-0.314762\pi\)
\(500\) −9.37569 + 6.09069i −0.419293 + 0.272384i
\(501\) 1.26415i 0.0564780i
\(502\) 9.38645 0.418938
\(503\) 27.1489i 1.21051i 0.796032 + 0.605254i \(0.206928\pi\)
−0.796032 + 0.605254i \(0.793072\pi\)
\(504\) 4.48579 0.199813
\(505\) −4.45162 + 0.865544i −0.198094 + 0.0385162i
\(506\) −6.67438 −0.296712
\(507\) 0 0
\(508\) 17.6498i 0.783083i
\(509\) 11.3658i 0.503781i 0.967756 + 0.251890i \(0.0810522\pi\)
−0.967756 + 0.251890i \(0.918948\pi\)
\(510\) 6.03390 1.17319i 0.267186 0.0519499i
\(511\) −8.25101 −0.365003
\(512\) −1.00000 −0.0441942
\(513\) 12.9188 0.570377
\(514\) 7.36768i 0.324975i
\(515\) −1.39219 7.16023i −0.0613471 0.315517i
\(516\) 3.20699 0.141180
\(517\) 9.53989i 0.419564i
\(518\) 6.42630 0.282355
\(519\) 22.8961 1.00503
\(520\) 0 0
\(521\) 31.9131 1.39814 0.699069 0.715054i \(-0.253598\pi\)
0.699069 + 0.715054i \(0.253598\pi\)
\(522\) 16.5987 0.726506
\(523\) 25.7706i 1.12687i 0.826160 + 0.563435i \(0.190521\pi\)
−0.826160 + 0.563435i \(0.809479\pi\)
\(524\) 8.59263 0.375371
\(525\) −3.85482 9.53821i −0.168238 0.416282i
\(526\) 20.4624i 0.892205i
\(527\) 11.8673 0.516948
\(528\) −1.24919 −0.0543641
\(529\) −3.11463 −0.135419
\(530\) 4.30206 + 22.1261i 0.186869 + 0.961097i
\(531\) 30.6422i 1.32976i
\(532\) 5.71399i 0.247733i
\(533\) 0 0
\(534\) −14.9430 −0.646648
\(535\) 0.806822 + 4.14961i 0.0348820 + 0.179403i
\(536\) −11.0454 −0.477089
\(537\) 0.805115i 0.0347433i
\(538\) 28.7835 1.24094
\(539\) 3.09824i 0.133451i
\(540\) −2.07572 10.6757i −0.0893246 0.459409i
\(541\) 29.0524i 1.24906i −0.781000 0.624531i \(-0.785290\pi\)
0.781000 0.624531i \(-0.214710\pi\)
\(542\) 1.82589i 0.0784287i
\(543\) 5.93048i 0.254501i
\(544\) 2.87416i 0.123229i
\(545\) −1.83255 9.42510i −0.0784980 0.403727i
\(546\) 0 0
\(547\) 14.0848i 0.602221i 0.953589 + 0.301111i \(0.0973574\pi\)
−0.953589 + 0.301111i \(0.902643\pi\)
\(548\) −6.43023 −0.274686
\(549\) 23.3562 0.996818
\(550\) −2.44695 6.05462i −0.104338 0.258170i
\(551\) 21.1434i 0.900740i
\(552\) −4.88768 −0.208033
\(553\) −19.2375 −0.818061
\(554\) 1.10372i 0.0468927i
\(555\) −1.21936 6.27133i −0.0517588 0.266203i
\(556\) −1.79435 −0.0760975
\(557\) −1.65529 −0.0701367 −0.0350683 0.999385i \(-0.511165\pi\)
−0.0350683 + 0.999385i \(0.511165\pi\)
\(558\) 8.60977i 0.364481i
\(559\) 0 0
\(560\) 4.72189 0.918093i 0.199536 0.0387965i
\(561\) 3.59038i 0.151586i
\(562\) 2.66535i 0.112431i
\(563\) 36.3020i 1.52995i 0.644061 + 0.764974i \(0.277248\pi\)
−0.644061 + 0.764974i \(0.722752\pi\)
\(564\) 6.98610i 0.294168i
\(565\) −7.98726 41.0797i −0.336027 1.72823i
\(566\) 24.5173i 1.03054i
\(567\) −3.45002 −0.144887
\(568\) 14.0739i 0.590526i
\(569\) −15.1125 −0.633548 −0.316774 0.948501i \(-0.602600\pi\)
−0.316774 + 0.948501i \(0.602600\pi\)
\(570\) 5.57621 1.08420i 0.233562 0.0454122i
\(571\) 35.2350 1.47454 0.737269 0.675600i \(-0.236115\pi\)
0.737269 + 0.675600i \(0.236115\pi\)
\(572\) 0 0
\(573\) 10.2552i 0.428416i
\(574\) 18.6948i 0.780304i
\(575\) −9.57409 23.6897i −0.399267 0.987929i
\(576\) 2.08521 0.0868838
\(577\) −25.4407 −1.05911 −0.529556 0.848275i \(-0.677641\pi\)
−0.529556 + 0.848275i \(0.677641\pi\)
\(578\) −8.73921 −0.363503
\(579\) 24.8259i 1.03173i
\(580\) 17.4724 3.39721i 0.725500 0.141061i
\(581\) −30.1130 −1.24930
\(582\) 4.83403i 0.200377i
\(583\) −13.1658 −0.545271
\(584\) −3.83547 −0.158713
\(585\) 0 0
\(586\) −8.74457 −0.361235
\(587\) 16.4237 0.677877 0.338938 0.940809i \(-0.389932\pi\)
0.338938 + 0.940809i \(0.389932\pi\)
\(588\) 2.26885i 0.0935660i
\(589\) 10.9671 0.451892
\(590\) 6.27146 + 32.2550i 0.258192 + 1.32792i
\(591\) 4.92291i 0.202502i
\(592\) 2.98725 0.122775
\(593\) −23.1420 −0.950327 −0.475163 0.879898i \(-0.657611\pi\)
−0.475163 + 0.879898i \(0.657611\pi\)
\(594\) 6.35241 0.260643
\(595\) −2.63875 13.5715i −0.108178 0.556376i
\(596\) 8.49082i 0.347798i
\(597\) 9.09052i 0.372050i
\(598\) 0 0
\(599\) 27.7657 1.13448 0.567238 0.823554i \(-0.308012\pi\)
0.567238 + 0.823554i \(0.308012\pi\)
\(600\) −1.79191 4.43382i −0.0731544 0.181010i
\(601\) −13.2621 −0.540974 −0.270487 0.962724i \(-0.587185\pi\)
−0.270487 + 0.962724i \(0.587185\pi\)
\(602\) 7.21317i 0.293987i
\(603\) 23.0320 0.937936
\(604\) 2.97802i 0.121174i
\(605\) −20.4003 + 3.96651i −0.829392 + 0.161262i
\(606\) 1.93977i 0.0787979i
\(607\) 37.9308i 1.53957i −0.638306 0.769783i \(-0.720365\pi\)
0.638306 0.769783i \(-0.279635\pi\)
\(608\) 2.65614i 0.107721i
\(609\) 16.3785i 0.663689i
\(610\) 24.5855 4.78025i 0.995438 0.193546i
\(611\) 0 0
\(612\) 5.99323i 0.242262i
\(613\) −2.38979 −0.0965227 −0.0482614 0.998835i \(-0.515368\pi\)
−0.0482614 + 0.998835i \(0.515368\pi\)
\(614\) −12.4345 −0.501815
\(615\) −18.2440 + 3.54724i −0.735667 + 0.143038i
\(616\) 2.80969i 0.113205i
\(617\) 19.0583 0.767259 0.383630 0.923487i \(-0.374674\pi\)
0.383630 + 0.923487i \(0.374674\pi\)
\(618\) 3.12004 0.125506
\(619\) 18.6920i 0.751294i 0.926763 + 0.375647i \(0.122579\pi\)
−0.926763 + 0.375647i \(0.877421\pi\)
\(620\) −1.76214 9.06294i −0.0707692 0.363976i
\(621\) 24.8549 0.997391
\(622\) −0.269313 −0.0107985
\(623\) 33.6098i 1.34655i
\(624\) 0 0
\(625\) 17.9799 17.3701i 0.719197 0.694806i
\(626\) 10.5866i 0.423125i
\(627\) 3.31803i 0.132509i
\(628\) 14.3503i 0.572639i
\(629\) 8.58584i 0.342340i
\(630\) −9.84614 + 1.91442i −0.392279 + 0.0762723i
\(631\) 21.5119i 0.856377i −0.903689 0.428188i \(-0.859152\pi\)
0.903689 0.428188i \(-0.140848\pi\)
\(632\) −8.94252 −0.355714
\(633\) 24.7500i 0.983723i
\(634\) 21.0117 0.834482
\(635\) −7.53248 38.7406i −0.298917 1.53738i
\(636\) −9.64136 −0.382305
\(637\) 0 0
\(638\) 10.3966i 0.411607i
\(639\) 29.3470i 1.16095i
\(640\) 2.19496 0.426774i 0.0867635 0.0168697i
\(641\) −34.3509 −1.35678 −0.678390 0.734702i \(-0.737322\pi\)
−0.678390 + 0.734702i \(0.737322\pi\)
\(642\) −1.80817 −0.0713629
\(643\) 31.1063 1.22671 0.613356 0.789807i \(-0.289819\pi\)
0.613356 + 0.789807i \(0.289819\pi\)
\(644\) 10.9934i 0.433199i
\(645\) −7.03923 + 1.36866i −0.277169 + 0.0538910i
\(646\) 7.63417 0.300362
\(647\) 4.61263i 0.181341i −0.995881 0.0906705i \(-0.971099\pi\)
0.995881 0.0906705i \(-0.0289010\pi\)
\(648\) −1.60374 −0.0630008
\(649\) −19.1928 −0.753385
\(650\) 0 0
\(651\) 8.49554 0.332966
\(652\) 12.7139 0.497916
\(653\) 15.0219i 0.587853i −0.955828 0.293926i \(-0.905038\pi\)
0.955828 0.293926i \(-0.0949621\pi\)
\(654\) 4.10695 0.160594
\(655\) −18.8605 + 3.66711i −0.736941 + 0.143286i
\(656\) 8.69023i 0.339297i
\(657\) 7.99776 0.312022
\(658\) 15.7131 0.612562
\(659\) 37.6385 1.46619 0.733095 0.680126i \(-0.238075\pi\)
0.733095 + 0.680126i \(0.238075\pi\)
\(660\) 2.74193 0.533123i 0.106730 0.0207518i
\(661\) 14.5505i 0.565949i 0.959127 + 0.282974i \(0.0913212\pi\)
−0.959127 + 0.282974i \(0.908679\pi\)
\(662\) 26.6423i 1.03548i
\(663\) 0 0
\(664\) −13.9980 −0.543227
\(665\) −2.43859 12.5420i −0.0945643 0.486358i
\(666\) −6.22905 −0.241371
\(667\) 40.6786i 1.57508i
\(668\) 1.32171 0.0511387
\(669\) 0.640210i 0.0247520i
\(670\) 24.2443 4.71390i 0.936638 0.182114i
\(671\) 14.6292i 0.564754i
\(672\) 2.05754i 0.0793715i
\(673\) 3.50799i 0.135223i 0.997712 + 0.0676115i \(0.0215378\pi\)
−0.997712 + 0.0676115i \(0.978462\pi\)
\(674\) 3.43601i 0.132350i
\(675\) 9.11224 + 22.5469i 0.350730 + 0.867832i
\(676\) 0 0
\(677\) 33.5349i 1.28885i −0.764668 0.644425i \(-0.777097\pi\)
0.764668 0.644425i \(-0.222903\pi\)
\(678\) 17.9003 0.687457
\(679\) 10.8727 0.417256
\(680\) −1.22662 6.30867i −0.0470386 0.241927i
\(681\) 5.17096i 0.198152i
\(682\) 5.39276 0.206499
\(683\) 39.6392 1.51675 0.758376 0.651817i \(-0.225993\pi\)
0.758376 + 0.651817i \(0.225993\pi\)
\(684\) 5.53861i 0.211774i
\(685\) 14.1141 2.74426i 0.539273 0.104853i
\(686\) −20.1618 −0.769780
\(687\) −2.13730 −0.0815429
\(688\) 3.35303i 0.127833i
\(689\) 0 0
\(690\) 10.7283 2.08593i 0.408418 0.0794102i
\(691\) 17.6727i 0.672300i −0.941808 0.336150i \(-0.890875\pi\)
0.941808 0.336150i \(-0.109125\pi\)
\(692\) 23.9387i 0.910012i
\(693\) 5.85879i 0.222557i
\(694\) 13.6671i 0.518794i
\(695\) 3.93854 0.765783i 0.149397 0.0290478i
\(696\) 7.61350i 0.288589i
\(697\) −24.9771 −0.946075
\(698\) 8.18464i 0.309793i
\(699\) 0.125953 0.00476397
\(700\) −9.97256 + 4.03036i −0.376927 + 0.152333i
\(701\) 46.5635 1.75868 0.879340 0.476194i \(-0.157984\pi\)
0.879340 + 0.476194i \(0.157984\pi\)
\(702\) 0 0
\(703\) 7.93456i 0.299258i
\(704\) 1.30608i 0.0492247i
\(705\) −2.98149 15.3342i −0.112289 0.577521i
\(706\) 21.4420 0.806980
\(707\) −4.36294 −0.164085
\(708\) −14.0550 −0.528219
\(709\) 26.2769i 0.986849i 0.869789 + 0.493425i \(0.164255\pi\)
−0.869789 + 0.493425i \(0.835745\pi\)
\(710\) −6.00636 30.8916i −0.225415 1.15934i
\(711\) 18.6470 0.699318
\(712\) 15.6235i 0.585515i
\(713\) 21.1001 0.790203
\(714\) 5.91371 0.221315
\(715\) 0 0
\(716\) −0.841778 −0.0314587
\(717\) −21.7252 −0.811342
\(718\) 7.09493i 0.264780i
\(719\) 11.3458 0.423128 0.211564 0.977364i \(-0.432144\pi\)
0.211564 + 0.977364i \(0.432144\pi\)
\(720\) −4.57696 + 0.889915i −0.170573 + 0.0331652i
\(721\) 7.01759i 0.261349i
\(722\) −11.9449 −0.444544
\(723\) 21.0235 0.781873
\(724\) 6.20054 0.230441
\(725\) −36.9013 + 14.9135i −1.37048 + 0.553874i
\(726\) 8.88936i 0.329915i
\(727\) 33.1374i 1.22900i 0.788918 + 0.614499i \(0.210642\pi\)
−0.788918 + 0.614499i \(0.789358\pi\)
\(728\) 0 0
\(729\) −10.6116 −0.393020
\(730\) 8.41871 1.63688i 0.311590 0.0605836i
\(731\) −9.63714 −0.356443
\(732\) 10.7130i 0.395965i
\(733\) −32.4103 −1.19710 −0.598550 0.801085i \(-0.704256\pi\)
−0.598550 + 0.801085i \(0.704256\pi\)
\(734\) 23.9033i 0.882289i
\(735\) 0.968289 + 4.98005i 0.0357159 + 0.183692i
\(736\) 5.11025i 0.188366i
\(737\) 14.4262i 0.531395i
\(738\) 18.1210i 0.667042i
\(739\) 19.0620i 0.701208i 0.936524 + 0.350604i \(0.114024\pi\)
−0.936524 + 0.350604i \(0.885976\pi\)
\(740\) −6.55691 + 1.27488i −0.241037 + 0.0468656i
\(741\) 0 0
\(742\) 21.6853i 0.796094i
\(743\) −25.4983 −0.935441 −0.467721 0.883876i \(-0.654925\pi\)
−0.467721 + 0.883876i \(0.654925\pi\)
\(744\) 3.94914 0.144782
\(745\) 3.62366 + 18.6370i 0.132761 + 0.682808i
\(746\) 11.5127i 0.421510i
\(747\) 29.1887 1.06796
\(748\) 3.75387 0.137255
\(749\) 4.06694i 0.148603i
\(750\) 5.82542 + 8.96734i 0.212714 + 0.327441i
\(751\) 19.5176 0.712209 0.356104 0.934446i \(-0.384105\pi\)
0.356104 + 0.934446i \(0.384105\pi\)
\(752\) 7.30423 0.266358
\(753\) 8.97763i 0.327163i
\(754\) 0 0
\(755\) 1.27094 + 6.53663i 0.0462543 + 0.237893i
\(756\) 10.4630i 0.380537i
\(757\) 23.6562i 0.859801i −0.902876 0.429900i \(-0.858549\pi\)
0.902876 0.429900i \(-0.141451\pi\)
\(758\) 2.64445i 0.0960506i
\(759\) 6.38368i 0.231713i
\(760\) −1.13357 5.83013i −0.0411190 0.211481i
\(761\) 16.2681i 0.589717i 0.955541 + 0.294859i \(0.0952725\pi\)
−0.955541 + 0.294859i \(0.904727\pi\)
\(762\) 16.8811 0.611537
\(763\) 9.23735i 0.334414i
\(764\) −10.7222 −0.387915
\(765\) 2.55776 + 13.1549i 0.0924758 + 0.475617i
\(766\) −16.2424 −0.586863
\(767\) 0 0
\(768\) 0.956446i 0.0345128i
\(769\) 30.6878i 1.10663i −0.832973 0.553314i \(-0.813363\pi\)
0.832973 0.553314i \(-0.186637\pi\)
\(770\) −1.19910 6.16716i −0.0432126 0.222249i
\(771\) −7.04679 −0.253784
\(772\) 25.9564 0.934191
\(773\) 37.4115 1.34560 0.672798 0.739826i \(-0.265092\pi\)
0.672798 + 0.739826i \(0.265092\pi\)
\(774\) 6.99178i 0.251314i
\(775\) 7.73566 + 19.1408i 0.277873 + 0.687557i
\(776\) 5.05416 0.181434
\(777\) 6.14640i 0.220501i
\(778\) 23.7722 0.852275
\(779\) −23.0825 −0.827016
\(780\) 0 0
\(781\) 18.3816 0.657744
\(782\) 14.6877 0.525230
\(783\) 38.7163i 1.38361i
\(784\) −2.37217 −0.0847204
\(785\) 6.12433 + 31.4983i 0.218587 + 1.12422i
\(786\) 8.21839i 0.293140i
\(787\) 8.05503 0.287131 0.143565 0.989641i \(-0.454143\pi\)
0.143565 + 0.989641i \(0.454143\pi\)
\(788\) 5.14709 0.183358
\(789\) 19.5712 0.696754
\(790\) 19.6285 3.81644i 0.698351 0.135783i
\(791\) 40.2613i 1.43153i
\(792\) 2.72345i 0.0967735i
\(793\) 0 0
\(794\) 34.6274 1.22888
\(795\) 21.1624 4.11468i 0.750554 0.145933i
\(796\) −9.50447 −0.336877
\(797\) 4.94210i 0.175058i −0.996162 0.0875290i \(-0.972103\pi\)
0.996162 0.0875290i \(-0.0278971\pi\)
\(798\) 5.46513 0.193463
\(799\) 20.9935i 0.742697i
\(800\) −4.63573 + 1.87351i −0.163898 + 0.0662385i
\(801\) 32.5783i 1.15110i
\(802\) 4.37028i 0.154320i
\(803\) 5.00942i 0.176779i
\(804\) 10.5643i 0.372576i
\(805\) −4.69168 24.1300i −0.165360 0.850472i
\(806\) 0 0
\(807\) 27.5298i 0.969096i
\(808\) −2.02811 −0.0713485
\(809\) −14.0553 −0.494160 −0.247080 0.968995i \(-0.579471\pi\)
−0.247080 + 0.968995i \(0.579471\pi\)
\(810\) 3.52015 0.684434i 0.123685 0.0240486i
\(811\) 11.0393i 0.387644i 0.981037 + 0.193822i \(0.0620884\pi\)
−0.981037 + 0.193822i \(0.937912\pi\)
\(812\) 17.1243 0.600945
\(813\) −1.74636 −0.0612477
\(814\) 3.90159i 0.136750i
\(815\) −27.9066 + 5.42598i −0.977527 + 0.190064i
\(816\) 2.74898 0.0962335
\(817\) −8.90612 −0.311586
\(818\) 11.2279i 0.392575i
\(819\) 0 0
\(820\) 3.70877 + 19.0747i 0.129516 + 0.666119i
\(821\) 4.13968i 0.144476i −0.997387 0.0722379i \(-0.976986\pi\)
0.997387 0.0722379i \(-0.0230141\pi\)
\(822\) 6.15017i 0.214512i
\(823\) 27.7827i 0.968445i 0.874945 + 0.484222i \(0.160897\pi\)
−0.874945 + 0.484222i \(0.839103\pi\)
\(824\) 3.26212i 0.113641i
\(825\) −5.79092 + 2.34037i −0.201614 + 0.0814813i
\(826\) 31.6125i 1.09994i
\(827\) 6.46886 0.224944 0.112472 0.993655i \(-0.464123\pi\)
0.112472 + 0.993655i \(0.464123\pi\)
\(828\) 10.6559i 0.370320i
\(829\) 13.9415 0.484208 0.242104 0.970250i \(-0.422162\pi\)
0.242104 + 0.970250i \(0.422162\pi\)
\(830\) 30.7251 5.97398i 1.06648 0.207360i
\(831\) 1.05565 0.0366201
\(832\) 0 0
\(833\) 6.81800i 0.236230i
\(834\) 1.71620i 0.0594272i
\(835\) −2.90112 + 0.564074i −0.100397 + 0.0195206i
\(836\) 3.46913 0.119982
\(837\) −20.0822 −0.694142
\(838\) 18.3230 0.632958
\(839\) 41.0483i 1.41714i 0.705639 + 0.708571i \(0.250660\pi\)
−0.705639 + 0.708571i \(0.749340\pi\)
\(840\) −0.878107 4.51623i −0.0302976 0.155825i
\(841\) 34.3648 1.18499
\(842\) 8.92506i 0.307578i
\(843\) 2.54927 0.0878014
\(844\) 25.8770 0.890724
\(845\) 0 0
\(846\) −15.2309 −0.523648
\(847\) −19.9940 −0.687001
\(848\) 10.0804i 0.346162i
\(849\) 23.4495 0.804785
\(850\) 5.38476 + 13.3238i 0.184696 + 0.457003i
\(851\) 15.2656i 0.523298i
\(852\) 13.4609 0.461162
\(853\) −41.4242 −1.41834 −0.709168 0.705039i \(-0.750929\pi\)
−0.709168 + 0.705039i \(0.750929\pi\)
\(854\) 24.0958 0.824540
\(855\) 2.36374 + 12.1571i 0.0808381 + 0.415762i
\(856\) 1.89051i 0.0646164i
\(857\) 48.9642i 1.67259i 0.548282 + 0.836293i \(0.315282\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(858\) 0 0
\(859\) 17.0890 0.583068 0.291534 0.956560i \(-0.405834\pi\)
0.291534 + 0.956560i \(0.405834\pi\)
\(860\) 1.43099 + 7.35978i 0.0487963 + 0.250966i
\(861\) −17.8805 −0.609367
\(862\) 34.8123i 1.18571i
\(863\) 12.3756 0.421269 0.210635 0.977565i \(-0.432447\pi\)
0.210635 + 0.977565i \(0.432447\pi\)
\(864\) 4.86373i 0.165467i
\(865\) 10.2164 + 52.5445i 0.347369 + 1.78657i
\(866\) 37.9777i 1.29054i
\(867\) 8.35858i 0.283872i
\(868\) 8.88240i 0.301488i
\(869\) 11.6796i 0.396204i
\(870\) −3.24925 16.7114i −0.110160 0.566568i
\(871\) 0 0
\(872\) 4.29397i 0.145412i
\(873\) −10.5390 −0.356691
\(874\) 13.5735 0.459132
\(875\) 20.1693 13.1025i 0.681848 0.442946i
\(876\) 3.66842i 0.123944i
\(877\) −29.3663 −0.991629 −0.495814 0.868429i \(-0.665130\pi\)
−0.495814 + 0.868429i \(0.665130\pi\)
\(878\) 16.6128 0.560656
\(879\) 8.36371i 0.282101i
\(880\) −0.557400 2.86679i −0.0187900 0.0966396i
\(881\) −6.22016 −0.209563 −0.104781 0.994495i \(-0.533414\pi\)
−0.104781 + 0.994495i \(0.533414\pi\)
\(882\) 4.94648 0.166557
\(883\) 32.4762i 1.09291i −0.837488 0.546456i \(-0.815977\pi\)
0.837488 0.546456i \(-0.184023\pi\)
\(884\) 0 0
\(885\) 30.8502 5.99831i 1.03702 0.201631i
\(886\) 16.5892i 0.557325i
\(887\) 36.5930i 1.22867i −0.789044 0.614337i \(-0.789424\pi\)
0.789044 0.614337i \(-0.210576\pi\)
\(888\) 2.85715i 0.0958796i
\(889\) 37.9689i 1.27344i
\(890\) −6.66770 34.2930i −0.223502 1.14950i
\(891\) 2.09461i 0.0701720i
\(892\) −0.669364 −0.0224120
\(893\) 19.4011i 0.649232i
\(894\) −8.12101 −0.271607
\(895\) 1.84767 0.359249i 0.0617608 0.0120084i
\(896\) 2.15124 0.0718678
\(897\) 0 0
\(898\) 19.4158i 0.647913i
\(899\) 32.8674i 1.09619i
\(900\) 9.66647 3.90666i 0.322216 0.130222i
\(901\) 28.9727 0.965220
\(902\) −11.3501 −0.377918
\(903\) −6.89901 −0.229585
\(904\) 18.7154i 0.622466i
\(905\) −13.6100 + 2.64623i −0.452410 + 0.0879637i
\(906\) −2.84831 −0.0946288
\(907\) 6.23158i 0.206916i 0.994634 + 0.103458i \(0.0329908\pi\)
−0.994634 + 0.103458i \(0.967009\pi\)
\(908\) 5.40643 0.179419
\(909\) 4.22903 0.140268
\(910\) 0 0
\(911\) 47.4457 1.57195 0.785973 0.618261i \(-0.212163\pi\)
0.785973 + 0.618261i \(0.212163\pi\)
\(912\) 2.54046 0.0841229
\(913\) 18.2825i 0.605061i
\(914\) 8.84923 0.292707
\(915\) −4.57205 23.5147i −0.151147 0.777372i
\(916\) 2.23462i 0.0738340i
\(917\) −18.4848 −0.610422
\(918\) −13.9791 −0.461380
\(919\) 52.7882 1.74132 0.870661 0.491883i \(-0.163691\pi\)
0.870661 + 0.491883i \(0.163691\pi\)
\(920\) −2.18092 11.2168i −0.0719029 0.369807i
\(921\) 11.8929i 0.391885i
\(922\) 17.3352i 0.570904i
\(923\) 0 0
\(924\) 2.68731 0.0884061
\(925\) 13.8481 5.59664i 0.455322 0.184016i
\(926\) −17.0652 −0.560798
\(927\) 6.80220i 0.223414i
\(928\) 7.96020 0.261306
\(929\) 7.11857i 0.233553i 0.993158 + 0.116776i \(0.0372561\pi\)
−0.993158 + 0.116776i \(0.962744\pi\)
\(930\) −8.66821 + 1.68539i −0.284242 + 0.0552661i
\(931\) 6.30082i 0.206501i
\(932\) 0.131688i 0.00431360i
\(933\) 0.257583i 0.00843290i
\(934\) 22.5357i 0.737392i
\(935\) −8.23962 + 1.60206i −0.269464 + 0.0523929i
\(936\) 0 0
\(937\) 5.13448i 0.167736i −0.996477 0.0838680i \(-0.973273\pi\)
0.996477 0.0838680i \(-0.0267274\pi\)
\(938\) 23.7613 0.775834
\(939\) 10.1255 0.330433
\(940\) −16.0325 + 3.11726i −0.522923 + 0.101674i
\(941\) 44.3630i 1.44619i 0.690748 + 0.723096i \(0.257281\pi\)
−0.690748 + 0.723096i \(0.742719\pi\)
\(942\) −13.7253 −0.447193
\(943\) −44.4092 −1.44616
\(944\) 14.6950i 0.478282i
\(945\) 4.46536 + 22.9660i 0.145258 + 0.747084i
\(946\) −4.37932 −0.142384
\(947\) 54.3234 1.76527 0.882637 0.470056i \(-0.155766\pi\)
0.882637 + 0.470056i \(0.155766\pi\)
\(948\) 8.55303i 0.277790i
\(949\) 0 0
\(950\) 4.97630 + 12.3131i 0.161453 + 0.399491i
\(951\) 20.0966i 0.651676i
\(952\) 6.18300i 0.200392i
\(953\) 37.8138i 1.22491i −0.790506 0.612454i \(-0.790182\pi\)
0.790506 0.612454i \(-0.209818\pi\)
\(954\) 21.0198i 0.680540i
\(955\) 23.5348 4.57595i 0.761567 0.148074i
\(956\) 22.7145i 0.734639i
\(957\) 9.94383 0.321438
\(958\) 33.3487i 1.07745i
\(959\) 13.8330 0.446690
\(960\) −0.408187 2.09936i −0.0131742 0.0677567i
\(961\) 13.9516 0.450052
\(962\) 0 0
\(963\) 3.94212i 0.127033i
\(964\) 21.9809i 0.707956i
\(965\) −56.9733 + 11.0775i −1.83404 + 0.356598i
\(966\) 10.5146 0.338300
\(967\) 8.18366 0.263169 0.131584 0.991305i \(-0.457994\pi\)
0.131584 + 0.991305i \(0.457994\pi\)
\(968\) −9.29416 −0.298726
\(969\) 7.30167i 0.234563i
\(970\) −11.0937 + 2.15699i −0.356197 + 0.0692567i
\(971\) −19.0931 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(972\) 16.1251i 0.517212i
\(973\) 3.86008 0.123748
\(974\) 32.8658 1.05309
\(975\) 0 0
\(976\) 11.2009 0.358531
\(977\) 2.67273 0.0855082 0.0427541 0.999086i \(-0.486387\pi\)
0.0427541 + 0.999086i \(0.486387\pi\)
\(978\) 12.1602i 0.388840i
\(979\) 20.4055 0.652162
\(980\) 5.20683 1.01238i 0.166326 0.0323394i
\(981\) 8.95383i 0.285874i
\(982\) −17.6525 −0.563313
\(983\) −5.29656 −0.168934 −0.0844670 0.996426i \(-0.526919\pi\)
−0.0844670 + 0.996426i \(0.526919\pi\)
\(984\) −8.31174 −0.264969
\(985\) −11.2977 + 2.19665i −0.359974 + 0.0699910i
\(986\) 22.8789i 0.728612i
\(987\) 15.0288i 0.478371i
\(988\) 0 0
\(989\) −17.1348 −0.544855
\(990\) 1.16230 + 5.97787i 0.0369402 + 0.189989i
\(991\) −26.1528 −0.830773 −0.415386 0.909645i \(-0.636354\pi\)
−0.415386 + 0.909645i \(0.636354\pi\)
\(992\) 4.12897i 0.131095i
\(993\) −25.4820 −0.808646
\(994\) 30.2762i 0.960304i
\(995\) 20.8620 4.05627i 0.661369 0.128592i
\(996\) 13.3883i 0.424225i
\(997\) 19.6903i 0.623597i 0.950148 + 0.311799i \(0.100931\pi\)
−0.950148 + 0.311799i \(0.899069\pi\)
\(998\) 37.3227i 1.18143i
\(999\) 14.5292i 0.459683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.g.1689.13 18
5.4 even 2 1690.2.c.h.1689.6 18
13.5 odd 4 1690.2.b.f.339.15 yes 18
13.8 odd 4 1690.2.b.g.339.6 yes 18
13.12 even 2 1690.2.c.h.1689.13 18
65.8 even 4 8450.2.a.ct.1.4 9
65.18 even 4 8450.2.a.cx.1.4 9
65.34 odd 4 1690.2.b.g.339.13 yes 18
65.44 odd 4 1690.2.b.f.339.4 18
65.47 even 4 8450.2.a.da.1.6 9
65.57 even 4 8450.2.a.cw.1.6 9
65.64 even 2 inner 1690.2.c.g.1689.6 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.4 18 65.44 odd 4
1690.2.b.f.339.15 yes 18 13.5 odd 4
1690.2.b.g.339.6 yes 18 13.8 odd 4
1690.2.b.g.339.13 yes 18 65.34 odd 4
1690.2.c.g.1689.6 18 65.64 even 2 inner
1690.2.c.g.1689.13 18 1.1 even 1 trivial
1690.2.c.h.1689.6 18 5.4 even 2
1690.2.c.h.1689.13 18 13.12 even 2
8450.2.a.ct.1.4 9 65.8 even 4
8450.2.a.cw.1.6 9 65.57 even 4
8450.2.a.cx.1.4 9 65.18 even 4
8450.2.a.da.1.6 9 65.47 even 4