Properties

Label 8450.2.a.cx.1.7
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,-7,9,0,-7,1,9,8,0,-4,-7,0,1,0,9,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.90009\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.303663 q^{3} +1.00000 q^{4} +0.303663 q^{6} -1.08593 q^{7} +1.00000 q^{8} -2.90779 q^{9} -0.403887 q^{11} +0.303663 q^{12} -1.08593 q^{14} +1.00000 q^{16} +5.21387 q^{17} -2.90779 q^{18} +0.844510 q^{19} -0.329755 q^{21} -0.403887 q^{22} +1.76217 q^{23} +0.303663 q^{24} -1.79397 q^{27} -1.08593 q^{28} -5.96747 q^{29} -5.25338 q^{31} +1.00000 q^{32} -0.122645 q^{33} +5.21387 q^{34} -2.90779 q^{36} -4.42321 q^{37} +0.844510 q^{38} +3.20196 q^{41} -0.329755 q^{42} -11.4865 q^{43} -0.403887 q^{44} +1.76217 q^{46} +11.5048 q^{47} +0.303663 q^{48} -5.82076 q^{49} +1.58326 q^{51} -10.7632 q^{53} -1.79397 q^{54} -1.08593 q^{56} +0.256446 q^{57} -5.96747 q^{58} -7.28501 q^{59} -2.64135 q^{61} -5.25338 q^{62} +3.15764 q^{63} +1.00000 q^{64} -0.122645 q^{66} +10.5992 q^{67} +5.21387 q^{68} +0.535105 q^{69} -12.4325 q^{71} -2.90779 q^{72} -2.92837 q^{73} -4.42321 q^{74} +0.844510 q^{76} +0.438592 q^{77} +15.8880 q^{79} +8.17860 q^{81} +3.20196 q^{82} -12.6626 q^{83} -0.329755 q^{84} -11.4865 q^{86} -1.81210 q^{87} -0.403887 q^{88} +6.99770 q^{89} +1.76217 q^{92} -1.59525 q^{93} +11.5048 q^{94} +0.303663 q^{96} +9.47384 q^{97} -5.82076 q^{98} +1.17442 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} - 7 q^{3} + 9 q^{4} - 7 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} - 4 q^{11} - 7 q^{12} + q^{14} + 9 q^{16} - 12 q^{17} + 8 q^{18} - 6 q^{19} - 8 q^{21} - 4 q^{22} - 11 q^{23} - 7 q^{24} - 34 q^{27}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.303663 0.175320 0.0876598 0.996150i \(-0.472061\pi\)
0.0876598 + 0.996150i \(0.472061\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0.303663 0.123970
\(7\) −1.08593 −0.410441 −0.205221 0.978716i \(-0.565791\pi\)
−0.205221 + 0.978716i \(0.565791\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.90779 −0.969263
\(10\) 0 0
\(11\) −0.403887 −0.121777 −0.0608883 0.998145i \(-0.519393\pi\)
−0.0608883 + 0.998145i \(0.519393\pi\)
\(12\) 0.303663 0.0876598
\(13\) 0 0
\(14\) −1.08593 −0.290226
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.21387 1.26455 0.632274 0.774745i \(-0.282122\pi\)
0.632274 + 0.774745i \(0.282122\pi\)
\(18\) −2.90779 −0.685372
\(19\) 0.844510 0.193744 0.0968719 0.995297i \(-0.469116\pi\)
0.0968719 + 0.995297i \(0.469116\pi\)
\(20\) 0 0
\(21\) −0.329755 −0.0719585
\(22\) −0.403887 −0.0861091
\(23\) 1.76217 0.367438 0.183719 0.982979i \(-0.441186\pi\)
0.183719 + 0.982979i \(0.441186\pi\)
\(24\) 0.303663 0.0619849
\(25\) 0 0
\(26\) 0 0
\(27\) −1.79397 −0.345251
\(28\) −1.08593 −0.205221
\(29\) −5.96747 −1.10813 −0.554066 0.832473i \(-0.686924\pi\)
−0.554066 + 0.832473i \(0.686924\pi\)
\(30\) 0 0
\(31\) −5.25338 −0.943534 −0.471767 0.881723i \(-0.656384\pi\)
−0.471767 + 0.881723i \(0.656384\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.122645 −0.0213498
\(34\) 5.21387 0.894171
\(35\) 0 0
\(36\) −2.90779 −0.484632
\(37\) −4.42321 −0.727171 −0.363586 0.931561i \(-0.618448\pi\)
−0.363586 + 0.931561i \(0.618448\pi\)
\(38\) 0.844510 0.136998
\(39\) 0 0
\(40\) 0 0
\(41\) 3.20196 0.500062 0.250031 0.968238i \(-0.419559\pi\)
0.250031 + 0.968238i \(0.419559\pi\)
\(42\) −0.329755 −0.0508823
\(43\) −11.4865 −1.75168 −0.875840 0.482601i \(-0.839692\pi\)
−0.875840 + 0.482601i \(0.839692\pi\)
\(44\) −0.403887 −0.0608883
\(45\) 0 0
\(46\) 1.76217 0.259818
\(47\) 11.5048 1.67814 0.839071 0.544022i \(-0.183099\pi\)
0.839071 + 0.544022i \(0.183099\pi\)
\(48\) 0.303663 0.0438299
\(49\) −5.82076 −0.831538
\(50\) 0 0
\(51\) 1.58326 0.221700
\(52\) 0 0
\(53\) −10.7632 −1.47844 −0.739221 0.673463i \(-0.764806\pi\)
−0.739221 + 0.673463i \(0.764806\pi\)
\(54\) −1.79397 −0.244129
\(55\) 0 0
\(56\) −1.08593 −0.145113
\(57\) 0.256446 0.0339671
\(58\) −5.96747 −0.783567
\(59\) −7.28501 −0.948428 −0.474214 0.880410i \(-0.657268\pi\)
−0.474214 + 0.880410i \(0.657268\pi\)
\(60\) 0 0
\(61\) −2.64135 −0.338190 −0.169095 0.985600i \(-0.554084\pi\)
−0.169095 + 0.985600i \(0.554084\pi\)
\(62\) −5.25338 −0.667179
\(63\) 3.15764 0.397826
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.122645 −0.0150966
\(67\) 10.5992 1.29490 0.647452 0.762106i \(-0.275835\pi\)
0.647452 + 0.762106i \(0.275835\pi\)
\(68\) 5.21387 0.632274
\(69\) 0.535105 0.0644191
\(70\) 0 0
\(71\) −12.4325 −1.47546 −0.737732 0.675094i \(-0.764103\pi\)
−0.737732 + 0.675094i \(0.764103\pi\)
\(72\) −2.90779 −0.342686
\(73\) −2.92837 −0.342740 −0.171370 0.985207i \(-0.554819\pi\)
−0.171370 + 0.985207i \(0.554819\pi\)
\(74\) −4.42321 −0.514188
\(75\) 0 0
\(76\) 0.844510 0.0968719
\(77\) 0.438592 0.0499822
\(78\) 0 0
\(79\) 15.8880 1.78754 0.893772 0.448522i \(-0.148049\pi\)
0.893772 + 0.448522i \(0.148049\pi\)
\(80\) 0 0
\(81\) 8.17860 0.908734
\(82\) 3.20196 0.353597
\(83\) −12.6626 −1.38990 −0.694952 0.719056i \(-0.744574\pi\)
−0.694952 + 0.719056i \(0.744574\pi\)
\(84\) −0.329755 −0.0359792
\(85\) 0 0
\(86\) −11.4865 −1.23863
\(87\) −1.81210 −0.194277
\(88\) −0.403887 −0.0430545
\(89\) 6.99770 0.741755 0.370877 0.928682i \(-0.379057\pi\)
0.370877 + 0.928682i \(0.379057\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.76217 0.183719
\(93\) −1.59525 −0.165420
\(94\) 11.5048 1.18663
\(95\) 0 0
\(96\) 0.303663 0.0309924
\(97\) 9.47384 0.961923 0.480961 0.876742i \(-0.340288\pi\)
0.480961 + 0.876742i \(0.340288\pi\)
\(98\) −5.82076 −0.587986
\(99\) 1.17442 0.118034
\(100\) 0 0
\(101\) 6.61025 0.657744 0.328872 0.944374i \(-0.393331\pi\)
0.328872 + 0.944374i \(0.393331\pi\)
\(102\) 1.58326 0.156766
\(103\) −9.21082 −0.907569 −0.453784 0.891111i \(-0.649926\pi\)
−0.453784 + 0.891111i \(0.649926\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −10.7632 −1.04542
\(107\) −6.97470 −0.674270 −0.337135 0.941456i \(-0.609458\pi\)
−0.337135 + 0.941456i \(0.609458\pi\)
\(108\) −1.79397 −0.172625
\(109\) 3.29363 0.315473 0.157736 0.987481i \(-0.449580\pi\)
0.157736 + 0.987481i \(0.449580\pi\)
\(110\) 0 0
\(111\) −1.34316 −0.127487
\(112\) −1.08593 −0.102610
\(113\) 10.0934 0.949508 0.474754 0.880119i \(-0.342537\pi\)
0.474754 + 0.880119i \(0.342537\pi\)
\(114\) 0.256446 0.0240184
\(115\) 0 0
\(116\) −5.96747 −0.554066
\(117\) 0 0
\(118\) −7.28501 −0.670640
\(119\) −5.66187 −0.519023
\(120\) 0 0
\(121\) −10.8369 −0.985170
\(122\) −2.64135 −0.239137
\(123\) 0.972316 0.0876708
\(124\) −5.25338 −0.471767
\(125\) 0 0
\(126\) 3.15764 0.281305
\(127\) −6.06998 −0.538624 −0.269312 0.963053i \(-0.586796\pi\)
−0.269312 + 0.963053i \(0.586796\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.48803 −0.307104
\(130\) 0 0
\(131\) 0.534787 0.0467246 0.0233623 0.999727i \(-0.492563\pi\)
0.0233623 + 0.999727i \(0.492563\pi\)
\(132\) −0.122645 −0.0106749
\(133\) −0.917075 −0.0795205
\(134\) 10.5992 0.915636
\(135\) 0 0
\(136\) 5.21387 0.447085
\(137\) −11.9809 −1.02360 −0.511799 0.859105i \(-0.671021\pi\)
−0.511799 + 0.859105i \(0.671021\pi\)
\(138\) 0.535105 0.0455512
\(139\) 2.69002 0.228165 0.114082 0.993471i \(-0.463607\pi\)
0.114082 + 0.993471i \(0.463607\pi\)
\(140\) 0 0
\(141\) 3.49357 0.294211
\(142\) −12.4325 −1.04331
\(143\) 0 0
\(144\) −2.90779 −0.242316
\(145\) 0 0
\(146\) −2.92837 −0.242354
\(147\) −1.76755 −0.145785
\(148\) −4.42321 −0.363586
\(149\) −17.5424 −1.43713 −0.718565 0.695460i \(-0.755201\pi\)
−0.718565 + 0.695460i \(0.755201\pi\)
\(150\) 0 0
\(151\) 17.5381 1.42723 0.713615 0.700538i \(-0.247057\pi\)
0.713615 + 0.700538i \(0.247057\pi\)
\(152\) 0.844510 0.0684988
\(153\) −15.1608 −1.22568
\(154\) 0.438592 0.0353427
\(155\) 0 0
\(156\) 0 0
\(157\) −10.5663 −0.843279 −0.421639 0.906764i \(-0.638545\pi\)
−0.421639 + 0.906764i \(0.638545\pi\)
\(158\) 15.8880 1.26398
\(159\) −3.26839 −0.259200
\(160\) 0 0
\(161\) −1.91359 −0.150812
\(162\) 8.17860 0.642572
\(163\) −19.0637 −1.49318 −0.746592 0.665282i \(-0.768311\pi\)
−0.746592 + 0.665282i \(0.768311\pi\)
\(164\) 3.20196 0.250031
\(165\) 0 0
\(166\) −12.6626 −0.982811
\(167\) 10.6825 0.826637 0.413319 0.910587i \(-0.364370\pi\)
0.413319 + 0.910587i \(0.364370\pi\)
\(168\) −0.329755 −0.0254412
\(169\) 0 0
\(170\) 0 0
\(171\) −2.45566 −0.187789
\(172\) −11.4865 −0.875840
\(173\) −15.8983 −1.20872 −0.604362 0.796710i \(-0.706572\pi\)
−0.604362 + 0.796710i \(0.706572\pi\)
\(174\) −1.81210 −0.137375
\(175\) 0 0
\(176\) −0.403887 −0.0304442
\(177\) −2.21219 −0.166278
\(178\) 6.99770 0.524500
\(179\) −25.2779 −1.88936 −0.944680 0.327995i \(-0.893627\pi\)
−0.944680 + 0.327995i \(0.893627\pi\)
\(180\) 0 0
\(181\) 17.8082 1.32367 0.661837 0.749648i \(-0.269777\pi\)
0.661837 + 0.749648i \(0.269777\pi\)
\(182\) 0 0
\(183\) −0.802079 −0.0592914
\(184\) 1.76217 0.129909
\(185\) 0 0
\(186\) −1.59525 −0.116970
\(187\) −2.10581 −0.153992
\(188\) 11.5048 0.839071
\(189\) 1.94812 0.141705
\(190\) 0 0
\(191\) −10.4612 −0.756947 −0.378474 0.925612i \(-0.623551\pi\)
−0.378474 + 0.925612i \(0.623551\pi\)
\(192\) 0.303663 0.0219150
\(193\) 14.6561 1.05497 0.527483 0.849565i \(-0.323136\pi\)
0.527483 + 0.849565i \(0.323136\pi\)
\(194\) 9.47384 0.680182
\(195\) 0 0
\(196\) −5.82076 −0.415769
\(197\) −10.3360 −0.736406 −0.368203 0.929745i \(-0.620027\pi\)
−0.368203 + 0.929745i \(0.620027\pi\)
\(198\) 1.17442 0.0834623
\(199\) 5.21516 0.369693 0.184846 0.982767i \(-0.440821\pi\)
0.184846 + 0.982767i \(0.440821\pi\)
\(200\) 0 0
\(201\) 3.21860 0.227022
\(202\) 6.61025 0.465096
\(203\) 6.48023 0.454823
\(204\) 1.58326 0.110850
\(205\) 0 0
\(206\) −9.21082 −0.641748
\(207\) −5.12402 −0.356144
\(208\) 0 0
\(209\) −0.341087 −0.0235935
\(210\) 0 0
\(211\) −12.3086 −0.847361 −0.423681 0.905812i \(-0.639262\pi\)
−0.423681 + 0.905812i \(0.639262\pi\)
\(212\) −10.7632 −0.739221
\(213\) −3.77528 −0.258678
\(214\) −6.97470 −0.476781
\(215\) 0 0
\(216\) −1.79397 −0.122065
\(217\) 5.70478 0.387266
\(218\) 3.29363 0.223073
\(219\) −0.889236 −0.0600890
\(220\) 0 0
\(221\) 0 0
\(222\) −1.34316 −0.0901472
\(223\) 9.35143 0.626218 0.313109 0.949717i \(-0.398629\pi\)
0.313109 + 0.949717i \(0.398629\pi\)
\(224\) −1.08593 −0.0725565
\(225\) 0 0
\(226\) 10.0934 0.671403
\(227\) −13.1715 −0.874224 −0.437112 0.899407i \(-0.643999\pi\)
−0.437112 + 0.899407i \(0.643999\pi\)
\(228\) 0.256446 0.0169836
\(229\) −13.6752 −0.903680 −0.451840 0.892099i \(-0.649232\pi\)
−0.451840 + 0.892099i \(0.649232\pi\)
\(230\) 0 0
\(231\) 0.133184 0.00876286
\(232\) −5.96747 −0.391784
\(233\) −27.7357 −1.81703 −0.908514 0.417855i \(-0.862782\pi\)
−0.908514 + 0.417855i \(0.862782\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −7.28501 −0.474214
\(237\) 4.82460 0.313392
\(238\) −5.66187 −0.367005
\(239\) −17.7552 −1.14849 −0.574243 0.818685i \(-0.694703\pi\)
−0.574243 + 0.818685i \(0.694703\pi\)
\(240\) 0 0
\(241\) −3.83937 −0.247316 −0.123658 0.992325i \(-0.539463\pi\)
−0.123658 + 0.992325i \(0.539463\pi\)
\(242\) −10.8369 −0.696621
\(243\) 7.86546 0.504569
\(244\) −2.64135 −0.169095
\(245\) 0 0
\(246\) 0.972316 0.0619926
\(247\) 0 0
\(248\) −5.25338 −0.333590
\(249\) −3.84517 −0.243678
\(250\) 0 0
\(251\) 14.4338 0.911054 0.455527 0.890222i \(-0.349451\pi\)
0.455527 + 0.890222i \(0.349451\pi\)
\(252\) 3.15764 0.198913
\(253\) −0.711719 −0.0447454
\(254\) −6.06998 −0.380865
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −11.0755 −0.690868 −0.345434 0.938443i \(-0.612268\pi\)
−0.345434 + 0.938443i \(0.612268\pi\)
\(258\) −3.48803 −0.217155
\(259\) 4.80328 0.298461
\(260\) 0 0
\(261\) 17.3521 1.07407
\(262\) 0.534787 0.0330393
\(263\) −1.74154 −0.107388 −0.0536941 0.998557i \(-0.517100\pi\)
−0.0536941 + 0.998557i \(0.517100\pi\)
\(264\) −0.122645 −0.00754831
\(265\) 0 0
\(266\) −0.917075 −0.0562295
\(267\) 2.12494 0.130044
\(268\) 10.5992 0.647452
\(269\) −10.0411 −0.612220 −0.306110 0.951996i \(-0.599027\pi\)
−0.306110 + 0.951996i \(0.599027\pi\)
\(270\) 0 0
\(271\) 10.3097 0.626271 0.313136 0.949708i \(-0.398621\pi\)
0.313136 + 0.949708i \(0.398621\pi\)
\(272\) 5.21387 0.316137
\(273\) 0 0
\(274\) −11.9809 −0.723794
\(275\) 0 0
\(276\) 0.535105 0.0322096
\(277\) −29.7990 −1.79045 −0.895224 0.445616i \(-0.852985\pi\)
−0.895224 + 0.445616i \(0.852985\pi\)
\(278\) 2.69002 0.161337
\(279\) 15.2757 0.914533
\(280\) 0 0
\(281\) 17.5437 1.04657 0.523285 0.852158i \(-0.324706\pi\)
0.523285 + 0.852158i \(0.324706\pi\)
\(282\) 3.49357 0.208039
\(283\) −25.9299 −1.54137 −0.770687 0.637214i \(-0.780087\pi\)
−0.770687 + 0.637214i \(0.780087\pi\)
\(284\) −12.4325 −0.737732
\(285\) 0 0
\(286\) 0 0
\(287\) −3.47709 −0.205246
\(288\) −2.90779 −0.171343
\(289\) 10.1844 0.599083
\(290\) 0 0
\(291\) 2.87685 0.168644
\(292\) −2.92837 −0.171370
\(293\) −26.1627 −1.52844 −0.764221 0.644954i \(-0.776876\pi\)
−0.764221 + 0.644954i \(0.776876\pi\)
\(294\) −1.76755 −0.103086
\(295\) 0 0
\(296\) −4.42321 −0.257094
\(297\) 0.724564 0.0420434
\(298\) −17.5424 −1.01620
\(299\) 0 0
\(300\) 0 0
\(301\) 12.4735 0.718962
\(302\) 17.5381 1.00920
\(303\) 2.00729 0.115316
\(304\) 0.844510 0.0484360
\(305\) 0 0
\(306\) −15.1608 −0.866687
\(307\) −2.68863 −0.153448 −0.0767240 0.997052i \(-0.524446\pi\)
−0.0767240 + 0.997052i \(0.524446\pi\)
\(308\) 0.438592 0.0249911
\(309\) −2.79698 −0.159115
\(310\) 0 0
\(311\) −31.0278 −1.75943 −0.879713 0.475506i \(-0.842265\pi\)
−0.879713 + 0.475506i \(0.842265\pi\)
\(312\) 0 0
\(313\) −14.7399 −0.833151 −0.416575 0.909101i \(-0.636770\pi\)
−0.416575 + 0.909101i \(0.636770\pi\)
\(314\) −10.5663 −0.596288
\(315\) 0 0
\(316\) 15.8880 0.893772
\(317\) −14.7416 −0.827971 −0.413985 0.910284i \(-0.635864\pi\)
−0.413985 + 0.910284i \(0.635864\pi\)
\(318\) −3.26839 −0.183282
\(319\) 2.41019 0.134944
\(320\) 0 0
\(321\) −2.11796 −0.118213
\(322\) −1.91359 −0.106640
\(323\) 4.40316 0.244999
\(324\) 8.17860 0.454367
\(325\) 0 0
\(326\) −19.0637 −1.05584
\(327\) 1.00015 0.0553086
\(328\) 3.20196 0.176799
\(329\) −12.4933 −0.688779
\(330\) 0 0
\(331\) −9.55973 −0.525450 −0.262725 0.964871i \(-0.584621\pi\)
−0.262725 + 0.964871i \(0.584621\pi\)
\(332\) −12.6626 −0.694952
\(333\) 12.8618 0.704820
\(334\) 10.6825 0.584521
\(335\) 0 0
\(336\) −0.329755 −0.0179896
\(337\) −7.58566 −0.413217 −0.206609 0.978424i \(-0.566243\pi\)
−0.206609 + 0.978424i \(0.566243\pi\)
\(338\) 0 0
\(339\) 3.06499 0.166467
\(340\) 0 0
\(341\) 2.12177 0.114900
\(342\) −2.45566 −0.132787
\(343\) 13.9224 0.751739
\(344\) −11.4865 −0.619313
\(345\) 0 0
\(346\) −15.8983 −0.854697
\(347\) 8.88467 0.476954 0.238477 0.971148i \(-0.423352\pi\)
0.238477 + 0.971148i \(0.423352\pi\)
\(348\) −1.81210 −0.0971386
\(349\) 22.3237 1.19496 0.597480 0.801884i \(-0.296169\pi\)
0.597480 + 0.801884i \(0.296169\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.403887 −0.0215273
\(353\) 31.0186 1.65095 0.825476 0.564438i \(-0.190907\pi\)
0.825476 + 0.564438i \(0.190907\pi\)
\(354\) −2.21219 −0.117576
\(355\) 0 0
\(356\) 6.99770 0.370877
\(357\) −1.71930 −0.0909950
\(358\) −25.2779 −1.33598
\(359\) 15.1402 0.799072 0.399536 0.916718i \(-0.369171\pi\)
0.399536 + 0.916718i \(0.369171\pi\)
\(360\) 0 0
\(361\) −18.2868 −0.962463
\(362\) 17.8082 0.935979
\(363\) −3.29075 −0.172720
\(364\) 0 0
\(365\) 0 0
\(366\) −0.802079 −0.0419253
\(367\) 20.8201 1.08680 0.543401 0.839474i \(-0.317137\pi\)
0.543401 + 0.839474i \(0.317137\pi\)
\(368\) 1.76217 0.0918595
\(369\) −9.31063 −0.484692
\(370\) 0 0
\(371\) 11.6881 0.606814
\(372\) −1.59525 −0.0827100
\(373\) −0.901633 −0.0466848 −0.0233424 0.999728i \(-0.507431\pi\)
−0.0233424 + 0.999728i \(0.507431\pi\)
\(374\) −2.10581 −0.108889
\(375\) 0 0
\(376\) 11.5048 0.593313
\(377\) 0 0
\(378\) 1.94812 0.100201
\(379\) −15.7125 −0.807096 −0.403548 0.914959i \(-0.632223\pi\)
−0.403548 + 0.914959i \(0.632223\pi\)
\(380\) 0 0
\(381\) −1.84323 −0.0944314
\(382\) −10.4612 −0.535242
\(383\) 38.0352 1.94351 0.971755 0.235993i \(-0.0758344\pi\)
0.971755 + 0.235993i \(0.0758344\pi\)
\(384\) 0.303663 0.0154962
\(385\) 0 0
\(386\) 14.6561 0.745974
\(387\) 33.4004 1.69784
\(388\) 9.47384 0.480961
\(389\) 3.64514 0.184816 0.0924079 0.995721i \(-0.470544\pi\)
0.0924079 + 0.995721i \(0.470544\pi\)
\(390\) 0 0
\(391\) 9.18773 0.464643
\(392\) −5.82076 −0.293993
\(393\) 0.162395 0.00819173
\(394\) −10.3360 −0.520718
\(395\) 0 0
\(396\) 1.17442 0.0590168
\(397\) 1.08366 0.0543872 0.0271936 0.999630i \(-0.491343\pi\)
0.0271936 + 0.999630i \(0.491343\pi\)
\(398\) 5.21516 0.261412
\(399\) −0.278481 −0.0139415
\(400\) 0 0
\(401\) 6.16953 0.308091 0.154046 0.988064i \(-0.450770\pi\)
0.154046 + 0.988064i \(0.450770\pi\)
\(402\) 3.21860 0.160529
\(403\) 0 0
\(404\) 6.61025 0.328872
\(405\) 0 0
\(406\) 6.48023 0.321608
\(407\) 1.78648 0.0885524
\(408\) 1.58326 0.0783829
\(409\) −19.8455 −0.981299 −0.490649 0.871357i \(-0.663240\pi\)
−0.490649 + 0.871357i \(0.663240\pi\)
\(410\) 0 0
\(411\) −3.63816 −0.179457
\(412\) −9.21082 −0.453784
\(413\) 7.91099 0.389274
\(414\) −5.12402 −0.251832
\(415\) 0 0
\(416\) 0 0
\(417\) 0.816859 0.0400018
\(418\) −0.341087 −0.0166831
\(419\) 4.45670 0.217724 0.108862 0.994057i \(-0.465279\pi\)
0.108862 + 0.994057i \(0.465279\pi\)
\(420\) 0 0
\(421\) −16.7557 −0.816624 −0.408312 0.912842i \(-0.633882\pi\)
−0.408312 + 0.912842i \(0.633882\pi\)
\(422\) −12.3086 −0.599175
\(423\) −33.4534 −1.62656
\(424\) −10.7632 −0.522708
\(425\) 0 0
\(426\) −3.77528 −0.182913
\(427\) 2.86831 0.138807
\(428\) −6.97470 −0.337135
\(429\) 0 0
\(430\) 0 0
\(431\) 17.3440 0.835433 0.417717 0.908577i \(-0.362830\pi\)
0.417717 + 0.908577i \(0.362830\pi\)
\(432\) −1.79397 −0.0863126
\(433\) 4.41765 0.212299 0.106149 0.994350i \(-0.466148\pi\)
0.106149 + 0.994350i \(0.466148\pi\)
\(434\) 5.70478 0.273838
\(435\) 0 0
\(436\) 3.29363 0.157736
\(437\) 1.48817 0.0711889
\(438\) −0.889236 −0.0424893
\(439\) 33.1534 1.58232 0.791162 0.611607i \(-0.209477\pi\)
0.791162 + 0.611607i \(0.209477\pi\)
\(440\) 0 0
\(441\) 16.9256 0.805979
\(442\) 0 0
\(443\) −19.2632 −0.915224 −0.457612 0.889152i \(-0.651295\pi\)
−0.457612 + 0.889152i \(0.651295\pi\)
\(444\) −1.34316 −0.0637437
\(445\) 0 0
\(446\) 9.35143 0.442803
\(447\) −5.32697 −0.251957
\(448\) −1.08593 −0.0513052
\(449\) 4.55734 0.215074 0.107537 0.994201i \(-0.465704\pi\)
0.107537 + 0.994201i \(0.465704\pi\)
\(450\) 0 0
\(451\) −1.29323 −0.0608959
\(452\) 10.0934 0.474754
\(453\) 5.32566 0.250222
\(454\) −13.1715 −0.618170
\(455\) 0 0
\(456\) 0.256446 0.0120092
\(457\) 15.9598 0.746570 0.373285 0.927717i \(-0.378231\pi\)
0.373285 + 0.927717i \(0.378231\pi\)
\(458\) −13.6752 −0.638998
\(459\) −9.35354 −0.436586
\(460\) 0 0
\(461\) 22.2437 1.03599 0.517996 0.855383i \(-0.326678\pi\)
0.517996 + 0.855383i \(0.326678\pi\)
\(462\) 0.133184 0.00619628
\(463\) 31.0149 1.44138 0.720692 0.693256i \(-0.243824\pi\)
0.720692 + 0.693256i \(0.243824\pi\)
\(464\) −5.96747 −0.277033
\(465\) 0 0
\(466\) −27.7357 −1.28483
\(467\) −0.841337 −0.0389324 −0.0194662 0.999811i \(-0.506197\pi\)
−0.0194662 + 0.999811i \(0.506197\pi\)
\(468\) 0 0
\(469\) −11.5100 −0.531482
\(470\) 0 0
\(471\) −3.20858 −0.147843
\(472\) −7.28501 −0.335320
\(473\) 4.63927 0.213314
\(474\) 4.82460 0.221601
\(475\) 0 0
\(476\) −5.66187 −0.259512
\(477\) 31.2972 1.43300
\(478\) −17.7552 −0.812102
\(479\) 7.63429 0.348819 0.174410 0.984673i \(-0.444198\pi\)
0.174410 + 0.984673i \(0.444198\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −3.83937 −0.174879
\(483\) −0.581085 −0.0264403
\(484\) −10.8369 −0.492585
\(485\) 0 0
\(486\) 7.86546 0.356784
\(487\) −23.2958 −1.05563 −0.527817 0.849358i \(-0.676989\pi\)
−0.527817 + 0.849358i \(0.676989\pi\)
\(488\) −2.64135 −0.119568
\(489\) −5.78893 −0.261784
\(490\) 0 0
\(491\) 36.2972 1.63807 0.819034 0.573745i \(-0.194510\pi\)
0.819034 + 0.573745i \(0.194510\pi\)
\(492\) 0.972316 0.0438354
\(493\) −31.1136 −1.40129
\(494\) 0 0
\(495\) 0 0
\(496\) −5.25338 −0.235884
\(497\) 13.5008 0.605591
\(498\) −3.84517 −0.172306
\(499\) 18.9398 0.847863 0.423932 0.905694i \(-0.360650\pi\)
0.423932 + 0.905694i \(0.360650\pi\)
\(500\) 0 0
\(501\) 3.24388 0.144926
\(502\) 14.4338 0.644213
\(503\) 35.7640 1.59464 0.797318 0.603560i \(-0.206251\pi\)
0.797318 + 0.603560i \(0.206251\pi\)
\(504\) 3.15764 0.140653
\(505\) 0 0
\(506\) −0.711719 −0.0316398
\(507\) 0 0
\(508\) −6.06998 −0.269312
\(509\) 3.11873 0.138235 0.0691176 0.997609i \(-0.477982\pi\)
0.0691176 + 0.997609i \(0.477982\pi\)
\(510\) 0 0
\(511\) 3.17999 0.140675
\(512\) 1.00000 0.0441942
\(513\) −1.51503 −0.0668902
\(514\) −11.0755 −0.488517
\(515\) 0 0
\(516\) −3.48803 −0.153552
\(517\) −4.64663 −0.204359
\(518\) 4.80328 0.211044
\(519\) −4.82772 −0.211913
\(520\) 0 0
\(521\) 38.4309 1.68369 0.841844 0.539721i \(-0.181470\pi\)
0.841844 + 0.539721i \(0.181470\pi\)
\(522\) 17.3521 0.759483
\(523\) 23.8519 1.04297 0.521485 0.853260i \(-0.325378\pi\)
0.521485 + 0.853260i \(0.325378\pi\)
\(524\) 0.534787 0.0233623
\(525\) 0 0
\(526\) −1.74154 −0.0759349
\(527\) −27.3904 −1.19314
\(528\) −0.122645 −0.00533746
\(529\) −19.8948 −0.864989
\(530\) 0 0
\(531\) 21.1833 0.919276
\(532\) −0.917075 −0.0397603
\(533\) 0 0
\(534\) 2.12494 0.0919551
\(535\) 0 0
\(536\) 10.5992 0.457818
\(537\) −7.67595 −0.331242
\(538\) −10.0411 −0.432905
\(539\) 2.35093 0.101262
\(540\) 0 0
\(541\) 5.36874 0.230820 0.115410 0.993318i \(-0.463182\pi\)
0.115410 + 0.993318i \(0.463182\pi\)
\(542\) 10.3097 0.442841
\(543\) 5.40769 0.232066
\(544\) 5.21387 0.223543
\(545\) 0 0
\(546\) 0 0
\(547\) −28.1689 −1.20442 −0.602208 0.798339i \(-0.705712\pi\)
−0.602208 + 0.798339i \(0.705712\pi\)
\(548\) −11.9809 −0.511799
\(549\) 7.68049 0.327795
\(550\) 0 0
\(551\) −5.03959 −0.214694
\(552\) 0.535105 0.0227756
\(553\) −17.2532 −0.733682
\(554\) −29.7990 −1.26604
\(555\) 0 0
\(556\) 2.69002 0.114082
\(557\) 15.1505 0.641947 0.320974 0.947088i \(-0.395990\pi\)
0.320974 + 0.947088i \(0.395990\pi\)
\(558\) 15.2757 0.646672
\(559\) 0 0
\(560\) 0 0
\(561\) −0.639457 −0.0269979
\(562\) 17.5437 0.740037
\(563\) −32.5894 −1.37348 −0.686739 0.726904i \(-0.740958\pi\)
−0.686739 + 0.726904i \(0.740958\pi\)
\(564\) 3.49357 0.147106
\(565\) 0 0
\(566\) −25.9299 −1.08992
\(567\) −8.88136 −0.372982
\(568\) −12.4325 −0.521655
\(569\) 21.7554 0.912033 0.456016 0.889971i \(-0.349276\pi\)
0.456016 + 0.889971i \(0.349276\pi\)
\(570\) 0 0
\(571\) −24.2853 −1.01631 −0.508155 0.861266i \(-0.669672\pi\)
−0.508155 + 0.861266i \(0.669672\pi\)
\(572\) 0 0
\(573\) −3.17668 −0.132708
\(574\) −3.47709 −0.145131
\(575\) 0 0
\(576\) −2.90779 −0.121158
\(577\) 23.1332 0.963048 0.481524 0.876433i \(-0.340083\pi\)
0.481524 + 0.876433i \(0.340083\pi\)
\(578\) 10.1844 0.423616
\(579\) 4.45050 0.184956
\(580\) 0 0
\(581\) 13.7507 0.570474
\(582\) 2.87685 0.119249
\(583\) 4.34713 0.180040
\(584\) −2.92837 −0.121177
\(585\) 0 0
\(586\) −26.1627 −1.08077
\(587\) −4.60818 −0.190200 −0.0950999 0.995468i \(-0.530317\pi\)
−0.0950999 + 0.995468i \(0.530317\pi\)
\(588\) −1.76755 −0.0728925
\(589\) −4.43653 −0.182804
\(590\) 0 0
\(591\) −3.13864 −0.129106
\(592\) −4.42321 −0.181793
\(593\) 1.27629 0.0524111 0.0262056 0.999657i \(-0.491658\pi\)
0.0262056 + 0.999657i \(0.491658\pi\)
\(594\) 0.724564 0.0297292
\(595\) 0 0
\(596\) −17.5424 −0.718565
\(597\) 1.58365 0.0648144
\(598\) 0 0
\(599\) 21.3539 0.872497 0.436249 0.899826i \(-0.356307\pi\)
0.436249 + 0.899826i \(0.356307\pi\)
\(600\) 0 0
\(601\) −2.74727 −0.112063 −0.0560317 0.998429i \(-0.517845\pi\)
−0.0560317 + 0.998429i \(0.517845\pi\)
\(602\) 12.4735 0.508383
\(603\) −30.8204 −1.25510
\(604\) 17.5381 0.713615
\(605\) 0 0
\(606\) 2.00729 0.0815404
\(607\) −22.9135 −0.930030 −0.465015 0.885303i \(-0.653951\pi\)
−0.465015 + 0.885303i \(0.653951\pi\)
\(608\) 0.844510 0.0342494
\(609\) 1.96780 0.0797394
\(610\) 0 0
\(611\) 0 0
\(612\) −15.1608 −0.612840
\(613\) 16.5575 0.668752 0.334376 0.942440i \(-0.391474\pi\)
0.334376 + 0.942440i \(0.391474\pi\)
\(614\) −2.68863 −0.108504
\(615\) 0 0
\(616\) 0.438592 0.0176714
\(617\) 11.3693 0.457712 0.228856 0.973460i \(-0.426502\pi\)
0.228856 + 0.973460i \(0.426502\pi\)
\(618\) −2.79698 −0.112511
\(619\) 47.1109 1.89355 0.946773 0.321901i \(-0.104322\pi\)
0.946773 + 0.321901i \(0.104322\pi\)
\(620\) 0 0
\(621\) −3.16129 −0.126858
\(622\) −31.0278 −1.24410
\(623\) −7.59898 −0.304447
\(624\) 0 0
\(625\) 0 0
\(626\) −14.7399 −0.589127
\(627\) −0.103575 −0.00413640
\(628\) −10.5663 −0.421639
\(629\) −23.0620 −0.919543
\(630\) 0 0
\(631\) 8.39389 0.334156 0.167078 0.985944i \(-0.446567\pi\)
0.167078 + 0.985944i \(0.446567\pi\)
\(632\) 15.8880 0.631992
\(633\) −3.73767 −0.148559
\(634\) −14.7416 −0.585464
\(635\) 0 0
\(636\) −3.26839 −0.129600
\(637\) 0 0
\(638\) 2.41019 0.0954201
\(639\) 36.1510 1.43011
\(640\) 0 0
\(641\) −36.5728 −1.44454 −0.722268 0.691613i \(-0.756901\pi\)
−0.722268 + 0.691613i \(0.756901\pi\)
\(642\) −2.11796 −0.0835891
\(643\) −46.0372 −1.81553 −0.907766 0.419478i \(-0.862213\pi\)
−0.907766 + 0.419478i \(0.862213\pi\)
\(644\) −1.91359 −0.0754059
\(645\) 0 0
\(646\) 4.40316 0.173240
\(647\) −27.8549 −1.09509 −0.547545 0.836776i \(-0.684437\pi\)
−0.547545 + 0.836776i \(0.684437\pi\)
\(648\) 8.17860 0.321286
\(649\) 2.94232 0.115496
\(650\) 0 0
\(651\) 1.73233 0.0678953
\(652\) −19.0637 −0.746592
\(653\) −4.98456 −0.195061 −0.0975304 0.995233i \(-0.531094\pi\)
−0.0975304 + 0.995233i \(0.531094\pi\)
\(654\) 1.00015 0.0391091
\(655\) 0 0
\(656\) 3.20196 0.125016
\(657\) 8.51508 0.332205
\(658\) −12.4933 −0.487040
\(659\) 27.8625 1.08537 0.542684 0.839937i \(-0.317408\pi\)
0.542684 + 0.839937i \(0.317408\pi\)
\(660\) 0 0
\(661\) 37.9173 1.47481 0.737406 0.675450i \(-0.236051\pi\)
0.737406 + 0.675450i \(0.236051\pi\)
\(662\) −9.55973 −0.371549
\(663\) 0 0
\(664\) −12.6626 −0.491405
\(665\) 0 0
\(666\) 12.8618 0.498383
\(667\) −10.5157 −0.407170
\(668\) 10.6825 0.413319
\(669\) 2.83968 0.109788
\(670\) 0 0
\(671\) 1.06681 0.0411837
\(672\) −0.329755 −0.0127206
\(673\) 5.08337 0.195949 0.0979747 0.995189i \(-0.468764\pi\)
0.0979747 + 0.995189i \(0.468764\pi\)
\(674\) −7.58566 −0.292189
\(675\) 0 0
\(676\) 0 0
\(677\) 40.3815 1.55199 0.775994 0.630740i \(-0.217249\pi\)
0.775994 + 0.630740i \(0.217249\pi\)
\(678\) 3.06499 0.117710
\(679\) −10.2879 −0.394813
\(680\) 0 0
\(681\) −3.99970 −0.153269
\(682\) 2.12177 0.0812468
\(683\) 14.8432 0.567959 0.283980 0.958830i \(-0.408345\pi\)
0.283980 + 0.958830i \(0.408345\pi\)
\(684\) −2.45566 −0.0938944
\(685\) 0 0
\(686\) 13.9224 0.531560
\(687\) −4.15264 −0.158433
\(688\) −11.4865 −0.437920
\(689\) 0 0
\(690\) 0 0
\(691\) 31.8114 1.21016 0.605081 0.796164i \(-0.293141\pi\)
0.605081 + 0.796164i \(0.293141\pi\)
\(692\) −15.8983 −0.604362
\(693\) −1.27533 −0.0484459
\(694\) 8.88467 0.337257
\(695\) 0 0
\(696\) −1.81210 −0.0686874
\(697\) 16.6946 0.632353
\(698\) 22.3237 0.844964
\(699\) −8.42230 −0.318561
\(700\) 0 0
\(701\) −2.75131 −0.103915 −0.0519577 0.998649i \(-0.516546\pi\)
−0.0519577 + 0.998649i \(0.516546\pi\)
\(702\) 0 0
\(703\) −3.73544 −0.140885
\(704\) −0.403887 −0.0152221
\(705\) 0 0
\(706\) 31.0186 1.16740
\(707\) −7.17824 −0.269966
\(708\) −2.21219 −0.0831390
\(709\) 28.7721 1.08056 0.540279 0.841486i \(-0.318319\pi\)
0.540279 + 0.841486i \(0.318319\pi\)
\(710\) 0 0
\(711\) −46.1991 −1.73260
\(712\) 6.99770 0.262250
\(713\) −9.25735 −0.346690
\(714\) −1.71930 −0.0643432
\(715\) 0 0
\(716\) −25.2779 −0.944680
\(717\) −5.39158 −0.201352
\(718\) 15.1402 0.565029
\(719\) 33.1840 1.23756 0.618778 0.785566i \(-0.287628\pi\)
0.618778 + 0.785566i \(0.287628\pi\)
\(720\) 0 0
\(721\) 10.0023 0.372504
\(722\) −18.2868 −0.680564
\(723\) −1.16587 −0.0433593
\(724\) 17.8082 0.661837
\(725\) 0 0
\(726\) −3.29075 −0.122131
\(727\) −37.6129 −1.39499 −0.697493 0.716591i \(-0.745701\pi\)
−0.697493 + 0.716591i \(0.745701\pi\)
\(728\) 0 0
\(729\) −22.1474 −0.820273
\(730\) 0 0
\(731\) −59.8893 −2.21509
\(732\) −0.802079 −0.0296457
\(733\) −19.0778 −0.704654 −0.352327 0.935877i \(-0.614609\pi\)
−0.352327 + 0.935877i \(0.614609\pi\)
\(734\) 20.8201 0.768484
\(735\) 0 0
\(736\) 1.76217 0.0649545
\(737\) −4.28090 −0.157689
\(738\) −9.31063 −0.342729
\(739\) −40.5137 −1.49032 −0.745160 0.666886i \(-0.767627\pi\)
−0.745160 + 0.666886i \(0.767627\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 11.6881 0.429082
\(743\) 11.8075 0.433176 0.216588 0.976263i \(-0.430507\pi\)
0.216588 + 0.976263i \(0.430507\pi\)
\(744\) −1.59525 −0.0584848
\(745\) 0 0
\(746\) −0.901633 −0.0330111
\(747\) 36.8203 1.34718
\(748\) −2.10581 −0.0769962
\(749\) 7.57401 0.276748
\(750\) 0 0
\(751\) −14.0149 −0.511409 −0.255705 0.966755i \(-0.582307\pi\)
−0.255705 + 0.966755i \(0.582307\pi\)
\(752\) 11.5048 0.419536
\(753\) 4.38301 0.159726
\(754\) 0 0
\(755\) 0 0
\(756\) 1.94812 0.0708526
\(757\) −31.2552 −1.13599 −0.567994 0.823032i \(-0.692280\pi\)
−0.567994 + 0.823032i \(0.692280\pi\)
\(758\) −15.7125 −0.570703
\(759\) −0.216122 −0.00784474
\(760\) 0 0
\(761\) 34.1575 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(762\) −1.84323 −0.0667731
\(763\) −3.57664 −0.129483
\(764\) −10.4612 −0.378474
\(765\) 0 0
\(766\) 38.0352 1.37427
\(767\) 0 0
\(768\) 0.303663 0.0109575
\(769\) 44.2201 1.59462 0.797308 0.603572i \(-0.206256\pi\)
0.797308 + 0.603572i \(0.206256\pi\)
\(770\) 0 0
\(771\) −3.36320 −0.121123
\(772\) 14.6561 0.527483
\(773\) 2.04145 0.0734259 0.0367129 0.999326i \(-0.488311\pi\)
0.0367129 + 0.999326i \(0.488311\pi\)
\(774\) 33.4004 1.20055
\(775\) 0 0
\(776\) 9.47384 0.340091
\(777\) 1.45858 0.0523261
\(778\) 3.64514 0.130685
\(779\) 2.70409 0.0968840
\(780\) 0 0
\(781\) 5.02132 0.179677
\(782\) 9.18773 0.328552
\(783\) 10.7055 0.382583
\(784\) −5.82076 −0.207884
\(785\) 0 0
\(786\) 0.162395 0.00579243
\(787\) −3.39520 −0.121026 −0.0605130 0.998167i \(-0.519274\pi\)
−0.0605130 + 0.998167i \(0.519274\pi\)
\(788\) −10.3360 −0.368203
\(789\) −0.528841 −0.0188273
\(790\) 0 0
\(791\) −10.9607 −0.389717
\(792\) 1.17442 0.0417312
\(793\) 0 0
\(794\) 1.08366 0.0384576
\(795\) 0 0
\(796\) 5.21516 0.184846
\(797\) 24.4659 0.866626 0.433313 0.901244i \(-0.357345\pi\)
0.433313 + 0.901244i \(0.357345\pi\)
\(798\) −0.278481 −0.00985814
\(799\) 59.9843 2.12209
\(800\) 0 0
\(801\) −20.3478 −0.718955
\(802\) 6.16953 0.217854
\(803\) 1.18273 0.0417377
\(804\) 3.21860 0.113511
\(805\) 0 0
\(806\) 0 0
\(807\) −3.04912 −0.107334
\(808\) 6.61025 0.232548
\(809\) −17.6948 −0.622117 −0.311058 0.950391i \(-0.600683\pi\)
−0.311058 + 0.950391i \(0.600683\pi\)
\(810\) 0 0
\(811\) −2.82931 −0.0993505 −0.0496753 0.998765i \(-0.515819\pi\)
−0.0496753 + 0.998765i \(0.515819\pi\)
\(812\) 6.48023 0.227411
\(813\) 3.13068 0.109798
\(814\) 1.78648 0.0626160
\(815\) 0 0
\(816\) 1.58326 0.0554251
\(817\) −9.70050 −0.339377
\(818\) −19.8455 −0.693883
\(819\) 0 0
\(820\) 0 0
\(821\) −26.1300 −0.911942 −0.455971 0.889995i \(-0.650708\pi\)
−0.455971 + 0.889995i \(0.650708\pi\)
\(822\) −3.63816 −0.126895
\(823\) 1.85316 0.0645970 0.0322985 0.999478i \(-0.489717\pi\)
0.0322985 + 0.999478i \(0.489717\pi\)
\(824\) −9.21082 −0.320874
\(825\) 0 0
\(826\) 7.91099 0.275258
\(827\) −19.9886 −0.695072 −0.347536 0.937667i \(-0.612982\pi\)
−0.347536 + 0.937667i \(0.612982\pi\)
\(828\) −5.12402 −0.178072
\(829\) 41.6506 1.44658 0.723292 0.690542i \(-0.242628\pi\)
0.723292 + 0.690542i \(0.242628\pi\)
\(830\) 0 0
\(831\) −9.04884 −0.313901
\(832\) 0 0
\(833\) −30.3487 −1.05152
\(834\) 0.816859 0.0282855
\(835\) 0 0
\(836\) −0.341087 −0.0117967
\(837\) 9.42442 0.325756
\(838\) 4.45670 0.153954
\(839\) −25.9421 −0.895622 −0.447811 0.894128i \(-0.647796\pi\)
−0.447811 + 0.894128i \(0.647796\pi\)
\(840\) 0 0
\(841\) 6.61068 0.227955
\(842\) −16.7557 −0.577441
\(843\) 5.32737 0.183484
\(844\) −12.3086 −0.423681
\(845\) 0 0
\(846\) −33.4534 −1.15015
\(847\) 11.7680 0.404355
\(848\) −10.7632 −0.369610
\(849\) −7.87395 −0.270233
\(850\) 0 0
\(851\) −7.79445 −0.267190
\(852\) −3.77528 −0.129339
\(853\) −33.6674 −1.15275 −0.576374 0.817186i \(-0.695533\pi\)
−0.576374 + 0.817186i \(0.695533\pi\)
\(854\) 2.86831 0.0981516
\(855\) 0 0
\(856\) −6.97470 −0.238391
\(857\) 6.39008 0.218281 0.109140 0.994026i \(-0.465190\pi\)
0.109140 + 0.994026i \(0.465190\pi\)
\(858\) 0 0
\(859\) 29.6345 1.01112 0.505558 0.862792i \(-0.331287\pi\)
0.505558 + 0.862792i \(0.331287\pi\)
\(860\) 0 0
\(861\) −1.05586 −0.0359837
\(862\) 17.3440 0.590741
\(863\) −15.7244 −0.535264 −0.267632 0.963521i \(-0.586241\pi\)
−0.267632 + 0.963521i \(0.586241\pi\)
\(864\) −1.79397 −0.0610323
\(865\) 0 0
\(866\) 4.41765 0.150118
\(867\) 3.09262 0.105031
\(868\) 5.70478 0.193633
\(869\) −6.41698 −0.217681
\(870\) 0 0
\(871\) 0 0
\(872\) 3.29363 0.111537
\(873\) −27.5479 −0.932356
\(874\) 1.48817 0.0503381
\(875\) 0 0
\(876\) −0.889236 −0.0300445
\(877\) 30.3994 1.02651 0.513257 0.858235i \(-0.328439\pi\)
0.513257 + 0.858235i \(0.328439\pi\)
\(878\) 33.1534 1.11887
\(879\) −7.94464 −0.267966
\(880\) 0 0
\(881\) 41.3933 1.39458 0.697288 0.716791i \(-0.254390\pi\)
0.697288 + 0.716791i \(0.254390\pi\)
\(882\) 16.9256 0.569913
\(883\) 24.4503 0.822819 0.411410 0.911451i \(-0.365037\pi\)
0.411410 + 0.911451i \(0.365037\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −19.2632 −0.647161
\(887\) −37.1737 −1.24817 −0.624085 0.781357i \(-0.714528\pi\)
−0.624085 + 0.781357i \(0.714528\pi\)
\(888\) −1.34316 −0.0450736
\(889\) 6.59155 0.221074
\(890\) 0 0
\(891\) −3.30323 −0.110663
\(892\) 9.35143 0.313109
\(893\) 9.71589 0.325130
\(894\) −5.32697 −0.178161
\(895\) 0 0
\(896\) −1.08593 −0.0362782
\(897\) 0 0
\(898\) 4.55734 0.152081
\(899\) 31.3494 1.04556
\(900\) 0 0
\(901\) −56.1180 −1.86956
\(902\) −1.29323 −0.0430599
\(903\) 3.78775 0.126048
\(904\) 10.0934 0.335702
\(905\) 0 0
\(906\) 5.32566 0.176933
\(907\) −32.4758 −1.07834 −0.539171 0.842196i \(-0.681262\pi\)
−0.539171 + 0.842196i \(0.681262\pi\)
\(908\) −13.1715 −0.437112
\(909\) −19.2212 −0.637527
\(910\) 0 0
\(911\) 16.8692 0.558900 0.279450 0.960160i \(-0.409848\pi\)
0.279450 + 0.960160i \(0.409848\pi\)
\(912\) 0.256446 0.00849178
\(913\) 5.11428 0.169258
\(914\) 15.9598 0.527905
\(915\) 0 0
\(916\) −13.6752 −0.451840
\(917\) −0.580739 −0.0191777
\(918\) −9.35354 −0.308713
\(919\) −5.75843 −0.189953 −0.0949765 0.995480i \(-0.530278\pi\)
−0.0949765 + 0.995480i \(0.530278\pi\)
\(920\) 0 0
\(921\) −0.816435 −0.0269025
\(922\) 22.2437 0.732556
\(923\) 0 0
\(924\) 0.133184 0.00438143
\(925\) 0 0
\(926\) 31.0149 1.01921
\(927\) 26.7831 0.879673
\(928\) −5.96747 −0.195892
\(929\) −43.2786 −1.41992 −0.709962 0.704240i \(-0.751288\pi\)
−0.709962 + 0.704240i \(0.751288\pi\)
\(930\) 0 0
\(931\) −4.91569 −0.161105
\(932\) −27.7357 −0.908514
\(933\) −9.42198 −0.308462
\(934\) −0.841337 −0.0275294
\(935\) 0 0
\(936\) 0 0
\(937\) 13.9713 0.456424 0.228212 0.973611i \(-0.426712\pi\)
0.228212 + 0.973611i \(0.426712\pi\)
\(938\) −11.5100 −0.375815
\(939\) −4.47597 −0.146068
\(940\) 0 0
\(941\) −27.2678 −0.888905 −0.444452 0.895803i \(-0.646602\pi\)
−0.444452 + 0.895803i \(0.646602\pi\)
\(942\) −3.20858 −0.104541
\(943\) 5.64240 0.183742
\(944\) −7.28501 −0.237107
\(945\) 0 0
\(946\) 4.63927 0.150836
\(947\) 11.4663 0.372605 0.186302 0.982492i \(-0.440350\pi\)
0.186302 + 0.982492i \(0.440350\pi\)
\(948\) 4.82460 0.156696
\(949\) 0 0
\(950\) 0 0
\(951\) −4.47647 −0.145160
\(952\) −5.66187 −0.183502
\(953\) −19.2137 −0.622392 −0.311196 0.950346i \(-0.600730\pi\)
−0.311196 + 0.950346i \(0.600730\pi\)
\(954\) 31.2972 1.01328
\(955\) 0 0
\(956\) −17.7552 −0.574243
\(957\) 0.731883 0.0236584
\(958\) 7.63429 0.246653
\(959\) 13.0104 0.420127
\(960\) 0 0
\(961\) −3.40205 −0.109743
\(962\) 0 0
\(963\) 20.2810 0.653545
\(964\) −3.83937 −0.123658
\(965\) 0 0
\(966\) −0.581085 −0.0186961
\(967\) 40.2200 1.29339 0.646695 0.762749i \(-0.276151\pi\)
0.646695 + 0.762749i \(0.276151\pi\)
\(968\) −10.8369 −0.348310
\(969\) 1.33708 0.0429531
\(970\) 0 0
\(971\) 40.8959 1.31241 0.656207 0.754581i \(-0.272160\pi\)
0.656207 + 0.754581i \(0.272160\pi\)
\(972\) 7.86546 0.252285
\(973\) −2.92117 −0.0936483
\(974\) −23.2958 −0.746446
\(975\) 0 0
\(976\) −2.64135 −0.0845475
\(977\) −19.5975 −0.626981 −0.313490 0.949591i \(-0.601498\pi\)
−0.313490 + 0.949591i \(0.601498\pi\)
\(978\) −5.78893 −0.185110
\(979\) −2.82628 −0.0903284
\(980\) 0 0
\(981\) −9.57719 −0.305776
\(982\) 36.2972 1.15829
\(983\) −11.7949 −0.376198 −0.188099 0.982150i \(-0.560233\pi\)
−0.188099 + 0.982150i \(0.560233\pi\)
\(984\) 0.972316 0.0309963
\(985\) 0 0
\(986\) −31.1136 −0.990858
\(987\) −3.79375 −0.120757
\(988\) 0 0
\(989\) −20.2412 −0.643634
\(990\) 0 0
\(991\) 25.3114 0.804043 0.402022 0.915630i \(-0.368308\pi\)
0.402022 + 0.915630i \(0.368308\pi\)
\(992\) −5.25338 −0.166795
\(993\) −2.90293 −0.0921217
\(994\) 13.5008 0.428218
\(995\) 0 0
\(996\) −3.84517 −0.121839
\(997\) −18.7441 −0.593632 −0.296816 0.954935i \(-0.595925\pi\)
−0.296816 + 0.954935i \(0.595925\pi\)
\(998\) 18.9398 0.599530
\(999\) 7.93513 0.251056
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cx.1.7 9
5.2 odd 4 1690.2.b.f.339.12 yes 18
5.3 odd 4 1690.2.b.f.339.7 18
5.4 even 2 8450.2.a.cw.1.3 9
13.12 even 2 8450.2.a.ct.1.7 9
65.8 even 4 1690.2.c.h.1689.11 18
65.12 odd 4 1690.2.b.g.339.3 yes 18
65.18 even 4 1690.2.c.g.1689.11 18
65.38 odd 4 1690.2.b.g.339.16 yes 18
65.47 even 4 1690.2.c.g.1689.8 18
65.57 even 4 1690.2.c.h.1689.8 18
65.64 even 2 8450.2.a.da.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.7 18 5.3 odd 4
1690.2.b.f.339.12 yes 18 5.2 odd 4
1690.2.b.g.339.3 yes 18 65.12 odd 4
1690.2.b.g.339.16 yes 18 65.38 odd 4
1690.2.c.g.1689.8 18 65.47 even 4
1690.2.c.g.1689.11 18 65.18 even 4
1690.2.c.h.1689.8 18 65.57 even 4
1690.2.c.h.1689.11 18 65.8 even 4
8450.2.a.ct.1.7 9 13.12 even 2
8450.2.a.cw.1.3 9 5.4 even 2
8450.2.a.cx.1.7 9 1.1 even 1 trivial
8450.2.a.da.1.3 9 65.64 even 2