Properties

Label 1690.2.b.g.339.3
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-18,0,14,0,0,-16,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.3
Root \(-2.90009i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.g.339.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -0.303663i q^{3} -1.00000 q^{4} +(1.92689 - 1.13450i) q^{5} -0.303663 q^{6} +1.08593i q^{7} +1.00000i q^{8} +2.90779 q^{9} +(-1.13450 - 1.92689i) q^{10} +0.403887 q^{11} +0.303663i q^{12} +1.08593 q^{14} +(-0.344506 - 0.585124i) q^{15} +1.00000 q^{16} +5.21387i q^{17} -2.90779i q^{18} +0.844510 q^{19} +(-1.92689 + 1.13450i) q^{20} +0.329755 q^{21} -0.403887i q^{22} -1.76217i q^{23} +0.303663 q^{24} +(2.42580 - 4.37213i) q^{25} -1.79397i q^{27} -1.08593i q^{28} +5.96747 q^{29} +(-0.585124 + 0.344506i) q^{30} +5.25338 q^{31} -1.00000i q^{32} -0.122645i q^{33} +5.21387 q^{34} +(1.23199 + 2.09246i) q^{35} -2.90779 q^{36} +4.42321i q^{37} -0.844510i q^{38} +(1.13450 + 1.92689i) q^{40} -3.20196 q^{41} -0.329755i q^{42} +11.4865i q^{43} -0.403887 q^{44} +(5.60299 - 3.29890i) q^{45} -1.76217 q^{46} -11.5048i q^{47} -0.303663i q^{48} +5.82076 q^{49} +(-4.37213 - 2.42580i) q^{50} +1.58326 q^{51} +10.7632i q^{53} -1.79397 q^{54} +(0.778246 - 0.458212i) q^{55} -1.08593 q^{56} -0.256446i q^{57} -5.96747i q^{58} -7.28501 q^{59} +(0.344506 + 0.585124i) q^{60} -2.64135 q^{61} -5.25338i q^{62} +3.15764i q^{63} -1.00000 q^{64} -0.122645 q^{66} -10.5992i q^{67} -5.21387i q^{68} -0.535105 q^{69} +(2.09246 - 1.23199i) q^{70} +12.4325 q^{71} +2.90779i q^{72} -2.92837i q^{73} +4.42321 q^{74} +(-1.32765 - 0.736626i) q^{75} -0.844510 q^{76} +0.438592i q^{77} -15.8880 q^{79} +(1.92689 - 1.13450i) q^{80} +8.17860 q^{81} +3.20196i q^{82} -12.6626i q^{83} -0.329755 q^{84} +(5.91515 + 10.0465i) q^{85} +11.4865 q^{86} -1.81210i q^{87} +0.403887i q^{88} +6.99770 q^{89} +(-3.29890 - 5.60299i) q^{90} +1.76217i q^{92} -1.59525i q^{93} -11.5048 q^{94} +(1.62728 - 0.958100i) q^{95} -0.303663 q^{96} -9.47384i q^{97} -5.82076i q^{98} +1.17442 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{4} + 14 q^{6} - 16 q^{9} + 2 q^{10} + 8 q^{11} - 2 q^{14} + 8 q^{15} + 18 q^{16} - 12 q^{19} + 16 q^{21} - 14 q^{24} + 22 q^{25} - 30 q^{29} - 14 q^{30} - 12 q^{31} - 24 q^{34} - 4 q^{35} + 16 q^{36}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.303663i 0.175320i −0.996150 0.0876598i \(-0.972061\pi\)
0.996150 0.0876598i \(-0.0279389\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.92689 1.13450i 0.861731 0.507365i
\(6\) −0.303663 −0.123970
\(7\) 1.08593i 0.410441i 0.978716 + 0.205221i \(0.0657912\pi\)
−0.978716 + 0.205221i \(0.934209\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.90779 0.969263
\(10\) −1.13450 1.92689i −0.358762 0.609336i
\(11\) 0.403887 0.121777 0.0608883 0.998145i \(-0.480607\pi\)
0.0608883 + 0.998145i \(0.480607\pi\)
\(12\) 0.303663i 0.0876598i
\(13\) 0 0
\(14\) 1.08593 0.290226
\(15\) −0.344506 0.585124i −0.0889511 0.151078i
\(16\) 1.00000 0.250000
\(17\) 5.21387i 1.26455i 0.774745 + 0.632274i \(0.217878\pi\)
−0.774745 + 0.632274i \(0.782122\pi\)
\(18\) 2.90779i 0.685372i
\(19\) 0.844510 0.193744 0.0968719 0.995297i \(-0.469116\pi\)
0.0968719 + 0.995297i \(0.469116\pi\)
\(20\) −1.92689 + 1.13450i −0.430866 + 0.253683i
\(21\) 0.329755 0.0719585
\(22\) 0.403887i 0.0861091i
\(23\) 1.76217i 0.367438i −0.982979 0.183719i \(-0.941186\pi\)
0.982979 0.183719i \(-0.0588137\pi\)
\(24\) 0.303663 0.0619849
\(25\) 2.42580 4.37213i 0.485161 0.874425i
\(26\) 0 0
\(27\) 1.79397i 0.345251i
\(28\) 1.08593i 0.205221i
\(29\) 5.96747 1.10813 0.554066 0.832473i \(-0.313076\pi\)
0.554066 + 0.832473i \(0.313076\pi\)
\(30\) −0.585124 + 0.344506i −0.106829 + 0.0628980i
\(31\) 5.25338 0.943534 0.471767 0.881723i \(-0.343616\pi\)
0.471767 + 0.881723i \(0.343616\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.122645i 0.0213498i
\(34\) 5.21387 0.894171
\(35\) 1.23199 + 2.09246i 0.208244 + 0.353690i
\(36\) −2.90779 −0.484632
\(37\) 4.42321i 0.727171i 0.931561 + 0.363586i \(0.118448\pi\)
−0.931561 + 0.363586i \(0.881552\pi\)
\(38\) 0.844510i 0.136998i
\(39\) 0 0
\(40\) 1.13450 + 1.92689i 0.179381 + 0.304668i
\(41\) −3.20196 −0.500062 −0.250031 0.968238i \(-0.580441\pi\)
−0.250031 + 0.968238i \(0.580441\pi\)
\(42\) 0.329755i 0.0508823i
\(43\) 11.4865i 1.75168i 0.482601 + 0.875840i \(0.339692\pi\)
−0.482601 + 0.875840i \(0.660308\pi\)
\(44\) −0.403887 −0.0608883
\(45\) 5.60299 3.29890i 0.835244 0.491771i
\(46\) −1.76217 −0.259818
\(47\) 11.5048i 1.67814i −0.544022 0.839071i \(-0.683099\pi\)
0.544022 0.839071i \(-0.316901\pi\)
\(48\) 0.303663i 0.0438299i
\(49\) 5.82076 0.831538
\(50\) −4.37213 2.42580i −0.618312 0.343060i
\(51\) 1.58326 0.221700
\(52\) 0 0
\(53\) 10.7632i 1.47844i 0.673463 + 0.739221i \(0.264806\pi\)
−0.673463 + 0.739221i \(0.735194\pi\)
\(54\) −1.79397 −0.244129
\(55\) 0.778246 0.458212i 0.104939 0.0617852i
\(56\) −1.08593 −0.145113
\(57\) 0.256446i 0.0339671i
\(58\) 5.96747i 0.783567i
\(59\) −7.28501 −0.948428 −0.474214 0.880410i \(-0.657268\pi\)
−0.474214 + 0.880410i \(0.657268\pi\)
\(60\) 0.344506 + 0.585124i 0.0444756 + 0.0755392i
\(61\) −2.64135 −0.338190 −0.169095 0.985600i \(-0.554084\pi\)
−0.169095 + 0.985600i \(0.554084\pi\)
\(62\) 5.25338i 0.667179i
\(63\) 3.15764i 0.397826i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −0.122645 −0.0150966
\(67\) 10.5992i 1.29490i −0.762106 0.647452i \(-0.775835\pi\)
0.762106 0.647452i \(-0.224165\pi\)
\(68\) 5.21387i 0.632274i
\(69\) −0.535105 −0.0644191
\(70\) 2.09246 1.23199i 0.250097 0.147251i
\(71\) 12.4325 1.47546 0.737732 0.675094i \(-0.235897\pi\)
0.737732 + 0.675094i \(0.235897\pi\)
\(72\) 2.90779i 0.342686i
\(73\) 2.92837i 0.342740i −0.985207 0.171370i \(-0.945181\pi\)
0.985207 0.171370i \(-0.0548193\pi\)
\(74\) 4.42321 0.514188
\(75\) −1.32765 0.736626i −0.153304 0.0850582i
\(76\) −0.844510 −0.0968719
\(77\) 0.438592i 0.0499822i
\(78\) 0 0
\(79\) −15.8880 −1.78754 −0.893772 0.448522i \(-0.851951\pi\)
−0.893772 + 0.448522i \(0.851951\pi\)
\(80\) 1.92689 1.13450i 0.215433 0.126841i
\(81\) 8.17860 0.908734
\(82\) 3.20196i 0.353597i
\(83\) 12.6626i 1.38990i −0.719056 0.694952i \(-0.755426\pi\)
0.719056 0.694952i \(-0.244574\pi\)
\(84\) −0.329755 −0.0359792
\(85\) 5.91515 + 10.0465i 0.641588 + 1.08970i
\(86\) 11.4865 1.23863
\(87\) 1.81210i 0.194277i
\(88\) 0.403887i 0.0430545i
\(89\) 6.99770 0.741755 0.370877 0.928682i \(-0.379057\pi\)
0.370877 + 0.928682i \(0.379057\pi\)
\(90\) −3.29890 5.60299i −0.347734 0.590607i
\(91\) 0 0
\(92\) 1.76217i 0.183719i
\(93\) 1.59525i 0.165420i
\(94\) −11.5048 −1.18663
\(95\) 1.62728 0.958100i 0.166955 0.0982989i
\(96\) −0.303663 −0.0309924
\(97\) 9.47384i 0.961923i −0.876742 0.480961i \(-0.840288\pi\)
0.876742 0.480961i \(-0.159712\pi\)
\(98\) 5.82076i 0.587986i
\(99\) 1.17442 0.118034
\(100\) −2.42580 + 4.37213i −0.242580 + 0.437213i
\(101\) 6.61025 0.657744 0.328872 0.944374i \(-0.393331\pi\)
0.328872 + 0.944374i \(0.393331\pi\)
\(102\) 1.58326i 0.156766i
\(103\) 9.21082i 0.907569i 0.891111 + 0.453784i \(0.149926\pi\)
−0.891111 + 0.453784i \(0.850074\pi\)
\(104\) 0 0
\(105\) 0.635402 0.374108i 0.0620088 0.0365092i
\(106\) 10.7632 1.04542
\(107\) 6.97470i 0.674270i −0.941456 0.337135i \(-0.890542\pi\)
0.941456 0.337135i \(-0.109458\pi\)
\(108\) 1.79397i 0.172625i
\(109\) 3.29363 0.315473 0.157736 0.987481i \(-0.449580\pi\)
0.157736 + 0.987481i \(0.449580\pi\)
\(110\) −0.458212 0.778246i −0.0436888 0.0742029i
\(111\) 1.34316 0.127487
\(112\) 1.08593i 0.102610i
\(113\) 10.0934i 0.949508i −0.880119 0.474754i \(-0.842537\pi\)
0.880119 0.474754i \(-0.157463\pi\)
\(114\) −0.256446 −0.0240184
\(115\) −1.99919 3.39551i −0.186425 0.316633i
\(116\) −5.96747 −0.554066
\(117\) 0 0
\(118\) 7.28501i 0.670640i
\(119\) −5.66187 −0.519023
\(120\) 0.585124 0.344506i 0.0534143 0.0314490i
\(121\) −10.8369 −0.985170
\(122\) 2.64135i 0.239137i
\(123\) 0.972316i 0.0876708i
\(124\) −5.25338 −0.471767
\(125\) −0.285938 11.1767i −0.0255751 0.999673i
\(126\) 3.15764 0.281305
\(127\) 6.06998i 0.538624i −0.963053 0.269312i \(-0.913204\pi\)
0.963053 0.269312i \(-0.0867963\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 3.48803 0.307104
\(130\) 0 0
\(131\) 0.534787 0.0467246 0.0233623 0.999727i \(-0.492563\pi\)
0.0233623 + 0.999727i \(0.492563\pi\)
\(132\) 0.122645i 0.0106749i
\(133\) 0.917075i 0.0795205i
\(134\) −10.5992 −0.915636
\(135\) −2.03527 3.45679i −0.175168 0.297513i
\(136\) −5.21387 −0.447085
\(137\) 11.9809i 1.02360i 0.859105 + 0.511799i \(0.171021\pi\)
−0.859105 + 0.511799i \(0.828979\pi\)
\(138\) 0.535105i 0.0455512i
\(139\) −2.69002 −0.228165 −0.114082 0.993471i \(-0.536393\pi\)
−0.114082 + 0.993471i \(0.536393\pi\)
\(140\) −1.23199 2.09246i −0.104122 0.176845i
\(141\) −3.49357 −0.294211
\(142\) 12.4325i 1.04331i
\(143\) 0 0
\(144\) 2.90779 0.242316
\(145\) 11.4987 6.77011i 0.954911 0.562227i
\(146\) −2.92837 −0.242354
\(147\) 1.76755i 0.145785i
\(148\) 4.42321i 0.363586i
\(149\) −17.5424 −1.43713 −0.718565 0.695460i \(-0.755201\pi\)
−0.718565 + 0.695460i \(0.755201\pi\)
\(150\) −0.736626 + 1.32765i −0.0601452 + 0.108402i
\(151\) −17.5381 −1.42723 −0.713615 0.700538i \(-0.752943\pi\)
−0.713615 + 0.700538i \(0.752943\pi\)
\(152\) 0.844510i 0.0684988i
\(153\) 15.1608i 1.22568i
\(154\) 0.438592 0.0353427
\(155\) 10.1227 5.95997i 0.813073 0.478717i
\(156\) 0 0
\(157\) 10.5663i 0.843279i −0.906764 0.421639i \(-0.861455\pi\)
0.906764 0.421639i \(-0.138545\pi\)
\(158\) 15.8880i 1.26398i
\(159\) 3.26839 0.259200
\(160\) −1.13450 1.92689i −0.0896904 0.152334i
\(161\) 1.91359 0.150812
\(162\) 8.17860i 0.642572i
\(163\) 19.0637i 1.49318i −0.665282 0.746592i \(-0.731689\pi\)
0.665282 0.746592i \(-0.268311\pi\)
\(164\) 3.20196 0.250031
\(165\) −0.139142 0.236324i −0.0108322 0.0183978i
\(166\) −12.6626 −0.982811
\(167\) 10.6825i 0.826637i −0.910587 0.413319i \(-0.864370\pi\)
0.910587 0.413319i \(-0.135630\pi\)
\(168\) 0.329755i 0.0254412i
\(169\) 0 0
\(170\) 10.0465 5.91515i 0.770535 0.453671i
\(171\) 2.45566 0.187789
\(172\) 11.4865i 0.875840i
\(173\) 15.8983i 1.20872i 0.796710 + 0.604362i \(0.206572\pi\)
−0.796710 + 0.604362i \(0.793428\pi\)
\(174\) −1.81210 −0.137375
\(175\) 4.74780 + 2.63424i 0.358900 + 0.199130i
\(176\) 0.403887 0.0304442
\(177\) 2.21219i 0.166278i
\(178\) 6.99770i 0.524500i
\(179\) 25.2779 1.88936 0.944680 0.327995i \(-0.106373\pi\)
0.944680 + 0.327995i \(0.106373\pi\)
\(180\) −5.60299 + 3.29890i −0.417622 + 0.245885i
\(181\) 17.8082 1.32367 0.661837 0.749648i \(-0.269777\pi\)
0.661837 + 0.749648i \(0.269777\pi\)
\(182\) 0 0
\(183\) 0.802079i 0.0592914i
\(184\) 1.76217 0.129909
\(185\) 5.01815 + 8.52303i 0.368942 + 0.626626i
\(186\) −1.59525 −0.116970
\(187\) 2.10581i 0.153992i
\(188\) 11.5048i 0.839071i
\(189\) 1.94812 0.141705
\(190\) −0.958100 1.62728i −0.0695078 0.118055i
\(191\) −10.4612 −0.756947 −0.378474 0.925612i \(-0.623551\pi\)
−0.378474 + 0.925612i \(0.623551\pi\)
\(192\) 0.303663i 0.0219150i
\(193\) 14.6561i 1.05497i 0.849565 + 0.527483i \(0.176864\pi\)
−0.849565 + 0.527483i \(0.823136\pi\)
\(194\) −9.47384 −0.680182
\(195\) 0 0
\(196\) −5.82076 −0.415769
\(197\) 10.3360i 0.736406i 0.929745 + 0.368203i \(0.120027\pi\)
−0.929745 + 0.368203i \(0.879973\pi\)
\(198\) 1.17442i 0.0834623i
\(199\) −5.21516 −0.369693 −0.184846 0.982767i \(-0.559179\pi\)
−0.184846 + 0.982767i \(0.559179\pi\)
\(200\) 4.37213 + 2.42580i 0.309156 + 0.171530i
\(201\) −3.21860 −0.227022
\(202\) 6.61025i 0.465096i
\(203\) 6.48023i 0.454823i
\(204\) −1.58326 −0.110850
\(205\) −6.16982 + 3.63264i −0.430919 + 0.253714i
\(206\) 9.21082 0.641748
\(207\) 5.12402i 0.356144i
\(208\) 0 0
\(209\) 0.341087 0.0235935
\(210\) −0.374108 0.635402i −0.0258159 0.0438469i
\(211\) −12.3086 −0.847361 −0.423681 0.905812i \(-0.639262\pi\)
−0.423681 + 0.905812i \(0.639262\pi\)
\(212\) 10.7632i 0.739221i
\(213\) 3.77528i 0.258678i
\(214\) −6.97470 −0.476781
\(215\) 13.0315 + 22.1333i 0.888742 + 1.50948i
\(216\) 1.79397 0.122065
\(217\) 5.70478i 0.387266i
\(218\) 3.29363i 0.223073i
\(219\) −0.889236 −0.0600890
\(220\) −0.778246 + 0.458212i −0.0524693 + 0.0308926i
\(221\) 0 0
\(222\) 1.34316i 0.0901472i
\(223\) 9.35143i 0.626218i 0.949717 + 0.313109i \(0.101371\pi\)
−0.949717 + 0.313109i \(0.898629\pi\)
\(224\) 1.08593 0.0725565
\(225\) 7.05372 12.7132i 0.470248 0.847548i
\(226\) −10.0934 −0.671403
\(227\) 13.1715i 0.874224i 0.899407 + 0.437112i \(0.143999\pi\)
−0.899407 + 0.437112i \(0.856001\pi\)
\(228\) 0.256446i 0.0169836i
\(229\) −13.6752 −0.903680 −0.451840 0.892099i \(-0.649232\pi\)
−0.451840 + 0.892099i \(0.649232\pi\)
\(230\) −3.39551 + 1.99919i −0.223893 + 0.131823i
\(231\) 0.133184 0.00876286
\(232\) 5.96747i 0.391784i
\(233\) 27.7357i 1.81703i 0.417855 + 0.908514i \(0.362782\pi\)
−0.417855 + 0.908514i \(0.637218\pi\)
\(234\) 0 0
\(235\) −13.0522 22.1684i −0.851431 1.44611i
\(236\) 7.28501 0.474214
\(237\) 4.82460i 0.313392i
\(238\) 5.66187i 0.367005i
\(239\) −17.7552 −1.14849 −0.574243 0.818685i \(-0.694703\pi\)
−0.574243 + 0.818685i \(0.694703\pi\)
\(240\) −0.344506 0.585124i −0.0222378 0.0377696i
\(241\) 3.83937 0.247316 0.123658 0.992325i \(-0.460537\pi\)
0.123658 + 0.992325i \(0.460537\pi\)
\(242\) 10.8369i 0.696621i
\(243\) 7.86546i 0.504569i
\(244\) 2.64135 0.169095
\(245\) 11.2160 6.60368i 0.716562 0.421894i
\(246\) 0.972316 0.0619926
\(247\) 0 0
\(248\) 5.25338i 0.333590i
\(249\) −3.84517 −0.243678
\(250\) −11.1767 + 0.285938i −0.706875 + 0.0180843i
\(251\) 14.4338 0.911054 0.455527 0.890222i \(-0.349451\pi\)
0.455527 + 0.890222i \(0.349451\pi\)
\(252\) 3.15764i 0.198913i
\(253\) 0.711719i 0.0447454i
\(254\) −6.06998 −0.380865
\(255\) 3.05076 1.79621i 0.191046 0.112483i
\(256\) 1.00000 0.0625000
\(257\) 11.0755i 0.690868i −0.938443 0.345434i \(-0.887732\pi\)
0.938443 0.345434i \(-0.112268\pi\)
\(258\) 3.48803i 0.217155i
\(259\) −4.80328 −0.298461
\(260\) 0 0
\(261\) 17.3521 1.07407
\(262\) 0.534787i 0.0330393i
\(263\) 1.74154i 0.107388i 0.998557 + 0.0536941i \(0.0170996\pi\)
−0.998557 + 0.0536941i \(0.982900\pi\)
\(264\) 0.122645 0.00754831
\(265\) 12.2109 + 20.7395i 0.750110 + 1.27402i
\(266\) 0.917075 0.0562295
\(267\) 2.12494i 0.130044i
\(268\) 10.5992i 0.647452i
\(269\) 10.0411 0.612220 0.306110 0.951996i \(-0.400973\pi\)
0.306110 + 0.951996i \(0.400973\pi\)
\(270\) −3.45679 + 2.03527i −0.210374 + 0.123863i
\(271\) −10.3097 −0.626271 −0.313136 0.949708i \(-0.601379\pi\)
−0.313136 + 0.949708i \(0.601379\pi\)
\(272\) 5.21387i 0.316137i
\(273\) 0 0
\(274\) 11.9809 0.723794
\(275\) 0.979751 1.76585i 0.0590812 0.106485i
\(276\) 0.535105 0.0322096
\(277\) 29.7990i 1.79045i −0.445616 0.895224i \(-0.647015\pi\)
0.445616 0.895224i \(-0.352985\pi\)
\(278\) 2.69002i 0.161337i
\(279\) 15.2757 0.914533
\(280\) −2.09246 + 1.23199i −0.125048 + 0.0736253i
\(281\) −17.5437 −1.04657 −0.523285 0.852158i \(-0.675294\pi\)
−0.523285 + 0.852158i \(0.675294\pi\)
\(282\) 3.49357i 0.208039i
\(283\) 25.9299i 1.54137i 0.637214 + 0.770687i \(0.280087\pi\)
−0.637214 + 0.770687i \(0.719913\pi\)
\(284\) −12.4325 −0.737732
\(285\) −0.290939 0.494143i −0.0172337 0.0292705i
\(286\) 0 0
\(287\) 3.47709i 0.205246i
\(288\) 2.90779i 0.171343i
\(289\) −10.1844 −0.599083
\(290\) −6.77011 11.4987i −0.397555 0.675224i
\(291\) −2.87685 −0.168644
\(292\) 2.92837i 0.171370i
\(293\) 26.1627i 1.52844i −0.644954 0.764221i \(-0.723124\pi\)
0.644954 0.764221i \(-0.276876\pi\)
\(294\) −1.76755 −0.103086
\(295\) −14.0374 + 8.26487i −0.817290 + 0.481199i
\(296\) −4.42321 −0.257094
\(297\) 0.724564i 0.0420434i
\(298\) 17.5424i 1.01620i
\(299\) 0 0
\(300\) 1.32765 + 0.736626i 0.0766520 + 0.0425291i
\(301\) −12.4735 −0.718962
\(302\) 17.5381i 1.00920i
\(303\) 2.00729i 0.115316i
\(304\) 0.844510 0.0484360
\(305\) −5.08959 + 2.99662i −0.291429 + 0.171586i
\(306\) 15.1608 0.866687
\(307\) 2.68863i 0.153448i 0.997052 + 0.0767240i \(0.0244460\pi\)
−0.997052 + 0.0767240i \(0.975554\pi\)
\(308\) 0.438592i 0.0249911i
\(309\) 2.79698 0.159115
\(310\) −5.95997 10.1227i −0.338504 0.574929i
\(311\) −31.0278 −1.75943 −0.879713 0.475506i \(-0.842265\pi\)
−0.879713 + 0.475506i \(0.842265\pi\)
\(312\) 0 0
\(313\) 14.7399i 0.833151i 0.909101 + 0.416575i \(0.136770\pi\)
−0.909101 + 0.416575i \(0.863230\pi\)
\(314\) −10.5663 −0.596288
\(315\) 3.58236 + 6.08443i 0.201843 + 0.342819i
\(316\) 15.8880 0.893772
\(317\) 14.7416i 0.827971i 0.910284 + 0.413985i \(0.135864\pi\)
−0.910284 + 0.413985i \(0.864136\pi\)
\(318\) 3.26839i 0.183282i
\(319\) 2.41019 0.134944
\(320\) −1.92689 + 1.13450i −0.107716 + 0.0634207i
\(321\) −2.11796 −0.118213
\(322\) 1.91359i 0.106640i
\(323\) 4.40316i 0.244999i
\(324\) −8.17860 −0.454367
\(325\) 0 0
\(326\) −19.0637 −1.05584
\(327\) 1.00015i 0.0553086i
\(328\) 3.20196i 0.176799i
\(329\) 12.4933 0.688779
\(330\) −0.236324 + 0.139142i −0.0130092 + 0.00765950i
\(331\) 9.55973 0.525450 0.262725 0.964871i \(-0.415379\pi\)
0.262725 + 0.964871i \(0.415379\pi\)
\(332\) 12.6626i 0.694952i
\(333\) 12.8618i 0.704820i
\(334\) −10.6825 −0.584521
\(335\) −12.0249 20.4236i −0.656990 1.11586i
\(336\) 0.329755 0.0179896
\(337\) 7.58566i 0.413217i −0.978424 0.206609i \(-0.933757\pi\)
0.978424 0.206609i \(-0.0662427\pi\)
\(338\) 0 0
\(339\) −3.06499 −0.166467
\(340\) −5.91515 10.0465i −0.320794 0.544850i
\(341\) 2.12177 0.114900
\(342\) 2.45566i 0.132787i
\(343\) 13.9224i 0.751739i
\(344\) −11.4865 −0.619313
\(345\) −1.03109 + 0.607079i −0.0555120 + 0.0326840i
\(346\) 15.8983 0.854697
\(347\) 8.88467i 0.476954i 0.971148 + 0.238477i \(0.0766482\pi\)
−0.971148 + 0.238477i \(0.923352\pi\)
\(348\) 1.81210i 0.0971386i
\(349\) 22.3237 1.19496 0.597480 0.801884i \(-0.296169\pi\)
0.597480 + 0.801884i \(0.296169\pi\)
\(350\) 2.63424 4.74780i 0.140806 0.253781i
\(351\) 0 0
\(352\) 0.403887i 0.0215273i
\(353\) 31.0186i 1.65095i 0.564438 + 0.825476i \(0.309093\pi\)
−0.564438 + 0.825476i \(0.690907\pi\)
\(354\) 2.21219 0.117576
\(355\) 23.9560 14.1047i 1.27145 0.748599i
\(356\) −6.99770 −0.370877
\(357\) 1.71930i 0.0909950i
\(358\) 25.2779i 1.33598i
\(359\) 15.1402 0.799072 0.399536 0.916718i \(-0.369171\pi\)
0.399536 + 0.916718i \(0.369171\pi\)
\(360\) 3.29890 + 5.60299i 0.173867 + 0.295303i
\(361\) −18.2868 −0.962463
\(362\) 17.8082i 0.935979i
\(363\) 3.29075i 0.172720i
\(364\) 0 0
\(365\) −3.32224 5.64264i −0.173894 0.295349i
\(366\) 0.802079 0.0419253
\(367\) 20.8201i 1.08680i 0.839474 + 0.543401i \(0.182863\pi\)
−0.839474 + 0.543401i \(0.817137\pi\)
\(368\) 1.76217i 0.0918595i
\(369\) −9.31063 −0.484692
\(370\) 8.52303 5.01815i 0.443091 0.260881i
\(371\) −11.6881 −0.606814
\(372\) 1.59525i 0.0827100i
\(373\) 0.901633i 0.0466848i 0.999728 + 0.0233424i \(0.00743079\pi\)
−0.999728 + 0.0233424i \(0.992569\pi\)
\(374\) 2.10581 0.108889
\(375\) −3.39394 + 0.0868286i −0.175262 + 0.00448381i
\(376\) 11.5048 0.593313
\(377\) 0 0
\(378\) 1.94812i 0.100201i
\(379\) −15.7125 −0.807096 −0.403548 0.914959i \(-0.632223\pi\)
−0.403548 + 0.914959i \(0.632223\pi\)
\(380\) −1.62728 + 0.958100i −0.0834775 + 0.0491495i
\(381\) −1.84323 −0.0944314
\(382\) 10.4612i 0.535242i
\(383\) 38.0352i 1.94351i 0.235993 + 0.971755i \(0.424166\pi\)
−0.235993 + 0.971755i \(0.575834\pi\)
\(384\) 0.303663 0.0154962
\(385\) 0.497584 + 0.845118i 0.0253592 + 0.0430712i
\(386\) 14.6561 0.745974
\(387\) 33.4004i 1.69784i
\(388\) 9.47384i 0.480961i
\(389\) −3.64514 −0.184816 −0.0924079 0.995721i \(-0.529456\pi\)
−0.0924079 + 0.995721i \(0.529456\pi\)
\(390\) 0 0
\(391\) 9.18773 0.464643
\(392\) 5.82076i 0.293993i
\(393\) 0.162395i 0.00819173i
\(394\) 10.3360 0.520718
\(395\) −30.6145 + 18.0250i −1.54038 + 0.906938i
\(396\) −1.17442 −0.0590168
\(397\) 1.08366i 0.0543872i −0.999630 0.0271936i \(-0.991343\pi\)
0.999630 0.0271936i \(-0.00865706\pi\)
\(398\) 5.21516i 0.261412i
\(399\) 0.278481 0.0139415
\(400\) 2.42580 4.37213i 0.121290 0.218606i
\(401\) −6.16953 −0.308091 −0.154046 0.988064i \(-0.549230\pi\)
−0.154046 + 0.988064i \(0.549230\pi\)
\(402\) 3.21860i 0.160529i
\(403\) 0 0
\(404\) −6.61025 −0.328872
\(405\) 15.7593 9.27866i 0.783084 0.461060i
\(406\) 6.48023 0.321608
\(407\) 1.78648i 0.0885524i
\(408\) 1.58326i 0.0783829i
\(409\) −19.8455 −0.981299 −0.490649 0.871357i \(-0.663240\pi\)
−0.490649 + 0.871357i \(0.663240\pi\)
\(410\) 3.63264 + 6.16982i 0.179403 + 0.304706i
\(411\) 3.63816 0.179457
\(412\) 9.21082i 0.453784i
\(413\) 7.91099i 0.389274i
\(414\) −5.12402 −0.251832
\(415\) −14.3658 24.3995i −0.705189 1.19772i
\(416\) 0 0
\(417\) 0.816859i 0.0400018i
\(418\) 0.341087i 0.0166831i
\(419\) −4.45670 −0.217724 −0.108862 0.994057i \(-0.534721\pi\)
−0.108862 + 0.994057i \(0.534721\pi\)
\(420\) −0.635402 + 0.374108i −0.0310044 + 0.0182546i
\(421\) 16.7557 0.816624 0.408312 0.912842i \(-0.366118\pi\)
0.408312 + 0.912842i \(0.366118\pi\)
\(422\) 12.3086i 0.599175i
\(423\) 33.4534i 1.62656i
\(424\) −10.7632 −0.522708
\(425\) 22.7957 + 12.6478i 1.10575 + 0.613509i
\(426\) −3.77528 −0.182913
\(427\) 2.86831i 0.138807i
\(428\) 6.97470i 0.337135i
\(429\) 0 0
\(430\) 22.1333 13.0315i 1.06736 0.628436i
\(431\) −17.3440 −0.835433 −0.417717 0.908577i \(-0.637170\pi\)
−0.417717 + 0.908577i \(0.637170\pi\)
\(432\) 1.79397i 0.0863126i
\(433\) 4.41765i 0.212299i −0.994350 0.106149i \(-0.966148\pi\)
0.994350 0.106149i \(-0.0338521\pi\)
\(434\) 5.70478 0.273838
\(435\) −2.05583 3.49171i −0.0985695 0.167415i
\(436\) −3.29363 −0.157736
\(437\) 1.48817i 0.0711889i
\(438\) 0.889236i 0.0424893i
\(439\) −33.1534 −1.58232 −0.791162 0.611607i \(-0.790523\pi\)
−0.791162 + 0.611607i \(0.790523\pi\)
\(440\) 0.458212 + 0.778246i 0.0218444 + 0.0371014i
\(441\) 16.9256 0.805979
\(442\) 0 0
\(443\) 19.2632i 0.915224i 0.889152 + 0.457612i \(0.151295\pi\)
−0.889152 + 0.457612i \(0.848705\pi\)
\(444\) −1.34316 −0.0637437
\(445\) 13.4838 7.93892i 0.639193 0.376341i
\(446\) 9.35143 0.442803
\(447\) 5.32697i 0.251957i
\(448\) 1.08593i 0.0513052i
\(449\) 4.55734 0.215074 0.107537 0.994201i \(-0.465704\pi\)
0.107537 + 0.994201i \(0.465704\pi\)
\(450\) −12.7132 7.05372i −0.599307 0.332516i
\(451\) −1.29323 −0.0608959
\(452\) 10.0934i 0.474754i
\(453\) 5.32566i 0.250222i
\(454\) 13.1715 0.618170
\(455\) 0 0
\(456\) 0.256446 0.0120092
\(457\) 15.9598i 0.746570i −0.927717 0.373285i \(-0.878231\pi\)
0.927717 0.373285i \(-0.121769\pi\)
\(458\) 13.6752i 0.638998i
\(459\) 9.35354 0.436586
\(460\) 1.99919 + 3.39551i 0.0932127 + 0.158316i
\(461\) −22.2437 −1.03599 −0.517996 0.855383i \(-0.673322\pi\)
−0.517996 + 0.855383i \(0.673322\pi\)
\(462\) 0.133184i 0.00619628i
\(463\) 31.0149i 1.44138i 0.693256 + 0.720692i \(0.256176\pi\)
−0.693256 + 0.720692i \(0.743824\pi\)
\(464\) 5.96747 0.277033
\(465\) −1.80982 3.07388i −0.0839284 0.142548i
\(466\) 27.7357 1.28483
\(467\) 0.841337i 0.0389324i −0.999811 0.0194662i \(-0.993803\pi\)
0.999811 0.0194662i \(-0.00619668\pi\)
\(468\) 0 0
\(469\) 11.5100 0.531482
\(470\) −22.1684 + 13.0522i −1.02255 + 0.602053i
\(471\) −3.20858 −0.147843
\(472\) 7.28501i 0.335320i
\(473\) 4.63927i 0.213314i
\(474\) 4.82460 0.221601
\(475\) 2.04861 3.69230i 0.0939969 0.169414i
\(476\) 5.66187 0.259512
\(477\) 31.2972i 1.43300i
\(478\) 17.7552i 0.812102i
\(479\) 7.63429 0.348819 0.174410 0.984673i \(-0.444198\pi\)
0.174410 + 0.984673i \(0.444198\pi\)
\(480\) −0.585124 + 0.344506i −0.0267071 + 0.0157245i
\(481\) 0 0
\(482\) 3.83937i 0.174879i
\(483\) 0.581085i 0.0264403i
\(484\) 10.8369 0.492585
\(485\) −10.7481 18.2550i −0.488046 0.828919i
\(486\) −7.86546 −0.356784
\(487\) 23.2958i 1.05563i 0.849358 + 0.527817i \(0.176989\pi\)
−0.849358 + 0.527817i \(0.823011\pi\)
\(488\) 2.64135i 0.119568i
\(489\) −5.78893 −0.261784
\(490\) −6.60368 11.2160i −0.298324 0.506686i
\(491\) 36.2972 1.63807 0.819034 0.573745i \(-0.194510\pi\)
0.819034 + 0.573745i \(0.194510\pi\)
\(492\) 0.972316i 0.0438354i
\(493\) 31.1136i 1.40129i
\(494\) 0 0
\(495\) 2.26298 1.33238i 0.101713 0.0598862i
\(496\) 5.25338 0.235884
\(497\) 13.5008i 0.605591i
\(498\) 3.84517i 0.172306i
\(499\) 18.9398 0.847863 0.423932 0.905694i \(-0.360650\pi\)
0.423932 + 0.905694i \(0.360650\pi\)
\(500\) 0.285938 + 11.1767i 0.0127875 + 0.499836i
\(501\) −3.24388 −0.144926
\(502\) 14.4338i 0.644213i
\(503\) 35.7640i 1.59464i −0.603560 0.797318i \(-0.706251\pi\)
0.603560 0.797318i \(-0.293749\pi\)
\(504\) −3.15764 −0.140653
\(505\) 12.7372 7.49935i 0.566799 0.333717i
\(506\) −0.711719 −0.0316398
\(507\) 0 0
\(508\) 6.06998i 0.269312i
\(509\) 3.11873 0.138235 0.0691176 0.997609i \(-0.477982\pi\)
0.0691176 + 0.997609i \(0.477982\pi\)
\(510\) −1.79621 3.05076i −0.0795375 0.135090i
\(511\) 3.17999 0.140675
\(512\) 1.00000i 0.0441942i
\(513\) 1.51503i 0.0668902i
\(514\) −11.0755 −0.488517
\(515\) 10.4497 + 17.7482i 0.460469 + 0.782080i
\(516\) −3.48803 −0.153552
\(517\) 4.64663i 0.204359i
\(518\) 4.80328i 0.211044i
\(519\) 4.82772 0.211913
\(520\) 0 0
\(521\) 38.4309 1.68369 0.841844 0.539721i \(-0.181470\pi\)
0.841844 + 0.539721i \(0.181470\pi\)
\(522\) 17.3521i 0.759483i
\(523\) 23.8519i 1.04297i −0.853260 0.521485i \(-0.825378\pi\)
0.853260 0.521485i \(-0.174622\pi\)
\(524\) −0.534787 −0.0233623
\(525\) 0.799921 1.44173i 0.0349114 0.0629223i
\(526\) 1.74154 0.0759349
\(527\) 27.3904i 1.19314i
\(528\) 0.122645i 0.00533746i
\(529\) 19.8948 0.864989
\(530\) 20.7395 12.2109i 0.900867 0.530408i
\(531\) −21.1833 −0.919276
\(532\) 0.917075i 0.0397603i
\(533\) 0 0
\(534\) −2.12494 −0.0919551
\(535\) −7.91283 13.4395i −0.342101 0.581040i
\(536\) 10.5992 0.457818
\(537\) 7.67595i 0.331242i
\(538\) 10.0411i 0.432905i
\(539\) 2.35093 0.101262
\(540\) 2.03527 + 3.45679i 0.0875841 + 0.148757i
\(541\) −5.36874 −0.230820 −0.115410 0.993318i \(-0.536818\pi\)
−0.115410 + 0.993318i \(0.536818\pi\)
\(542\) 10.3097i 0.442841i
\(543\) 5.40769i 0.232066i
\(544\) 5.21387 0.223543
\(545\) 6.34647 3.73664i 0.271853 0.160060i
\(546\) 0 0
\(547\) 28.1689i 1.20442i −0.798339 0.602208i \(-0.794288\pi\)
0.798339 0.602208i \(-0.205712\pi\)
\(548\) 11.9809i 0.511799i
\(549\) −7.68049 −0.327795
\(550\) −1.76585 0.979751i −0.0752959 0.0417767i
\(551\) 5.03959 0.214694
\(552\) 0.535105i 0.0227756i
\(553\) 17.2532i 0.733682i
\(554\) −29.7990 −1.26604
\(555\) 2.58813 1.52382i 0.109860 0.0646827i
\(556\) 2.69002 0.114082
\(557\) 15.1505i 0.641947i −0.947088 0.320974i \(-0.895990\pi\)
0.947088 0.320974i \(-0.104010\pi\)
\(558\) 15.2757i 0.646672i
\(559\) 0 0
\(560\) 1.23199 + 2.09246i 0.0520610 + 0.0884225i
\(561\) 0.639457 0.0269979
\(562\) 17.5437i 0.740037i
\(563\) 32.5894i 1.37348i 0.726904 + 0.686739i \(0.240958\pi\)
−0.726904 + 0.686739i \(0.759042\pi\)
\(564\) 3.49357 0.147106
\(565\) −11.4510 19.4489i −0.481747 0.818220i
\(566\) 25.9299 1.08992
\(567\) 8.88136i 0.372982i
\(568\) 12.4325i 0.521655i
\(569\) −21.7554 −0.912033 −0.456016 0.889971i \(-0.650724\pi\)
−0.456016 + 0.889971i \(0.650724\pi\)
\(570\) −0.494143 + 0.290939i −0.0206974 + 0.0121861i
\(571\) −24.2853 −1.01631 −0.508155 0.861266i \(-0.669672\pi\)
−0.508155 + 0.861266i \(0.669672\pi\)
\(572\) 0 0
\(573\) 3.17668i 0.132708i
\(574\) −3.47709 −0.145131
\(575\) −7.70443 4.27468i −0.321297 0.178266i
\(576\) −2.90779 −0.121158
\(577\) 23.1332i 0.963048i −0.876433 0.481524i \(-0.840083\pi\)
0.876433 0.481524i \(-0.159917\pi\)
\(578\) 10.1844i 0.423616i
\(579\) 4.45050 0.184956
\(580\) −11.4987 + 6.77011i −0.477455 + 0.281114i
\(581\) 13.7507 0.570474
\(582\) 2.87685i 0.119249i
\(583\) 4.34713i 0.180040i
\(584\) 2.92837 0.121177
\(585\) 0 0
\(586\) −26.1627 −1.08077
\(587\) 4.60818i 0.190200i 0.995468 + 0.0950999i \(0.0303171\pi\)
−0.995468 + 0.0950999i \(0.969683\pi\)
\(588\) 1.76755i 0.0728925i
\(589\) 4.43653 0.182804
\(590\) 8.26487 + 14.0374i 0.340259 + 0.577911i
\(591\) 3.13864 0.129106
\(592\) 4.42321i 0.181793i
\(593\) 1.27629i 0.0524111i 0.999657 + 0.0262056i \(0.00834244\pi\)
−0.999657 + 0.0262056i \(0.991658\pi\)
\(594\) −0.724564 −0.0297292
\(595\) −10.9098 + 6.42342i −0.447258 + 0.263334i
\(596\) 17.5424 0.718565
\(597\) 1.58365i 0.0648144i
\(598\) 0 0
\(599\) −21.3539 −0.872497 −0.436249 0.899826i \(-0.643693\pi\)
−0.436249 + 0.899826i \(0.643693\pi\)
\(600\) 0.736626 1.32765i 0.0300726 0.0542011i
\(601\) −2.74727 −0.112063 −0.0560317 0.998429i \(-0.517845\pi\)
−0.0560317 + 0.998429i \(0.517845\pi\)
\(602\) 12.4735i 0.508383i
\(603\) 30.8204i 1.25510i
\(604\) 17.5381 0.713615
\(605\) −20.8815 + 12.2945i −0.848952 + 0.499841i
\(606\) −2.00729 −0.0815404
\(607\) 22.9135i 0.930030i −0.885303 0.465015i \(-0.846049\pi\)
0.885303 0.465015i \(-0.153951\pi\)
\(608\) 0.844510i 0.0342494i
\(609\) 1.96780 0.0797394
\(610\) 2.99662 + 5.08959i 0.121330 + 0.206071i
\(611\) 0 0
\(612\) 15.1608i 0.612840i
\(613\) 16.5575i 0.668752i 0.942440 + 0.334376i \(0.108526\pi\)
−0.942440 + 0.334376i \(0.891474\pi\)
\(614\) 2.68863 0.108504
\(615\) 1.10310 + 1.87354i 0.0444811 + 0.0755486i
\(616\) −0.438592 −0.0176714
\(617\) 11.3693i 0.457712i −0.973460 0.228856i \(-0.926502\pi\)
0.973460 0.228856i \(-0.0734985\pi\)
\(618\) 2.79698i 0.112511i
\(619\) 47.1109 1.89355 0.946773 0.321901i \(-0.104322\pi\)
0.946773 + 0.321901i \(0.104322\pi\)
\(620\) −10.1227 + 5.95997i −0.406536 + 0.239358i
\(621\) −3.16129 −0.126858
\(622\) 31.0278i 1.24410i
\(623\) 7.59898i 0.304447i
\(624\) 0 0
\(625\) −13.2310 21.2118i −0.529238 0.848473i
\(626\) 14.7399 0.589127
\(627\) 0.103575i 0.00413640i
\(628\) 10.5663i 0.421639i
\(629\) −23.0620 −0.919543
\(630\) 6.08443 3.58236i 0.242409 0.142725i
\(631\) −8.39389 −0.334156 −0.167078 0.985944i \(-0.553433\pi\)
−0.167078 + 0.985944i \(0.553433\pi\)
\(632\) 15.8880i 0.631992i
\(633\) 3.73767i 0.148559i
\(634\) 14.7416 0.585464
\(635\) −6.88642 11.6962i −0.273279 0.464149i
\(636\) −3.26839 −0.129600
\(637\) 0 0
\(638\) 2.41019i 0.0954201i
\(639\) 36.1510 1.43011
\(640\) 1.13450 + 1.92689i 0.0448452 + 0.0761670i
\(641\) −36.5728 −1.44454 −0.722268 0.691613i \(-0.756901\pi\)
−0.722268 + 0.691613i \(0.756901\pi\)
\(642\) 2.11796i 0.0835891i
\(643\) 46.0372i 1.81553i −0.419478 0.907766i \(-0.637787\pi\)
0.419478 0.907766i \(-0.362213\pi\)
\(644\) −1.91359 −0.0754059
\(645\) 6.72105 3.95719i 0.264641 0.155814i
\(646\) 4.40316 0.173240
\(647\) 27.8549i 1.09509i −0.836776 0.547545i \(-0.815563\pi\)
0.836776 0.547545i \(-0.184437\pi\)
\(648\) 8.17860i 0.321286i
\(649\) −2.94232 −0.115496
\(650\) 0 0
\(651\) 1.73233 0.0678953
\(652\) 19.0637i 0.746592i
\(653\) 4.98456i 0.195061i 0.995233 + 0.0975304i \(0.0310943\pi\)
−0.995233 + 0.0975304i \(0.968906\pi\)
\(654\) −1.00015 −0.0391091
\(655\) 1.03048 0.606718i 0.0402640 0.0237064i
\(656\) −3.20196 −0.125016
\(657\) 8.51508i 0.332205i
\(658\) 12.4933i 0.487040i
\(659\) −27.8625 −1.08537 −0.542684 0.839937i \(-0.682592\pi\)
−0.542684 + 0.839937i \(0.682592\pi\)
\(660\) 0.139142 + 0.236324i 0.00541608 + 0.00919891i
\(661\) −37.9173 −1.47481 −0.737406 0.675450i \(-0.763949\pi\)
−0.737406 + 0.675450i \(0.763949\pi\)
\(662\) 9.55973i 0.371549i
\(663\) 0 0
\(664\) 12.6626 0.491405
\(665\) 1.04043 + 1.76710i 0.0403460 + 0.0685253i
\(666\) 12.8618 0.498383
\(667\) 10.5157i 0.407170i
\(668\) 10.6825i 0.413319i
\(669\) 2.83968 0.109788
\(670\) −20.4236 + 12.0249i −0.789032 + 0.464562i
\(671\) −1.06681 −0.0411837
\(672\) 0.329755i 0.0127206i
\(673\) 5.08337i 0.195949i −0.995189 0.0979747i \(-0.968764\pi\)
0.995189 0.0979747i \(-0.0312364\pi\)
\(674\) −7.58566 −0.292189
\(675\) −7.84348 4.35183i −0.301896 0.167502i
\(676\) 0 0
\(677\) 40.3815i 1.55199i 0.630740 + 0.775994i \(0.282751\pi\)
−0.630740 + 0.775994i \(0.717249\pi\)
\(678\) 3.06499i 0.117710i
\(679\) 10.2879 0.394813
\(680\) −10.0465 + 5.91515i −0.385267 + 0.226836i
\(681\) 3.99970 0.153269
\(682\) 2.12177i 0.0812468i
\(683\) 14.8432i 0.567959i 0.958830 + 0.283980i \(0.0916548\pi\)
−0.958830 + 0.283980i \(0.908345\pi\)
\(684\) −2.45566 −0.0938944
\(685\) 13.5924 + 23.0859i 0.519339 + 0.882067i
\(686\) 13.9224 0.531560
\(687\) 4.15264i 0.158433i
\(688\) 11.4865i 0.437920i
\(689\) 0 0
\(690\) 0.607079 + 1.03109i 0.0231111 + 0.0392529i
\(691\) −31.8114 −1.21016 −0.605081 0.796164i \(-0.706859\pi\)
−0.605081 + 0.796164i \(0.706859\pi\)
\(692\) 15.8983i 0.604362i
\(693\) 1.27533i 0.0484459i
\(694\) 8.88467 0.337257
\(695\) −5.18338 + 3.05184i −0.196617 + 0.115763i
\(696\) 1.81210 0.0686874
\(697\) 16.6946i 0.632353i
\(698\) 22.3237i 0.844964i
\(699\) 8.42230 0.318561
\(700\) −4.74780 2.63424i −0.179450 0.0995650i
\(701\) −2.75131 −0.103915 −0.0519577 0.998649i \(-0.516546\pi\)
−0.0519577 + 0.998649i \(0.516546\pi\)
\(702\) 0 0
\(703\) 3.73544i 0.140885i
\(704\) −0.403887 −0.0152221
\(705\) −6.73172 + 3.96346i −0.253531 + 0.149273i
\(706\) 31.0186 1.16740
\(707\) 7.17824i 0.269966i
\(708\) 2.21219i 0.0831390i
\(709\) 28.7721 1.08056 0.540279 0.841486i \(-0.318319\pi\)
0.540279 + 0.841486i \(0.318319\pi\)
\(710\) −14.1047 23.9560i −0.529340 0.899053i
\(711\) −46.1991 −1.73260
\(712\) 6.99770i 0.262250i
\(713\) 9.25735i 0.346690i
\(714\) 1.71930 0.0643432
\(715\) 0 0
\(716\) −25.2779 −0.944680
\(717\) 5.39158i 0.201352i
\(718\) 15.1402i 0.565029i
\(719\) −33.1840 −1.23756 −0.618778 0.785566i \(-0.712372\pi\)
−0.618778 + 0.785566i \(0.712372\pi\)
\(720\) 5.60299 3.29890i 0.208811 0.122943i
\(721\) −10.0023 −0.372504
\(722\) 18.2868i 0.680564i
\(723\) 1.16587i 0.0433593i
\(724\) −17.8082 −0.661837
\(725\) 14.4759 26.0905i 0.537622 0.968978i
\(726\) 3.29075 0.122131
\(727\) 37.6129i 1.39499i −0.716591 0.697493i \(-0.754299\pi\)
0.716591 0.697493i \(-0.245701\pi\)
\(728\) 0 0
\(729\) 22.1474 0.820273
\(730\) −5.64264 + 3.32224i −0.208844 + 0.122962i
\(731\) −59.8893 −2.21509
\(732\) 0.802079i 0.0296457i
\(733\) 19.0778i 0.704654i −0.935877 0.352327i \(-0.885391\pi\)
0.935877 0.352327i \(-0.114609\pi\)
\(734\) 20.8201 0.768484
\(735\) −2.00529 3.40587i −0.0739662 0.125627i
\(736\) −1.76217 −0.0649545
\(737\) 4.28090i 0.157689i
\(738\) 9.31063i 0.342729i
\(739\) −40.5137 −1.49032 −0.745160 0.666886i \(-0.767627\pi\)
−0.745160 + 0.666886i \(0.767627\pi\)
\(740\) −5.01815 8.52303i −0.184471 0.313313i
\(741\) 0 0
\(742\) 11.6881i 0.429082i
\(743\) 11.8075i 0.433176i 0.976263 + 0.216588i \(0.0694929\pi\)
−0.976263 + 0.216588i \(0.930507\pi\)
\(744\) 1.59525 0.0584848
\(745\) −33.8023 + 19.9019i −1.23842 + 0.729150i
\(746\) 0.901633 0.0330111
\(747\) 36.8203i 1.34718i
\(748\) 2.10581i 0.0769962i
\(749\) 7.57401 0.276748
\(750\) 0.0868286 + 3.39394i 0.00317053 + 0.123929i
\(751\) −14.0149 −0.511409 −0.255705 0.966755i \(-0.582307\pi\)
−0.255705 + 0.966755i \(0.582307\pi\)
\(752\) 11.5048i 0.419536i
\(753\) 4.38301i 0.159726i
\(754\) 0 0
\(755\) −33.7940 + 19.8970i −1.22989 + 0.724127i
\(756\) −1.94812 −0.0708526
\(757\) 31.2552i 1.13599i −0.823032 0.567994i \(-0.807720\pi\)
0.823032 0.567994i \(-0.192280\pi\)
\(758\) 15.7125i 0.570703i
\(759\) −0.216122 −0.00784474
\(760\) 0.958100 + 1.62728i 0.0347539 + 0.0590275i
\(761\) −34.1575 −1.23821 −0.619103 0.785310i \(-0.712504\pi\)
−0.619103 + 0.785310i \(0.712504\pi\)
\(762\) 1.84323i 0.0667731i
\(763\) 3.57664i 0.129483i
\(764\) 10.4612 0.378474
\(765\) 17.2000 + 29.2132i 0.621868 + 1.05621i
\(766\) 38.0352 1.37427
\(767\) 0 0
\(768\) 0.303663i 0.0109575i
\(769\) 44.2201 1.59462 0.797308 0.603572i \(-0.206256\pi\)
0.797308 + 0.603572i \(0.206256\pi\)
\(770\) 0.845118 0.497584i 0.0304559 0.0179317i
\(771\) −3.36320 −0.121123
\(772\) 14.6561i 0.527483i
\(773\) 2.04145i 0.0734259i 0.999326 + 0.0367129i \(0.0116887\pi\)
−0.999326 + 0.0367129i \(0.988311\pi\)
\(774\) 33.4004 1.20055
\(775\) 12.7437 22.9684i 0.457766 0.825050i
\(776\) 9.47384 0.340091
\(777\) 1.45858i 0.0523261i
\(778\) 3.64514i 0.130685i
\(779\) −2.70409 −0.0968840
\(780\) 0 0
\(781\) 5.02132 0.179677
\(782\) 9.18773i 0.328552i
\(783\) 10.7055i 0.382583i
\(784\) 5.82076 0.207884
\(785\) −11.9875 20.3600i −0.427851 0.726680i
\(786\) −0.162395 −0.00579243
\(787\) 3.39520i 0.121026i 0.998167 + 0.0605130i \(0.0192737\pi\)
−0.998167 + 0.0605130i \(0.980726\pi\)
\(788\) 10.3360i 0.368203i
\(789\) 0.528841 0.0188273
\(790\) 18.0250 + 30.6145i 0.641302 + 1.08921i
\(791\) 10.9607 0.389717
\(792\) 1.17442i 0.0417312i
\(793\) 0 0
\(794\) −1.08366 −0.0384576
\(795\) 6.29782 3.70800i 0.223361 0.131509i
\(796\) 5.21516 0.184846
\(797\) 24.4659i 0.866626i 0.901244 + 0.433313i \(0.142655\pi\)
−0.901244 + 0.433313i \(0.857345\pi\)
\(798\) 0.278481i 0.00985814i
\(799\) 59.9843 2.12209
\(800\) −4.37213 2.42580i −0.154578 0.0857651i
\(801\) 20.3478 0.718955
\(802\) 6.16953i 0.217854i
\(803\) 1.18273i 0.0417377i
\(804\) 3.21860 0.113511
\(805\) 3.68727 2.17097i 0.129959 0.0765167i
\(806\) 0 0
\(807\) 3.04912i 0.107334i
\(808\) 6.61025i 0.232548i
\(809\) 17.6948 0.622117 0.311058 0.950391i \(-0.399317\pi\)
0.311058 + 0.950391i \(0.399317\pi\)
\(810\) −9.27866 15.7593i −0.326019 0.553724i
\(811\) 2.82931 0.0993505 0.0496753 0.998765i \(-0.484181\pi\)
0.0496753 + 0.998765i \(0.484181\pi\)
\(812\) 6.48023i 0.227411i
\(813\) 3.13068i 0.109798i
\(814\) 1.78648 0.0626160
\(815\) −21.6278 36.7336i −0.757590 1.28672i
\(816\) 1.58326 0.0554251
\(817\) 9.70050i 0.339377i
\(818\) 19.8455i 0.693883i
\(819\) 0 0
\(820\) 6.16982 3.63264i 0.215460 0.126857i
\(821\) 26.1300 0.911942 0.455971 0.889995i \(-0.349292\pi\)
0.455971 + 0.889995i \(0.349292\pi\)
\(822\) 3.63816i 0.126895i
\(823\) 1.85316i 0.0645970i −0.999478 0.0322985i \(-0.989717\pi\)
0.999478 0.0322985i \(-0.0102827\pi\)
\(824\) −9.21082 −0.320874
\(825\) −0.536221 0.297514i −0.0186688 0.0103581i
\(826\) −7.91099 −0.275258
\(827\) 19.9886i 0.695072i 0.937667 + 0.347536i \(0.112982\pi\)
−0.937667 + 0.347536i \(0.887018\pi\)
\(828\) 5.12402i 0.178072i
\(829\) −41.6506 −1.44658 −0.723292 0.690542i \(-0.757372\pi\)
−0.723292 + 0.690542i \(0.757372\pi\)
\(830\) −24.3995 + 14.3658i −0.846918 + 0.498644i
\(831\) −9.04884 −0.313901
\(832\) 0 0
\(833\) 30.3487i 1.05152i
\(834\) 0.816859 0.0282855
\(835\) −12.1193 20.5840i −0.419407 0.712339i
\(836\) −0.341087 −0.0117967
\(837\) 9.42442i 0.325756i
\(838\) 4.45670i 0.153954i
\(839\) −25.9421 −0.895622 −0.447811 0.894128i \(-0.647796\pi\)
−0.447811 + 0.894128i \(0.647796\pi\)
\(840\) 0.374108 + 0.635402i 0.0129080 + 0.0219234i
\(841\) 6.61068 0.227955
\(842\) 16.7557i 0.577441i
\(843\) 5.32737i 0.183484i
\(844\) 12.3086 0.423681
\(845\) 0 0
\(846\) −33.4534 −1.15015
\(847\) 11.7680i 0.404355i
\(848\) 10.7632i 0.369610i
\(849\) 7.87395 0.270233
\(850\) 12.6478 22.7957i 0.433816 0.781885i
\(851\) 7.79445 0.267190
\(852\) 3.77528i 0.129339i
\(853\) 33.6674i 1.15275i −0.817186 0.576374i \(-0.804467\pi\)
0.817186 0.576374i \(-0.195533\pi\)
\(854\) −2.86831 −0.0981516
\(855\) 4.73178 2.78595i 0.161823 0.0952775i
\(856\) 6.97470 0.238391
\(857\) 6.39008i 0.218281i 0.994026 + 0.109140i \(0.0348098\pi\)
−0.994026 + 0.109140i \(0.965190\pi\)
\(858\) 0 0
\(859\) −29.6345 −1.01112 −0.505558 0.862792i \(-0.668713\pi\)
−0.505558 + 0.862792i \(0.668713\pi\)
\(860\) −13.0315 22.1333i −0.444371 0.754739i
\(861\) −1.05586 −0.0359837
\(862\) 17.3440i 0.590741i
\(863\) 15.7244i 0.535264i −0.963521 0.267632i \(-0.913759\pi\)
0.963521 0.267632i \(-0.0862412\pi\)
\(864\) −1.79397 −0.0610323
\(865\) 18.0367 + 30.6342i 0.613265 + 1.04160i
\(866\) −4.41765 −0.150118
\(867\) 3.09262i 0.105031i
\(868\) 5.70478i 0.193633i
\(869\) −6.41698 −0.217681
\(870\) −3.49171 + 2.05583i −0.118380 + 0.0696992i
\(871\) 0 0
\(872\) 3.29363i 0.111537i
\(873\) 27.5479i 0.932356i
\(874\) −1.48817 −0.0503381
\(875\) 12.1371 0.310507i 0.410307 0.0104971i
\(876\) 0.889236 0.0300445
\(877\) 30.3994i 1.02651i −0.858235 0.513257i \(-0.828439\pi\)
0.858235 0.513257i \(-0.171561\pi\)
\(878\) 33.1534i 1.11887i
\(879\) −7.94464 −0.267966
\(880\) 0.778246 0.458212i 0.0262347 0.0154463i
\(881\) 41.3933 1.39458 0.697288 0.716791i \(-0.254390\pi\)
0.697288 + 0.716791i \(0.254390\pi\)
\(882\) 16.9256i 0.569913i
\(883\) 24.4503i 0.822819i −0.911451 0.411410i \(-0.865037\pi\)
0.911451 0.411410i \(-0.134963\pi\)
\(884\) 0 0
\(885\) 2.50973 + 4.26264i 0.0843637 + 0.143287i
\(886\) 19.2632 0.647161
\(887\) 37.1737i 1.24817i −0.781357 0.624085i \(-0.785472\pi\)
0.781357 0.624085i \(-0.214528\pi\)
\(888\) 1.34316i 0.0450736i
\(889\) 6.59155 0.221074
\(890\) −7.93892 13.4838i −0.266113 0.451978i
\(891\) 3.30323 0.110663
\(892\) 9.35143i 0.313109i
\(893\) 9.71589i 0.325130i
\(894\) 5.32697 0.178161
\(895\) 48.7077 28.6779i 1.62812 0.958595i
\(896\) −1.08593 −0.0362782
\(897\) 0 0
\(898\) 4.55734i 0.152081i
\(899\) 31.3494 1.04556
\(900\) −7.05372 + 12.7132i −0.235124 + 0.423774i
\(901\) −56.1180 −1.86956
\(902\) 1.29323i 0.0430599i
\(903\) 3.78775i 0.126048i
\(904\) 10.0934 0.335702
\(905\) 34.3144 20.2035i 1.14065 0.671586i
\(906\) 5.32566 0.176933
\(907\) 32.4758i 1.07834i −0.842196 0.539171i \(-0.818738\pi\)
0.842196 0.539171i \(-0.181262\pi\)
\(908\) 13.1715i 0.437112i
\(909\) 19.2212 0.637527
\(910\) 0 0
\(911\) 16.8692 0.558900 0.279450 0.960160i \(-0.409848\pi\)
0.279450 + 0.960160i \(0.409848\pi\)
\(912\) 0.256446i 0.00849178i
\(913\) 5.11428i 0.169258i
\(914\) −15.9598 −0.527905
\(915\) 0.909962 + 1.54552i 0.0300824 + 0.0510932i
\(916\) 13.6752 0.451840
\(917\) 0.580739i 0.0191777i
\(918\) 9.35354i 0.308713i
\(919\) 5.75843 0.189953 0.0949765 0.995480i \(-0.469722\pi\)
0.0949765 + 0.995480i \(0.469722\pi\)
\(920\) 3.39551 1.99919i 0.111947 0.0659113i
\(921\) 0.816435 0.0269025
\(922\) 22.2437i 0.732556i
\(923\) 0 0
\(924\) −0.133184 −0.00438143
\(925\) 19.3388 + 10.7298i 0.635857 + 0.352795i
\(926\) 31.0149 1.01921
\(927\) 26.7831i 0.879673i
\(928\) 5.96747i 0.195892i
\(929\) −43.2786 −1.41992 −0.709962 0.704240i \(-0.751288\pi\)
−0.709962 + 0.704240i \(0.751288\pi\)
\(930\) −3.07388 + 1.80982i −0.100796 + 0.0593464i
\(931\) 4.91569 0.161105
\(932\) 27.7357i 0.908514i
\(933\) 9.42198i 0.308462i
\(934\) −0.841337 −0.0275294
\(935\) 2.38905 + 4.05767i 0.0781304 + 0.132700i
\(936\) 0 0
\(937\) 13.9713i 0.456424i 0.973611 + 0.228212i \(0.0732879\pi\)
−0.973611 + 0.228212i \(0.926712\pi\)
\(938\) 11.5100i 0.375815i
\(939\) 4.47597 0.146068
\(940\) 13.0522 + 22.1684i 0.425716 + 0.723054i
\(941\) 27.2678 0.888905 0.444452 0.895803i \(-0.353398\pi\)
0.444452 + 0.895803i \(0.353398\pi\)
\(942\) 3.20858i 0.104541i
\(943\) 5.64240i 0.183742i
\(944\) −7.28501 −0.237107
\(945\) 3.75382 2.21015i 0.122112 0.0718963i
\(946\) 4.63927 0.150836
\(947\) 11.4663i 0.372605i −0.982492 0.186302i \(-0.940350\pi\)
0.982492 0.186302i \(-0.0596504\pi\)
\(948\) 4.82460i 0.156696i
\(949\) 0 0
\(950\) −3.69230 2.04861i −0.119794 0.0664658i
\(951\) 4.47647 0.145160
\(952\) 5.66187i 0.183502i
\(953\) 19.2137i 0.622392i 0.950346 + 0.311196i \(0.100730\pi\)
−0.950346 + 0.311196i \(0.899270\pi\)
\(954\) 31.2972 1.01328
\(955\) −20.1576 + 11.8683i −0.652285 + 0.384049i
\(956\) 17.7552 0.574243
\(957\) 0.731883i 0.0236584i
\(958\) 7.63429i 0.246653i
\(959\) −13.0104 −0.420127
\(960\) 0.344506 + 0.585124i 0.0111189 + 0.0188848i
\(961\) −3.40205 −0.109743
\(962\) 0 0
\(963\) 20.2810i 0.653545i
\(964\) −3.83937 −0.123658
\(965\) 16.6274 + 28.2406i 0.535253 + 0.909097i
\(966\) −0.581085 −0.0186961
\(967\) 40.2200i 1.29339i −0.762749 0.646695i \(-0.776151\pi\)
0.762749 0.646695i \(-0.223849\pi\)
\(968\) 10.8369i 0.348310i
\(969\) 1.33708 0.0429531
\(970\) −18.2550 + 10.7481i −0.586134 + 0.345101i
\(971\) 40.8959 1.31241 0.656207 0.754581i \(-0.272160\pi\)
0.656207 + 0.754581i \(0.272160\pi\)
\(972\) 7.86546i 0.252285i
\(973\) 2.92117i 0.0936483i
\(974\) 23.2958 0.746446
\(975\) 0 0
\(976\) −2.64135 −0.0845475
\(977\) 19.5975i 0.626981i 0.949591 + 0.313490i \(0.101498\pi\)
−0.949591 + 0.313490i \(0.898502\pi\)
\(978\) 5.78893i 0.185110i
\(979\) 2.82628 0.0903284
\(980\) −11.2160 + 6.60368i −0.358281 + 0.210947i
\(981\) 9.57719 0.305776
\(982\) 36.2972i 1.15829i
\(983\) 11.7949i 0.376198i −0.982150 0.188099i \(-0.939767\pi\)
0.982150 0.188099i \(-0.0602325\pi\)
\(984\) −0.972316 −0.0309963
\(985\) 11.7262 + 19.9162i 0.373627 + 0.634584i
\(986\) 31.1136 0.990858
\(987\) 3.79375i 0.120757i
\(988\) 0 0
\(989\) 20.2412 0.643634
\(990\) −1.33238 2.26298i −0.0423459 0.0719221i
\(991\) 25.3114 0.804043 0.402022 0.915630i \(-0.368308\pi\)
0.402022 + 0.915630i \(0.368308\pi\)
\(992\) 5.25338i 0.166795i
\(993\) 2.90293i 0.0921217i
\(994\) 13.5008 0.428218
\(995\) −10.0490 + 5.91661i −0.318576 + 0.187569i
\(996\) 3.84517 0.121839
\(997\) 18.7441i 0.593632i −0.954935 0.296816i \(-0.904075\pi\)
0.954935 0.296816i \(-0.0959248\pi\)
\(998\) 18.9398i 0.599530i
\(999\) 7.93513 0.251056
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.g.339.3 yes 18
5.2 odd 4 8450.2.a.da.1.3 9
5.3 odd 4 8450.2.a.ct.1.7 9
5.4 even 2 inner 1690.2.b.g.339.16 yes 18
13.5 odd 4 1690.2.c.g.1689.8 18
13.8 odd 4 1690.2.c.h.1689.8 18
13.12 even 2 1690.2.b.f.339.12 yes 18
65.12 odd 4 8450.2.a.cw.1.3 9
65.34 odd 4 1690.2.c.g.1689.11 18
65.38 odd 4 8450.2.a.cx.1.7 9
65.44 odd 4 1690.2.c.h.1689.11 18
65.64 even 2 1690.2.b.f.339.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.7 18 65.64 even 2
1690.2.b.f.339.12 yes 18 13.12 even 2
1690.2.b.g.339.3 yes 18 1.1 even 1 trivial
1690.2.b.g.339.16 yes 18 5.4 even 2 inner
1690.2.c.g.1689.8 18 13.5 odd 4
1690.2.c.g.1689.11 18 65.34 odd 4
1690.2.c.h.1689.8 18 13.8 odd 4
1690.2.c.h.1689.11 18 65.44 odd 4
8450.2.a.ct.1.7 9 5.3 odd 4
8450.2.a.cw.1.3 9 65.12 odd 4
8450.2.a.cx.1.7 9 65.38 odd 4
8450.2.a.da.1.3 9 5.2 odd 4