Properties

Label 1690.2.c.h.1689.11
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,18,0,18,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.11
Root \(2.90009i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.h.1689.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.303663i q^{3} +1.00000 q^{4} +(1.13450 - 1.92689i) q^{5} +0.303663i q^{6} +1.08593 q^{7} +1.00000 q^{8} +2.90779 q^{9} +(1.13450 - 1.92689i) q^{10} +0.403887i q^{11} +0.303663i q^{12} +1.08593 q^{14} +(0.585124 + 0.344506i) q^{15} +1.00000 q^{16} +5.21387i q^{17} +2.90779 q^{18} -0.844510i q^{19} +(1.13450 - 1.92689i) q^{20} +0.329755i q^{21} +0.403887i q^{22} -1.76217i q^{23} +0.303663i q^{24} +(-2.42580 - 4.37213i) q^{25} +1.79397i q^{27} +1.08593 q^{28} +5.96747 q^{29} +(0.585124 + 0.344506i) q^{30} -5.25338i q^{31} +1.00000 q^{32} -0.122645 q^{33} +5.21387i q^{34} +(1.23199 - 2.09246i) q^{35} +2.90779 q^{36} +4.42321 q^{37} -0.844510i q^{38} +(1.13450 - 1.92689i) q^{40} +3.20196i q^{41} +0.329755i q^{42} +11.4865i q^{43} +0.403887i q^{44} +(3.29890 - 5.60299i) q^{45} -1.76217i q^{46} -11.5048 q^{47} +0.303663i q^{48} -5.82076 q^{49} +(-2.42580 - 4.37213i) q^{50} -1.58326 q^{51} -10.7632i q^{53} +1.79397i q^{54} +(0.778246 + 0.458212i) q^{55} +1.08593 q^{56} +0.256446 q^{57} +5.96747 q^{58} -7.28501i q^{59} +(0.585124 + 0.344506i) q^{60} -2.64135 q^{61} -5.25338i q^{62} +3.15764 q^{63} +1.00000 q^{64} -0.122645 q^{66} +10.5992 q^{67} +5.21387i q^{68} +0.535105 q^{69} +(1.23199 - 2.09246i) q^{70} -12.4325i q^{71} +2.90779 q^{72} -2.92837 q^{73} +4.42321 q^{74} +(1.32765 - 0.736626i) q^{75} -0.844510i q^{76} +0.438592i q^{77} -15.8880 q^{79} +(1.13450 - 1.92689i) q^{80} +8.17860 q^{81} +3.20196i q^{82} +12.6626 q^{83} +0.329755i q^{84} +(10.0465 + 5.91515i) q^{85} +11.4865i q^{86} +1.81210i q^{87} +0.403887i q^{88} +6.99770i q^{89} +(3.29890 - 5.60299i) q^{90} -1.76217i q^{92} +1.59525 q^{93} -11.5048 q^{94} +(-1.62728 - 0.958100i) q^{95} +0.303663i q^{96} +9.47384 q^{97} -5.82076 q^{98} +1.17442i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 18 q^{2} + 18 q^{4} - 2 q^{5} - 2 q^{7} + 18 q^{8} - 16 q^{9} - 2 q^{10} - 2 q^{14} + 14 q^{15} + 18 q^{16} - 16 q^{18} - 2 q^{20} - 22 q^{25} - 2 q^{28} - 30 q^{29} + 14 q^{30} + 18 q^{32} - 28 q^{33}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.303663i 0.175320i 0.996150 + 0.0876598i \(0.0279389\pi\)
−0.996150 + 0.0876598i \(0.972061\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.13450 1.92689i 0.507365 0.861731i
\(6\) 0.303663i 0.123970i
\(7\) 1.08593 0.410441 0.205221 0.978716i \(-0.434209\pi\)
0.205221 + 0.978716i \(0.434209\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.90779 0.969263
\(10\) 1.13450 1.92689i 0.358762 0.609336i
\(11\) 0.403887i 0.121777i 0.998145 + 0.0608883i \(0.0193933\pi\)
−0.998145 + 0.0608883i \(0.980607\pi\)
\(12\) 0.303663i 0.0876598i
\(13\) 0 0
\(14\) 1.08593 0.290226
\(15\) 0.585124 + 0.344506i 0.151078 + 0.0889511i
\(16\) 1.00000 0.250000
\(17\) 5.21387i 1.26455i 0.774745 + 0.632274i \(0.217878\pi\)
−0.774745 + 0.632274i \(0.782122\pi\)
\(18\) 2.90779 0.685372
\(19\) 0.844510i 0.193744i −0.995297 0.0968719i \(-0.969116\pi\)
0.995297 0.0968719i \(-0.0308837\pi\)
\(20\) 1.13450 1.92689i 0.253683 0.430866i
\(21\) 0.329755i 0.0719585i
\(22\) 0.403887i 0.0861091i
\(23\) 1.76217i 0.367438i −0.982979 0.183719i \(-0.941186\pi\)
0.982979 0.183719i \(-0.0588137\pi\)
\(24\) 0.303663i 0.0619849i
\(25\) −2.42580 4.37213i −0.485161 0.874425i
\(26\) 0 0
\(27\) 1.79397i 0.345251i
\(28\) 1.08593 0.205221
\(29\) 5.96747 1.10813 0.554066 0.832473i \(-0.313076\pi\)
0.554066 + 0.832473i \(0.313076\pi\)
\(30\) 0.585124 + 0.344506i 0.106829 + 0.0628980i
\(31\) 5.25338i 0.943534i −0.881723 0.471767i \(-0.843616\pi\)
0.881723 0.471767i \(-0.156384\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.122645 −0.0213498
\(34\) 5.21387i 0.894171i
\(35\) 1.23199 2.09246i 0.208244 0.353690i
\(36\) 2.90779 0.484632
\(37\) 4.42321 0.727171 0.363586 0.931561i \(-0.381552\pi\)
0.363586 + 0.931561i \(0.381552\pi\)
\(38\) 0.844510i 0.136998i
\(39\) 0 0
\(40\) 1.13450 1.92689i 0.179381 0.304668i
\(41\) 3.20196i 0.500062i 0.968238 + 0.250031i \(0.0804409\pi\)
−0.968238 + 0.250031i \(0.919559\pi\)
\(42\) 0.329755i 0.0508823i
\(43\) 11.4865i 1.75168i 0.482601 + 0.875840i \(0.339692\pi\)
−0.482601 + 0.875840i \(0.660308\pi\)
\(44\) 0.403887i 0.0608883i
\(45\) 3.29890 5.60299i 0.491771 0.835244i
\(46\) 1.76217i 0.259818i
\(47\) −11.5048 −1.67814 −0.839071 0.544022i \(-0.816901\pi\)
−0.839071 + 0.544022i \(0.816901\pi\)
\(48\) 0.303663i 0.0438299i
\(49\) −5.82076 −0.831538
\(50\) −2.42580 4.37213i −0.343060 0.618312i
\(51\) −1.58326 −0.221700
\(52\) 0 0
\(53\) 10.7632i 1.47844i −0.673463 0.739221i \(-0.735194\pi\)
0.673463 0.739221i \(-0.264806\pi\)
\(54\) 1.79397i 0.244129i
\(55\) 0.778246 + 0.458212i 0.104939 + 0.0617852i
\(56\) 1.08593 0.145113
\(57\) 0.256446 0.0339671
\(58\) 5.96747 0.783567
\(59\) 7.28501i 0.948428i −0.880410 0.474214i \(-0.842732\pi\)
0.880410 0.474214i \(-0.157268\pi\)
\(60\) 0.585124 + 0.344506i 0.0755392 + 0.0444756i
\(61\) −2.64135 −0.338190 −0.169095 0.985600i \(-0.554084\pi\)
−0.169095 + 0.985600i \(0.554084\pi\)
\(62\) 5.25338i 0.667179i
\(63\) 3.15764 0.397826
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.122645 −0.0150966
\(67\) 10.5992 1.29490 0.647452 0.762106i \(-0.275835\pi\)
0.647452 + 0.762106i \(0.275835\pi\)
\(68\) 5.21387i 0.632274i
\(69\) 0.535105 0.0644191
\(70\) 1.23199 2.09246i 0.147251 0.250097i
\(71\) 12.4325i 1.47546i −0.675094 0.737732i \(-0.735897\pi\)
0.675094 0.737732i \(-0.264103\pi\)
\(72\) 2.90779 0.342686
\(73\) −2.92837 −0.342740 −0.171370 0.985207i \(-0.554819\pi\)
−0.171370 + 0.985207i \(0.554819\pi\)
\(74\) 4.42321 0.514188
\(75\) 1.32765 0.736626i 0.153304 0.0850582i
\(76\) 0.844510i 0.0968719i
\(77\) 0.438592i 0.0499822i
\(78\) 0 0
\(79\) −15.8880 −1.78754 −0.893772 0.448522i \(-0.851951\pi\)
−0.893772 + 0.448522i \(0.851951\pi\)
\(80\) 1.13450 1.92689i 0.126841 0.215433i
\(81\) 8.17860 0.908734
\(82\) 3.20196i 0.353597i
\(83\) 12.6626 1.38990 0.694952 0.719056i \(-0.255426\pi\)
0.694952 + 0.719056i \(0.255426\pi\)
\(84\) 0.329755i 0.0359792i
\(85\) 10.0465 + 5.91515i 1.08970 + 0.641588i
\(86\) 11.4865i 1.23863i
\(87\) 1.81210i 0.194277i
\(88\) 0.403887i 0.0430545i
\(89\) 6.99770i 0.741755i 0.928682 + 0.370877i \(0.120943\pi\)
−0.928682 + 0.370877i \(0.879057\pi\)
\(90\) 3.29890 5.60299i 0.347734 0.590607i
\(91\) 0 0
\(92\) 1.76217i 0.183719i
\(93\) 1.59525 0.165420
\(94\) −11.5048 −1.18663
\(95\) −1.62728 0.958100i −0.166955 0.0982989i
\(96\) 0.303663i 0.0309924i
\(97\) 9.47384 0.961923 0.480961 0.876742i \(-0.340288\pi\)
0.480961 + 0.876742i \(0.340288\pi\)
\(98\) −5.82076 −0.587986
\(99\) 1.17442i 0.118034i
\(100\) −2.42580 4.37213i −0.242580 0.437213i
\(101\) −6.61025 −0.657744 −0.328872 0.944374i \(-0.606669\pi\)
−0.328872 + 0.944374i \(0.606669\pi\)
\(102\) −1.58326 −0.156766
\(103\) 9.21082i 0.907569i 0.891111 + 0.453784i \(0.149926\pi\)
−0.891111 + 0.453784i \(0.850074\pi\)
\(104\) 0 0
\(105\) 0.635402 + 0.374108i 0.0620088 + 0.0365092i
\(106\) 10.7632i 1.04542i
\(107\) 6.97470i 0.674270i 0.941456 + 0.337135i \(0.109458\pi\)
−0.941456 + 0.337135i \(0.890542\pi\)
\(108\) 1.79397i 0.172625i
\(109\) 3.29363i 0.315473i −0.987481 0.157736i \(-0.949580\pi\)
0.987481 0.157736i \(-0.0504196\pi\)
\(110\) 0.778246 + 0.458212i 0.0742029 + 0.0436888i
\(111\) 1.34316i 0.127487i
\(112\) 1.08593 0.102610
\(113\) 10.0934i 0.949508i 0.880119 + 0.474754i \(0.157463\pi\)
−0.880119 + 0.474754i \(0.842537\pi\)
\(114\) 0.256446 0.0240184
\(115\) −3.39551 1.99919i −0.316633 0.186425i
\(116\) 5.96747 0.554066
\(117\) 0 0
\(118\) 7.28501i 0.670640i
\(119\) 5.66187i 0.519023i
\(120\) 0.585124 + 0.344506i 0.0534143 + 0.0314490i
\(121\) 10.8369 0.985170
\(122\) −2.64135 −0.239137
\(123\) −0.972316 −0.0876708
\(124\) 5.25338i 0.471767i
\(125\) −11.1767 0.285938i −0.999673 0.0255751i
\(126\) 3.15764 0.281305
\(127\) 6.06998i 0.538624i −0.963053 0.269312i \(-0.913204\pi\)
0.963053 0.269312i \(-0.0867963\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.48803 −0.307104
\(130\) 0 0
\(131\) 0.534787 0.0467246 0.0233623 0.999727i \(-0.492563\pi\)
0.0233623 + 0.999727i \(0.492563\pi\)
\(132\) −0.122645 −0.0106749
\(133\) 0.917075i 0.0795205i
\(134\) 10.5992 0.915636
\(135\) 3.45679 + 2.03527i 0.297513 + 0.175168i
\(136\) 5.21387i 0.447085i
\(137\) 11.9809 1.02360 0.511799 0.859105i \(-0.328979\pi\)
0.511799 + 0.859105i \(0.328979\pi\)
\(138\) 0.535105 0.0455512
\(139\) −2.69002 −0.228165 −0.114082 0.993471i \(-0.536393\pi\)
−0.114082 + 0.993471i \(0.536393\pi\)
\(140\) 1.23199 2.09246i 0.104122 0.176845i
\(141\) 3.49357i 0.294211i
\(142\) 12.4325i 1.04331i
\(143\) 0 0
\(144\) 2.90779 0.242316
\(145\) 6.77011 11.4987i 0.562227 0.954911i
\(146\) −2.92837 −0.242354
\(147\) 1.76755i 0.145785i
\(148\) 4.42321 0.363586
\(149\) 17.5424i 1.43713i 0.695460 + 0.718565i \(0.255201\pi\)
−0.695460 + 0.718565i \(0.744799\pi\)
\(150\) 1.32765 0.736626i 0.108402 0.0601452i
\(151\) 17.5381i 1.42723i −0.700538 0.713615i \(-0.747057\pi\)
0.700538 0.713615i \(-0.252943\pi\)
\(152\) 0.844510i 0.0684988i
\(153\) 15.1608i 1.22568i
\(154\) 0.438592i 0.0353427i
\(155\) −10.1227 5.95997i −0.813073 0.478717i
\(156\) 0 0
\(157\) 10.5663i 0.843279i 0.906764 + 0.421639i \(0.138545\pi\)
−0.906764 + 0.421639i \(0.861455\pi\)
\(158\) −15.8880 −1.26398
\(159\) 3.26839 0.259200
\(160\) 1.13450 1.92689i 0.0896904 0.152334i
\(161\) 1.91359i 0.150812i
\(162\) 8.17860 0.642572
\(163\) −19.0637 −1.49318 −0.746592 0.665282i \(-0.768311\pi\)
−0.746592 + 0.665282i \(0.768311\pi\)
\(164\) 3.20196i 0.250031i
\(165\) −0.139142 + 0.236324i −0.0108322 + 0.0183978i
\(166\) 12.6626 0.982811
\(167\) −10.6825 −0.826637 −0.413319 0.910587i \(-0.635630\pi\)
−0.413319 + 0.910587i \(0.635630\pi\)
\(168\) 0.329755i 0.0254412i
\(169\) 0 0
\(170\) 10.0465 + 5.91515i 0.770535 + 0.453671i
\(171\) 2.45566i 0.187789i
\(172\) 11.4865i 0.875840i
\(173\) 15.8983i 1.20872i 0.796710 + 0.604362i \(0.206572\pi\)
−0.796710 + 0.604362i \(0.793428\pi\)
\(174\) 1.81210i 0.137375i
\(175\) −2.63424 4.74780i −0.199130 0.358900i
\(176\) 0.403887i 0.0304442i
\(177\) 2.21219 0.166278
\(178\) 6.99770i 0.524500i
\(179\) −25.2779 −1.88936 −0.944680 0.327995i \(-0.893627\pi\)
−0.944680 + 0.327995i \(0.893627\pi\)
\(180\) 3.29890 5.60299i 0.245885 0.417622i
\(181\) −17.8082 −1.32367 −0.661837 0.749648i \(-0.730223\pi\)
−0.661837 + 0.749648i \(0.730223\pi\)
\(182\) 0 0
\(183\) 0.802079i 0.0592914i
\(184\) 1.76217i 0.129909i
\(185\) 5.01815 8.52303i 0.368942 0.626626i
\(186\) 1.59525 0.116970
\(187\) −2.10581 −0.153992
\(188\) −11.5048 −0.839071
\(189\) 1.94812i 0.141705i
\(190\) −1.62728 0.958100i −0.118055 0.0695078i
\(191\) −10.4612 −0.756947 −0.378474 0.925612i \(-0.623551\pi\)
−0.378474 + 0.925612i \(0.623551\pi\)
\(192\) 0.303663i 0.0219150i
\(193\) 14.6561 1.05497 0.527483 0.849565i \(-0.323136\pi\)
0.527483 + 0.849565i \(0.323136\pi\)
\(194\) 9.47384 0.680182
\(195\) 0 0
\(196\) −5.82076 −0.415769
\(197\) −10.3360 −0.736406 −0.368203 0.929745i \(-0.620027\pi\)
−0.368203 + 0.929745i \(0.620027\pi\)
\(198\) 1.17442i 0.0834623i
\(199\) 5.21516 0.369693 0.184846 0.982767i \(-0.440821\pi\)
0.184846 + 0.982767i \(0.440821\pi\)
\(200\) −2.42580 4.37213i −0.171530 0.309156i
\(201\) 3.21860i 0.227022i
\(202\) −6.61025 −0.465096
\(203\) 6.48023 0.454823
\(204\) −1.58326 −0.110850
\(205\) 6.16982 + 3.63264i 0.430919 + 0.253714i
\(206\) 9.21082i 0.641748i
\(207\) 5.12402i 0.356144i
\(208\) 0 0
\(209\) 0.341087 0.0235935
\(210\) 0.635402 + 0.374108i 0.0438469 + 0.0258159i
\(211\) −12.3086 −0.847361 −0.423681 0.905812i \(-0.639262\pi\)
−0.423681 + 0.905812i \(0.639262\pi\)
\(212\) 10.7632i 0.739221i
\(213\) 3.77528 0.258678
\(214\) 6.97470i 0.476781i
\(215\) 22.1333 + 13.0315i 1.50948 + 0.888742i
\(216\) 1.79397i 0.122065i
\(217\) 5.70478i 0.387266i
\(218\) 3.29363i 0.223073i
\(219\) 0.889236i 0.0600890i
\(220\) 0.778246 + 0.458212i 0.0524693 + 0.0308926i
\(221\) 0 0
\(222\) 1.34316i 0.0901472i
\(223\) −9.35143 −0.626218 −0.313109 0.949717i \(-0.601371\pi\)
−0.313109 + 0.949717i \(0.601371\pi\)
\(224\) 1.08593 0.0725565
\(225\) −7.05372 12.7132i −0.470248 0.847548i
\(226\) 10.0934i 0.671403i
\(227\) −13.1715 −0.874224 −0.437112 0.899407i \(-0.643999\pi\)
−0.437112 + 0.899407i \(0.643999\pi\)
\(228\) 0.256446 0.0169836
\(229\) 13.6752i 0.903680i −0.892099 0.451840i \(-0.850768\pi\)
0.892099 0.451840i \(-0.149232\pi\)
\(230\) −3.39551 1.99919i −0.223893 0.131823i
\(231\) −0.133184 −0.00876286
\(232\) 5.96747 0.391784
\(233\) 27.7357i 1.81703i 0.417855 + 0.908514i \(0.362782\pi\)
−0.417855 + 0.908514i \(0.637218\pi\)
\(234\) 0 0
\(235\) −13.0522 + 22.1684i −0.851431 + 1.44611i
\(236\) 7.28501i 0.474214i
\(237\) 4.82460i 0.313392i
\(238\) 5.66187i 0.367005i
\(239\) 17.7552i 1.14849i 0.818685 + 0.574243i \(0.194703\pi\)
−0.818685 + 0.574243i \(0.805297\pi\)
\(240\) 0.585124 + 0.344506i 0.0377696 + 0.0222378i
\(241\) 3.83937i 0.247316i 0.992325 + 0.123658i \(0.0394625\pi\)
−0.992325 + 0.123658i \(0.960537\pi\)
\(242\) 10.8369 0.696621
\(243\) 7.86546i 0.504569i
\(244\) −2.64135 −0.169095
\(245\) −6.60368 + 11.2160i −0.421894 + 0.716562i
\(246\) −0.972316 −0.0619926
\(247\) 0 0
\(248\) 5.25338i 0.333590i
\(249\) 3.84517i 0.243678i
\(250\) −11.1767 0.285938i −0.706875 0.0180843i
\(251\) −14.4338 −0.911054 −0.455527 0.890222i \(-0.650549\pi\)
−0.455527 + 0.890222i \(0.650549\pi\)
\(252\) 3.15764 0.198913
\(253\) 0.711719 0.0447454
\(254\) 6.06998i 0.380865i
\(255\) −1.79621 + 3.05076i −0.112483 + 0.191046i
\(256\) 1.00000 0.0625000
\(257\) 11.0755i 0.690868i −0.938443 0.345434i \(-0.887732\pi\)
0.938443 0.345434i \(-0.112268\pi\)
\(258\) −3.48803 −0.217155
\(259\) 4.80328 0.298461
\(260\) 0 0
\(261\) 17.3521 1.07407
\(262\) 0.534787 0.0330393
\(263\) 1.74154i 0.107388i −0.998557 0.0536941i \(-0.982900\pi\)
0.998557 0.0536941i \(-0.0170996\pi\)
\(264\) −0.122645 −0.00754831
\(265\) −20.7395 12.2109i −1.27402 0.750110i
\(266\) 0.917075i 0.0562295i
\(267\) −2.12494 −0.130044
\(268\) 10.5992 0.647452
\(269\) 10.0411 0.612220 0.306110 0.951996i \(-0.400973\pi\)
0.306110 + 0.951996i \(0.400973\pi\)
\(270\) 3.45679 + 2.03527i 0.210374 + 0.123863i
\(271\) 10.3097i 0.626271i −0.949708 0.313136i \(-0.898621\pi\)
0.949708 0.313136i \(-0.101379\pi\)
\(272\) 5.21387i 0.316137i
\(273\) 0 0
\(274\) 11.9809 0.723794
\(275\) 1.76585 0.979751i 0.106485 0.0590812i
\(276\) 0.535105 0.0322096
\(277\) 29.7990i 1.79045i −0.445616 0.895224i \(-0.647015\pi\)
0.445616 0.895224i \(-0.352985\pi\)
\(278\) −2.69002 −0.161337
\(279\) 15.2757i 0.914533i
\(280\) 1.23199 2.09246i 0.0736253 0.125048i
\(281\) 17.5437i 1.04657i −0.852158 0.523285i \(-0.824706\pi\)
0.852158 0.523285i \(-0.175294\pi\)
\(282\) 3.49357i 0.208039i
\(283\) 25.9299i 1.54137i 0.637214 + 0.770687i \(0.280087\pi\)
−0.637214 + 0.770687i \(0.719913\pi\)
\(284\) 12.4325i 0.737732i
\(285\) 0.290939 0.494143i 0.0172337 0.0292705i
\(286\) 0 0
\(287\) 3.47709i 0.205246i
\(288\) 2.90779 0.171343
\(289\) −10.1844 −0.599083
\(290\) 6.77011 11.4987i 0.397555 0.675224i
\(291\) 2.87685i 0.168644i
\(292\) −2.92837 −0.171370
\(293\) −26.1627 −1.52844 −0.764221 0.644954i \(-0.776876\pi\)
−0.764221 + 0.644954i \(0.776876\pi\)
\(294\) 1.76755i 0.103086i
\(295\) −14.0374 8.26487i −0.817290 0.481199i
\(296\) 4.42321 0.257094
\(297\) −0.724564 −0.0420434
\(298\) 17.5424i 1.01620i
\(299\) 0 0
\(300\) 1.32765 0.736626i 0.0766520 0.0425291i
\(301\) 12.4735i 0.718962i
\(302\) 17.5381i 1.00920i
\(303\) 2.00729i 0.115316i
\(304\) 0.844510i 0.0484360i
\(305\) −2.99662 + 5.08959i −0.171586 + 0.291429i
\(306\) 15.1608i 0.866687i
\(307\) 2.68863 0.153448 0.0767240 0.997052i \(-0.475554\pi\)
0.0767240 + 0.997052i \(0.475554\pi\)
\(308\) 0.438592i 0.0249911i
\(309\) −2.79698 −0.159115
\(310\) −10.1227 5.95997i −0.574929 0.338504i
\(311\) 31.0278 1.75943 0.879713 0.475506i \(-0.157735\pi\)
0.879713 + 0.475506i \(0.157735\pi\)
\(312\) 0 0
\(313\) 14.7399i 0.833151i −0.909101 0.416575i \(-0.863230\pi\)
0.909101 0.416575i \(-0.136770\pi\)
\(314\) 10.5663i 0.596288i
\(315\) 3.58236 6.08443i 0.201843 0.342819i
\(316\) −15.8880 −0.893772
\(317\) −14.7416 −0.827971 −0.413985 0.910284i \(-0.635864\pi\)
−0.413985 + 0.910284i \(0.635864\pi\)
\(318\) 3.26839 0.183282
\(319\) 2.41019i 0.134944i
\(320\) 1.13450 1.92689i 0.0634207 0.107716i
\(321\) −2.11796 −0.118213
\(322\) 1.91359i 0.106640i
\(323\) 4.40316 0.244999
\(324\) 8.17860 0.454367
\(325\) 0 0
\(326\) −19.0637 −1.05584
\(327\) 1.00015 0.0553086
\(328\) 3.20196i 0.176799i
\(329\) −12.4933 −0.688779
\(330\) −0.139142 + 0.236324i −0.00765950 + 0.0130092i
\(331\) 9.55973i 0.525450i −0.964871 0.262725i \(-0.915379\pi\)
0.964871 0.262725i \(-0.0846212\pi\)
\(332\) 12.6626 0.694952
\(333\) 12.8618 0.704820
\(334\) −10.6825 −0.584521
\(335\) 12.0249 20.4236i 0.656990 1.11586i
\(336\) 0.329755i 0.0179896i
\(337\) 7.58566i 0.413217i −0.978424 0.206609i \(-0.933757\pi\)
0.978424 0.206609i \(-0.0662427\pi\)
\(338\) 0 0
\(339\) −3.06499 −0.166467
\(340\) 10.0465 + 5.91515i 0.544850 + 0.320794i
\(341\) 2.12177 0.114900
\(342\) 2.45566i 0.132787i
\(343\) −13.9224 −0.751739
\(344\) 11.4865i 0.619313i
\(345\) 0.607079 1.03109i 0.0326840 0.0555120i
\(346\) 15.8983i 0.854697i
\(347\) 8.88467i 0.476954i −0.971148 0.238477i \(-0.923352\pi\)
0.971148 0.238477i \(-0.0766482\pi\)
\(348\) 1.81210i 0.0971386i
\(349\) 22.3237i 1.19496i 0.801884 + 0.597480i \(0.203831\pi\)
−0.801884 + 0.597480i \(0.796169\pi\)
\(350\) −2.63424 4.74780i −0.140806 0.253781i
\(351\) 0 0
\(352\) 0.403887i 0.0215273i
\(353\) −31.0186 −1.65095 −0.825476 0.564438i \(-0.809093\pi\)
−0.825476 + 0.564438i \(0.809093\pi\)
\(354\) 2.21219 0.117576
\(355\) −23.9560 14.1047i −1.27145 0.748599i
\(356\) 6.99770i 0.370877i
\(357\) −1.71930 −0.0909950
\(358\) −25.2779 −1.33598
\(359\) 15.1402i 0.799072i 0.916718 + 0.399536i \(0.130829\pi\)
−0.916718 + 0.399536i \(0.869171\pi\)
\(360\) 3.29890 5.60299i 0.173867 0.295303i
\(361\) 18.2868 0.962463
\(362\) −17.8082 −0.935979
\(363\) 3.29075i 0.172720i
\(364\) 0 0
\(365\) −3.32224 + 5.64264i −0.173894 + 0.295349i
\(366\) 0.802079i 0.0419253i
\(367\) 20.8201i 1.08680i −0.839474 0.543401i \(-0.817137\pi\)
0.839474 0.543401i \(-0.182863\pi\)
\(368\) 1.76217i 0.0918595i
\(369\) 9.31063i 0.484692i
\(370\) 5.01815 8.52303i 0.260881 0.443091i
\(371\) 11.6881i 0.606814i
\(372\) 1.59525 0.0827100
\(373\) 0.901633i 0.0466848i −0.999728 0.0233424i \(-0.992569\pi\)
0.999728 0.0233424i \(-0.00743079\pi\)
\(374\) −2.10581 −0.108889
\(375\) 0.0868286 3.39394i 0.00448381 0.175262i
\(376\) −11.5048 −0.593313
\(377\) 0 0
\(378\) 1.94812i 0.100201i
\(379\) 15.7125i 0.807096i 0.914959 + 0.403548i \(0.132223\pi\)
−0.914959 + 0.403548i \(0.867777\pi\)
\(380\) −1.62728 0.958100i −0.0834775 0.0491495i
\(381\) 1.84323 0.0944314
\(382\) −10.4612 −0.535242
\(383\) −38.0352 −1.94351 −0.971755 0.235993i \(-0.924166\pi\)
−0.971755 + 0.235993i \(0.924166\pi\)
\(384\) 0.303663i 0.0154962i
\(385\) 0.845118 + 0.497584i 0.0430712 + 0.0253592i
\(386\) 14.6561 0.745974
\(387\) 33.4004i 1.69784i
\(388\) 9.47384 0.480961
\(389\) 3.64514 0.184816 0.0924079 0.995721i \(-0.470544\pi\)
0.0924079 + 0.995721i \(0.470544\pi\)
\(390\) 0 0
\(391\) 9.18773 0.464643
\(392\) −5.82076 −0.293993
\(393\) 0.162395i 0.00819173i
\(394\) −10.3360 −0.520718
\(395\) −18.0250 + 30.6145i −0.906938 + 1.54038i
\(396\) 1.17442i 0.0590168i
\(397\) −1.08366 −0.0543872 −0.0271936 0.999630i \(-0.508657\pi\)
−0.0271936 + 0.999630i \(0.508657\pi\)
\(398\) 5.21516 0.261412
\(399\) 0.278481 0.0139415
\(400\) −2.42580 4.37213i −0.121290 0.218606i
\(401\) 6.16953i 0.308091i −0.988064 0.154046i \(-0.950770\pi\)
0.988064 0.154046i \(-0.0492303\pi\)
\(402\) 3.21860i 0.160529i
\(403\) 0 0
\(404\) −6.61025 −0.328872
\(405\) 9.27866 15.7593i 0.461060 0.783084i
\(406\) 6.48023 0.321608
\(407\) 1.78648i 0.0885524i
\(408\) −1.58326 −0.0783829
\(409\) 19.8455i 0.981299i 0.871357 + 0.490649i \(0.163240\pi\)
−0.871357 + 0.490649i \(0.836760\pi\)
\(410\) 6.16982 + 3.63264i 0.304706 + 0.179403i
\(411\) 3.63816i 0.179457i
\(412\) 9.21082i 0.453784i
\(413\) 7.91099i 0.389274i
\(414\) 5.12402i 0.251832i
\(415\) 14.3658 24.3995i 0.705189 1.19772i
\(416\) 0 0
\(417\) 0.816859i 0.0400018i
\(418\) 0.341087 0.0166831
\(419\) −4.45670 −0.217724 −0.108862 0.994057i \(-0.534721\pi\)
−0.108862 + 0.994057i \(0.534721\pi\)
\(420\) 0.635402 + 0.374108i 0.0310044 + 0.0182546i
\(421\) 16.7557i 0.816624i −0.912842 0.408312i \(-0.866118\pi\)
0.912842 0.408312i \(-0.133882\pi\)
\(422\) −12.3086 −0.599175
\(423\) −33.4534 −1.62656
\(424\) 10.7632i 0.522708i
\(425\) 22.7957 12.6478i 1.10575 0.613509i
\(426\) 3.77528 0.182913
\(427\) −2.86831 −0.138807
\(428\) 6.97470i 0.337135i
\(429\) 0 0
\(430\) 22.1333 + 13.0315i 1.06736 + 0.628436i
\(431\) 17.3440i 0.835433i 0.908577 + 0.417717i \(0.137170\pi\)
−0.908577 + 0.417717i \(0.862830\pi\)
\(432\) 1.79397i 0.0863126i
\(433\) 4.41765i 0.212299i −0.994350 0.106149i \(-0.966148\pi\)
0.994350 0.106149i \(-0.0338521\pi\)
\(434\) 5.70478i 0.273838i
\(435\) 3.49171 + 2.05583i 0.167415 + 0.0985695i
\(436\) 3.29363i 0.157736i
\(437\) −1.48817 −0.0711889
\(438\) 0.889236i 0.0424893i
\(439\) 33.1534 1.58232 0.791162 0.611607i \(-0.209477\pi\)
0.791162 + 0.611607i \(0.209477\pi\)
\(440\) 0.778246 + 0.458212i 0.0371014 + 0.0218444i
\(441\) −16.9256 −0.805979
\(442\) 0 0
\(443\) 19.2632i 0.915224i −0.889152 0.457612i \(-0.848705\pi\)
0.889152 0.457612i \(-0.151295\pi\)
\(444\) 1.34316i 0.0637437i
\(445\) 13.4838 + 7.93892i 0.639193 + 0.376341i
\(446\) −9.35143 −0.442803
\(447\) −5.32697 −0.251957
\(448\) 1.08593 0.0513052
\(449\) 4.55734i 0.215074i 0.994201 + 0.107537i \(0.0342965\pi\)
−0.994201 + 0.107537i \(0.965704\pi\)
\(450\) −7.05372 12.7132i −0.332516 0.599307i
\(451\) −1.29323 −0.0608959
\(452\) 10.0934i 0.474754i
\(453\) 5.32566 0.250222
\(454\) −13.1715 −0.618170
\(455\) 0 0
\(456\) 0.256446 0.0120092
\(457\) 15.9598 0.746570 0.373285 0.927717i \(-0.378231\pi\)
0.373285 + 0.927717i \(0.378231\pi\)
\(458\) 13.6752i 0.638998i
\(459\) −9.35354 −0.436586
\(460\) −3.39551 1.99919i −0.158316 0.0932127i
\(461\) 22.2437i 1.03599i 0.855383 + 0.517996i \(0.173322\pi\)
−0.855383 + 0.517996i \(0.826678\pi\)
\(462\) −0.133184 −0.00619628
\(463\) 31.0149 1.44138 0.720692 0.693256i \(-0.243824\pi\)
0.720692 + 0.693256i \(0.243824\pi\)
\(464\) 5.96747 0.277033
\(465\) 1.80982 3.07388i 0.0839284 0.142548i
\(466\) 27.7357i 1.28483i
\(467\) 0.841337i 0.0389324i −0.999811 0.0194662i \(-0.993803\pi\)
0.999811 0.0194662i \(-0.00619668\pi\)
\(468\) 0 0
\(469\) 11.5100 0.531482
\(470\) −13.0522 + 22.1684i −0.602053 + 1.02255i
\(471\) −3.20858 −0.147843
\(472\) 7.28501i 0.335320i
\(473\) −4.63927 −0.213314
\(474\) 4.82460i 0.221601i
\(475\) −3.69230 + 2.04861i −0.169414 + 0.0939969i
\(476\) 5.66187i 0.259512i
\(477\) 31.2972i 1.43300i
\(478\) 17.7552i 0.812102i
\(479\) 7.63429i 0.348819i 0.984673 + 0.174410i \(0.0558017\pi\)
−0.984673 + 0.174410i \(0.944198\pi\)
\(480\) 0.585124 + 0.344506i 0.0267071 + 0.0157245i
\(481\) 0 0
\(482\) 3.83937i 0.174879i
\(483\) 0.581085 0.0264403
\(484\) 10.8369 0.492585
\(485\) 10.7481 18.2550i 0.488046 0.828919i
\(486\) 7.86546i 0.356784i
\(487\) −23.2958 −1.05563 −0.527817 0.849358i \(-0.676989\pi\)
−0.527817 + 0.849358i \(0.676989\pi\)
\(488\) −2.64135 −0.119568
\(489\) 5.78893i 0.261784i
\(490\) −6.60368 + 11.2160i −0.298324 + 0.506686i
\(491\) −36.2972 −1.63807 −0.819034 0.573745i \(-0.805490\pi\)
−0.819034 + 0.573745i \(0.805490\pi\)
\(492\) −0.972316 −0.0438354
\(493\) 31.1136i 1.40129i
\(494\) 0 0
\(495\) 2.26298 + 1.33238i 0.101713 + 0.0598862i
\(496\) 5.25338i 0.235884i
\(497\) 13.5008i 0.605591i
\(498\) 3.84517i 0.172306i
\(499\) 18.9398i 0.847863i −0.905694 0.423932i \(-0.860650\pi\)
0.905694 0.423932i \(-0.139350\pi\)
\(500\) −11.1767 0.285938i −0.499836 0.0127875i
\(501\) 3.24388i 0.144926i
\(502\) −14.4338 −0.644213
\(503\) 35.7640i 1.59464i 0.603560 + 0.797318i \(0.293749\pi\)
−0.603560 + 0.797318i \(0.706251\pi\)
\(504\) 3.15764 0.140653
\(505\) −7.49935 + 12.7372i −0.333717 + 0.566799i
\(506\) 0.711719 0.0316398
\(507\) 0 0
\(508\) 6.06998i 0.269312i
\(509\) 3.11873i 0.138235i −0.997609 0.0691176i \(-0.977982\pi\)
0.997609 0.0691176i \(-0.0220184\pi\)
\(510\) −1.79621 + 3.05076i −0.0795375 + 0.135090i
\(511\) −3.17999 −0.140675
\(512\) 1.00000 0.0441942
\(513\) 1.51503 0.0668902
\(514\) 11.0755i 0.488517i
\(515\) 17.7482 + 10.4497i 0.782080 + 0.460469i
\(516\) −3.48803 −0.153552
\(517\) 4.64663i 0.204359i
\(518\) 4.80328 0.211044
\(519\) −4.82772 −0.211913
\(520\) 0 0
\(521\) 38.4309 1.68369 0.841844 0.539721i \(-0.181470\pi\)
0.841844 + 0.539721i \(0.181470\pi\)
\(522\) 17.3521 0.759483
\(523\) 23.8519i 1.04297i 0.853260 + 0.521485i \(0.174622\pi\)
−0.853260 + 0.521485i \(0.825378\pi\)
\(524\) 0.534787 0.0233623
\(525\) 1.44173 0.799921i 0.0629223 0.0349114i
\(526\) 1.74154i 0.0759349i
\(527\) 27.3904 1.19314
\(528\) −0.122645 −0.00533746
\(529\) 19.8948 0.864989
\(530\) −20.7395 12.2109i −0.900867 0.530408i
\(531\) 21.1833i 0.919276i
\(532\) 0.917075i 0.0397603i
\(533\) 0 0
\(534\) −2.12494 −0.0919551
\(535\) 13.4395 + 7.91283i 0.581040 + 0.342101i
\(536\) 10.5992 0.457818
\(537\) 7.67595i 0.331242i
\(538\) 10.0411 0.432905
\(539\) 2.35093i 0.101262i
\(540\) 3.45679 + 2.03527i 0.148757 + 0.0875841i
\(541\) 5.36874i 0.230820i −0.993318 0.115410i \(-0.963182\pi\)
0.993318 0.115410i \(-0.0368182\pi\)
\(542\) 10.3097i 0.442841i
\(543\) 5.40769i 0.232066i
\(544\) 5.21387i 0.223543i
\(545\) −6.34647 3.73664i −0.271853 0.160060i
\(546\) 0 0
\(547\) 28.1689i 1.20442i 0.798339 + 0.602208i \(0.205712\pi\)
−0.798339 + 0.602208i \(0.794288\pi\)
\(548\) 11.9809 0.511799
\(549\) −7.68049 −0.327795
\(550\) 1.76585 0.979751i 0.0752959 0.0417767i
\(551\) 5.03959i 0.214694i
\(552\) 0.535105 0.0227756
\(553\) −17.2532 −0.733682
\(554\) 29.7990i 1.26604i
\(555\) 2.58813 + 1.52382i 0.109860 + 0.0646827i
\(556\) −2.69002 −0.114082
\(557\) −15.1505 −0.641947 −0.320974 0.947088i \(-0.604010\pi\)
−0.320974 + 0.947088i \(0.604010\pi\)
\(558\) 15.2757i 0.646672i
\(559\) 0 0
\(560\) 1.23199 2.09246i 0.0520610 0.0884225i
\(561\) 0.639457i 0.0269979i
\(562\) 17.5437i 0.740037i
\(563\) 32.5894i 1.37348i 0.726904 + 0.686739i \(0.240958\pi\)
−0.726904 + 0.686739i \(0.759042\pi\)
\(564\) 3.49357i 0.147106i
\(565\) 19.4489 + 11.4510i 0.818220 + 0.481747i
\(566\) 25.9299i 1.08992i
\(567\) 8.88136 0.372982
\(568\) 12.4325i 0.521655i
\(569\) 21.7554 0.912033 0.456016 0.889971i \(-0.349276\pi\)
0.456016 + 0.889971i \(0.349276\pi\)
\(570\) 0.290939 0.494143i 0.0121861 0.0206974i
\(571\) 24.2853 1.01631 0.508155 0.861266i \(-0.330328\pi\)
0.508155 + 0.861266i \(0.330328\pi\)
\(572\) 0 0
\(573\) 3.17668i 0.132708i
\(574\) 3.47709i 0.145131i
\(575\) −7.70443 + 4.27468i −0.321297 + 0.178266i
\(576\) 2.90779 0.121158
\(577\) 23.1332 0.963048 0.481524 0.876433i \(-0.340083\pi\)
0.481524 + 0.876433i \(0.340083\pi\)
\(578\) −10.1844 −0.423616
\(579\) 4.45050i 0.184956i
\(580\) 6.77011 11.4987i 0.281114 0.477455i
\(581\) 13.7507 0.570474
\(582\) 2.87685i 0.119249i
\(583\) 4.34713 0.180040
\(584\) −2.92837 −0.121177
\(585\) 0 0
\(586\) −26.1627 −1.08077
\(587\) −4.60818 −0.190200 −0.0950999 0.995468i \(-0.530317\pi\)
−0.0950999 + 0.995468i \(0.530317\pi\)
\(588\) 1.76755i 0.0728925i
\(589\) −4.43653 −0.182804
\(590\) −14.0374 8.26487i −0.577911 0.340259i
\(591\) 3.13864i 0.129106i
\(592\) 4.42321 0.181793
\(593\) 1.27629 0.0524111 0.0262056 0.999657i \(-0.491658\pi\)
0.0262056 + 0.999657i \(0.491658\pi\)
\(594\) −0.724564 −0.0297292
\(595\) 10.9098 + 6.42342i 0.447258 + 0.263334i
\(596\) 17.5424i 0.718565i
\(597\) 1.58365i 0.0648144i
\(598\) 0 0
\(599\) −21.3539 −0.872497 −0.436249 0.899826i \(-0.643693\pi\)
−0.436249 + 0.899826i \(0.643693\pi\)
\(600\) 1.32765 0.736626i 0.0542011 0.0300726i
\(601\) −2.74727 −0.112063 −0.0560317 0.998429i \(-0.517845\pi\)
−0.0560317 + 0.998429i \(0.517845\pi\)
\(602\) 12.4735i 0.508383i
\(603\) 30.8204 1.25510
\(604\) 17.5381i 0.713615i
\(605\) 12.2945 20.8815i 0.499841 0.848952i
\(606\) 2.00729i 0.0815404i
\(607\) 22.9135i 0.930030i 0.885303 + 0.465015i \(0.153951\pi\)
−0.885303 + 0.465015i \(0.846049\pi\)
\(608\) 0.844510i 0.0342494i
\(609\) 1.96780i 0.0797394i
\(610\) −2.99662 + 5.08959i −0.121330 + 0.206071i
\(611\) 0 0
\(612\) 15.1608i 0.612840i
\(613\) −16.5575 −0.668752 −0.334376 0.942440i \(-0.608526\pi\)
−0.334376 + 0.942440i \(0.608526\pi\)
\(614\) 2.68863 0.108504
\(615\) −1.10310 + 1.87354i −0.0444811 + 0.0755486i
\(616\) 0.438592i 0.0176714i
\(617\) 11.3693 0.457712 0.228856 0.973460i \(-0.426502\pi\)
0.228856 + 0.973460i \(0.426502\pi\)
\(618\) −2.79698 −0.112511
\(619\) 47.1109i 1.89355i 0.321901 + 0.946773i \(0.395678\pi\)
−0.321901 + 0.946773i \(0.604322\pi\)
\(620\) −10.1227 5.95997i −0.406536 0.239358i
\(621\) 3.16129 0.126858
\(622\) 31.0278 1.24410
\(623\) 7.59898i 0.304447i
\(624\) 0 0
\(625\) −13.2310 + 21.2118i −0.529238 + 0.848473i
\(626\) 14.7399i 0.589127i
\(627\) 0.103575i 0.00413640i
\(628\) 10.5663i 0.421639i
\(629\) 23.0620i 0.919543i
\(630\) 3.58236 6.08443i 0.142725 0.242409i
\(631\) 8.39389i 0.334156i −0.985944 0.167078i \(-0.946567\pi\)
0.985944 0.167078i \(-0.0534331\pi\)
\(632\) −15.8880 −0.631992
\(633\) 3.73767i 0.148559i
\(634\) −14.7416 −0.585464
\(635\) −11.6962 6.88642i −0.464149 0.273279i
\(636\) 3.26839 0.129600
\(637\) 0 0
\(638\) 2.41019i 0.0954201i
\(639\) 36.1510i 1.43011i
\(640\) 1.13450 1.92689i 0.0448452 0.0761670i
\(641\) 36.5728 1.44454 0.722268 0.691613i \(-0.243099\pi\)
0.722268 + 0.691613i \(0.243099\pi\)
\(642\) −2.11796 −0.0835891
\(643\) 46.0372 1.81553 0.907766 0.419478i \(-0.137787\pi\)
0.907766 + 0.419478i \(0.137787\pi\)
\(644\) 1.91359i 0.0754059i
\(645\) −3.95719 + 6.72105i −0.155814 + 0.264641i
\(646\) 4.40316 0.173240
\(647\) 27.8549i 1.09509i −0.836776 0.547545i \(-0.815563\pi\)
0.836776 0.547545i \(-0.184437\pi\)
\(648\) 8.17860 0.321286
\(649\) 2.94232 0.115496
\(650\) 0 0
\(651\) 1.73233 0.0678953
\(652\) −19.0637 −0.746592
\(653\) 4.98456i 0.195061i −0.995233 0.0975304i \(-0.968906\pi\)
0.995233 0.0975304i \(-0.0310943\pi\)
\(654\) 1.00015 0.0391091
\(655\) 0.606718 1.03048i 0.0237064 0.0402640i
\(656\) 3.20196i 0.125016i
\(657\) −8.51508 −0.332205
\(658\) −12.4933 −0.487040
\(659\) −27.8625 −1.08537 −0.542684 0.839937i \(-0.682592\pi\)
−0.542684 + 0.839937i \(0.682592\pi\)
\(660\) −0.139142 + 0.236324i −0.00541608 + 0.00919891i
\(661\) 37.9173i 1.47481i −0.675450 0.737406i \(-0.736051\pi\)
0.675450 0.737406i \(-0.263949\pi\)
\(662\) 9.55973i 0.371549i
\(663\) 0 0
\(664\) 12.6626 0.491405
\(665\) −1.76710 1.04043i −0.0685253 0.0403460i
\(666\) 12.8618 0.498383
\(667\) 10.5157i 0.407170i
\(668\) −10.6825 −0.413319
\(669\) 2.83968i 0.109788i
\(670\) 12.0249 20.4236i 0.464562 0.789032i
\(671\) 1.06681i 0.0411837i
\(672\) 0.329755i 0.0127206i
\(673\) 5.08337i 0.195949i −0.995189 0.0979747i \(-0.968764\pi\)
0.995189 0.0979747i \(-0.0312364\pi\)
\(674\) 7.58566i 0.292189i
\(675\) 7.84348 4.35183i 0.301896 0.167502i
\(676\) 0 0
\(677\) 40.3815i 1.55199i −0.630740 0.775994i \(-0.717249\pi\)
0.630740 0.775994i \(-0.282751\pi\)
\(678\) −3.06499 −0.117710
\(679\) 10.2879 0.394813
\(680\) 10.0465 + 5.91515i 0.385267 + 0.226836i
\(681\) 3.99970i 0.153269i
\(682\) 2.12177 0.0812468
\(683\) 14.8432 0.567959 0.283980 0.958830i \(-0.408345\pi\)
0.283980 + 0.958830i \(0.408345\pi\)
\(684\) 2.45566i 0.0938944i
\(685\) 13.5924 23.0859i 0.519339 0.882067i
\(686\) −13.9224 −0.531560
\(687\) 4.15264 0.158433
\(688\) 11.4865i 0.437920i
\(689\) 0 0
\(690\) 0.607079 1.03109i 0.0231111 0.0392529i
\(691\) 31.8114i 1.21016i 0.796164 + 0.605081i \(0.206859\pi\)
−0.796164 + 0.605081i \(0.793141\pi\)
\(692\) 15.8983i 0.604362i
\(693\) 1.27533i 0.0484459i
\(694\) 8.88467i 0.337257i
\(695\) −3.05184 + 5.18338i −0.115763 + 0.196617i
\(696\) 1.81210i 0.0686874i
\(697\) −16.6946 −0.632353
\(698\) 22.3237i 0.844964i
\(699\) −8.42230 −0.318561
\(700\) −2.63424 4.74780i −0.0995650 0.179450i
\(701\) 2.75131 0.103915 0.0519577 0.998649i \(-0.483454\pi\)
0.0519577 + 0.998649i \(0.483454\pi\)
\(702\) 0 0
\(703\) 3.73544i 0.140885i
\(704\) 0.403887i 0.0152221i
\(705\) −6.73172 3.96346i −0.253531 0.149273i
\(706\) −31.0186 −1.16740
\(707\) −7.17824 −0.269966
\(708\) 2.21219 0.0831390
\(709\) 28.7721i 1.08056i 0.841486 + 0.540279i \(0.181681\pi\)
−0.841486 + 0.540279i \(0.818319\pi\)
\(710\) −23.9560 14.1047i −0.899053 0.529340i
\(711\) −46.1991 −1.73260
\(712\) 6.99770i 0.262250i
\(713\) −9.25735 −0.346690
\(714\) −1.71930 −0.0643432
\(715\) 0 0
\(716\) −25.2779 −0.944680
\(717\) −5.39158 −0.201352
\(718\) 15.1402i 0.565029i
\(719\) 33.1840 1.23756 0.618778 0.785566i \(-0.287628\pi\)
0.618778 + 0.785566i \(0.287628\pi\)
\(720\) 3.29890 5.60299i 0.122943 0.208811i
\(721\) 10.0023i 0.372504i
\(722\) 18.2868 0.680564
\(723\) −1.16587 −0.0433593
\(724\) −17.8082 −0.661837
\(725\) −14.4759 26.0905i −0.537622 0.968978i
\(726\) 3.29075i 0.122131i
\(727\) 37.6129i 1.39499i −0.716591 0.697493i \(-0.754299\pi\)
0.716591 0.697493i \(-0.245701\pi\)
\(728\) 0 0
\(729\) 22.1474 0.820273
\(730\) −3.32224 + 5.64264i −0.122962 + 0.208844i
\(731\) −59.8893 −2.21509
\(732\) 0.802079i 0.0296457i
\(733\) 19.0778 0.704654 0.352327 0.935877i \(-0.385391\pi\)
0.352327 + 0.935877i \(0.385391\pi\)
\(734\) 20.8201i 0.768484i
\(735\) −3.40587 2.00529i −0.125627 0.0739662i
\(736\) 1.76217i 0.0649545i
\(737\) 4.28090i 0.157689i
\(738\) 9.31063i 0.342729i
\(739\) 40.5137i 1.49032i −0.666886 0.745160i \(-0.732373\pi\)
0.666886 0.745160i \(-0.267627\pi\)
\(740\) 5.01815 8.52303i 0.184471 0.313313i
\(741\) 0 0
\(742\) 11.6881i 0.429082i
\(743\) −11.8075 −0.433176 −0.216588 0.976263i \(-0.569493\pi\)
−0.216588 + 0.976263i \(0.569493\pi\)
\(744\) 1.59525 0.0584848
\(745\) 33.8023 + 19.9019i 1.23842 + 0.729150i
\(746\) 0.901633i 0.0330111i
\(747\) 36.8203 1.34718
\(748\) −2.10581 −0.0769962
\(749\) 7.57401i 0.276748i
\(750\) 0.0868286 3.39394i 0.00317053 0.123929i
\(751\) 14.0149 0.511409 0.255705 0.966755i \(-0.417693\pi\)
0.255705 + 0.966755i \(0.417693\pi\)
\(752\) −11.5048 −0.419536
\(753\) 4.38301i 0.159726i
\(754\) 0 0
\(755\) −33.7940 19.8970i −1.22989 0.724127i
\(756\) 1.94812i 0.0708526i
\(757\) 31.2552i 1.13599i 0.823032 + 0.567994i \(0.192280\pi\)
−0.823032 + 0.567994i \(0.807720\pi\)
\(758\) 15.7125i 0.570703i
\(759\) 0.216122i 0.00784474i
\(760\) −1.62728 0.958100i −0.0590275 0.0347539i
\(761\) 34.1575i 1.23821i −0.785310 0.619103i \(-0.787496\pi\)
0.785310 0.619103i \(-0.212504\pi\)
\(762\) 1.84323 0.0667731
\(763\) 3.57664i 0.129483i
\(764\) −10.4612 −0.378474
\(765\) 29.2132 + 17.2000i 1.05621 + 0.621868i
\(766\) −38.0352 −1.37427
\(767\) 0 0
\(768\) 0.303663i 0.0109575i
\(769\) 44.2201i 1.59462i −0.603572 0.797308i \(-0.706256\pi\)
0.603572 0.797308i \(-0.293744\pi\)
\(770\) 0.845118 + 0.497584i 0.0304559 + 0.0179317i
\(771\) 3.36320 0.121123
\(772\) 14.6561 0.527483
\(773\) −2.04145 −0.0734259 −0.0367129 0.999326i \(-0.511689\pi\)
−0.0367129 + 0.999326i \(0.511689\pi\)
\(774\) 33.4004i 1.20055i
\(775\) −22.9684 + 12.7437i −0.825050 + 0.457766i
\(776\) 9.47384 0.340091
\(777\) 1.45858i 0.0523261i
\(778\) 3.64514 0.130685
\(779\) 2.70409 0.0968840
\(780\) 0 0
\(781\) 5.02132 0.179677
\(782\) 9.18773 0.328552
\(783\) 10.7055i 0.382583i
\(784\) −5.82076 −0.207884
\(785\) 20.3600 + 11.9875i 0.726680 + 0.427851i
\(786\) 0.162395i 0.00579243i
\(787\) 3.39520 0.121026 0.0605130 0.998167i \(-0.480726\pi\)
0.0605130 + 0.998167i \(0.480726\pi\)
\(788\) −10.3360 −0.368203
\(789\) 0.528841 0.0188273
\(790\) −18.0250 + 30.6145i −0.641302 + 1.08921i
\(791\) 10.9607i 0.389717i
\(792\) 1.17442i 0.0417312i
\(793\) 0 0
\(794\) −1.08366 −0.0384576
\(795\) 3.70800 6.29782i 0.131509 0.223361i
\(796\) 5.21516 0.184846
\(797\) 24.4659i 0.866626i 0.901244 + 0.433313i \(0.142655\pi\)
−0.901244 + 0.433313i \(0.857345\pi\)
\(798\) 0.278481 0.00985814
\(799\) 59.9843i 2.12209i
\(800\) −2.42580 4.37213i −0.0857651 0.154578i
\(801\) 20.3478i 0.718955i
\(802\) 6.16953i 0.217854i
\(803\) 1.18273i 0.0417377i
\(804\) 3.21860i 0.113511i
\(805\) −3.68727 2.17097i −0.129959 0.0765167i
\(806\) 0 0
\(807\) 3.04912i 0.107334i
\(808\) −6.61025 −0.232548
\(809\) 17.6948 0.622117 0.311058 0.950391i \(-0.399317\pi\)
0.311058 + 0.950391i \(0.399317\pi\)
\(810\) 9.27866 15.7593i 0.326019 0.553724i
\(811\) 2.82931i 0.0993505i −0.998765 0.0496753i \(-0.984181\pi\)
0.998765 0.0496753i \(-0.0158186\pi\)
\(812\) 6.48023 0.227411
\(813\) 3.13068 0.109798
\(814\) 1.78648i 0.0626160i
\(815\) −21.6278 + 36.7336i −0.757590 + 1.28672i
\(816\) −1.58326 −0.0554251
\(817\) 9.70050 0.339377
\(818\) 19.8455i 0.693883i
\(819\) 0 0
\(820\) 6.16982 + 3.63264i 0.215460 + 0.126857i
\(821\) 26.1300i 0.911942i −0.889995 0.455971i \(-0.849292\pi\)
0.889995 0.455971i \(-0.150708\pi\)
\(822\) 3.63816i 0.126895i
\(823\) 1.85316i 0.0645970i −0.999478 0.0322985i \(-0.989717\pi\)
0.999478 0.0322985i \(-0.0102827\pi\)
\(824\) 9.21082i 0.320874i
\(825\) 0.297514 + 0.536221i 0.0103581 + 0.0186688i
\(826\) 7.91099i 0.275258i
\(827\) 19.9886 0.695072 0.347536 0.937667i \(-0.387018\pi\)
0.347536 + 0.937667i \(0.387018\pi\)
\(828\) 5.12402i 0.178072i
\(829\) 41.6506 1.44658 0.723292 0.690542i \(-0.242628\pi\)
0.723292 + 0.690542i \(0.242628\pi\)
\(830\) 14.3658 24.3995i 0.498644 0.846918i
\(831\) 9.04884 0.313901
\(832\) 0 0
\(833\) 30.3487i 1.05152i
\(834\) 0.816859i 0.0282855i
\(835\) −12.1193 + 20.5840i −0.419407 + 0.712339i
\(836\) 0.341087 0.0117967
\(837\) 9.42442 0.325756
\(838\) −4.45670 −0.153954
\(839\) 25.9421i 0.895622i −0.894128 0.447811i \(-0.852204\pi\)
0.894128 0.447811i \(-0.147796\pi\)
\(840\) 0.635402 + 0.374108i 0.0219234 + 0.0129080i
\(841\) 6.61068 0.227955
\(842\) 16.7557i 0.577441i
\(843\) 5.32737 0.183484
\(844\) −12.3086 −0.423681
\(845\) 0 0
\(846\) −33.4534 −1.15015
\(847\) 11.7680 0.404355
\(848\) 10.7632i 0.369610i
\(849\) −7.87395 −0.270233
\(850\) 22.7957 12.6478i 0.781885 0.433816i
\(851\) 7.79445i 0.267190i
\(852\) 3.77528 0.129339
\(853\) −33.6674 −1.15275 −0.576374 0.817186i \(-0.695533\pi\)
−0.576374 + 0.817186i \(0.695533\pi\)
\(854\) −2.86831 −0.0981516
\(855\) −4.73178 2.78595i −0.161823 0.0952775i
\(856\) 6.97470i 0.238391i
\(857\) 6.39008i 0.218281i 0.994026 + 0.109140i \(0.0348098\pi\)
−0.994026 + 0.109140i \(0.965190\pi\)
\(858\) 0 0
\(859\) −29.6345 −1.01112 −0.505558 0.862792i \(-0.668713\pi\)
−0.505558 + 0.862792i \(0.668713\pi\)
\(860\) 22.1333 + 13.0315i 0.754739 + 0.444371i
\(861\) −1.05586 −0.0359837
\(862\) 17.3440i 0.590741i
\(863\) 15.7244 0.535264 0.267632 0.963521i \(-0.413759\pi\)
0.267632 + 0.963521i \(0.413759\pi\)
\(864\) 1.79397i 0.0610323i
\(865\) 30.6342 + 18.0367i 1.04160 + 0.613265i
\(866\) 4.41765i 0.150118i
\(867\) 3.09262i 0.105031i
\(868\) 5.70478i 0.193633i
\(869\) 6.41698i 0.217681i
\(870\) 3.49171 + 2.05583i 0.118380 + 0.0696992i
\(871\) 0 0
\(872\) 3.29363i 0.111537i
\(873\) 27.5479 0.932356
\(874\) −1.48817 −0.0503381
\(875\) −12.1371 0.310507i −0.410307 0.0104971i
\(876\) 0.889236i 0.0300445i
\(877\) 30.3994 1.02651 0.513257 0.858235i \(-0.328439\pi\)
0.513257 + 0.858235i \(0.328439\pi\)
\(878\) 33.1534 1.11887
\(879\) 7.94464i 0.267966i
\(880\) 0.778246 + 0.458212i 0.0262347 + 0.0154463i
\(881\) −41.3933 −1.39458 −0.697288 0.716791i \(-0.745610\pi\)
−0.697288 + 0.716791i \(0.745610\pi\)
\(882\) −16.9256 −0.569913
\(883\) 24.4503i 0.822819i −0.911451 0.411410i \(-0.865037\pi\)
0.911451 0.411410i \(-0.134963\pi\)
\(884\) 0 0
\(885\) 2.50973 4.26264i 0.0843637 0.143287i
\(886\) 19.2632i 0.647161i
\(887\) 37.1737i 1.24817i 0.781357 + 0.624085i \(0.214528\pi\)
−0.781357 + 0.624085i \(0.785472\pi\)
\(888\) 1.34316i 0.0450736i
\(889\) 6.59155i 0.221074i
\(890\) 13.4838 + 7.93892i 0.451978 + 0.266113i
\(891\) 3.30323i 0.110663i
\(892\) −9.35143 −0.313109
\(893\) 9.71589i 0.325130i
\(894\) −5.32697 −0.178161
\(895\) −28.6779 + 48.7077i −0.958595 + 1.62812i
\(896\) 1.08593 0.0362782
\(897\) 0 0
\(898\) 4.55734i 0.152081i
\(899\) 31.3494i 1.04556i
\(900\) −7.05372 12.7132i −0.235124 0.423774i
\(901\) 56.1180 1.86956
\(902\) −1.29323 −0.0430599
\(903\) −3.78775 −0.126048
\(904\) 10.0934i 0.335702i
\(905\) −20.2035 + 34.3144i −0.671586 + 1.14065i
\(906\) 5.32566 0.176933
\(907\) 32.4758i 1.07834i −0.842196 0.539171i \(-0.818738\pi\)
0.842196 0.539171i \(-0.181262\pi\)
\(908\) −13.1715 −0.437112
\(909\) −19.2212 −0.637527
\(910\) 0 0
\(911\) 16.8692 0.558900 0.279450 0.960160i \(-0.409848\pi\)
0.279450 + 0.960160i \(0.409848\pi\)
\(912\) 0.256446 0.00849178
\(913\) 5.11428i 0.169258i
\(914\) 15.9598 0.527905
\(915\) −1.54552 0.909962i −0.0510932 0.0300824i
\(916\) 13.6752i 0.451840i
\(917\) 0.580739 0.0191777
\(918\) −9.35354 −0.308713
\(919\) 5.75843 0.189953 0.0949765 0.995480i \(-0.469722\pi\)
0.0949765 + 0.995480i \(0.469722\pi\)
\(920\) −3.39551 1.99919i −0.111947 0.0659113i
\(921\) 0.816435i 0.0269025i
\(922\) 22.2437i 0.732556i
\(923\) 0 0
\(924\) −0.133184 −0.00438143
\(925\) −10.7298 19.3388i −0.352795 0.635857i
\(926\) 31.0149 1.01921
\(927\) 26.7831i 0.879673i
\(928\) 5.96747 0.195892
\(929\) 43.2786i 1.41992i 0.704240 + 0.709962i \(0.251288\pi\)
−0.704240 + 0.709962i \(0.748712\pi\)
\(930\) 1.80982 3.07388i 0.0593464 0.100796i
\(931\) 4.91569i 0.161105i
\(932\) 27.7357i 0.908514i
\(933\) 9.42198i 0.308462i
\(934\) 0.841337i 0.0275294i
\(935\) −2.38905 + 4.05767i −0.0781304 + 0.132700i
\(936\) 0 0
\(937\) 13.9713i 0.456424i −0.973611 0.228212i \(-0.926712\pi\)
0.973611 0.228212i \(-0.0732879\pi\)
\(938\) 11.5100 0.375815
\(939\) 4.47597 0.146068
\(940\) −13.0522 + 22.1684i −0.425716 + 0.723054i
\(941\) 27.2678i 0.888905i −0.895803 0.444452i \(-0.853398\pi\)
0.895803 0.444452i \(-0.146602\pi\)
\(942\) −3.20858 −0.104541
\(943\) 5.64240 0.183742
\(944\) 7.28501i 0.237107i
\(945\) 3.75382 + 2.21015i 0.122112 + 0.0718963i
\(946\) −4.63927 −0.150836
\(947\) −11.4663 −0.372605 −0.186302 0.982492i \(-0.559650\pi\)
−0.186302 + 0.982492i \(0.559650\pi\)
\(948\) 4.82460i 0.156696i
\(949\) 0 0
\(950\) −3.69230 + 2.04861i −0.119794 + 0.0664658i
\(951\) 4.47647i 0.145160i
\(952\) 5.66187i 0.183502i
\(953\) 19.2137i 0.622392i 0.950346 + 0.311196i \(0.100730\pi\)
−0.950346 + 0.311196i \(0.899270\pi\)
\(954\) 31.2972i 1.01328i
\(955\) −11.8683 + 20.1576i −0.384049 + 0.652285i
\(956\) 17.7552i 0.574243i
\(957\) −0.731883 −0.0236584
\(958\) 7.63429i 0.246653i
\(959\) 13.0104 0.420127
\(960\) 0.585124 + 0.344506i 0.0188848 + 0.0111189i
\(961\) 3.40205 0.109743
\(962\) 0 0
\(963\) 20.2810i 0.653545i
\(964\) 3.83937i 0.123658i
\(965\) 16.6274 28.2406i 0.535253 0.909097i
\(966\) 0.581085 0.0186961
\(967\) 40.2200 1.29339 0.646695 0.762749i \(-0.276151\pi\)
0.646695 + 0.762749i \(0.276151\pi\)
\(968\) 10.8369 0.348310
\(969\) 1.33708i 0.0429531i
\(970\) 10.7481 18.2550i 0.345101 0.586134i
\(971\) 40.8959 1.31241 0.656207 0.754581i \(-0.272160\pi\)
0.656207 + 0.754581i \(0.272160\pi\)
\(972\) 7.86546i 0.252285i
\(973\) −2.92117 −0.0936483
\(974\) −23.2958 −0.746446
\(975\) 0 0
\(976\) −2.64135 −0.0845475
\(977\) −19.5975 −0.626981 −0.313490 0.949591i \(-0.601498\pi\)
−0.313490 + 0.949591i \(0.601498\pi\)
\(978\) 5.78893i 0.185110i
\(979\) −2.82628 −0.0903284
\(980\) −6.60368 + 11.2160i −0.210947 + 0.358281i
\(981\) 9.57719i 0.305776i
\(982\) −36.2972 −1.15829
\(983\) −11.7949 −0.376198 −0.188099 0.982150i \(-0.560233\pi\)
−0.188099 + 0.982150i \(0.560233\pi\)
\(984\) −0.972316 −0.0309963
\(985\) −11.7262 + 19.9162i −0.373627 + 0.634584i
\(986\) 31.1136i 0.990858i
\(987\) 3.79375i 0.120757i
\(988\) 0 0
\(989\) 20.2412 0.643634
\(990\) 2.26298 + 1.33238i 0.0719221 + 0.0423459i
\(991\) 25.3114 0.804043 0.402022 0.915630i \(-0.368308\pi\)
0.402022 + 0.915630i \(0.368308\pi\)
\(992\) 5.25338i 0.166795i
\(993\) 2.90293 0.0921217
\(994\) 13.5008i 0.428218i
\(995\) 5.91661 10.0490i 0.187569 0.318576i
\(996\) 3.84517i 0.121839i
\(997\) 18.7441i 0.593632i 0.954935 + 0.296816i \(0.0959248\pi\)
−0.954935 + 0.296816i \(0.904075\pi\)
\(998\) 18.9398i 0.599530i
\(999\) 7.93513i 0.251056i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.h.1689.11 18
5.4 even 2 1690.2.c.g.1689.8 18
13.5 odd 4 1690.2.b.f.339.7 18
13.8 odd 4 1690.2.b.g.339.16 yes 18
13.12 even 2 1690.2.c.g.1689.11 18
65.8 even 4 8450.2.a.da.1.3 9
65.18 even 4 8450.2.a.cw.1.3 9
65.34 odd 4 1690.2.b.g.339.3 yes 18
65.44 odd 4 1690.2.b.f.339.12 yes 18
65.47 even 4 8450.2.a.ct.1.7 9
65.57 even 4 8450.2.a.cx.1.7 9
65.64 even 2 inner 1690.2.c.h.1689.8 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.7 18 13.5 odd 4
1690.2.b.f.339.12 yes 18 65.44 odd 4
1690.2.b.g.339.3 yes 18 65.34 odd 4
1690.2.b.g.339.16 yes 18 13.8 odd 4
1690.2.c.g.1689.8 18 5.4 even 2
1690.2.c.g.1689.11 18 13.12 even 2
1690.2.c.h.1689.8 18 65.64 even 2 inner
1690.2.c.h.1689.11 18 1.1 even 1 trivial
8450.2.a.ct.1.7 9 65.47 even 4
8450.2.a.cw.1.3 9 65.18 even 4
8450.2.a.cx.1.7 9 65.57 even 4
8450.2.a.da.1.3 9 65.8 even 4