Properties

Label 2-8450-1.1-c1-0-207
Degree $2$
Conductor $8450$
Sign $-1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.303·3-s + 4-s + 0.303·6-s − 1.08·7-s + 8-s − 2.90·9-s − 0.403·11-s + 0.303·12-s − 1.08·14-s + 16-s + 5.21·17-s − 2.90·18-s + 0.844·19-s − 0.329·21-s − 0.403·22-s + 1.76·23-s + 0.303·24-s − 1.79·27-s − 1.08·28-s − 5.96·29-s − 5.25·31-s + 32-s − 0.122·33-s + 5.21·34-s − 2.90·36-s − 4.42·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.175·3-s + 0.5·4-s + 0.123·6-s − 0.410·7-s + 0.353·8-s − 0.969·9-s − 0.121·11-s + 0.0876·12-s − 0.290·14-s + 0.250·16-s + 1.26·17-s − 0.685·18-s + 0.193·19-s − 0.0719·21-s − 0.0861·22-s + 0.367·23-s + 0.0619·24-s − 0.345·27-s − 0.205·28-s − 1.10·29-s − 0.943·31-s + 0.176·32-s − 0.0213·33-s + 0.894·34-s − 0.484·36-s − 0.727·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 - 0.303T + 3T^{2} \)
7 \( 1 + 1.08T + 7T^{2} \)
11 \( 1 + 0.403T + 11T^{2} \)
17 \( 1 - 5.21T + 17T^{2} \)
19 \( 1 - 0.844T + 19T^{2} \)
23 \( 1 - 1.76T + 23T^{2} \)
29 \( 1 + 5.96T + 29T^{2} \)
31 \( 1 + 5.25T + 31T^{2} \)
37 \( 1 + 4.42T + 37T^{2} \)
41 \( 1 - 3.20T + 41T^{2} \)
43 \( 1 + 11.4T + 43T^{2} \)
47 \( 1 - 11.5T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 + 7.28T + 59T^{2} \)
61 \( 1 + 2.64T + 61T^{2} \)
67 \( 1 - 10.5T + 67T^{2} \)
71 \( 1 + 12.4T + 71T^{2} \)
73 \( 1 + 2.92T + 73T^{2} \)
79 \( 1 - 15.8T + 79T^{2} \)
83 \( 1 + 12.6T + 83T^{2} \)
89 \( 1 - 6.99T + 89T^{2} \)
97 \( 1 - 9.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49070083032296040637949787365, −6.64333753417113843804739222065, −5.89621411437341768935683184141, −5.42761366721447851388944037020, −4.75394405743301111280245568492, −3.53041972608334071826815225689, −3.37166015958243904742320183509, −2.43061808311760448557157870715, −1.44125568471784812000478069797, 0, 1.44125568471784812000478069797, 2.43061808311760448557157870715, 3.37166015958243904742320183509, 3.53041972608334071826815225689, 4.75394405743301111280245568492, 5.42761366721447851388944037020, 5.89621411437341768935683184141, 6.64333753417113843804739222065, 7.49070083032296040637949787365

Graph of the $Z$-function along the critical line