Properties

Label 8450.2.a.cs.1.4
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,10,8,16,0,0,0,0,10,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 20x^{6} + 132x^{4} - 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.17644\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.17644 q^{3} +1.00000 q^{4} -1.17644 q^{6} -2.08692 q^{7} +1.00000 q^{8} -1.61598 q^{9} -2.99224 q^{11} -1.17644 q^{12} -2.08692 q^{14} +1.00000 q^{16} -1.26018 q^{17} -1.61598 q^{18} -3.89166 q^{19} +2.45514 q^{21} -2.99224 q^{22} -0.899428 q^{23} -1.17644 q^{24} +5.43044 q^{27} -2.08692 q^{28} -0.470937 q^{29} -0.277015 q^{31} +1.00000 q^{32} +3.52020 q^{33} -1.26018 q^{34} -1.61598 q^{36} +7.03766 q^{37} -3.89166 q^{38} +11.1637 q^{41} +2.45514 q^{42} -7.78333 q^{43} -2.99224 q^{44} -0.899428 q^{46} -11.3189 q^{47} -1.17644 q^{48} -2.64477 q^{49} +1.48254 q^{51} -12.0148 q^{53} +5.43044 q^{54} -2.08692 q^{56} +4.57832 q^{57} -0.470937 q^{58} -12.3586 q^{59} +7.64204 q^{61} -0.277015 q^{62} +3.37242 q^{63} +1.00000 q^{64} +3.52020 q^{66} +4.00000 q^{67} -1.26018 q^{68} +1.05813 q^{69} -4.70577 q^{71} -1.61598 q^{72} +15.2984 q^{73} +7.03766 q^{74} -3.89166 q^{76} +6.24455 q^{77} +1.63645 q^{79} -1.54066 q^{81} +11.1637 q^{82} +11.1943 q^{83} +2.45514 q^{84} -7.78333 q^{86} +0.554031 q^{87} -2.99224 q^{88} -6.91127 q^{89} -0.899428 q^{92} +0.325893 q^{93} -11.3189 q^{94} -1.17644 q^{96} +2.57832 q^{97} -2.64477 q^{98} +4.83540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 10 q^{7} + 8 q^{8} + 16 q^{9} + 10 q^{14} + 8 q^{16} + 16 q^{18} + 10 q^{28} - 6 q^{29} + 8 q^{32} + 20 q^{33} + 16 q^{36} + 40 q^{37} - 6 q^{47} + 30 q^{49} + 20 q^{51} + 10 q^{56}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.17644 −0.679220 −0.339610 0.940566i \(-0.610295\pi\)
−0.339610 + 0.940566i \(0.610295\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.17644 −0.480281
\(7\) −2.08692 −0.788781 −0.394390 0.918943i \(-0.629044\pi\)
−0.394390 + 0.918943i \(0.629044\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.61598 −0.538660
\(10\) 0 0
\(11\) −2.99224 −0.902193 −0.451096 0.892475i \(-0.648967\pi\)
−0.451096 + 0.892475i \(0.648967\pi\)
\(12\) −1.17644 −0.339610
\(13\) 0 0
\(14\) −2.08692 −0.557752
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.26018 −0.305640 −0.152820 0.988254i \(-0.548835\pi\)
−0.152820 + 0.988254i \(0.548835\pi\)
\(18\) −1.61598 −0.380890
\(19\) −3.89166 −0.892809 −0.446404 0.894831i \(-0.647296\pi\)
−0.446404 + 0.894831i \(0.647296\pi\)
\(20\) 0 0
\(21\) 2.45514 0.535756
\(22\) −2.99224 −0.637947
\(23\) −0.899428 −0.187544 −0.0937719 0.995594i \(-0.529892\pi\)
−0.0937719 + 0.995594i \(0.529892\pi\)
\(24\) −1.17644 −0.240140
\(25\) 0 0
\(26\) 0 0
\(27\) 5.43044 1.04509
\(28\) −2.08692 −0.394390
\(29\) −0.470937 −0.0874508 −0.0437254 0.999044i \(-0.513923\pi\)
−0.0437254 + 0.999044i \(0.513923\pi\)
\(30\) 0 0
\(31\) −0.277015 −0.0497534 −0.0248767 0.999691i \(-0.507919\pi\)
−0.0248767 + 0.999691i \(0.507919\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.52020 0.612787
\(34\) −1.26018 −0.216120
\(35\) 0 0
\(36\) −1.61598 −0.269330
\(37\) 7.03766 1.15698 0.578492 0.815688i \(-0.303641\pi\)
0.578492 + 0.815688i \(0.303641\pi\)
\(38\) −3.89166 −0.631311
\(39\) 0 0
\(40\) 0 0
\(41\) 11.1637 1.74348 0.871738 0.489973i \(-0.162993\pi\)
0.871738 + 0.489973i \(0.162993\pi\)
\(42\) 2.45514 0.378836
\(43\) −7.78333 −1.18695 −0.593473 0.804854i \(-0.702244\pi\)
−0.593473 + 0.804854i \(0.702244\pi\)
\(44\) −2.99224 −0.451096
\(45\) 0 0
\(46\) −0.899428 −0.132613
\(47\) −11.3189 −1.65103 −0.825514 0.564381i \(-0.809115\pi\)
−0.825514 + 0.564381i \(0.809115\pi\)
\(48\) −1.17644 −0.169805
\(49\) −2.64477 −0.377825
\(50\) 0 0
\(51\) 1.48254 0.207597
\(52\) 0 0
\(53\) −12.0148 −1.65036 −0.825181 0.564868i \(-0.808927\pi\)
−0.825181 + 0.564868i \(0.808927\pi\)
\(54\) 5.43044 0.738989
\(55\) 0 0
\(56\) −2.08692 −0.278876
\(57\) 4.57832 0.606413
\(58\) −0.470937 −0.0618371
\(59\) −12.3586 −1.60896 −0.804479 0.593981i \(-0.797555\pi\)
−0.804479 + 0.593981i \(0.797555\pi\)
\(60\) 0 0
\(61\) 7.64204 0.978463 0.489232 0.872154i \(-0.337277\pi\)
0.489232 + 0.872154i \(0.337277\pi\)
\(62\) −0.277015 −0.0351810
\(63\) 3.37242 0.424885
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.52020 0.433306
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −1.26018 −0.152820
\(69\) 1.05813 0.127383
\(70\) 0 0
\(71\) −4.70577 −0.558473 −0.279236 0.960222i \(-0.590081\pi\)
−0.279236 + 0.960222i \(0.590081\pi\)
\(72\) −1.61598 −0.190445
\(73\) 15.2984 1.79054 0.895272 0.445520i \(-0.146981\pi\)
0.895272 + 0.445520i \(0.146981\pi\)
\(74\) 7.03766 0.818111
\(75\) 0 0
\(76\) −3.89166 −0.446404
\(77\) 6.24455 0.711633
\(78\) 0 0
\(79\) 1.63645 0.184115 0.0920574 0.995754i \(-0.470656\pi\)
0.0920574 + 0.995754i \(0.470656\pi\)
\(80\) 0 0
\(81\) −1.54066 −0.171185
\(82\) 11.1637 1.23282
\(83\) 11.1943 1.22873 0.614367 0.789020i \(-0.289411\pi\)
0.614367 + 0.789020i \(0.289411\pi\)
\(84\) 2.45514 0.267878
\(85\) 0 0
\(86\) −7.78333 −0.839298
\(87\) 0.554031 0.0593983
\(88\) −2.99224 −0.318973
\(89\) −6.91127 −0.732593 −0.366296 0.930498i \(-0.619374\pi\)
−0.366296 + 0.930498i \(0.619374\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.899428 −0.0937719
\(93\) 0.325893 0.0337935
\(94\) −11.3189 −1.16745
\(95\) 0 0
\(96\) −1.17644 −0.120070
\(97\) 2.57832 0.261789 0.130894 0.991396i \(-0.458215\pi\)
0.130894 + 0.991396i \(0.458215\pi\)
\(98\) −2.64477 −0.267162
\(99\) 4.83540 0.485976
\(100\) 0 0
\(101\) −1.56672 −0.155895 −0.0779474 0.996957i \(-0.524837\pi\)
−0.0779474 + 0.996957i \(0.524837\pi\)
\(102\) 1.48254 0.146793
\(103\) −0.916364 −0.0902920 −0.0451460 0.998980i \(-0.514375\pi\)
−0.0451460 + 0.998980i \(0.514375\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −12.0148 −1.16698
\(107\) 11.7024 1.13131 0.565655 0.824642i \(-0.308623\pi\)
0.565655 + 0.824642i \(0.308623\pi\)
\(108\) 5.43044 0.522544
\(109\) 15.9902 1.53159 0.765793 0.643087i \(-0.222347\pi\)
0.765793 + 0.643087i \(0.222347\pi\)
\(110\) 0 0
\(111\) −8.27941 −0.785847
\(112\) −2.08692 −0.197195
\(113\) 2.78203 0.261711 0.130855 0.991401i \(-0.458228\pi\)
0.130855 + 0.991401i \(0.458228\pi\)
\(114\) 4.57832 0.428799
\(115\) 0 0
\(116\) −0.470937 −0.0437254
\(117\) 0 0
\(118\) −12.3586 −1.13771
\(119\) 2.62990 0.241083
\(120\) 0 0
\(121\) −2.04653 −0.186048
\(122\) 7.64204 0.691878
\(123\) −13.1334 −1.18420
\(124\) −0.277015 −0.0248767
\(125\) 0 0
\(126\) 3.37242 0.300439
\(127\) 8.69969 0.771973 0.385986 0.922504i \(-0.373861\pi\)
0.385986 + 0.922504i \(0.373861\pi\)
\(128\) 1.00000 0.0883883
\(129\) 9.15664 0.806197
\(130\) 0 0
\(131\) −15.8740 −1.38692 −0.693459 0.720496i \(-0.743914\pi\)
−0.693459 + 0.720496i \(0.743914\pi\)
\(132\) 3.52020 0.306394
\(133\) 8.12158 0.704231
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −1.26018 −0.108060
\(137\) 7.22309 0.617111 0.308555 0.951206i \(-0.400155\pi\)
0.308555 + 0.951206i \(0.400155\pi\)
\(138\) 1.05813 0.0900737
\(139\) 19.8740 1.68569 0.842846 0.538156i \(-0.180879\pi\)
0.842846 + 0.538156i \(0.180879\pi\)
\(140\) 0 0
\(141\) 13.3160 1.12141
\(142\) −4.70577 −0.394900
\(143\) 0 0
\(144\) −1.61598 −0.134665
\(145\) 0 0
\(146\) 15.2984 1.26611
\(147\) 3.11143 0.256626
\(148\) 7.03766 0.578492
\(149\) −0.983169 −0.0805444 −0.0402722 0.999189i \(-0.512823\pi\)
−0.0402722 + 0.999189i \(0.512823\pi\)
\(150\) 0 0
\(151\) −8.06034 −0.655941 −0.327971 0.944688i \(-0.606365\pi\)
−0.327971 + 0.944688i \(0.606365\pi\)
\(152\) −3.89166 −0.315656
\(153\) 2.03643 0.164636
\(154\) 6.24455 0.503200
\(155\) 0 0
\(156\) 0 0
\(157\) −2.73373 −0.218176 −0.109088 0.994032i \(-0.534793\pi\)
−0.109088 + 0.994032i \(0.534793\pi\)
\(158\) 1.63645 0.130189
\(159\) 14.1348 1.12096
\(160\) 0 0
\(161\) 1.87703 0.147931
\(162\) −1.54066 −0.121046
\(163\) 24.5769 1.92501 0.962506 0.271261i \(-0.0874407\pi\)
0.962506 + 0.271261i \(0.0874407\pi\)
\(164\) 11.1637 0.871738
\(165\) 0 0
\(166\) 11.1943 0.868846
\(167\) 13.8363 1.07069 0.535344 0.844634i \(-0.320182\pi\)
0.535344 + 0.844634i \(0.320182\pi\)
\(168\) 2.45514 0.189418
\(169\) 0 0
\(170\) 0 0
\(171\) 6.28885 0.480921
\(172\) −7.78333 −0.593473
\(173\) 13.1728 1.00151 0.500753 0.865590i \(-0.333057\pi\)
0.500753 + 0.865590i \(0.333057\pi\)
\(174\) 0.554031 0.0420010
\(175\) 0 0
\(176\) −2.99224 −0.225548
\(177\) 14.5392 1.09284
\(178\) −6.91127 −0.518021
\(179\) 3.11571 0.232879 0.116440 0.993198i \(-0.462852\pi\)
0.116440 + 0.993198i \(0.462852\pi\)
\(180\) 0 0
\(181\) −7.91439 −0.588272 −0.294136 0.955764i \(-0.595032\pi\)
−0.294136 + 0.955764i \(0.595032\pi\)
\(182\) 0 0
\(183\) −8.99043 −0.664592
\(184\) −0.899428 −0.0663067
\(185\) 0 0
\(186\) 0.325893 0.0238956
\(187\) 3.77077 0.275746
\(188\) −11.3189 −0.825514
\(189\) −11.3329 −0.824346
\(190\) 0 0
\(191\) 13.9609 1.01018 0.505088 0.863068i \(-0.331460\pi\)
0.505088 + 0.863068i \(0.331460\pi\)
\(192\) −1.17644 −0.0849025
\(193\) 13.6276 0.980935 0.490467 0.871460i \(-0.336826\pi\)
0.490467 + 0.871460i \(0.336826\pi\)
\(194\) 2.57832 0.185113
\(195\) 0 0
\(196\) −2.64477 −0.188912
\(197\) 17.7219 1.26264 0.631318 0.775524i \(-0.282514\pi\)
0.631318 + 0.775524i \(0.282514\pi\)
\(198\) 4.83540 0.343637
\(199\) −14.3654 −1.01834 −0.509168 0.860667i \(-0.670047\pi\)
−0.509168 + 0.860667i \(0.670047\pi\)
\(200\) 0 0
\(201\) −4.70577 −0.331920
\(202\) −1.56672 −0.110234
\(203\) 0.982807 0.0689795
\(204\) 1.48254 0.103798
\(205\) 0 0
\(206\) −0.916364 −0.0638461
\(207\) 1.45346 0.101022
\(208\) 0 0
\(209\) 11.6448 0.805486
\(210\) 0 0
\(211\) −20.2231 −1.39222 −0.696108 0.717937i \(-0.745086\pi\)
−0.696108 + 0.717937i \(0.745086\pi\)
\(212\) −12.0148 −0.825181
\(213\) 5.53608 0.379326
\(214\) 11.7024 0.799957
\(215\) 0 0
\(216\) 5.43044 0.369495
\(217\) 0.578108 0.0392445
\(218\) 15.9902 1.08299
\(219\) −17.9977 −1.21617
\(220\) 0 0
\(221\) 0 0
\(222\) −8.27941 −0.555677
\(223\) 11.1450 0.746327 0.373164 0.927766i \(-0.378273\pi\)
0.373164 + 0.927766i \(0.378273\pi\)
\(224\) −2.08692 −0.139438
\(225\) 0 0
\(226\) 2.78203 0.185058
\(227\) −17.3073 −1.14872 −0.574362 0.818601i \(-0.694750\pi\)
−0.574362 + 0.818601i \(0.694750\pi\)
\(228\) 4.57832 0.303207
\(229\) −9.90350 −0.654442 −0.327221 0.944948i \(-0.606112\pi\)
−0.327221 + 0.944948i \(0.606112\pi\)
\(230\) 0 0
\(231\) −7.34636 −0.483355
\(232\) −0.470937 −0.0309185
\(233\) 19.1742 1.25614 0.628070 0.778156i \(-0.283845\pi\)
0.628070 + 0.778156i \(0.283845\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.3586 −0.804479
\(237\) −1.92519 −0.125054
\(238\) 2.62990 0.170471
\(239\) 2.16448 0.140009 0.0700043 0.997547i \(-0.477699\pi\)
0.0700043 + 0.997547i \(0.477699\pi\)
\(240\) 0 0
\(241\) −16.1013 −1.03718 −0.518589 0.855024i \(-0.673543\pi\)
−0.518589 + 0.855024i \(0.673543\pi\)
\(242\) −2.04653 −0.131556
\(243\) −14.4788 −0.928817
\(244\) 7.64204 0.489232
\(245\) 0 0
\(246\) −13.1334 −0.837358
\(247\) 0 0
\(248\) −0.277015 −0.0175905
\(249\) −13.1695 −0.834581
\(250\) 0 0
\(251\) 18.0888 1.14175 0.570877 0.821036i \(-0.306603\pi\)
0.570877 + 0.821036i \(0.306603\pi\)
\(252\) 3.37242 0.212442
\(253\) 2.69130 0.169201
\(254\) 8.69969 0.545867
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.0452 −0.626602 −0.313301 0.949654i \(-0.601435\pi\)
−0.313301 + 0.949654i \(0.601435\pi\)
\(258\) 9.15664 0.570068
\(259\) −14.6870 −0.912607
\(260\) 0 0
\(261\) 0.761025 0.0471063
\(262\) −15.8740 −0.980699
\(263\) 15.8027 0.974433 0.487217 0.873281i \(-0.338012\pi\)
0.487217 + 0.873281i \(0.338012\pi\)
\(264\) 3.52020 0.216653
\(265\) 0 0
\(266\) 8.12158 0.497966
\(267\) 8.13071 0.497592
\(268\) 4.00000 0.244339
\(269\) −7.38587 −0.450325 −0.225162 0.974321i \(-0.572291\pi\)
−0.225162 + 0.974321i \(0.572291\pi\)
\(270\) 0 0
\(271\) −31.0029 −1.88329 −0.941645 0.336609i \(-0.890720\pi\)
−0.941645 + 0.336609i \(0.890720\pi\)
\(272\) −1.26018 −0.0764099
\(273\) 0 0
\(274\) 7.22309 0.436363
\(275\) 0 0
\(276\) 1.05813 0.0636917
\(277\) 4.70735 0.282837 0.141419 0.989950i \(-0.454834\pi\)
0.141419 + 0.989950i \(0.454834\pi\)
\(278\) 19.8740 1.19196
\(279\) 0.447652 0.0268002
\(280\) 0 0
\(281\) 10.7771 0.642910 0.321455 0.946925i \(-0.395828\pi\)
0.321455 + 0.946925i \(0.395828\pi\)
\(282\) 13.3160 0.792958
\(283\) 29.1220 1.73112 0.865561 0.500804i \(-0.166962\pi\)
0.865561 + 0.500804i \(0.166962\pi\)
\(284\) −4.70577 −0.279236
\(285\) 0 0
\(286\) 0 0
\(287\) −23.2977 −1.37522
\(288\) −1.61598 −0.0952226
\(289\) −15.4119 −0.906584
\(290\) 0 0
\(291\) −3.03325 −0.177812
\(292\) 15.2984 0.895272
\(293\) −25.4248 −1.48534 −0.742668 0.669660i \(-0.766440\pi\)
−0.742668 + 0.669660i \(0.766440\pi\)
\(294\) 3.11143 0.181462
\(295\) 0 0
\(296\) 7.03766 0.409056
\(297\) −16.2492 −0.942872
\(298\) −0.983169 −0.0569535
\(299\) 0 0
\(300\) 0 0
\(301\) 16.2432 0.936240
\(302\) −8.06034 −0.463821
\(303\) 1.84316 0.105887
\(304\) −3.89166 −0.223202
\(305\) 0 0
\(306\) 2.03643 0.116415
\(307\) 25.3305 1.44569 0.722843 0.691012i \(-0.242835\pi\)
0.722843 + 0.691012i \(0.242835\pi\)
\(308\) 6.24455 0.355816
\(309\) 1.07805 0.0613281
\(310\) 0 0
\(311\) 24.3495 1.38074 0.690368 0.723459i \(-0.257449\pi\)
0.690368 + 0.723459i \(0.257449\pi\)
\(312\) 0 0
\(313\) −15.6891 −0.886802 −0.443401 0.896323i \(-0.646228\pi\)
−0.443401 + 0.896323i \(0.646228\pi\)
\(314\) −2.73373 −0.154273
\(315\) 0 0
\(316\) 1.63645 0.0920574
\(317\) −19.4607 −1.09302 −0.546510 0.837453i \(-0.684044\pi\)
−0.546510 + 0.837453i \(0.684044\pi\)
\(318\) 14.1348 0.792638
\(319\) 1.40915 0.0788975
\(320\) 0 0
\(321\) −13.7672 −0.768408
\(322\) 1.87703 0.104603
\(323\) 4.90421 0.272878
\(324\) −1.54066 −0.0855923
\(325\) 0 0
\(326\) 24.5769 1.36119
\(327\) −18.8116 −1.04028
\(328\) 11.1637 0.616412
\(329\) 23.6216 1.30230
\(330\) 0 0
\(331\) −6.62711 −0.364259 −0.182129 0.983275i \(-0.558299\pi\)
−0.182129 + 0.983275i \(0.558299\pi\)
\(332\) 11.1943 0.614367
\(333\) −11.3727 −0.623221
\(334\) 13.8363 0.757091
\(335\) 0 0
\(336\) 2.45514 0.133939
\(337\) 11.0614 0.602555 0.301277 0.953537i \(-0.402587\pi\)
0.301277 + 0.953537i \(0.402587\pi\)
\(338\) 0 0
\(339\) −3.27290 −0.177759
\(340\) 0 0
\(341\) 0.828895 0.0448872
\(342\) 6.28885 0.340062
\(343\) 20.1279 1.08680
\(344\) −7.78333 −0.419649
\(345\) 0 0
\(346\) 13.1728 0.708172
\(347\) −17.7207 −0.951297 −0.475649 0.879635i \(-0.657787\pi\)
−0.475649 + 0.879635i \(0.657787\pi\)
\(348\) 0.554031 0.0296992
\(349\) 17.6868 0.946754 0.473377 0.880860i \(-0.343035\pi\)
0.473377 + 0.880860i \(0.343035\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.99224 −0.159487
\(353\) 33.6229 1.78957 0.894783 0.446501i \(-0.147330\pi\)
0.894783 + 0.446501i \(0.147330\pi\)
\(354\) 14.5392 0.772752
\(355\) 0 0
\(356\) −6.91127 −0.366296
\(357\) −3.09393 −0.163748
\(358\) 3.11571 0.164670
\(359\) 17.4880 0.922981 0.461490 0.887145i \(-0.347315\pi\)
0.461490 + 0.887145i \(0.347315\pi\)
\(360\) 0 0
\(361\) −3.85496 −0.202892
\(362\) −7.91439 −0.415971
\(363\) 2.40762 0.126367
\(364\) 0 0
\(365\) 0 0
\(366\) −8.99043 −0.469937
\(367\) 7.35975 0.384176 0.192088 0.981378i \(-0.438474\pi\)
0.192088 + 0.981378i \(0.438474\pi\)
\(368\) −0.899428 −0.0468859
\(369\) −18.0403 −0.939141
\(370\) 0 0
\(371\) 25.0740 1.30177
\(372\) 0.325893 0.0168968
\(373\) −29.2016 −1.51200 −0.756000 0.654571i \(-0.772849\pi\)
−0.756000 + 0.654571i \(0.772849\pi\)
\(374\) 3.77077 0.194982
\(375\) 0 0
\(376\) −11.3189 −0.583727
\(377\) 0 0
\(378\) −11.3329 −0.582901
\(379\) 15.3509 0.788522 0.394261 0.918999i \(-0.371001\pi\)
0.394261 + 0.918999i \(0.371001\pi\)
\(380\) 0 0
\(381\) −10.2347 −0.524339
\(382\) 13.9609 0.714303
\(383\) −3.19245 −0.163126 −0.0815632 0.996668i \(-0.525991\pi\)
−0.0815632 + 0.996668i \(0.525991\pi\)
\(384\) −1.17644 −0.0600351
\(385\) 0 0
\(386\) 13.6276 0.693626
\(387\) 12.5777 0.639361
\(388\) 2.57832 0.130894
\(389\) 28.9316 1.46689 0.733445 0.679749i \(-0.237911\pi\)
0.733445 + 0.679749i \(0.237911\pi\)
\(390\) 0 0
\(391\) 1.13345 0.0573208
\(392\) −2.64477 −0.133581
\(393\) 18.6749 0.942022
\(394\) 17.7219 0.892819
\(395\) 0 0
\(396\) 4.83540 0.242988
\(397\) 4.99113 0.250498 0.125249 0.992125i \(-0.460027\pi\)
0.125249 + 0.992125i \(0.460027\pi\)
\(398\) −14.3654 −0.720073
\(399\) −9.55458 −0.478327
\(400\) 0 0
\(401\) −3.99563 −0.199532 −0.0997662 0.995011i \(-0.531809\pi\)
−0.0997662 + 0.995011i \(0.531809\pi\)
\(402\) −4.70577 −0.234703
\(403\) 0 0
\(404\) −1.56672 −0.0779474
\(405\) 0 0
\(406\) 0.982807 0.0487759
\(407\) −21.0583 −1.04382
\(408\) 1.48254 0.0733965
\(409\) 2.92942 0.144850 0.0724252 0.997374i \(-0.476926\pi\)
0.0724252 + 0.997374i \(0.476926\pi\)
\(410\) 0 0
\(411\) −8.49756 −0.419154
\(412\) −0.916364 −0.0451460
\(413\) 25.7915 1.26912
\(414\) 1.45346 0.0714336
\(415\) 0 0
\(416\) 0 0
\(417\) −23.3806 −1.14495
\(418\) 11.6448 0.569564
\(419\) −9.70849 −0.474291 −0.237145 0.971474i \(-0.576212\pi\)
−0.237145 + 0.971474i \(0.576212\pi\)
\(420\) 0 0
\(421\) 22.8217 1.11226 0.556132 0.831094i \(-0.312285\pi\)
0.556132 + 0.831094i \(0.312285\pi\)
\(422\) −20.2231 −0.984445
\(423\) 18.2911 0.889344
\(424\) −12.0148 −0.583491
\(425\) 0 0
\(426\) 5.53608 0.268224
\(427\) −15.9483 −0.771793
\(428\) 11.7024 0.565655
\(429\) 0 0
\(430\) 0 0
\(431\) 11.5615 0.556896 0.278448 0.960451i \(-0.410180\pi\)
0.278448 + 0.960451i \(0.410180\pi\)
\(432\) 5.43044 0.261272
\(433\) 12.5656 0.603862 0.301931 0.953330i \(-0.402369\pi\)
0.301931 + 0.953330i \(0.402369\pi\)
\(434\) 0.578108 0.0277501
\(435\) 0 0
\(436\) 15.9902 0.765793
\(437\) 3.50027 0.167441
\(438\) −17.9977 −0.859964
\(439\) 1.81028 0.0864001 0.0432001 0.999066i \(-0.486245\pi\)
0.0432001 + 0.999066i \(0.486245\pi\)
\(440\) 0 0
\(441\) 4.27390 0.203519
\(442\) 0 0
\(443\) −16.7633 −0.796450 −0.398225 0.917288i \(-0.630374\pi\)
−0.398225 + 0.917288i \(0.630374\pi\)
\(444\) −8.27941 −0.392923
\(445\) 0 0
\(446\) 11.1450 0.527733
\(447\) 1.15664 0.0547073
\(448\) −2.08692 −0.0985976
\(449\) −7.08190 −0.334216 −0.167108 0.985939i \(-0.553443\pi\)
−0.167108 + 0.985939i \(0.553443\pi\)
\(450\) 0 0
\(451\) −33.4044 −1.57295
\(452\) 2.78203 0.130855
\(453\) 9.48254 0.445528
\(454\) −17.3073 −0.812271
\(455\) 0 0
\(456\) 4.57832 0.214400
\(457\) −1.09019 −0.0509970 −0.0254985 0.999675i \(-0.508117\pi\)
−0.0254985 + 0.999675i \(0.508117\pi\)
\(458\) −9.90350 −0.462760
\(459\) −6.84336 −0.319421
\(460\) 0 0
\(461\) 15.5893 0.726066 0.363033 0.931776i \(-0.381741\pi\)
0.363033 + 0.931776i \(0.381741\pi\)
\(462\) −7.34636 −0.341784
\(463\) −19.1896 −0.891817 −0.445908 0.895079i \(-0.647119\pi\)
−0.445908 + 0.895079i \(0.647119\pi\)
\(464\) −0.470937 −0.0218627
\(465\) 0 0
\(466\) 19.1742 0.888226
\(467\) −23.1857 −1.07290 −0.536452 0.843931i \(-0.680236\pi\)
−0.536452 + 0.843931i \(0.680236\pi\)
\(468\) 0 0
\(469\) −8.34767 −0.385460
\(470\) 0 0
\(471\) 3.21608 0.148189
\(472\) −12.3586 −0.568853
\(473\) 23.2895 1.07085
\(474\) −1.92519 −0.0884268
\(475\) 0 0
\(476\) 2.62990 0.120541
\(477\) 19.4157 0.888985
\(478\) 2.16448 0.0990010
\(479\) 3.48503 0.159235 0.0796174 0.996825i \(-0.474630\pi\)
0.0796174 + 0.996825i \(0.474630\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −16.1013 −0.733396
\(483\) −2.20822 −0.100478
\(484\) −2.04653 −0.0930240
\(485\) 0 0
\(486\) −14.4788 −0.656773
\(487\) 2.14046 0.0969934 0.0484967 0.998823i \(-0.484557\pi\)
0.0484967 + 0.998823i \(0.484557\pi\)
\(488\) 7.64204 0.345939
\(489\) −28.9133 −1.30751
\(490\) 0 0
\(491\) −27.2403 −1.22934 −0.614668 0.788786i \(-0.710710\pi\)
−0.614668 + 0.788786i \(0.710710\pi\)
\(492\) −13.1334 −0.592101
\(493\) 0.593468 0.0267284
\(494\) 0 0
\(495\) 0 0
\(496\) −0.277015 −0.0124384
\(497\) 9.82056 0.440512
\(498\) −13.1695 −0.590138
\(499\) 22.7855 1.02002 0.510010 0.860169i \(-0.329642\pi\)
0.510010 + 0.860169i \(0.329642\pi\)
\(500\) 0 0
\(501\) −16.2777 −0.727233
\(502\) 18.0888 0.807341
\(503\) −9.60324 −0.428187 −0.214094 0.976813i \(-0.568680\pi\)
−0.214094 + 0.976813i \(0.568680\pi\)
\(504\) 3.37242 0.150220
\(505\) 0 0
\(506\) 2.69130 0.119643
\(507\) 0 0
\(508\) 8.69969 0.385986
\(509\) 15.6608 0.694154 0.347077 0.937837i \(-0.387174\pi\)
0.347077 + 0.937837i \(0.387174\pi\)
\(510\) 0 0
\(511\) −31.9265 −1.41235
\(512\) 1.00000 0.0441942
\(513\) −21.1334 −0.933064
\(514\) −10.0452 −0.443074
\(515\) 0 0
\(516\) 9.15664 0.403099
\(517\) 33.8688 1.48955
\(518\) −14.6870 −0.645311
\(519\) −15.4970 −0.680243
\(520\) 0 0
\(521\) 3.26689 0.143125 0.0715625 0.997436i \(-0.477201\pi\)
0.0715625 + 0.997436i \(0.477201\pi\)
\(522\) 0.761025 0.0333092
\(523\) 15.9902 0.699204 0.349602 0.936898i \(-0.386317\pi\)
0.349602 + 0.936898i \(0.386317\pi\)
\(524\) −15.8740 −0.693459
\(525\) 0 0
\(526\) 15.8027 0.689029
\(527\) 0.349090 0.0152066
\(528\) 3.52020 0.153197
\(529\) −22.1910 −0.964827
\(530\) 0 0
\(531\) 19.9713 0.866682
\(532\) 8.12158 0.352115
\(533\) 0 0
\(534\) 8.13071 0.351850
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) −3.66546 −0.158176
\(538\) −7.38587 −0.318428
\(539\) 7.91378 0.340871
\(540\) 0 0
\(541\) 7.38554 0.317529 0.158765 0.987316i \(-0.449249\pi\)
0.158765 + 0.987316i \(0.449249\pi\)
\(542\) −31.0029 −1.33169
\(543\) 9.31084 0.399566
\(544\) −1.26018 −0.0540300
\(545\) 0 0
\(546\) 0 0
\(547\) 11.4488 0.489515 0.244757 0.969584i \(-0.421292\pi\)
0.244757 + 0.969584i \(0.421292\pi\)
\(548\) 7.22309 0.308555
\(549\) −12.3494 −0.527059
\(550\) 0 0
\(551\) 1.83273 0.0780768
\(552\) 1.05813 0.0450368
\(553\) −3.41513 −0.145226
\(554\) 4.70735 0.199996
\(555\) 0 0
\(556\) 19.8740 0.842846
\(557\) 19.4071 0.822306 0.411153 0.911566i \(-0.365126\pi\)
0.411153 + 0.911566i \(0.365126\pi\)
\(558\) 0.447652 0.0189506
\(559\) 0 0
\(560\) 0 0
\(561\) −4.43610 −0.187292
\(562\) 10.7771 0.454606
\(563\) 8.89770 0.374993 0.187497 0.982265i \(-0.439963\pi\)
0.187497 + 0.982265i \(0.439963\pi\)
\(564\) 13.3160 0.560706
\(565\) 0 0
\(566\) 29.1220 1.22409
\(567\) 3.21524 0.135027
\(568\) −4.70577 −0.197450
\(569\) −6.89993 −0.289260 −0.144630 0.989486i \(-0.546199\pi\)
−0.144630 + 0.989486i \(0.546199\pi\)
\(570\) 0 0
\(571\) 32.4491 1.35795 0.678975 0.734161i \(-0.262424\pi\)
0.678975 + 0.734161i \(0.262424\pi\)
\(572\) 0 0
\(573\) −16.4242 −0.686132
\(574\) −23.2977 −0.972427
\(575\) 0 0
\(576\) −1.61598 −0.0673325
\(577\) 25.3915 1.05706 0.528530 0.848914i \(-0.322743\pi\)
0.528530 + 0.848914i \(0.322743\pi\)
\(578\) −15.4119 −0.641052
\(579\) −16.0321 −0.666270
\(580\) 0 0
\(581\) −23.3616 −0.969202
\(582\) −3.03325 −0.125732
\(583\) 35.9512 1.48895
\(584\) 15.2984 0.633053
\(585\) 0 0
\(586\) −25.4248 −1.05029
\(587\) −2.46392 −0.101697 −0.0508485 0.998706i \(-0.516193\pi\)
−0.0508485 + 0.998706i \(0.516193\pi\)
\(588\) 3.11143 0.128313
\(589\) 1.07805 0.0444203
\(590\) 0 0
\(591\) −20.8489 −0.857608
\(592\) 7.03766 0.289246
\(593\) 40.6651 1.66992 0.834958 0.550313i \(-0.185492\pi\)
0.834958 + 0.550313i \(0.185492\pi\)
\(594\) −16.2492 −0.666711
\(595\) 0 0
\(596\) −0.983169 −0.0402722
\(597\) 16.9001 0.691675
\(598\) 0 0
\(599\) −26.1916 −1.07016 −0.535079 0.844802i \(-0.679718\pi\)
−0.535079 + 0.844802i \(0.679718\pi\)
\(600\) 0 0
\(601\) −13.4983 −0.550608 −0.275304 0.961357i \(-0.588778\pi\)
−0.275304 + 0.961357i \(0.588778\pi\)
\(602\) 16.2432 0.662022
\(603\) −6.46392 −0.263231
\(604\) −8.06034 −0.327971
\(605\) 0 0
\(606\) 1.84316 0.0748733
\(607\) −9.82862 −0.398931 −0.199466 0.979905i \(-0.563921\pi\)
−0.199466 + 0.979905i \(0.563921\pi\)
\(608\) −3.89166 −0.157828
\(609\) −1.15622 −0.0468523
\(610\) 0 0
\(611\) 0 0
\(612\) 2.03643 0.0823180
\(613\) −20.6173 −0.832725 −0.416362 0.909199i \(-0.636695\pi\)
−0.416362 + 0.909199i \(0.636695\pi\)
\(614\) 25.3305 1.02225
\(615\) 0 0
\(616\) 6.24455 0.251600
\(617\) −17.8192 −0.717372 −0.358686 0.933458i \(-0.616775\pi\)
−0.358686 + 0.933458i \(0.616775\pi\)
\(618\) 1.07805 0.0433655
\(619\) 29.3377 1.17918 0.589592 0.807701i \(-0.299289\pi\)
0.589592 + 0.807701i \(0.299289\pi\)
\(620\) 0 0
\(621\) −4.88429 −0.196000
\(622\) 24.3495 0.976327
\(623\) 14.4232 0.577855
\(624\) 0 0
\(625\) 0 0
\(626\) −15.6891 −0.627064
\(627\) −13.6994 −0.547102
\(628\) −2.73373 −0.109088
\(629\) −8.86875 −0.353620
\(630\) 0 0
\(631\) −17.9743 −0.715545 −0.357772 0.933809i \(-0.616464\pi\)
−0.357772 + 0.933809i \(0.616464\pi\)
\(632\) 1.63645 0.0650944
\(633\) 23.7913 0.945620
\(634\) −19.4607 −0.772881
\(635\) 0 0
\(636\) 14.1348 0.560480
\(637\) 0 0
\(638\) 1.40915 0.0557890
\(639\) 7.60444 0.300827
\(640\) 0 0
\(641\) −25.5610 −1.00960 −0.504800 0.863236i \(-0.668434\pi\)
−0.504800 + 0.863236i \(0.668434\pi\)
\(642\) −13.7672 −0.543347
\(643\) −21.9827 −0.866913 −0.433457 0.901174i \(-0.642706\pi\)
−0.433457 + 0.901174i \(0.642706\pi\)
\(644\) 1.87703 0.0739654
\(645\) 0 0
\(646\) 4.90421 0.192954
\(647\) −31.1502 −1.22464 −0.612321 0.790609i \(-0.709764\pi\)
−0.612321 + 0.790609i \(0.709764\pi\)
\(648\) −1.54066 −0.0605229
\(649\) 36.9800 1.45159
\(650\) 0 0
\(651\) −0.680112 −0.0266557
\(652\) 24.5769 0.962506
\(653\) −17.8342 −0.697907 −0.348954 0.937140i \(-0.613463\pi\)
−0.348954 + 0.937140i \(0.613463\pi\)
\(654\) −18.8116 −0.735592
\(655\) 0 0
\(656\) 11.1637 0.435869
\(657\) −24.7219 −0.964495
\(658\) 23.6216 0.920865
\(659\) 19.7893 0.770881 0.385440 0.922733i \(-0.374050\pi\)
0.385440 + 0.922733i \(0.374050\pi\)
\(660\) 0 0
\(661\) 18.2321 0.709148 0.354574 0.935028i \(-0.384626\pi\)
0.354574 + 0.935028i \(0.384626\pi\)
\(662\) −6.62711 −0.257570
\(663\) 0 0
\(664\) 11.1943 0.434423
\(665\) 0 0
\(666\) −11.3727 −0.440684
\(667\) 0.423574 0.0164008
\(668\) 13.8363 0.535344
\(669\) −13.1115 −0.506920
\(670\) 0 0
\(671\) −22.8668 −0.882763
\(672\) 2.45514 0.0947091
\(673\) 19.8464 0.765024 0.382512 0.923950i \(-0.375059\pi\)
0.382512 + 0.923950i \(0.375059\pi\)
\(674\) 11.0614 0.426070
\(675\) 0 0
\(676\) 0 0
\(677\) −4.02129 −0.154551 −0.0772753 0.997010i \(-0.524622\pi\)
−0.0772753 + 0.997010i \(0.524622\pi\)
\(678\) −3.27290 −0.125695
\(679\) −5.38075 −0.206494
\(680\) 0 0
\(681\) 20.3610 0.780237
\(682\) 0.828895 0.0317400
\(683\) −10.3886 −0.397509 −0.198754 0.980049i \(-0.563690\pi\)
−0.198754 + 0.980049i \(0.563690\pi\)
\(684\) 6.28885 0.240460
\(685\) 0 0
\(686\) 20.1279 0.768485
\(687\) 11.6509 0.444510
\(688\) −7.78333 −0.296737
\(689\) 0 0
\(690\) 0 0
\(691\) −28.3899 −1.08000 −0.540001 0.841664i \(-0.681576\pi\)
−0.540001 + 0.841664i \(0.681576\pi\)
\(692\) 13.1728 0.500753
\(693\) −10.0911 −0.383328
\(694\) −17.7207 −0.672669
\(695\) 0 0
\(696\) 0.554031 0.0210005
\(697\) −14.0683 −0.532875
\(698\) 17.6868 0.669456
\(699\) −22.5573 −0.853196
\(700\) 0 0
\(701\) −16.7917 −0.634213 −0.317106 0.948390i \(-0.602711\pi\)
−0.317106 + 0.948390i \(0.602711\pi\)
\(702\) 0 0
\(703\) −27.3882 −1.03297
\(704\) −2.99224 −0.112774
\(705\) 0 0
\(706\) 33.6229 1.26541
\(707\) 3.26962 0.122967
\(708\) 14.5392 0.546418
\(709\) 48.4796 1.82069 0.910345 0.413850i \(-0.135816\pi\)
0.910345 + 0.413850i \(0.135816\pi\)
\(710\) 0 0
\(711\) −2.64447 −0.0991753
\(712\) −6.91127 −0.259011
\(713\) 0.249155 0.00933094
\(714\) −3.09393 −0.115787
\(715\) 0 0
\(716\) 3.11571 0.116440
\(717\) −2.54639 −0.0950966
\(718\) 17.4880 0.652646
\(719\) −12.2956 −0.458547 −0.229273 0.973362i \(-0.573635\pi\)
−0.229273 + 0.973362i \(0.573635\pi\)
\(720\) 0 0
\(721\) 1.91238 0.0712206
\(722\) −3.85496 −0.143467
\(723\) 18.9423 0.704472
\(724\) −7.91439 −0.294136
\(725\) 0 0
\(726\) 2.40762 0.0893553
\(727\) 36.1491 1.34070 0.670349 0.742046i \(-0.266145\pi\)
0.670349 + 0.742046i \(0.266145\pi\)
\(728\) 0 0
\(729\) 21.6555 0.802055
\(730\) 0 0
\(731\) 9.80843 0.362778
\(732\) −8.99043 −0.332296
\(733\) 22.4789 0.830278 0.415139 0.909758i \(-0.363733\pi\)
0.415139 + 0.909758i \(0.363733\pi\)
\(734\) 7.35975 0.271653
\(735\) 0 0
\(736\) −0.899428 −0.0331534
\(737\) −11.9689 −0.440882
\(738\) −18.0403 −0.664073
\(739\) 12.3515 0.454357 0.227179 0.973853i \(-0.427050\pi\)
0.227179 + 0.973853i \(0.427050\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 25.0740 0.920494
\(743\) −22.9637 −0.842455 −0.421227 0.906955i \(-0.638401\pi\)
−0.421227 + 0.906955i \(0.638401\pi\)
\(744\) 0.325893 0.0119478
\(745\) 0 0
\(746\) −29.2016 −1.06915
\(747\) −18.0898 −0.661870
\(748\) 3.77077 0.137873
\(749\) −24.4219 −0.892355
\(750\) 0 0
\(751\) −32.8525 −1.19881 −0.599403 0.800447i \(-0.704595\pi\)
−0.599403 + 0.800447i \(0.704595\pi\)
\(752\) −11.3189 −0.412757
\(753\) −21.2804 −0.775501
\(754\) 0 0
\(755\) 0 0
\(756\) −11.3329 −0.412173
\(757\) −33.0618 −1.20165 −0.600826 0.799380i \(-0.705161\pi\)
−0.600826 + 0.799380i \(0.705161\pi\)
\(758\) 15.3509 0.557569
\(759\) −3.16616 −0.114924
\(760\) 0 0
\(761\) −31.5634 −1.14417 −0.572086 0.820194i \(-0.693866\pi\)
−0.572086 + 0.820194i \(0.693866\pi\)
\(762\) −10.2347 −0.370764
\(763\) −33.3703 −1.20809
\(764\) 13.9609 0.505088
\(765\) 0 0
\(766\) −3.19245 −0.115348
\(767\) 0 0
\(768\) −1.17644 −0.0424512
\(769\) 42.5444 1.53419 0.767095 0.641534i \(-0.221702\pi\)
0.767095 + 0.641534i \(0.221702\pi\)
\(770\) 0 0
\(771\) 11.8176 0.425601
\(772\) 13.6276 0.490467
\(773\) 1.06645 0.0383576 0.0191788 0.999816i \(-0.493895\pi\)
0.0191788 + 0.999816i \(0.493895\pi\)
\(774\) 12.5777 0.452096
\(775\) 0 0
\(776\) 2.57832 0.0925563
\(777\) 17.2784 0.619861
\(778\) 28.9316 1.03725
\(779\) −43.4453 −1.55659
\(780\) 0 0
\(781\) 14.0808 0.503850
\(782\) 1.13345 0.0405319
\(783\) −2.55739 −0.0913938
\(784\) −2.64477 −0.0944562
\(785\) 0 0
\(786\) 18.6749 0.666110
\(787\) −0.0431219 −0.00153713 −0.000768565 1.00000i \(-0.500245\pi\)
−0.000768565 1.00000i \(0.500245\pi\)
\(788\) 17.7219 0.631318
\(789\) −18.5909 −0.661855
\(790\) 0 0
\(791\) −5.80586 −0.206433
\(792\) 4.83540 0.171818
\(793\) 0 0
\(794\) 4.99113 0.177129
\(795\) 0 0
\(796\) −14.3654 −0.509168
\(797\) 34.5901 1.22525 0.612623 0.790376i \(-0.290115\pi\)
0.612623 + 0.790376i \(0.290115\pi\)
\(798\) −9.55458 −0.338229
\(799\) 14.2639 0.504620
\(800\) 0 0
\(801\) 11.1685 0.394619
\(802\) −3.99563 −0.141091
\(803\) −45.7765 −1.61542
\(804\) −4.70577 −0.165960
\(805\) 0 0
\(806\) 0 0
\(807\) 8.68906 0.305869
\(808\) −1.56672 −0.0551171
\(809\) −6.08091 −0.213794 −0.106897 0.994270i \(-0.534091\pi\)
−0.106897 + 0.994270i \(0.534091\pi\)
\(810\) 0 0
\(811\) 5.47145 0.192129 0.0960644 0.995375i \(-0.469375\pi\)
0.0960644 + 0.995375i \(0.469375\pi\)
\(812\) 0.982807 0.0344898
\(813\) 36.4731 1.27917
\(814\) −21.0583 −0.738094
\(815\) 0 0
\(816\) 1.48254 0.0518991
\(817\) 30.2901 1.05972
\(818\) 2.92942 0.102425
\(819\) 0 0
\(820\) 0 0
\(821\) 44.0662 1.53792 0.768961 0.639296i \(-0.220774\pi\)
0.768961 + 0.639296i \(0.220774\pi\)
\(822\) −8.49756 −0.296386
\(823\) −12.5165 −0.436297 −0.218148 0.975916i \(-0.570002\pi\)
−0.218148 + 0.975916i \(0.570002\pi\)
\(824\) −0.916364 −0.0319231
\(825\) 0 0
\(826\) 25.7915 0.897400
\(827\) −51.7679 −1.80015 −0.900074 0.435738i \(-0.856488\pi\)
−0.900074 + 0.435738i \(0.856488\pi\)
\(828\) 1.45346 0.0505112
\(829\) −13.9177 −0.483381 −0.241690 0.970353i \(-0.577702\pi\)
−0.241690 + 0.970353i \(0.577702\pi\)
\(830\) 0 0
\(831\) −5.53793 −0.192109
\(832\) 0 0
\(833\) 3.33290 0.115478
\(834\) −23.3806 −0.809605
\(835\) 0 0
\(836\) 11.6448 0.402743
\(837\) −1.50432 −0.0519967
\(838\) −9.70849 −0.335374
\(839\) 50.0466 1.72780 0.863899 0.503664i \(-0.168015\pi\)
0.863899 + 0.503664i \(0.168015\pi\)
\(840\) 0 0
\(841\) −28.7782 −0.992352
\(842\) 22.8217 0.786489
\(843\) −12.6787 −0.436677
\(844\) −20.2231 −0.696108
\(845\) 0 0
\(846\) 18.2911 0.628861
\(847\) 4.27093 0.146751
\(848\) −12.0148 −0.412591
\(849\) −34.2603 −1.17581
\(850\) 0 0
\(851\) −6.32987 −0.216985
\(852\) 5.53608 0.189663
\(853\) 12.7392 0.436183 0.218092 0.975928i \(-0.430017\pi\)
0.218092 + 0.975928i \(0.430017\pi\)
\(854\) −15.9483 −0.545740
\(855\) 0 0
\(856\) 11.7024 0.399978
\(857\) −30.3306 −1.03607 −0.518036 0.855359i \(-0.673337\pi\)
−0.518036 + 0.855359i \(0.673337\pi\)
\(858\) 0 0
\(859\) −48.7446 −1.66314 −0.831572 0.555417i \(-0.812559\pi\)
−0.831572 + 0.555417i \(0.812559\pi\)
\(860\) 0 0
\(861\) 27.4084 0.934077
\(862\) 11.5615 0.393785
\(863\) −17.6100 −0.599451 −0.299725 0.954026i \(-0.596895\pi\)
−0.299725 + 0.954026i \(0.596895\pi\)
\(864\) 5.43044 0.184747
\(865\) 0 0
\(866\) 12.5656 0.426995
\(867\) 18.1313 0.615770
\(868\) 0.578108 0.0196223
\(869\) −4.89664 −0.166107
\(870\) 0 0
\(871\) 0 0
\(872\) 15.9902 0.541497
\(873\) −4.16652 −0.141015
\(874\) 3.50027 0.118398
\(875\) 0 0
\(876\) −17.9977 −0.608086
\(877\) 41.9289 1.41584 0.707918 0.706294i \(-0.249634\pi\)
0.707918 + 0.706294i \(0.249634\pi\)
\(878\) 1.81028 0.0610941
\(879\) 29.9109 1.00887
\(880\) 0 0
\(881\) 29.9390 1.00867 0.504336 0.863508i \(-0.331737\pi\)
0.504336 + 0.863508i \(0.331737\pi\)
\(882\) 4.27390 0.143910
\(883\) −35.3391 −1.18926 −0.594629 0.804001i \(-0.702701\pi\)
−0.594629 + 0.804001i \(0.702701\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −16.7633 −0.563175
\(887\) 42.5717 1.42942 0.714709 0.699421i \(-0.246559\pi\)
0.714709 + 0.699421i \(0.246559\pi\)
\(888\) −8.27941 −0.277839
\(889\) −18.1555 −0.608917
\(890\) 0 0
\(891\) 4.61002 0.154442
\(892\) 11.1450 0.373164
\(893\) 44.0493 1.47405
\(894\) 1.15664 0.0386839
\(895\) 0 0
\(896\) −2.08692 −0.0697190
\(897\) 0 0
\(898\) −7.08190 −0.236326
\(899\) 0.130457 0.00435098
\(900\) 0 0
\(901\) 15.1409 0.504416
\(902\) −33.4044 −1.11224
\(903\) −19.1092 −0.635913
\(904\) 2.78203 0.0925288
\(905\) 0 0
\(906\) 9.48254 0.315036
\(907\) 14.4449 0.479637 0.239818 0.970818i \(-0.422912\pi\)
0.239818 + 0.970818i \(0.422912\pi\)
\(908\) −17.3073 −0.574362
\(909\) 2.53179 0.0839743
\(910\) 0 0
\(911\) −42.9419 −1.42273 −0.711364 0.702824i \(-0.751922\pi\)
−0.711364 + 0.702824i \(0.751922\pi\)
\(912\) 4.57832 0.151603
\(913\) −33.4960 −1.10856
\(914\) −1.09019 −0.0360603
\(915\) 0 0
\(916\) −9.90350 −0.327221
\(917\) 33.1277 1.09397
\(918\) −6.84336 −0.225864
\(919\) −40.7540 −1.34435 −0.672175 0.740392i \(-0.734640\pi\)
−0.672175 + 0.740392i \(0.734640\pi\)
\(920\) 0 0
\(921\) −29.7999 −0.981939
\(922\) 15.5893 0.513406
\(923\) 0 0
\(924\) −7.34636 −0.241677
\(925\) 0 0
\(926\) −19.1896 −0.630610
\(927\) 1.48083 0.0486367
\(928\) −0.470937 −0.0154593
\(929\) −13.0857 −0.429329 −0.214664 0.976688i \(-0.568866\pi\)
−0.214664 + 0.976688i \(0.568866\pi\)
\(930\) 0 0
\(931\) 10.2926 0.337325
\(932\) 19.1742 0.628070
\(933\) −28.6458 −0.937823
\(934\) −23.1857 −0.758658
\(935\) 0 0
\(936\) 0 0
\(937\) 41.0546 1.34120 0.670598 0.741821i \(-0.266038\pi\)
0.670598 + 0.741821i \(0.266038\pi\)
\(938\) −8.34767 −0.272561
\(939\) 18.4574 0.602334
\(940\) 0 0
\(941\) 24.4162 0.795945 0.397973 0.917397i \(-0.369714\pi\)
0.397973 + 0.917397i \(0.369714\pi\)
\(942\) 3.21608 0.104786
\(943\) −10.0409 −0.326978
\(944\) −12.3586 −0.402240
\(945\) 0 0
\(946\) 23.2895 0.757208
\(947\) −4.60866 −0.149761 −0.0748807 0.997192i \(-0.523858\pi\)
−0.0748807 + 0.997192i \(0.523858\pi\)
\(948\) −1.92519 −0.0625272
\(949\) 0 0
\(950\) 0 0
\(951\) 22.8944 0.742400
\(952\) 2.62990 0.0852356
\(953\) −4.72985 −0.153215 −0.0766075 0.997061i \(-0.524409\pi\)
−0.0766075 + 0.997061i \(0.524409\pi\)
\(954\) 19.4157 0.628607
\(955\) 0 0
\(956\) 2.16448 0.0700043
\(957\) −1.65779 −0.0535887
\(958\) 3.48503 0.112596
\(959\) −15.0740 −0.486765
\(960\) 0 0
\(961\) −30.9233 −0.997525
\(962\) 0 0
\(963\) −18.9108 −0.609392
\(964\) −16.1013 −0.518589
\(965\) 0 0
\(966\) −2.20822 −0.0710484
\(967\) 23.8186 0.765955 0.382977 0.923758i \(-0.374899\pi\)
0.382977 + 0.923758i \(0.374899\pi\)
\(968\) −2.04653 −0.0657779
\(969\) −5.76953 −0.185344
\(970\) 0 0
\(971\) −31.6698 −1.01633 −0.508167 0.861259i \(-0.669677\pi\)
−0.508167 + 0.861259i \(0.669677\pi\)
\(972\) −14.4788 −0.464408
\(973\) −41.4754 −1.32964
\(974\) 2.14046 0.0685847
\(975\) 0 0
\(976\) 7.64204 0.244616
\(977\) 26.8707 0.859671 0.429835 0.902907i \(-0.358572\pi\)
0.429835 + 0.902907i \(0.358572\pi\)
\(978\) −28.9133 −0.924546
\(979\) 20.6801 0.660940
\(980\) 0 0
\(981\) −25.8399 −0.825005
\(982\) −27.2403 −0.869273
\(983\) 8.22637 0.262380 0.131190 0.991357i \(-0.458120\pi\)
0.131190 + 0.991357i \(0.458120\pi\)
\(984\) −13.1334 −0.418679
\(985\) 0 0
\(986\) 0.593468 0.0188999
\(987\) −27.7894 −0.884548
\(988\) 0 0
\(989\) 7.00054 0.222604
\(990\) 0 0
\(991\) −22.2314 −0.706204 −0.353102 0.935585i \(-0.614873\pi\)
−0.353102 + 0.935585i \(0.614873\pi\)
\(992\) −0.277015 −0.00879525
\(993\) 7.79642 0.247412
\(994\) 9.82056 0.311489
\(995\) 0 0
\(996\) −13.1695 −0.417290
\(997\) −23.5699 −0.746467 −0.373234 0.927737i \(-0.621751\pi\)
−0.373234 + 0.927737i \(0.621751\pi\)
\(998\) 22.7855 0.721263
\(999\) 38.2176 1.20915
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cs.1.4 8
5.2 odd 4 1690.2.b.e.339.13 16
5.3 odd 4 1690.2.b.e.339.4 16
5.4 even 2 8450.2.a.cr.1.5 8
13.2 odd 12 650.2.m.e.251.7 16
13.7 odd 12 650.2.m.e.101.7 16
13.12 even 2 8450.2.a.cr.1.4 8
65.2 even 12 130.2.m.a.69.2 yes 8
65.7 even 12 130.2.m.b.49.3 yes 8
65.8 even 4 1690.2.c.f.1689.4 8
65.12 odd 4 1690.2.b.e.339.5 16
65.18 even 4 1690.2.c.e.1689.4 8
65.28 even 12 130.2.m.b.69.3 yes 8
65.33 even 12 130.2.m.a.49.2 8
65.38 odd 4 1690.2.b.e.339.12 16
65.47 even 4 1690.2.c.e.1689.5 8
65.54 odd 12 650.2.m.e.251.2 16
65.57 even 4 1690.2.c.f.1689.5 8
65.59 odd 12 650.2.m.e.101.2 16
65.64 even 2 inner 8450.2.a.cs.1.5 8
195.2 odd 12 1170.2.bj.b.199.3 8
195.98 odd 12 1170.2.bj.b.829.3 8
195.137 odd 12 1170.2.bj.a.829.2 8
195.158 odd 12 1170.2.bj.a.199.2 8
260.7 odd 12 1040.2.df.a.49.2 8
260.67 odd 12 1040.2.df.c.849.3 8
260.163 odd 12 1040.2.df.c.49.3 8
260.223 odd 12 1040.2.df.a.849.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.2 8 65.33 even 12
130.2.m.a.69.2 yes 8 65.2 even 12
130.2.m.b.49.3 yes 8 65.7 even 12
130.2.m.b.69.3 yes 8 65.28 even 12
650.2.m.e.101.2 16 65.59 odd 12
650.2.m.e.101.7 16 13.7 odd 12
650.2.m.e.251.2 16 65.54 odd 12
650.2.m.e.251.7 16 13.2 odd 12
1040.2.df.a.49.2 8 260.7 odd 12
1040.2.df.a.849.2 8 260.223 odd 12
1040.2.df.c.49.3 8 260.163 odd 12
1040.2.df.c.849.3 8 260.67 odd 12
1170.2.bj.a.199.2 8 195.158 odd 12
1170.2.bj.a.829.2 8 195.137 odd 12
1170.2.bj.b.199.3 8 195.2 odd 12
1170.2.bj.b.829.3 8 195.98 odd 12
1690.2.b.e.339.4 16 5.3 odd 4
1690.2.b.e.339.5 16 65.12 odd 4
1690.2.b.e.339.12 16 65.38 odd 4
1690.2.b.e.339.13 16 5.2 odd 4
1690.2.c.e.1689.4 8 65.18 even 4
1690.2.c.e.1689.5 8 65.47 even 4
1690.2.c.f.1689.4 8 65.8 even 4
1690.2.c.f.1689.5 8 65.57 even 4
8450.2.a.cr.1.4 8 13.12 even 2
8450.2.a.cr.1.5 8 5.4 even 2
8450.2.a.cs.1.4 8 1.1 even 1 trivial
8450.2.a.cs.1.5 8 65.64 even 2 inner