Properties

Label 1040.2.df.c.49.3
Level $1040$
Weight $2$
Character 1040.49
Analytic conductor $8.304$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(49,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.50027374224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(-1.17644i\) of defining polynomial
Character \(\chi\) \(=\) 1040.49
Dual form 1040.2.df.c.849.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01883 - 0.588222i) q^{3} +(0.235468 + 2.22364i) q^{5} +(1.04346 - 1.80732i) q^{7} +(-0.807991 + 1.39948i) q^{9} +(-2.59135 + 1.49612i) q^{11} +(1.51883 + 3.27004i) q^{13} +(1.54789 + 2.12700i) q^{15} +(1.09135 + 0.630092i) q^{17} +(3.37028 + 1.94583i) q^{19} -2.45514i q^{21} +(-0.778928 + 0.449714i) q^{23} +(-4.88911 + 1.04719i) q^{25} +5.43044i q^{27} +(-0.235468 - 0.407843i) q^{29} +0.277015i q^{31} +(-1.76010 + 3.04858i) q^{33} +(4.26453 + 1.89470i) q^{35} +(3.51883 + 6.09479i) q^{37} +(3.47094 + 2.43820i) q^{39} +(9.66804 - 5.58184i) q^{41} +(6.74056 + 3.89166i) q^{43} +(-3.30219 - 1.46714i) q^{45} -11.3189 q^{47} +(1.32239 + 2.29044i) q^{49} +1.48254 q^{51} -12.0148i q^{53} +(-3.93700 - 5.40993i) q^{55} +4.57832 q^{57} +(-10.7029 - 6.17932i) q^{59} +(-3.82102 + 6.61820i) q^{61} +(1.68621 + 2.92060i) q^{63} +(-6.91374 + 4.14731i) q^{65} +(2.00000 + 3.46410i) q^{67} +(-0.529063 + 0.916364i) q^{69} +(-4.07532 - 2.35289i) q^{71} +15.2984 q^{73} +(-4.36519 + 3.94279i) q^{75} +6.24455i q^{77} +1.63645 q^{79} +(0.770331 + 1.33425i) q^{81} +11.1943 q^{83} +(-1.14412 + 2.57514i) q^{85} +(-0.479805 - 0.277015i) q^{87} +(-5.98533 + 3.45563i) q^{89} +(7.49486 + 0.667134i) q^{91} +(0.162946 + 0.282231i) q^{93} +(-3.53323 + 7.95245i) q^{95} +(-1.28916 + 2.23289i) q^{97} -4.83540i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{5} - 5 q^{7} + 8 q^{9} + 3 q^{11} + 4 q^{13} + 2 q^{15} - 15 q^{17} - 9 q^{19} + 6 q^{23} + 5 q^{25} - 3 q^{29} - 10 q^{33} + 33 q^{35} + 20 q^{37} + 30 q^{39} + 21 q^{41} - 18 q^{43} - 9 q^{45}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.01883 0.588222i 0.588222 0.339610i −0.176172 0.984359i \(-0.556372\pi\)
0.764394 + 0.644749i \(0.223038\pi\)
\(4\) 0 0
\(5\) 0.235468 + 2.22364i 0.105305 + 0.994440i
\(6\) 0 0
\(7\) 1.04346 1.80732i 0.394390 0.683104i −0.598633 0.801024i \(-0.704289\pi\)
0.993023 + 0.117919i \(0.0376224\pi\)
\(8\) 0 0
\(9\) −0.807991 + 1.39948i −0.269330 + 0.466494i
\(10\) 0 0
\(11\) −2.59135 + 1.49612i −0.781322 + 0.451096i −0.836899 0.547358i \(-0.815634\pi\)
0.0555766 + 0.998454i \(0.482300\pi\)
\(12\) 0 0
\(13\) 1.51883 + 3.27004i 0.421248 + 0.906946i
\(14\) 0 0
\(15\) 1.54789 + 2.12700i 0.399664 + 0.549189i
\(16\) 0 0
\(17\) 1.09135 + 0.630092i 0.264692 + 0.152820i 0.626473 0.779443i \(-0.284498\pi\)
−0.361781 + 0.932263i \(0.617831\pi\)
\(18\) 0 0
\(19\) 3.37028 + 1.94583i 0.773195 + 0.446404i 0.834013 0.551744i \(-0.186038\pi\)
−0.0608181 + 0.998149i \(0.519371\pi\)
\(20\) 0 0
\(21\) 2.45514i 0.535756i
\(22\) 0 0
\(23\) −0.778928 + 0.449714i −0.162418 + 0.0937719i −0.579006 0.815324i \(-0.696559\pi\)
0.416588 + 0.909095i \(0.363226\pi\)
\(24\) 0 0
\(25\) −4.88911 + 1.04719i −0.977822 + 0.209438i
\(26\) 0 0
\(27\) 5.43044i 1.04509i
\(28\) 0 0
\(29\) −0.235468 0.407843i −0.0437254 0.0757346i 0.843334 0.537389i \(-0.180589\pi\)
−0.887060 + 0.461654i \(0.847256\pi\)
\(30\) 0 0
\(31\) 0.277015i 0.0497534i 0.999691 + 0.0248767i \(0.00791932\pi\)
−0.999691 + 0.0248767i \(0.992081\pi\)
\(32\) 0 0
\(33\) −1.76010 + 3.04858i −0.306394 + 0.530689i
\(34\) 0 0
\(35\) 4.26453 + 1.89470i 0.720837 + 0.320264i
\(36\) 0 0
\(37\) 3.51883 + 6.09479i 0.578492 + 1.00198i 0.995653 + 0.0931448i \(0.0296920\pi\)
−0.417161 + 0.908833i \(0.636975\pi\)
\(38\) 0 0
\(39\) 3.47094 + 2.43820i 0.555795 + 0.390425i
\(40\) 0 0
\(41\) 9.66804 5.58184i 1.50989 0.871738i 0.509960 0.860198i \(-0.329660\pi\)
0.999933 0.0115395i \(-0.00367323\pi\)
\(42\) 0 0
\(43\) 6.74056 + 3.89166i 1.02793 + 0.593473i 0.916390 0.400287i \(-0.131090\pi\)
0.111536 + 0.993760i \(0.464423\pi\)
\(44\) 0 0
\(45\) −3.30219 1.46714i −0.492262 0.218709i
\(46\) 0 0
\(47\) −11.3189 −1.65103 −0.825514 0.564381i \(-0.809115\pi\)
−0.825514 + 0.564381i \(0.809115\pi\)
\(48\) 0 0
\(49\) 1.32239 + 2.29044i 0.188912 + 0.327206i
\(50\) 0 0
\(51\) 1.48254 0.207597
\(52\) 0 0
\(53\) 12.0148i 1.65036i −0.564868 0.825181i \(-0.691073\pi\)
0.564868 0.825181i \(-0.308927\pi\)
\(54\) 0 0
\(55\) −3.93700 5.40993i −0.530865 0.729475i
\(56\) 0 0
\(57\) 4.57832 0.606413
\(58\) 0 0
\(59\) −10.7029 6.17932i −1.39340 0.804479i −0.399709 0.916642i \(-0.630889\pi\)
−0.993690 + 0.112163i \(0.964222\pi\)
\(60\) 0 0
\(61\) −3.82102 + 6.61820i −0.489232 + 0.847374i −0.999923 0.0123900i \(-0.996056\pi\)
0.510692 + 0.859764i \(0.329389\pi\)
\(62\) 0 0
\(63\) 1.68621 + 2.92060i 0.212442 + 0.367961i
\(64\) 0 0
\(65\) −6.91374 + 4.14731i −0.857544 + 0.514411i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) −0.529063 + 0.916364i −0.0636917 + 0.110317i
\(70\) 0 0
\(71\) −4.07532 2.35289i −0.483651 0.279236i 0.238286 0.971195i \(-0.423415\pi\)
−0.721937 + 0.691959i \(0.756748\pi\)
\(72\) 0 0
\(73\) 15.2984 1.79054 0.895272 0.445520i \(-0.146981\pi\)
0.895272 + 0.445520i \(0.146981\pi\)
\(74\) 0 0
\(75\) −4.36519 + 3.94279i −0.504049 + 0.455274i
\(76\) 0 0
\(77\) 6.24455i 0.711633i
\(78\) 0 0
\(79\) 1.63645 0.184115 0.0920574 0.995754i \(-0.470656\pi\)
0.0920574 + 0.995754i \(0.470656\pi\)
\(80\) 0 0
\(81\) 0.770331 + 1.33425i 0.0855923 + 0.148250i
\(82\) 0 0
\(83\) 11.1943 1.22873 0.614367 0.789020i \(-0.289411\pi\)
0.614367 + 0.789020i \(0.289411\pi\)
\(84\) 0 0
\(85\) −1.14412 + 2.57514i −0.124097 + 0.279313i
\(86\) 0 0
\(87\) −0.479805 0.277015i −0.0514405 0.0296992i
\(88\) 0 0
\(89\) −5.98533 + 3.45563i −0.634444 + 0.366296i −0.782471 0.622687i \(-0.786041\pi\)
0.148027 + 0.988983i \(0.452708\pi\)
\(90\) 0 0
\(91\) 7.49486 + 0.667134i 0.785674 + 0.0699347i
\(92\) 0 0
\(93\) 0.162946 + 0.282231i 0.0168968 + 0.0292660i
\(94\) 0 0
\(95\) −3.53323 + 7.95245i −0.362501 + 0.815905i
\(96\) 0 0
\(97\) −1.28916 + 2.23289i −0.130894 + 0.226716i −0.924022 0.382340i \(-0.875118\pi\)
0.793127 + 0.609056i \(0.208452\pi\)
\(98\) 0 0
\(99\) 4.83540i 0.485976i
\(100\) 0 0
\(101\) −0.783361 1.35682i −0.0779474 0.135009i 0.824417 0.565983i \(-0.191503\pi\)
−0.902364 + 0.430974i \(0.858170\pi\)
\(102\) 0 0
\(103\) 0.916364i 0.0902920i −0.998980 0.0451460i \(-0.985625\pi\)
0.998980 0.0451460i \(-0.0143753\pi\)
\(104\) 0 0
\(105\) 5.45934 0.578108i 0.532777 0.0564176i
\(106\) 0 0
\(107\) 10.1345 5.85118i 0.979743 0.565655i 0.0775504 0.996988i \(-0.475290\pi\)
0.902193 + 0.431334i \(0.141957\pi\)
\(108\) 0 0
\(109\) 15.9902i 1.53159i −0.643087 0.765793i \(-0.722347\pi\)
0.643087 0.765793i \(-0.277653\pi\)
\(110\) 0 0
\(111\) 7.17018 + 4.13970i 0.680563 + 0.392923i
\(112\) 0 0
\(113\) −2.40930 1.39101i −0.226648 0.130855i 0.382377 0.924007i \(-0.375106\pi\)
−0.609025 + 0.793151i \(0.708439\pi\)
\(114\) 0 0
\(115\) −1.18341 1.62616i −0.110354 0.151640i
\(116\) 0 0
\(117\) −5.80356 0.516588i −0.536539 0.0477586i
\(118\) 0 0
\(119\) 2.27756 1.31495i 0.208784 0.120541i
\(120\) 0 0
\(121\) −1.02326 + 1.77234i −0.0930240 + 0.161122i
\(122\) 0 0
\(123\) 6.56672 11.3739i 0.592101 1.02555i
\(124\) 0 0
\(125\) −3.47980 10.6250i −0.311243 0.950330i
\(126\) 0 0
\(127\) −7.53415 + 4.34985i −0.668548 + 0.385986i −0.795526 0.605919i \(-0.792805\pi\)
0.126978 + 0.991906i \(0.459472\pi\)
\(128\) 0 0
\(129\) 9.15664 0.806197
\(130\) 0 0
\(131\) 15.8740 1.38692 0.693459 0.720496i \(-0.256086\pi\)
0.693459 + 0.720496i \(0.256086\pi\)
\(132\) 0 0
\(133\) 7.03350 4.06079i 0.609882 0.352115i
\(134\) 0 0
\(135\) −12.0753 + 1.27870i −1.03928 + 0.110053i
\(136\) 0 0
\(137\) 3.61155 6.25538i 0.308555 0.534433i −0.669491 0.742820i \(-0.733488\pi\)
0.978047 + 0.208386i \(0.0668212\pi\)
\(138\) 0 0
\(139\) −9.93700 + 17.2114i −0.842846 + 1.45985i 0.0446337 + 0.999003i \(0.485788\pi\)
−0.887479 + 0.460848i \(0.847545\pi\)
\(140\) 0 0
\(141\) −11.5320 + 6.65801i −0.971171 + 0.560706i
\(142\) 0 0
\(143\) −8.82819 6.20147i −0.738250 0.518593i
\(144\) 0 0
\(145\) 0.851450 0.619630i 0.0707090 0.0514575i
\(146\) 0 0
\(147\) 2.69457 + 1.55571i 0.222245 + 0.128313i
\(148\) 0 0
\(149\) −0.851450 0.491585i −0.0697535 0.0402722i 0.464718 0.885459i \(-0.346156\pi\)
−0.534471 + 0.845187i \(0.679489\pi\)
\(150\) 0 0
\(151\) 8.06034i 0.655941i −0.944688 0.327971i \(-0.893635\pi\)
0.944688 0.327971i \(-0.106365\pi\)
\(152\) 0 0
\(153\) −1.76360 + 1.01822i −0.142579 + 0.0823180i
\(154\) 0 0
\(155\) −0.615981 + 0.0652284i −0.0494768 + 0.00523927i
\(156\) 0 0
\(157\) 2.73373i 0.218176i 0.994032 + 0.109088i \(0.0347930\pi\)
−0.994032 + 0.109088i \(0.965207\pi\)
\(158\) 0 0
\(159\) −7.06738 12.2411i −0.560480 0.970779i
\(160\) 0 0
\(161\) 1.87703i 0.147931i
\(162\) 0 0
\(163\) 12.2885 21.2842i 0.962506 1.66711i 0.246334 0.969185i \(-0.420774\pi\)
0.716172 0.697924i \(-0.245893\pi\)
\(164\) 0 0
\(165\) −7.19338 3.19597i −0.560003 0.248806i
\(166\) 0 0
\(167\) −6.91817 11.9826i −0.535344 0.927243i −0.999147 0.0413047i \(-0.986849\pi\)
0.463802 0.885939i \(-0.346485\pi\)
\(168\) 0 0
\(169\) −8.38631 + 9.93327i −0.645101 + 0.764097i
\(170\) 0 0
\(171\) −5.44631 + 3.14443i −0.416490 + 0.240460i
\(172\) 0 0
\(173\) 11.4079 + 6.58638i 0.867330 + 0.500753i 0.866460 0.499247i \(-0.166390\pi\)
0.000869643 1.00000i \(0.499723\pi\)
\(174\) 0 0
\(175\) −3.20897 + 9.92891i −0.242575 + 0.750555i
\(176\) 0 0
\(177\) −14.5392 −1.09284
\(178\) 0 0
\(179\) 1.55786 + 2.69828i 0.116440 + 0.201679i 0.918354 0.395759i \(-0.129519\pi\)
−0.801915 + 0.597438i \(0.796185\pi\)
\(180\) 0 0
\(181\) 7.91439 0.588272 0.294136 0.955764i \(-0.404968\pi\)
0.294136 + 0.955764i \(0.404968\pi\)
\(182\) 0 0
\(183\) 8.99043i 0.664592i
\(184\) 0 0
\(185\) −12.7240 + 9.25973i −0.935489 + 0.680789i
\(186\) 0 0
\(187\) −3.77077 −0.275746
\(188\) 0 0
\(189\) 9.81457 + 5.66644i 0.713905 + 0.412173i
\(190\) 0 0
\(191\) 6.98046 12.0905i 0.505088 0.874839i −0.494894 0.868953i \(-0.664793\pi\)
0.999983 0.00588562i \(-0.00187346\pi\)
\(192\) 0 0
\(193\) −6.81379 11.8018i −0.490467 0.849514i 0.509472 0.860487i \(-0.329841\pi\)
−0.999940 + 0.0109726i \(0.996507\pi\)
\(194\) 0 0
\(195\) −4.60438 + 8.29222i −0.329727 + 0.593818i
\(196\) 0 0
\(197\) −8.86097 15.3477i −0.631318 1.09348i −0.987282 0.158976i \(-0.949181\pi\)
0.355964 0.934500i \(-0.384152\pi\)
\(198\) 0 0
\(199\) −7.18270 + 12.4408i −0.509168 + 0.881905i 0.490775 + 0.871286i \(0.336714\pi\)
−0.999944 + 0.0106193i \(0.996620\pi\)
\(200\) 0 0
\(201\) 4.07532 + 2.35289i 0.287451 + 0.165960i
\(202\) 0 0
\(203\) −0.982807 −0.0689795
\(204\) 0 0
\(205\) 14.6885 + 20.1838i 1.02589 + 1.40970i
\(206\) 0 0
\(207\) 1.45346i 0.101022i
\(208\) 0 0
\(209\) −11.6448 −0.805486
\(210\) 0 0
\(211\) −10.1115 17.5137i −0.696108 1.20569i −0.969806 0.243878i \(-0.921580\pi\)
0.273698 0.961816i \(-0.411753\pi\)
\(212\) 0 0
\(213\) −5.53608 −0.379326
\(214\) 0 0
\(215\) −7.06645 + 15.9049i −0.481928 + 1.08471i
\(216\) 0 0
\(217\) 0.500656 + 0.289054i 0.0339868 + 0.0196223i
\(218\) 0 0
\(219\) 15.5865 8.99886i 1.05324 0.608086i
\(220\) 0 0
\(221\) −0.402849 + 4.52577i −0.0270985 + 0.304436i
\(222\) 0 0
\(223\) −5.57252 9.65189i −0.373164 0.646338i 0.616887 0.787052i \(-0.288394\pi\)
−0.990050 + 0.140714i \(0.955060\pi\)
\(224\) 0 0
\(225\) 2.48483 7.68834i 0.165655 0.512556i
\(226\) 0 0
\(227\) −8.65364 + 14.9885i −0.574362 + 0.994825i 0.421748 + 0.906713i \(0.361417\pi\)
−0.996111 + 0.0881117i \(0.971917\pi\)
\(228\) 0 0
\(229\) 9.90350i 0.654442i −0.944948 0.327221i \(-0.893888\pi\)
0.944948 0.327221i \(-0.106112\pi\)
\(230\) 0 0
\(231\) 3.67318 + 6.36213i 0.241677 + 0.418598i
\(232\) 0 0
\(233\) 19.1742i 1.25614i −0.778156 0.628070i \(-0.783845\pi\)
0.778156 0.628070i \(-0.216155\pi\)
\(234\) 0 0
\(235\) −2.66524 25.1691i −0.173861 1.64185i
\(236\) 0 0
\(237\) 1.66726 0.962594i 0.108300 0.0625272i
\(238\) 0 0
\(239\) 2.16448i 0.140009i 0.997547 + 0.0700043i \(0.0223013\pi\)
−0.997547 + 0.0700043i \(0.977699\pi\)
\(240\) 0 0
\(241\) −13.9442 8.05067i −0.898223 0.518589i −0.0215996 0.999767i \(-0.506876\pi\)
−0.876623 + 0.481178i \(0.840209\pi\)
\(242\) 0 0
\(243\) −12.5390 7.23941i −0.804379 0.464408i
\(244\) 0 0
\(245\) −4.78172 + 3.47983i −0.305493 + 0.222318i
\(246\) 0 0
\(247\) −1.24407 + 13.9763i −0.0791580 + 0.889293i
\(248\) 0 0
\(249\) 11.4051 6.58473i 0.722768 0.417290i
\(250\) 0 0
\(251\) −9.04439 + 15.6653i −0.570877 + 0.988787i 0.425600 + 0.904912i \(0.360063\pi\)
−0.996476 + 0.0838757i \(0.973270\pi\)
\(252\) 0 0
\(253\) 1.34565 2.33073i 0.0846003 0.146532i
\(254\) 0 0
\(255\) 0.349090 + 3.29662i 0.0218609 + 0.206442i
\(256\) 0 0
\(257\) −8.69939 + 5.02260i −0.542653 + 0.313301i −0.746154 0.665774i \(-0.768102\pi\)
0.203500 + 0.979075i \(0.434768\pi\)
\(258\) 0 0
\(259\) 14.6870 0.912607
\(260\) 0 0
\(261\) 0.761025 0.0471063
\(262\) 0 0
\(263\) −13.6855 + 7.90133i −0.843884 + 0.487217i −0.858583 0.512675i \(-0.828654\pi\)
0.0146985 + 0.999892i \(0.495321\pi\)
\(264\) 0 0
\(265\) 26.7166 2.82911i 1.64119 0.173791i
\(266\) 0 0
\(267\) −4.06536 + 7.04141i −0.248796 + 0.430927i
\(268\) 0 0
\(269\) −3.69294 + 6.39635i −0.225162 + 0.389993i −0.956368 0.292164i \(-0.905625\pi\)
0.731206 + 0.682157i \(0.238958\pi\)
\(270\) 0 0
\(271\) −26.8493 + 15.5014i −1.63098 + 0.941645i −0.647184 + 0.762334i \(0.724053\pi\)
−0.983793 + 0.179310i \(0.942613\pi\)
\(272\) 0 0
\(273\) 8.02841 3.72894i 0.485901 0.225686i
\(274\) 0 0
\(275\) 11.1027 10.0283i 0.669517 0.604731i
\(276\) 0 0
\(277\) −4.07668 2.35368i −0.244944 0.141419i 0.372503 0.928031i \(-0.378500\pi\)
−0.617447 + 0.786612i \(0.711833\pi\)
\(278\) 0 0
\(279\) −0.387678 0.223826i −0.0232097 0.0134001i
\(280\) 0 0
\(281\) 10.7771i 0.642910i −0.946925 0.321455i \(-0.895828\pi\)
0.946925 0.321455i \(-0.104172\pi\)
\(282\) 0 0
\(283\) 25.2204 14.5610i 1.49919 0.865561i 0.499195 0.866489i \(-0.333629\pi\)
1.00000 0.000928800i \(0.000295646\pi\)
\(284\) 0 0
\(285\) 1.07805 + 10.1805i 0.0638582 + 0.603042i
\(286\) 0 0
\(287\) 23.2977i 1.37522i
\(288\) 0 0
\(289\) −7.70597 13.3471i −0.453292 0.785125i
\(290\) 0 0
\(291\) 3.03325i 0.177812i
\(292\) 0 0
\(293\) 12.7124 22.0186i 0.742668 1.28634i −0.208609 0.977999i \(-0.566894\pi\)
0.951277 0.308339i \(-0.0997731\pi\)
\(294\) 0 0
\(295\) 11.2204 25.2544i 0.653275 1.47037i
\(296\) 0 0
\(297\) −8.12458 14.0722i −0.471436 0.816551i
\(298\) 0 0
\(299\) −2.65364 1.86408i −0.153464 0.107803i
\(300\) 0 0
\(301\) 14.0670 8.12158i 0.810808 0.468120i
\(302\) 0 0
\(303\) −1.59622 0.921580i −0.0917007 0.0529434i
\(304\) 0 0
\(305\) −15.6162 6.93818i −0.894181 0.397279i
\(306\) 0 0
\(307\) 25.3305 1.44569 0.722843 0.691012i \(-0.242835\pi\)
0.722843 + 0.691012i \(0.242835\pi\)
\(308\) 0 0
\(309\) −0.539025 0.933619i −0.0306641 0.0531117i
\(310\) 0 0
\(311\) 24.3495 1.38074 0.690368 0.723459i \(-0.257449\pi\)
0.690368 + 0.723459i \(0.257449\pi\)
\(312\) 0 0
\(313\) 15.6891i 0.886802i −0.896323 0.443401i \(-0.853772\pi\)
0.896323 0.443401i \(-0.146228\pi\)
\(314\) 0 0
\(315\) −6.09730 + 4.43723i −0.343544 + 0.250009i
\(316\) 0 0
\(317\) −19.4607 −1.09302 −0.546510 0.837453i \(-0.684044\pi\)
−0.546510 + 0.837453i \(0.684044\pi\)
\(318\) 0 0
\(319\) 1.22036 + 0.704577i 0.0683272 + 0.0394487i
\(320\) 0 0
\(321\) 6.88358 11.9227i 0.384204 0.665461i
\(322\) 0 0
\(323\) 2.45211 + 4.24717i 0.136439 + 0.236319i
\(324\) 0 0
\(325\) −10.8501 14.3971i −0.601854 0.798606i
\(326\) 0 0
\(327\) −9.40580 16.2913i −0.520142 0.900912i
\(328\) 0 0
\(329\) −11.8108 + 20.4569i −0.651150 + 1.12782i
\(330\) 0 0
\(331\) −5.73925 3.31356i −0.315457 0.182129i 0.333909 0.942605i \(-0.391632\pi\)
−0.649366 + 0.760476i \(0.724966\pi\)
\(332\) 0 0
\(333\) −11.3727 −0.623221
\(334\) 0 0
\(335\) −7.23196 + 5.26296i −0.395124 + 0.287546i
\(336\) 0 0
\(337\) 11.0614i 0.602555i 0.953537 + 0.301277i \(0.0974130\pi\)
−0.953537 + 0.301277i \(0.902587\pi\)
\(338\) 0 0
\(339\) −3.27290 −0.177759
\(340\) 0 0
\(341\) −0.414448 0.717844i −0.0224436 0.0388734i
\(342\) 0 0
\(343\) 20.1279 1.08680
\(344\) 0 0
\(345\) −2.16224 0.960668i −0.116411 0.0517207i
\(346\) 0 0
\(347\) 15.3466 + 8.86035i 0.823847 + 0.475649i 0.851741 0.523962i \(-0.175547\pi\)
−0.0278940 + 0.999611i \(0.508880\pi\)
\(348\) 0 0
\(349\) 15.3172 8.84341i 0.819913 0.473377i −0.0304733 0.999536i \(-0.509701\pi\)
0.850387 + 0.526158i \(0.176368\pi\)
\(350\) 0 0
\(351\) −17.7578 + 8.24791i −0.947839 + 0.440241i
\(352\) 0 0
\(353\) 16.8114 + 29.1183i 0.894783 + 1.54981i 0.834073 + 0.551654i \(0.186003\pi\)
0.0607098 + 0.998155i \(0.480664\pi\)
\(354\) 0 0
\(355\) 4.27235 9.61605i 0.226753 0.510367i
\(356\) 0 0
\(357\) 1.54697 2.67942i 0.0818741 0.141810i
\(358\) 0 0
\(359\) 17.4880i 0.922981i −0.887145 0.461490i \(-0.847315\pi\)
0.887145 0.461490i \(-0.152685\pi\)
\(360\) 0 0
\(361\) −1.92748 3.33849i −0.101446 0.175710i
\(362\) 0 0
\(363\) 2.40762i 0.126367i
\(364\) 0 0
\(365\) 3.60229 + 34.0181i 0.188553 + 1.78059i
\(366\) 0 0
\(367\) 6.37373 3.67988i 0.332706 0.192088i −0.324336 0.945942i \(-0.605141\pi\)
0.657042 + 0.753854i \(0.271807\pi\)
\(368\) 0 0
\(369\) 18.0403i 0.939141i
\(370\) 0 0
\(371\) −21.7147 12.5370i −1.12737 0.650887i
\(372\) 0 0
\(373\) 25.2893 + 14.6008i 1.30943 + 0.756000i 0.982001 0.188875i \(-0.0604841\pi\)
0.327430 + 0.944875i \(0.393817\pi\)
\(374\) 0 0
\(375\) −9.79519 8.77819i −0.505822 0.453304i
\(376\) 0 0
\(377\) 0.976027 1.38944i 0.0502680 0.0715596i
\(378\) 0 0
\(379\) 13.2943 7.67544i 0.682880 0.394261i −0.118059 0.993007i \(-0.537667\pi\)
0.800939 + 0.598746i \(0.204334\pi\)
\(380\) 0 0
\(381\) −5.11735 + 8.86350i −0.262170 + 0.454091i
\(382\) 0 0
\(383\) 1.59622 2.76474i 0.0815632 0.141272i −0.822358 0.568970i \(-0.807342\pi\)
0.903922 + 0.427698i \(0.140675\pi\)
\(384\) 0 0
\(385\) −13.8856 + 1.47039i −0.707676 + 0.0749383i
\(386\) 0 0
\(387\) −10.8926 + 6.28885i −0.553703 + 0.319680i
\(388\) 0 0
\(389\) 28.9316 1.46689 0.733445 0.679749i \(-0.237911\pi\)
0.733445 + 0.679749i \(0.237911\pi\)
\(390\) 0 0
\(391\) −1.13345 −0.0573208
\(392\) 0 0
\(393\) 16.1729 9.33743i 0.815815 0.471011i
\(394\) 0 0
\(395\) 0.385332 + 3.63886i 0.0193881 + 0.183091i
\(396\) 0 0
\(397\) 2.49557 4.32245i 0.125249 0.216937i −0.796581 0.604531i \(-0.793360\pi\)
0.921830 + 0.387594i \(0.126694\pi\)
\(398\) 0 0
\(399\) 4.77729 8.27451i 0.239164 0.414244i
\(400\) 0 0
\(401\) 3.46032 1.99782i 0.172800 0.0997662i −0.411105 0.911588i \(-0.634857\pi\)
0.583905 + 0.811822i \(0.301524\pi\)
\(402\) 0 0
\(403\) −0.905851 + 0.420739i −0.0451236 + 0.0209585i
\(404\) 0 0
\(405\) −2.78550 + 2.02711i −0.138413 + 0.100728i
\(406\) 0 0
\(407\) −18.2371 10.5292i −0.903977 0.521911i
\(408\) 0 0
\(409\) 2.53695 + 1.46471i 0.125444 + 0.0724252i 0.561409 0.827538i \(-0.310259\pi\)
−0.435965 + 0.899964i \(0.643593\pi\)
\(410\) 0 0
\(411\) 8.49756i 0.419154i
\(412\) 0 0
\(413\) −22.3361 + 12.8957i −1.09909 + 0.634558i
\(414\) 0 0
\(415\) 2.63591 + 24.8920i 0.129392 + 1.22190i
\(416\) 0 0
\(417\) 23.3806i 1.14495i
\(418\) 0 0
\(419\) 4.85425 + 8.40780i 0.237145 + 0.410748i 0.959894 0.280363i \(-0.0904549\pi\)
−0.722749 + 0.691111i \(0.757122\pi\)
\(420\) 0 0
\(421\) 22.8217i 1.11226i 0.831094 + 0.556132i \(0.187715\pi\)
−0.831094 + 0.556132i \(0.812285\pi\)
\(422\) 0 0
\(423\) 9.14555 15.8406i 0.444672 0.770194i
\(424\) 0 0
\(425\) −5.99557 1.93773i −0.290828 0.0939940i
\(426\) 0 0
\(427\) 7.97416 + 13.8116i 0.385897 + 0.668392i
\(428\) 0 0
\(429\) −12.6423 1.12532i −0.610374 0.0543308i
\(430\) 0 0
\(431\) −10.0125 + 5.78073i −0.482286 + 0.278448i −0.721369 0.692551i \(-0.756487\pi\)
0.239082 + 0.970999i \(0.423153\pi\)
\(432\) 0 0
\(433\) 10.8821 + 6.28278i 0.522960 + 0.301931i 0.738145 0.674642i \(-0.235702\pi\)
−0.215185 + 0.976573i \(0.569035\pi\)
\(434\) 0 0
\(435\) 0.503002 1.13214i 0.0241171 0.0542819i
\(436\) 0 0
\(437\) −3.50027 −0.167441
\(438\) 0 0
\(439\) 0.905142 + 1.56775i 0.0432001 + 0.0748247i 0.886817 0.462121i \(-0.152911\pi\)
−0.843617 + 0.536946i \(0.819578\pi\)
\(440\) 0 0
\(441\) −4.27390 −0.203519
\(442\) 0 0
\(443\) 16.7633i 0.796450i 0.917288 + 0.398225i \(0.130374\pi\)
−0.917288 + 0.398225i \(0.869626\pi\)
\(444\) 0 0
\(445\) −9.09343 12.4955i −0.431070 0.592344i
\(446\) 0 0
\(447\) −1.15664 −0.0547073
\(448\) 0 0
\(449\) 6.13311 + 3.54095i 0.289439 + 0.167108i 0.637689 0.770294i \(-0.279891\pi\)
−0.348250 + 0.937402i \(0.613224\pi\)
\(450\) 0 0
\(451\) −16.7022 + 28.9290i −0.786475 + 1.36222i
\(452\) 0 0
\(453\) −4.74127 8.21212i −0.222764 0.385839i
\(454\) 0 0
\(455\) 0.281339 + 16.8229i 0.0131894 + 0.788671i
\(456\) 0 0
\(457\) 0.545096 + 0.944133i 0.0254985 + 0.0441647i 0.878493 0.477755i \(-0.158549\pi\)
−0.852995 + 0.521920i \(0.825216\pi\)
\(458\) 0 0
\(459\) −3.42168 + 5.92652i −0.159710 + 0.276626i
\(460\) 0 0
\(461\) −13.5007 7.79465i −0.628791 0.363033i 0.151493 0.988458i \(-0.451592\pi\)
−0.780284 + 0.625426i \(0.784925\pi\)
\(462\) 0 0
\(463\) 19.1896 0.891817 0.445908 0.895079i \(-0.352881\pi\)
0.445908 + 0.895079i \(0.352881\pi\)
\(464\) 0 0
\(465\) −0.589211 + 0.428790i −0.0273240 + 0.0198847i
\(466\) 0 0
\(467\) 23.1857i 1.07290i 0.843931 + 0.536452i \(0.180236\pi\)
−0.843931 + 0.536452i \(0.819764\pi\)
\(468\) 0 0
\(469\) 8.34767 0.385460
\(470\) 0 0
\(471\) 1.60804 + 2.78521i 0.0740946 + 0.128336i
\(472\) 0 0
\(473\) −23.2895 −1.07085
\(474\) 0 0
\(475\) −18.5153 5.98405i −0.849541 0.274567i
\(476\) 0 0
\(477\) 16.8145 + 9.70786i 0.769884 + 0.444493i
\(478\) 0 0
\(479\) −3.01812 + 1.74251i −0.137901 + 0.0796174i −0.567363 0.823467i \(-0.692037\pi\)
0.429462 + 0.903085i \(0.358703\pi\)
\(480\) 0 0
\(481\) −14.5857 + 20.7637i −0.665051 + 0.946742i
\(482\) 0 0
\(483\) 1.10411 + 1.91238i 0.0502388 + 0.0870162i
\(484\) 0 0
\(485\) −5.26869 2.34085i −0.239239 0.106292i
\(486\) 0 0
\(487\) 1.07023 1.85369i 0.0484967 0.0839988i −0.840758 0.541411i \(-0.817890\pi\)
0.889255 + 0.457412i \(0.151224\pi\)
\(488\) 0 0
\(489\) 28.9133i 1.30751i
\(490\) 0 0
\(491\) 13.6201 + 23.5908i 0.614668 + 1.06464i 0.990443 + 0.137926i \(0.0440435\pi\)
−0.375774 + 0.926711i \(0.622623\pi\)
\(492\) 0 0
\(493\) 0.593468i 0.0267284i
\(494\) 0 0
\(495\) 10.7522 1.13858i 0.483274 0.0511755i
\(496\) 0 0
\(497\) −8.50486 + 4.91028i −0.381495 + 0.220256i
\(498\) 0 0
\(499\) 22.7855i 1.02002i 0.860169 + 0.510010i \(0.170358\pi\)
−0.860169 + 0.510010i \(0.829642\pi\)
\(500\) 0 0
\(501\) −14.0969 8.13884i −0.629802 0.363616i
\(502\) 0 0
\(503\) −8.31665 4.80162i −0.370821 0.214094i 0.302996 0.952992i \(-0.402013\pi\)
−0.673817 + 0.738898i \(0.735346\pi\)
\(504\) 0 0
\(505\) 2.83262 2.06140i 0.126050 0.0917310i
\(506\) 0 0
\(507\) −2.70126 + 15.0533i −0.119967 + 0.668541i
\(508\) 0 0
\(509\) −13.5627 + 7.83041i −0.601155 + 0.347077i −0.769496 0.638652i \(-0.779492\pi\)
0.168341 + 0.985729i \(0.446159\pi\)
\(510\) 0 0
\(511\) 15.9633 27.6492i 0.706173 1.22313i
\(512\) 0 0
\(513\) −10.5667 + 18.3021i −0.466532 + 0.808057i
\(514\) 0 0
\(515\) 2.03766 0.215775i 0.0897900 0.00950818i
\(516\) 0 0
\(517\) 29.3312 16.9344i 1.28998 0.744773i
\(518\) 0 0
\(519\) 15.4970 0.680243
\(520\) 0 0
\(521\) 3.26689 0.143125 0.0715625 0.997436i \(-0.477201\pi\)
0.0715625 + 0.997436i \(0.477201\pi\)
\(522\) 0 0
\(523\) −13.8479 + 7.99511i −0.605528 + 0.349602i −0.771213 0.636577i \(-0.780350\pi\)
0.165685 + 0.986179i \(0.447016\pi\)
\(524\) 0 0
\(525\) 2.57100 + 12.0035i 0.112208 + 0.523874i
\(526\) 0 0
\(527\) −0.174545 + 0.302321i −0.00760331 + 0.0131693i
\(528\) 0 0
\(529\) −11.0955 + 19.2180i −0.482414 + 0.835565i
\(530\) 0 0
\(531\) 17.2957 9.98567i 0.750569 0.433341i
\(532\) 0 0
\(533\) 32.9369 + 23.1370i 1.42666 + 1.00217i
\(534\) 0 0
\(535\) 15.3973 + 21.1578i 0.665681 + 0.914729i
\(536\) 0 0
\(537\) 3.17438 + 1.83273i 0.136985 + 0.0790881i
\(538\) 0 0
\(539\) −6.85354 3.95689i −0.295203 0.170435i
\(540\) 0 0
\(541\) 7.38554i 0.317529i −0.987316 0.158765i \(-0.949249\pi\)
0.987316 0.158765i \(-0.0507511\pi\)
\(542\) 0 0
\(543\) 8.06342 4.65542i 0.346035 0.199783i
\(544\) 0 0
\(545\) 35.5564 3.76519i 1.52307 0.161283i
\(546\) 0 0
\(547\) 11.4488i 0.489515i 0.969584 + 0.244757i \(0.0787083\pi\)
−0.969584 + 0.244757i \(0.921292\pi\)
\(548\) 0 0
\(549\) −6.17470 10.6949i −0.263530 0.456447i
\(550\) 0 0
\(551\) 1.83273i 0.0780768i
\(552\) 0 0
\(553\) 1.70757 2.95759i 0.0726131 0.125770i
\(554\) 0 0
\(555\) −7.51684 + 16.9186i −0.319072 + 0.718156i
\(556\) 0 0
\(557\) 9.70356 + 16.8071i 0.411153 + 0.712138i 0.995016 0.0997144i \(-0.0317929\pi\)
−0.583863 + 0.811852i \(0.698460\pi\)
\(558\) 0 0
\(559\) −2.48813 + 27.9527i −0.105237 + 1.18227i
\(560\) 0 0
\(561\) −3.84177 + 2.21805i −0.162200 + 0.0936461i
\(562\) 0 0
\(563\) −7.70563 4.44885i −0.324754 0.187497i 0.328756 0.944415i \(-0.393371\pi\)
−0.653509 + 0.756918i \(0.726704\pi\)
\(564\) 0 0
\(565\) 2.52579 5.68495i 0.106261 0.239168i
\(566\) 0 0
\(567\) 3.21524 0.135027
\(568\) 0 0
\(569\) 3.44997 + 5.97552i 0.144630 + 0.250507i 0.929235 0.369490i \(-0.120467\pi\)
−0.784605 + 0.619996i \(0.787134\pi\)
\(570\) 0 0
\(571\) 32.4491 1.35795 0.678975 0.734161i \(-0.262424\pi\)
0.678975 + 0.734161i \(0.262424\pi\)
\(572\) 0 0
\(573\) 16.4242i 0.686132i
\(574\) 0 0
\(575\) 3.33732 3.01439i 0.139176 0.125709i
\(576\) 0 0
\(577\) 25.3915 1.05706 0.528530 0.848914i \(-0.322743\pi\)
0.528530 + 0.848914i \(0.322743\pi\)
\(578\) 0 0
\(579\) −13.8842 8.01604i −0.577007 0.333135i
\(580\) 0 0
\(581\) 11.6808 20.2317i 0.484601 0.839354i
\(582\) 0 0
\(583\) 17.9756 + 31.1346i 0.744473 + 1.28946i
\(584\) 0 0
\(585\) −0.217852 13.0266i −0.00900707 0.538585i
\(586\) 0 0
\(587\) −1.23196 2.13382i −0.0508485 0.0880722i 0.839481 0.543389i \(-0.182859\pi\)
−0.890329 + 0.455317i \(0.849526\pi\)
\(588\) 0 0
\(589\) −0.539025 + 0.933619i −0.0222101 + 0.0384691i
\(590\) 0 0
\(591\) −18.0556 10.4244i −0.742710 0.428804i
\(592\) 0 0
\(593\) 40.6651 1.66992 0.834958 0.550313i \(-0.185492\pi\)
0.834958 + 0.550313i \(0.185492\pi\)
\(594\) 0 0
\(595\) 3.46027 + 4.75484i 0.141857 + 0.194929i
\(596\) 0 0
\(597\) 16.9001i 0.691675i
\(598\) 0 0
\(599\) −26.1916 −1.07016 −0.535079 0.844802i \(-0.679718\pi\)
−0.535079 + 0.844802i \(0.679718\pi\)
\(600\) 0 0
\(601\) 6.74916 + 11.6899i 0.275304 + 0.476840i 0.970212 0.242259i \(-0.0778882\pi\)
−0.694908 + 0.719099i \(0.744555\pi\)
\(602\) 0 0
\(603\) −6.46392 −0.263231
\(604\) 0 0
\(605\) −4.18199 1.85803i −0.170022 0.0755398i
\(606\) 0 0
\(607\) 8.51183 + 4.91431i 0.345485 + 0.199466i 0.662695 0.748890i \(-0.269413\pi\)
−0.317210 + 0.948355i \(0.602746\pi\)
\(608\) 0 0
\(609\) −1.00131 + 0.578108i −0.0405752 + 0.0234261i
\(610\) 0 0
\(611\) −17.1915 37.0132i −0.695492 1.49739i
\(612\) 0 0
\(613\) −10.3086 17.8551i −0.416362 0.721161i 0.579208 0.815180i \(-0.303362\pi\)
−0.995570 + 0.0940190i \(0.970029\pi\)
\(614\) 0 0
\(615\) 26.8377 + 11.9238i 1.08220 + 0.480814i
\(616\) 0 0
\(617\) 8.90958 15.4318i 0.358686 0.621262i −0.629056 0.777360i \(-0.716558\pi\)
0.987742 + 0.156098i \(0.0498915\pi\)
\(618\) 0 0
\(619\) 29.3377i 1.17918i −0.807701 0.589592i \(-0.799289\pi\)
0.807701 0.589592i \(-0.200711\pi\)
\(620\) 0 0
\(621\) −2.44214 4.22992i −0.0979999 0.169741i
\(622\) 0 0
\(623\) 14.4232i 0.577855i
\(624\) 0 0
\(625\) 22.8068 10.2397i 0.912271 0.409587i
\(626\) 0 0
\(627\) −11.8640 + 6.84971i −0.473804 + 0.273551i
\(628\) 0 0
\(629\) 8.86875i 0.353620i
\(630\) 0 0
\(631\) 15.5662 + 8.98714i 0.619680 + 0.357772i 0.776744 0.629816i \(-0.216870\pi\)
−0.157064 + 0.987588i \(0.550203\pi\)
\(632\) 0 0
\(633\) −20.6039 11.8957i −0.818931 0.472810i
\(634\) 0 0
\(635\) −11.4465 15.7290i −0.454242 0.624185i
\(636\) 0 0
\(637\) −5.48135 + 7.80305i −0.217179 + 0.309168i
\(638\) 0 0
\(639\) 6.58564 3.80222i 0.260524 0.150414i
\(640\) 0 0
\(641\) −12.7805 + 22.1365i −0.504800 + 0.874339i 0.495185 + 0.868788i \(0.335100\pi\)
−0.999985 + 0.00555129i \(0.998233\pi\)
\(642\) 0 0
\(643\) 10.9914 19.0376i 0.433457 0.750769i −0.563712 0.825972i \(-0.690627\pi\)
0.997168 + 0.0752028i \(0.0239604\pi\)
\(644\) 0 0
\(645\) 2.15610 + 20.3610i 0.0848964 + 0.801715i
\(646\) 0 0
\(647\) 26.9769 15.5751i 1.06057 0.612321i 0.134981 0.990848i \(-0.456903\pi\)
0.925590 + 0.378527i \(0.123569\pi\)
\(648\) 0 0
\(649\) 36.9800 1.45159
\(650\) 0 0
\(651\) 0.680112 0.0266557
\(652\) 0 0
\(653\) −15.4449 + 8.91711i −0.604405 + 0.348954i −0.770773 0.637110i \(-0.780130\pi\)
0.166367 + 0.986064i \(0.446796\pi\)
\(654\) 0 0
\(655\) 3.73783 + 35.2980i 0.146049 + 1.37921i
\(656\) 0 0
\(657\) −12.3610 + 21.4098i −0.482248 + 0.835277i
\(658\) 0 0
\(659\) −9.89464 + 17.1380i −0.385440 + 0.667602i −0.991830 0.127565i \(-0.959284\pi\)
0.606390 + 0.795168i \(0.292617\pi\)
\(660\) 0 0
\(661\) −15.7895 + 9.11607i −0.614140 + 0.354574i −0.774584 0.632471i \(-0.782041\pi\)
0.160444 + 0.987045i \(0.448707\pi\)
\(662\) 0 0
\(663\) 2.25172 + 4.84795i 0.0874495 + 0.188279i
\(664\) 0 0
\(665\) 10.6859 + 14.6837i 0.414381 + 0.569411i
\(666\) 0 0
\(667\) 0.366826 + 0.211787i 0.0142035 + 0.00820042i
\(668\) 0 0
\(669\) −11.3549 6.55576i −0.439006 0.253460i
\(670\) 0 0
\(671\) 22.8668i 0.882763i
\(672\) 0 0
\(673\) −17.1875 + 9.92322i −0.662530 + 0.382512i −0.793240 0.608909i \(-0.791608\pi\)
0.130710 + 0.991421i \(0.458274\pi\)
\(674\) 0 0
\(675\) −5.68671 26.5500i −0.218882 1.02191i
\(676\) 0 0
\(677\) 4.02129i 0.154551i 0.997010 + 0.0772753i \(0.0246220\pi\)
−0.997010 + 0.0772753i \(0.975378\pi\)
\(678\) 0 0
\(679\) 2.69037 + 4.65986i 0.103247 + 0.178829i
\(680\) 0 0
\(681\) 20.3610i 0.780237i
\(682\) 0 0
\(683\) −5.19430 + 8.99680i −0.198754 + 0.344253i −0.948125 0.317898i \(-0.897023\pi\)
0.749370 + 0.662151i \(0.230356\pi\)
\(684\) 0 0
\(685\) 14.7601 + 6.55782i 0.563954 + 0.250561i
\(686\) 0 0
\(687\) −5.82545 10.0900i −0.222255 0.384957i
\(688\) 0 0
\(689\) 39.2889 18.2485i 1.49679 0.695211i
\(690\) 0 0
\(691\) 24.5864 14.1949i 0.935309 0.540001i 0.0468225 0.998903i \(-0.485090\pi\)
0.888487 + 0.458902i \(0.151757\pi\)
\(692\) 0 0
\(693\) −8.73913 5.04554i −0.331972 0.191664i
\(694\) 0 0
\(695\) −40.6117 18.0435i −1.54049 0.684430i
\(696\) 0 0
\(697\) 14.0683 0.532875
\(698\) 0 0
\(699\) −11.2787 19.5352i −0.426598 0.738889i
\(700\) 0 0
\(701\) 16.7917 0.634213 0.317106 0.948390i \(-0.397289\pi\)
0.317106 + 0.948390i \(0.397289\pi\)
\(702\) 0 0
\(703\) 27.3882i 1.03297i
\(704\) 0 0
\(705\) −17.5204 24.0752i −0.659857 0.906726i
\(706\) 0 0
\(707\) −3.26962 −0.122967
\(708\) 0 0
\(709\) −41.9846 24.2398i −1.57676 0.910345i −0.995307 0.0967675i \(-0.969150\pi\)
−0.581457 0.813577i \(-0.697517\pi\)
\(710\) 0 0
\(711\) −1.32223 + 2.29018i −0.0495877 + 0.0858883i
\(712\) 0 0
\(713\) −0.124578 0.215775i −0.00466547 0.00808083i
\(714\) 0 0
\(715\) 11.7111 21.0909i 0.437969 0.788756i
\(716\) 0 0
\(717\) 1.27319 + 2.20524i 0.0475483 + 0.0823561i
\(718\) 0 0
\(719\) −6.14778 + 10.6483i −0.229273 + 0.397113i −0.957593 0.288125i \(-0.906968\pi\)
0.728320 + 0.685238i \(0.240302\pi\)
\(720\) 0 0
\(721\) −1.65617 0.956188i −0.0616789 0.0356103i
\(722\) 0 0
\(723\) −18.9423 −0.704472
\(724\) 0 0
\(725\) 1.57832 + 1.74741i 0.0586174 + 0.0648972i
\(726\) 0 0
\(727\) 36.1491i 1.34070i −0.742046 0.670349i \(-0.766145\pi\)
0.742046 0.670349i \(-0.233855\pi\)
\(728\) 0 0
\(729\) −21.6555 −0.802055
\(730\) 0 0
\(731\) 4.90421 + 8.49435i 0.181389 + 0.314175i
\(732\) 0 0
\(733\) −22.4789 −0.830278 −0.415139 0.909758i \(-0.636267\pi\)
−0.415139 + 0.909758i \(0.636267\pi\)
\(734\) 0 0
\(735\) −2.82485 + 6.35807i −0.104196 + 0.234521i
\(736\) 0 0
\(737\) −10.3654 5.98447i −0.381815 0.220441i
\(738\) 0 0
\(739\) −10.6967 + 6.17575i −0.393485 + 0.227179i −0.683669 0.729792i \(-0.739617\pi\)
0.290184 + 0.956971i \(0.406283\pi\)
\(740\) 0 0
\(741\) 6.95369 + 14.9713i 0.255450 + 0.549984i
\(742\) 0 0
\(743\) 11.4818 + 19.8871i 0.421227 + 0.729587i 0.996060 0.0886839i \(-0.0282661\pi\)
−0.574832 + 0.818271i \(0.694933\pi\)
\(744\) 0 0
\(745\) 0.892615 2.00907i 0.0327029 0.0736065i
\(746\) 0 0
\(747\) −9.04489 + 15.6662i −0.330935 + 0.573197i
\(748\) 0 0
\(749\) 24.4219i 0.892355i
\(750\) 0 0
\(751\) 16.4263 + 28.4511i 0.599403 + 1.03820i 0.992909 + 0.118874i \(0.0379286\pi\)
−0.393506 + 0.919322i \(0.628738\pi\)
\(752\) 0 0
\(753\) 21.2804i 0.775501i
\(754\) 0 0
\(755\) 17.9233 1.89796i 0.652294 0.0690737i
\(756\) 0 0
\(757\) 28.6323 16.5309i 1.04066 0.600826i 0.120640 0.992696i \(-0.461505\pi\)
0.920020 + 0.391871i \(0.128172\pi\)
\(758\) 0 0
\(759\) 3.16616i 0.114924i
\(760\) 0 0
\(761\) −27.3347 15.7817i −0.990882 0.572086i −0.0853441 0.996352i \(-0.527199\pi\)
−0.905538 + 0.424266i \(0.860532\pi\)
\(762\) 0 0
\(763\) −28.8995 16.6851i −1.04623 0.604043i
\(764\) 0 0
\(765\) −2.67942 3.68185i −0.0968745 0.133118i
\(766\) 0 0
\(767\) 3.95074 44.3842i 0.142653 1.60262i
\(768\) 0 0
\(769\) −36.8445 + 21.2722i −1.32865 + 0.767095i −0.985090 0.172037i \(-0.944965\pi\)
−0.343556 + 0.939132i \(0.611632\pi\)
\(770\) 0 0
\(771\) −5.90880 + 10.2343i −0.212800 + 0.368581i
\(772\) 0 0
\(773\) 0.533226 0.923574i 0.0191788 0.0332187i −0.856277 0.516517i \(-0.827228\pi\)
0.875456 + 0.483299i \(0.160561\pi\)
\(774\) 0 0
\(775\) −0.290088 1.35436i −0.0104203 0.0486500i
\(776\) 0 0
\(777\) 14.9636 8.63922i 0.536815 0.309930i
\(778\) 0 0
\(779\) 43.4453 1.55659
\(780\) 0 0
\(781\) 14.0808 0.503850
\(782\) 0 0
\(783\) 2.21477 1.27870i 0.0791494 0.0456969i
\(784\) 0 0
\(785\) −6.07883 + 0.643708i −0.216963 + 0.0229749i
\(786\) 0 0
\(787\) 0.0215610 0.0373447i 0.000768565 0.00133119i −0.865641 0.500665i \(-0.833089\pi\)
0.866409 + 0.499334i \(0.166422\pi\)
\(788\) 0 0
\(789\) −9.29546 + 16.1002i −0.330927 + 0.573183i
\(790\) 0 0
\(791\) −5.02802 + 2.90293i −0.178776 + 0.103216i
\(792\) 0 0
\(793\) −27.4453 2.44296i −0.974610 0.0867522i
\(794\) 0 0
\(795\) 25.5555 18.5977i 0.906361 0.659591i
\(796\) 0 0
\(797\) −29.9559 17.2951i −1.06109 0.612623i −0.135359 0.990797i \(-0.543219\pi\)
−0.925735 + 0.378174i \(0.876552\pi\)
\(798\) 0 0
\(799\) −12.3529 7.13194i −0.437014 0.252310i
\(800\) 0 0
\(801\) 11.1685i 0.394619i
\(802\) 0 0
\(803\) −39.6436 + 22.8882i −1.39899 + 0.807708i
\(804\) 0 0
\(805\) −4.17384 + 0.441982i −0.147108 + 0.0155778i
\(806\) 0 0
\(807\) 8.68906i 0.305869i
\(808\) 0 0
\(809\) −3.04046 5.26623i −0.106897 0.185151i 0.807615 0.589710i \(-0.200758\pi\)
−0.914512 + 0.404560i \(0.867425\pi\)
\(810\) 0 0
\(811\) 5.47145i 0.192129i −0.995375 0.0960644i \(-0.969375\pi\)
0.995375 0.0960644i \(-0.0306255\pi\)
\(812\) 0 0
\(813\) −18.2365 + 31.5866i −0.639584 + 1.10779i
\(814\) 0 0
\(815\) 50.2219 + 22.3133i 1.75920 + 0.781600i
\(816\) 0 0
\(817\) 15.1450 + 26.2320i 0.529858 + 0.917741i
\(818\) 0 0
\(819\) −6.98942 + 9.94987i −0.244230 + 0.347677i
\(820\) 0 0
\(821\) 38.1625 22.0331i 1.33188 0.768961i 0.346291 0.938127i \(-0.387441\pi\)
0.985588 + 0.169166i \(0.0541075\pi\)
\(822\) 0 0
\(823\) 10.8396 + 6.25823i 0.377844 + 0.218148i 0.676880 0.736094i \(-0.263332\pi\)
−0.299036 + 0.954242i \(0.596665\pi\)
\(824\) 0 0
\(825\) 5.41286 16.7480i 0.188452 0.583090i
\(826\) 0 0
\(827\) −51.7679 −1.80015 −0.900074 0.435738i \(-0.856488\pi\)
−0.900074 + 0.435738i \(0.856488\pi\)
\(828\) 0 0
\(829\) 6.95883 + 12.0531i 0.241690 + 0.418620i 0.961196 0.275867i \(-0.0889649\pi\)
−0.719506 + 0.694487i \(0.755632\pi\)
\(830\) 0 0
\(831\) −5.53793 −0.192109
\(832\) 0 0
\(833\) 3.33290i 0.115478i
\(834\) 0 0
\(835\) 25.0160 18.2050i 0.865714 0.630011i
\(836\) 0 0
\(837\) −1.50432 −0.0519967
\(838\) 0 0
\(839\) 43.3416 + 25.0233i 1.49632 + 0.863899i 0.999991 0.00423634i \(-0.00134847\pi\)
0.496327 + 0.868136i \(0.334682\pi\)
\(840\) 0 0
\(841\) 14.3891 24.9227i 0.496176 0.859402i
\(842\) 0 0
\(843\) −6.33935 10.9801i −0.218339 0.378174i
\(844\) 0 0
\(845\) −24.0627 16.3091i −0.827781 0.561051i
\(846\) 0 0
\(847\) 2.13547 + 3.69874i 0.0733755 + 0.127090i
\(848\) 0 0
\(849\) 17.1302 29.6703i 0.587906 1.01828i
\(850\) 0 0
\(851\) −5.48183 3.16493i −0.187915 0.108493i
\(852\) 0 0
\(853\) 12.7392 0.436183 0.218092 0.975928i \(-0.430017\pi\)
0.218092 + 0.975928i \(0.430017\pi\)
\(854\) 0 0
\(855\) −8.27449 11.3702i −0.282982 0.388852i
\(856\) 0 0
\(857\) 30.3306i 1.03607i −0.855359 0.518036i \(-0.826663\pi\)
0.855359 0.518036i \(-0.173337\pi\)
\(858\) 0 0
\(859\) −48.7446 −1.66314 −0.831572 0.555417i \(-0.812559\pi\)
−0.831572 + 0.555417i \(0.812559\pi\)
\(860\) 0 0
\(861\) −13.7042 23.7364i −0.467038 0.808934i
\(862\) 0 0
\(863\) −17.6100 −0.599451 −0.299725 0.954026i \(-0.596895\pi\)
−0.299725 + 0.954026i \(0.596895\pi\)
\(864\) 0 0
\(865\) −11.9595 + 26.9180i −0.406635 + 0.915239i
\(866\) 0 0
\(867\) −15.7021 9.06563i −0.533273 0.307885i
\(868\) 0 0
\(869\) −4.24061 + 2.44832i −0.143853 + 0.0830535i
\(870\) 0 0
\(871\) −8.29009 + 11.8015i −0.280899 + 0.399877i
\(872\) 0 0
\(873\) −2.08326 3.60831i −0.0705076 0.122123i
\(874\) 0 0
\(875\) −22.8339 4.79763i −0.771926 0.162190i
\(876\) 0 0
\(877\) −20.9644 + 36.3115i −0.707918 + 1.22615i 0.257709 + 0.966222i \(0.417032\pi\)
−0.965628 + 0.259928i \(0.916301\pi\)
\(878\) 0 0
\(879\) 29.9109i 1.00887i
\(880\) 0 0
\(881\) 14.9695 + 25.9280i 0.504336 + 0.873535i 0.999987 + 0.00501392i \(0.00159599\pi\)
−0.495652 + 0.868521i \(0.665071\pi\)
\(882\) 0 0
\(883\) 35.3391i 1.18926i −0.804001 0.594629i \(-0.797299\pi\)
0.804001 0.594629i \(-0.202701\pi\)
\(884\) 0 0
\(885\) −3.42353 32.3300i −0.115081 1.08676i
\(886\) 0 0
\(887\) 36.8682 21.2859i 1.23791 0.714709i 0.269246 0.963071i \(-0.413226\pi\)
0.968667 + 0.248362i \(0.0798922\pi\)
\(888\) 0 0
\(889\) 18.1555i 0.608917i
\(890\) 0 0
\(891\) −3.99240 2.30501i −0.133750 0.0772208i
\(892\) 0 0
\(893\) −38.1478 22.0246i −1.27657 0.737026i
\(894\) 0 0
\(895\) −5.63317 + 4.09946i −0.188296 + 0.137030i
\(896\) 0 0
\(897\) −3.80010 0.338256i −0.126882 0.0112940i
\(898\) 0 0
\(899\) 0.112979 0.0652284i 0.00376806 0.00217549i
\(900\) 0 0
\(901\) 7.57045 13.1124i 0.252208 0.436837i
\(902\) 0 0
\(903\) 9.55458 16.5490i 0.317957 0.550717i
\(904\) 0 0
\(905\) 1.86359 + 17.5987i 0.0619478 + 0.585002i
\(906\) 0 0
\(907\) −12.5097 + 7.22247i −0.415377 + 0.239818i −0.693098 0.720844i \(-0.743755\pi\)
0.277720 + 0.960662i \(0.410421\pi\)
\(908\) 0 0
\(909\) 2.53179 0.0839743
\(910\) 0 0
\(911\) 42.9419 1.42273 0.711364 0.702824i \(-0.248078\pi\)
0.711364 + 0.702824i \(0.248078\pi\)
\(912\) 0 0
\(913\) −29.0084 + 16.7480i −0.960037 + 0.554278i
\(914\) 0 0
\(915\) −19.9914 + 2.11696i −0.660897 + 0.0699846i
\(916\) 0 0
\(917\) 16.5639 28.6895i 0.546987 0.947410i
\(918\) 0 0
\(919\) 20.3770 35.2940i 0.672175 1.16424i −0.305111 0.952317i \(-0.598693\pi\)
0.977286 0.211925i \(-0.0679733\pi\)
\(920\) 0 0
\(921\) 25.8074 14.8999i 0.850384 0.490970i
\(922\) 0 0
\(923\) 1.50432 16.9001i 0.0495151 0.556273i
\(924\) 0 0
\(925\) −23.5864 26.1132i −0.775515 0.858597i
\(926\) 0 0
\(927\) 1.28243 + 0.740414i 0.0421207 + 0.0243184i
\(928\) 0 0
\(929\) −11.3326 6.54286i −0.371809 0.214664i 0.302439 0.953169i \(-0.402199\pi\)
−0.674249 + 0.738504i \(0.735532\pi\)
\(930\) 0 0
\(931\) 10.2926i 0.337325i
\(932\) 0 0
\(933\) 24.8080 14.3229i 0.812178 0.468911i
\(934\) 0 0
\(935\) −0.887897 8.38482i −0.0290373 0.274213i
\(936\) 0 0
\(937\) 41.0546i 1.34120i −0.741821 0.670598i \(-0.766038\pi\)
0.741821 0.670598i \(-0.233962\pi\)
\(938\) 0 0
\(939\) −9.22869 15.9846i −0.301167 0.521636i
\(940\) 0 0
\(941\) 24.4162i 0.795945i 0.917397 + 0.397973i \(0.130286\pi\)
−0.917397 + 0.397973i \(0.869714\pi\)
\(942\) 0 0
\(943\) −5.02047 + 8.69570i −0.163489 + 0.283171i
\(944\) 0 0
\(945\) −10.2891 + 23.1583i −0.334704 + 0.753339i
\(946\) 0 0
\(947\) 2.30433 + 3.99122i 0.0748807 + 0.129697i 0.901034 0.433748i \(-0.142809\pi\)
−0.826154 + 0.563445i \(0.809476\pi\)
\(948\) 0 0
\(949\) 23.2357 + 50.0264i 0.754262 + 1.62393i
\(950\) 0 0
\(951\) −19.8271 + 11.4472i −0.642937 + 0.371200i
\(952\) 0 0
\(953\) −4.09617 2.36493i −0.132688 0.0766075i 0.432187 0.901784i \(-0.357742\pi\)
−0.564875 + 0.825177i \(0.691075\pi\)
\(954\) 0 0
\(955\) 28.5286 + 12.6751i 0.923163 + 0.410156i
\(956\) 0 0
\(957\) 1.65779 0.0535887
\(958\) 0 0
\(959\) −7.53700 13.0545i −0.243383 0.421551i
\(960\) 0 0
\(961\) 30.9233 0.997525
\(962\) 0 0
\(963\) 18.9108i 0.609392i
\(964\) 0 0
\(965\) 24.6385 17.9303i 0.793143 0.577198i
\(966\) 0 0
\(967\) −23.8186 −0.765955 −0.382977 0.923758i \(-0.625101\pi\)
−0.382977 + 0.923758i \(0.625101\pi\)
\(968\) 0 0
\(969\) 4.99656 + 2.88477i 0.160513 + 0.0926720i
\(970\) 0 0
\(971\) −15.8349 + 27.4269i −0.508167 + 0.880170i 0.491789 + 0.870715i \(0.336343\pi\)
−0.999955 + 0.00945572i \(0.996990\pi\)
\(972\) 0 0
\(973\) 20.7377 + 35.9188i 0.664820 + 1.15150i
\(974\) 0 0
\(975\) −19.5231 8.28591i −0.625238 0.265362i
\(976\) 0 0
\(977\) −13.4354 23.2707i −0.429835 0.744497i 0.567023 0.823702i \(-0.308095\pi\)
−0.996858 + 0.0792052i \(0.974762\pi\)
\(978\) 0 0
\(979\) 10.3401 17.9095i 0.330470 0.572391i
\(980\) 0 0
\(981\) 22.3780 + 12.9200i 0.714475 + 0.412502i
\(982\) 0 0
\(983\) −8.22637 −0.262380 −0.131190 0.991357i \(-0.541880\pi\)
−0.131190 + 0.991357i \(0.541880\pi\)
\(984\) 0 0
\(985\) 32.0411 23.3175i 1.02091 0.742956i
\(986\) 0 0
\(987\) 27.7894i 0.884548i
\(988\) 0 0
\(989\) −7.00054 −0.222604
\(990\) 0 0
\(991\) −11.1157 19.2530i −0.353102 0.611591i 0.633689 0.773588i \(-0.281540\pi\)
−0.986791 + 0.161997i \(0.948207\pi\)
\(992\) 0 0
\(993\) −7.79642 −0.247412
\(994\) 0 0
\(995\) −29.3551 13.0423i −0.930620 0.413469i
\(996\) 0 0
\(997\) −20.4122 11.7850i −0.646459 0.373234i 0.140639 0.990061i \(-0.455084\pi\)
−0.787098 + 0.616827i \(0.788418\pi\)
\(998\) 0 0
\(999\) −33.0974 + 19.1088i −1.04716 + 0.604576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.df.c.49.3 8
4.3 odd 2 130.2.m.a.49.2 8
5.4 even 2 1040.2.df.a.49.2 8
12.11 even 2 1170.2.bj.b.829.3 8
13.4 even 6 1040.2.df.a.849.2 8
20.3 even 4 650.2.m.e.101.2 16
20.7 even 4 650.2.m.e.101.7 16
20.19 odd 2 130.2.m.b.49.3 yes 8
52.3 odd 6 1690.2.c.f.1689.4 8
52.11 even 12 1690.2.b.e.339.12 16
52.15 even 12 1690.2.b.e.339.4 16
52.23 odd 6 1690.2.c.e.1689.4 8
52.43 odd 6 130.2.m.b.69.3 yes 8
60.59 even 2 1170.2.bj.a.829.2 8
65.4 even 6 inner 1040.2.df.c.849.3 8
156.95 even 6 1170.2.bj.a.199.2 8
260.43 even 12 650.2.m.e.251.2 16
260.63 odd 12 8450.2.a.cs.1.5 8
260.67 odd 12 8450.2.a.cs.1.4 8
260.119 even 12 1690.2.b.e.339.13 16
260.147 even 12 650.2.m.e.251.7 16
260.159 odd 6 1690.2.c.e.1689.5 8
260.167 odd 12 8450.2.a.cr.1.4 8
260.179 odd 6 1690.2.c.f.1689.5 8
260.199 odd 6 130.2.m.a.69.2 yes 8
260.219 even 12 1690.2.b.e.339.5 16
260.223 odd 12 8450.2.a.cr.1.5 8
780.719 even 6 1170.2.bj.b.199.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.2 8 4.3 odd 2
130.2.m.a.69.2 yes 8 260.199 odd 6
130.2.m.b.49.3 yes 8 20.19 odd 2
130.2.m.b.69.3 yes 8 52.43 odd 6
650.2.m.e.101.2 16 20.3 even 4
650.2.m.e.101.7 16 20.7 even 4
650.2.m.e.251.2 16 260.43 even 12
650.2.m.e.251.7 16 260.147 even 12
1040.2.df.a.49.2 8 5.4 even 2
1040.2.df.a.849.2 8 13.4 even 6
1040.2.df.c.49.3 8 1.1 even 1 trivial
1040.2.df.c.849.3 8 65.4 even 6 inner
1170.2.bj.a.199.2 8 156.95 even 6
1170.2.bj.a.829.2 8 60.59 even 2
1170.2.bj.b.199.3 8 780.719 even 6
1170.2.bj.b.829.3 8 12.11 even 2
1690.2.b.e.339.4 16 52.15 even 12
1690.2.b.e.339.5 16 260.219 even 12
1690.2.b.e.339.12 16 52.11 even 12
1690.2.b.e.339.13 16 260.119 even 12
1690.2.c.e.1689.4 8 52.23 odd 6
1690.2.c.e.1689.5 8 260.159 odd 6
1690.2.c.f.1689.4 8 52.3 odd 6
1690.2.c.f.1689.5 8 260.179 odd 6
8450.2.a.cr.1.4 8 260.167 odd 12
8450.2.a.cr.1.5 8 260.223 odd 12
8450.2.a.cs.1.4 8 260.67 odd 12
8450.2.a.cs.1.5 8 260.63 odd 12