Properties

Label 650.2.m.e.101.7
Level $650$
Weight $2$
Character 650.101
Analytic conductor $5.190$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(101,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 60 x^{13} + 92 x^{12} + 292 x^{11} - 104 x^{10} + 936 x^{9} + 664 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.7
Root \(0.478758 - 1.78675i\) of defining polynomial
Character \(\chi\) \(=\) 650.101
Dual form 650.2.m.e.251.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.588222 + 1.01883i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.01883 + 0.588222i) q^{6} +(-1.80732 - 1.04346i) q^{7} -1.00000i q^{8} +(0.807991 - 1.39948i) q^{9} +(2.59135 - 1.49612i) q^{11} +1.17644 q^{12} +(3.27004 - 1.51883i) q^{13} -2.08692 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.630092 + 1.09135i) q^{17} -1.61598i q^{18} +(3.37028 + 1.94583i) q^{19} -2.45514i q^{21} +(1.49612 - 2.59135i) q^{22} +(-0.449714 - 0.778928i) q^{23} +(1.01883 - 0.588222i) q^{24} +(2.07252 - 2.95036i) q^{26} +5.43044 q^{27} +(-1.80732 + 1.04346i) q^{28} +(0.235468 + 0.407843i) q^{29} -0.277015i q^{31} +(-0.866025 - 0.500000i) q^{32} +(3.04858 + 1.76010i) q^{33} +1.26018i q^{34} +(-0.807991 - 1.39948i) q^{36} +(-6.09479 + 3.51883i) q^{37} +3.89166 q^{38} +(3.47094 + 2.43820i) q^{39} +(9.66804 - 5.58184i) q^{41} +(-1.22757 - 2.12621i) q^{42} +(-3.89166 + 6.74056i) q^{43} -2.99224i q^{44} +(-0.778928 - 0.449714i) q^{46} +11.3189i q^{47} +(0.588222 - 1.01883i) q^{48} +(-1.32239 - 2.29044i) q^{49} -1.48254 q^{51} +(0.319674 - 3.59135i) q^{52} -12.0148 q^{53} +(4.70290 - 2.71522i) q^{54} +(-1.04346 + 1.80732i) q^{56} +4.57832i q^{57} +(0.407843 + 0.235468i) q^{58} +(-10.7029 - 6.17932i) q^{59} +(-3.82102 + 6.61820i) q^{61} +(-0.138508 - 0.239902i) q^{62} +(-2.92060 + 1.68621i) q^{63} -1.00000 q^{64} +3.52020 q^{66} +(3.46410 - 2.00000i) q^{67} +(0.630092 + 1.09135i) q^{68} +(0.529063 - 0.916364i) q^{69} +(4.07532 + 2.35289i) q^{71} +(-1.39948 - 0.807991i) q^{72} -15.2984i q^{73} +(-3.51883 + 6.09479i) q^{74} +(3.37028 - 1.94583i) q^{76} -6.24455 q^{77} +(4.22502 + 0.376079i) q^{78} +1.63645 q^{79} +(0.770331 + 1.33425i) q^{81} +(5.58184 - 9.66804i) q^{82} +11.1943i q^{83} +(-2.12621 - 1.22757i) q^{84} +7.78333i q^{86} +(-0.277015 + 0.479805i) q^{87} +(-1.49612 - 2.59135i) q^{88} +(5.98533 - 3.45563i) q^{89} +(-7.49486 - 0.667134i) q^{91} -0.899428 q^{92} +(0.282231 - 0.162946i) q^{93} +(5.65944 + 9.80244i) q^{94} -1.17644i q^{96} +(-2.23289 - 1.28916i) q^{97} +(-2.29044 - 1.32239i) q^{98} -4.83540i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 16 q^{9} - 6 q^{11} + 20 q^{14} - 8 q^{16} - 18 q^{19} + 2 q^{26} + 6 q^{29} + 16 q^{36} + 60 q^{39} + 42 q^{41} + 12 q^{46} + 30 q^{49} - 40 q^{51} - 36 q^{54} + 10 q^{56} - 60 q^{59}+ \cdots + 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.588222 + 1.01883i 0.339610 + 0.588222i 0.984359 0.176172i \(-0.0563716\pi\)
−0.644749 + 0.764394i \(0.723038\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 1.01883 + 0.588222i 0.415936 + 0.240140i
\(7\) −1.80732 1.04346i −0.683104 0.394390i 0.117919 0.993023i \(-0.462378\pi\)
−0.801024 + 0.598633i \(0.795711\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.807991 1.39948i 0.269330 0.466494i
\(10\) 0 0
\(11\) 2.59135 1.49612i 0.781322 0.451096i −0.0555766 0.998454i \(-0.517700\pi\)
0.836899 + 0.547358i \(0.184366\pi\)
\(12\) 1.17644 0.339610
\(13\) 3.27004 1.51883i 0.906946 0.421248i
\(14\) −2.08692 −0.557752
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.630092 + 1.09135i −0.152820 + 0.264692i −0.932263 0.361781i \(-0.882169\pi\)
0.779443 + 0.626473i \(0.215502\pi\)
\(18\) 1.61598i 0.380890i
\(19\) 3.37028 + 1.94583i 0.773195 + 0.446404i 0.834013 0.551744i \(-0.186038\pi\)
−0.0608181 + 0.998149i \(0.519371\pi\)
\(20\) 0 0
\(21\) 2.45514i 0.535756i
\(22\) 1.49612 2.59135i 0.318973 0.552478i
\(23\) −0.449714 0.778928i −0.0937719 0.162418i 0.815324 0.579006i \(-0.196559\pi\)
−0.909095 + 0.416588i \(0.863226\pi\)
\(24\) 1.01883 0.588222i 0.207968 0.120070i
\(25\) 0 0
\(26\) 2.07252 2.95036i 0.406455 0.578614i
\(27\) 5.43044 1.04509
\(28\) −1.80732 + 1.04346i −0.341552 + 0.197195i
\(29\) 0.235468 + 0.407843i 0.0437254 + 0.0757346i 0.887060 0.461654i \(-0.152744\pi\)
−0.843334 + 0.537389i \(0.819411\pi\)
\(30\) 0 0
\(31\) 0.277015i 0.0497534i −0.999691 0.0248767i \(-0.992081\pi\)
0.999691 0.0248767i \(-0.00791932\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 3.04858 + 1.76010i 0.530689 + 0.306394i
\(34\) 1.26018i 0.216120i
\(35\) 0 0
\(36\) −0.807991 1.39948i −0.134665 0.233247i
\(37\) −6.09479 + 3.51883i −1.00198 + 0.578492i −0.908833 0.417161i \(-0.863025\pi\)
−0.0931448 + 0.995653i \(0.529692\pi\)
\(38\) 3.89166 0.631311
\(39\) 3.47094 + 2.43820i 0.555795 + 0.390425i
\(40\) 0 0
\(41\) 9.66804 5.58184i 1.50989 0.871738i 0.509960 0.860198i \(-0.329660\pi\)
0.999933 0.0115395i \(-0.00367323\pi\)
\(42\) −1.22757 2.12621i −0.189418 0.328082i
\(43\) −3.89166 + 6.74056i −0.593473 + 1.02793i 0.400287 + 0.916390i \(0.368910\pi\)
−0.993760 + 0.111536i \(0.964423\pi\)
\(44\) 2.99224i 0.451096i
\(45\) 0 0
\(46\) −0.778928 0.449714i −0.114847 0.0663067i
\(47\) 11.3189i 1.65103i 0.564381 + 0.825514i \(0.309115\pi\)
−0.564381 + 0.825514i \(0.690885\pi\)
\(48\) 0.588222 1.01883i 0.0849025 0.147055i
\(49\) −1.32239 2.29044i −0.188912 0.327206i
\(50\) 0 0
\(51\) −1.48254 −0.207597
\(52\) 0.319674 3.59135i 0.0443309 0.498031i
\(53\) −12.0148 −1.65036 −0.825181 0.564868i \(-0.808927\pi\)
−0.825181 + 0.564868i \(0.808927\pi\)
\(54\) 4.70290 2.71522i 0.639984 0.369495i
\(55\) 0 0
\(56\) −1.04346 + 1.80732i −0.139438 + 0.241514i
\(57\) 4.57832i 0.606413i
\(58\) 0.407843 + 0.235468i 0.0535525 + 0.0309185i
\(59\) −10.7029 6.17932i −1.39340 0.804479i −0.399709 0.916642i \(-0.630889\pi\)
−0.993690 + 0.112163i \(0.964222\pi\)
\(60\) 0 0
\(61\) −3.82102 + 6.61820i −0.489232 + 0.847374i −0.999923 0.0123900i \(-0.996056\pi\)
0.510692 + 0.859764i \(0.329389\pi\)
\(62\) −0.138508 0.239902i −0.0175905 0.0304676i
\(63\) −2.92060 + 1.68621i −0.367961 + 0.212442i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.52020 0.433306
\(67\) 3.46410 2.00000i 0.423207 0.244339i −0.273241 0.961946i \(-0.588096\pi\)
0.696449 + 0.717607i \(0.254762\pi\)
\(68\) 0.630092 + 1.09135i 0.0764099 + 0.132346i
\(69\) 0.529063 0.916364i 0.0636917 0.110317i
\(70\) 0 0
\(71\) 4.07532 + 2.35289i 0.483651 + 0.279236i 0.721937 0.691959i \(-0.243252\pi\)
−0.238286 + 0.971195i \(0.576585\pi\)
\(72\) −1.39948 0.807991i −0.164930 0.0952226i
\(73\) 15.2984i 1.79054i −0.445520 0.895272i \(-0.646981\pi\)
0.445520 0.895272i \(-0.353019\pi\)
\(74\) −3.51883 + 6.09479i −0.409056 + 0.708505i
\(75\) 0 0
\(76\) 3.37028 1.94583i 0.386598 0.223202i
\(77\) −6.24455 −0.711633
\(78\) 4.22502 + 0.376079i 0.478390 + 0.0425825i
\(79\) 1.63645 0.184115 0.0920574 0.995754i \(-0.470656\pi\)
0.0920574 + 0.995754i \(0.470656\pi\)
\(80\) 0 0
\(81\) 0.770331 + 1.33425i 0.0855923 + 0.148250i
\(82\) 5.58184 9.66804i 0.616412 1.06766i
\(83\) 11.1943i 1.22873i 0.789020 + 0.614367i \(0.210589\pi\)
−0.789020 + 0.614367i \(0.789411\pi\)
\(84\) −2.12621 1.22757i −0.231989 0.133939i
\(85\) 0 0
\(86\) 7.78333i 0.839298i
\(87\) −0.277015 + 0.479805i −0.0296992 + 0.0514405i
\(88\) −1.49612 2.59135i −0.159487 0.276239i
\(89\) 5.98533 3.45563i 0.634444 0.366296i −0.148027 0.988983i \(-0.547292\pi\)
0.782471 + 0.622687i \(0.213959\pi\)
\(90\) 0 0
\(91\) −7.49486 0.667134i −0.785674 0.0699347i
\(92\) −0.899428 −0.0937719
\(93\) 0.282231 0.162946i 0.0292660 0.0168968i
\(94\) 5.65944 + 9.80244i 0.583727 + 1.01104i
\(95\) 0 0
\(96\) 1.17644i 0.120070i
\(97\) −2.23289 1.28916i −0.226716 0.130894i 0.382340 0.924022i \(-0.375118\pi\)
−0.609056 + 0.793127i \(0.708452\pi\)
\(98\) −2.29044 1.32239i −0.231369 0.133581i
\(99\) 4.83540i 0.485976i
\(100\) 0 0
\(101\) −0.783361 1.35682i −0.0779474 0.135009i 0.824417 0.565983i \(-0.191503\pi\)
−0.902364 + 0.430974i \(0.858170\pi\)
\(102\) −1.28391 + 0.741268i −0.127126 + 0.0733965i
\(103\) 0.916364 0.0902920 0.0451460 0.998980i \(-0.485625\pi\)
0.0451460 + 0.998980i \(0.485625\pi\)
\(104\) −1.51883 3.27004i −0.148934 0.320654i
\(105\) 0 0
\(106\) −10.4051 + 6.00741i −1.01064 + 0.583491i
\(107\) −5.85118 10.1345i −0.565655 0.979743i −0.996988 0.0775504i \(-0.975290\pi\)
0.431334 0.902193i \(-0.358043\pi\)
\(108\) 2.71522 4.70290i 0.261272 0.452537i
\(109\) 15.9902i 1.53159i 0.643087 + 0.765793i \(0.277653\pi\)
−0.643087 + 0.765793i \(0.722347\pi\)
\(110\) 0 0
\(111\) −7.17018 4.13970i −0.680563 0.392923i
\(112\) 2.08692i 0.197195i
\(113\) −1.39101 + 2.40930i −0.130855 + 0.226648i −0.924007 0.382377i \(-0.875106\pi\)
0.793151 + 0.609025i \(0.208439\pi\)
\(114\) 2.28916 + 3.96494i 0.214400 + 0.371351i
\(115\) 0 0
\(116\) 0.470937 0.0437254
\(117\) 0.516588 5.80356i 0.0477586 0.536539i
\(118\) −12.3586 −1.13771
\(119\) 2.27756 1.31495i 0.208784 0.120541i
\(120\) 0 0
\(121\) −1.02326 + 1.77234i −0.0930240 + 0.161122i
\(122\) 7.64204i 0.691878i
\(123\) 11.3739 + 6.56672i 1.02555 + 0.592101i
\(124\) −0.239902 0.138508i −0.0215439 0.0124384i
\(125\) 0 0
\(126\) −1.68621 + 2.92060i −0.150220 + 0.260188i
\(127\) 4.34985 + 7.53415i 0.385986 + 0.668548i 0.991906 0.126978i \(-0.0405278\pi\)
−0.605919 + 0.795526i \(0.707195\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −9.15664 −0.806197
\(130\) 0 0
\(131\) −15.8740 −1.38692 −0.693459 0.720496i \(-0.743914\pi\)
−0.693459 + 0.720496i \(0.743914\pi\)
\(132\) 3.04858 1.76010i 0.265345 0.153197i
\(133\) −4.06079 7.03350i −0.352115 0.609882i
\(134\) 2.00000 3.46410i 0.172774 0.299253i
\(135\) 0 0
\(136\) 1.09135 + 0.630092i 0.0935827 + 0.0540300i
\(137\) 6.25538 + 3.61155i 0.534433 + 0.308555i 0.742820 0.669491i \(-0.233488\pi\)
−0.208386 + 0.978047i \(0.566821\pi\)
\(138\) 1.05813i 0.0900737i
\(139\) −9.93700 + 17.2114i −0.842846 + 1.45985i 0.0446337 + 0.999003i \(0.485788\pi\)
−0.887479 + 0.460848i \(0.847545\pi\)
\(140\) 0 0
\(141\) −11.5320 + 6.65801i −0.971171 + 0.560706i
\(142\) 4.70577 0.394900
\(143\) 6.20147 8.82819i 0.518593 0.738250i
\(144\) −1.61598 −0.134665
\(145\) 0 0
\(146\) −7.64921 13.2488i −0.633053 1.09648i
\(147\) 1.55571 2.69457i 0.128313 0.222245i
\(148\) 7.03766i 0.578492i
\(149\) 0.851450 + 0.491585i 0.0697535 + 0.0402722i 0.534471 0.845187i \(-0.320511\pi\)
−0.464718 + 0.885459i \(0.653844\pi\)
\(150\) 0 0
\(151\) 8.06034i 0.655941i 0.944688 + 0.327971i \(0.106365\pi\)
−0.944688 + 0.327971i \(0.893635\pi\)
\(152\) 1.94583 3.37028i 0.157828 0.273366i
\(153\) 1.01822 + 1.76360i 0.0823180 + 0.142579i
\(154\) −5.40794 + 3.12228i −0.435784 + 0.251600i
\(155\) 0 0
\(156\) 3.84702 1.78682i 0.308008 0.143060i
\(157\) −2.73373 −0.218176 −0.109088 0.994032i \(-0.534793\pi\)
−0.109088 + 0.994032i \(0.534793\pi\)
\(158\) 1.41721 0.818224i 0.112747 0.0650944i
\(159\) −7.06738 12.2411i −0.560480 0.970779i
\(160\) 0 0
\(161\) 1.87703i 0.147931i
\(162\) 1.33425 + 0.770331i 0.104829 + 0.0605229i
\(163\) 21.2842 + 12.2885i 1.66711 + 0.962506i 0.969185 + 0.246334i \(0.0792260\pi\)
0.697924 + 0.716172i \(0.254107\pi\)
\(164\) 11.1637i 0.871738i
\(165\) 0 0
\(166\) 5.59715 + 9.69455i 0.434423 + 0.752443i
\(167\) −11.9826 + 6.91817i −0.927243 + 0.535344i −0.885939 0.463802i \(-0.846485\pi\)
−0.0413047 + 0.999147i \(0.513151\pi\)
\(168\) −2.45514 −0.189418
\(169\) 8.38631 9.93327i 0.645101 0.764097i
\(170\) 0 0
\(171\) 5.44631 3.14443i 0.416490 0.240460i
\(172\) 3.89166 + 6.74056i 0.296737 + 0.513963i
\(173\) 6.58638 11.4079i 0.500753 0.867330i −0.499247 0.866460i \(-0.666390\pi\)
1.00000 0.000869643i \(-0.000276816\pi\)
\(174\) 0.554031i 0.0420010i
\(175\) 0 0
\(176\) −2.59135 1.49612i −0.195330 0.112774i
\(177\) 14.5392i 1.09284i
\(178\) 3.45563 5.98533i 0.259011 0.448620i
\(179\) 1.55786 + 2.69828i 0.116440 + 0.201679i 0.918354 0.395759i \(-0.129519\pi\)
−0.801915 + 0.597438i \(0.796185\pi\)
\(180\) 0 0
\(181\) 7.91439 0.588272 0.294136 0.955764i \(-0.404968\pi\)
0.294136 + 0.955764i \(0.404968\pi\)
\(182\) −6.82430 + 3.16967i −0.505851 + 0.234952i
\(183\) −8.99043 −0.664592
\(184\) −0.778928 + 0.449714i −0.0574233 + 0.0331534i
\(185\) 0 0
\(186\) 0.162946 0.282231i 0.0119478 0.0206942i
\(187\) 3.77077i 0.275746i
\(188\) 9.80244 + 5.65944i 0.714916 + 0.412757i
\(189\) −9.81457 5.66644i −0.713905 0.412173i
\(190\) 0 0
\(191\) −6.98046 + 12.0905i −0.505088 + 0.874839i 0.494894 + 0.868953i \(0.335207\pi\)
−0.999983 + 0.00588562i \(0.998127\pi\)
\(192\) −0.588222 1.01883i −0.0424512 0.0735277i
\(193\) −11.8018 + 6.81379i −0.849514 + 0.490467i −0.860487 0.509472i \(-0.829841\pi\)
0.0109726 + 0.999940i \(0.496507\pi\)
\(194\) −2.57832 −0.185113
\(195\) 0 0
\(196\) −2.64477 −0.188912
\(197\) 15.3477 8.86097i 1.09348 0.631318i 0.158976 0.987282i \(-0.449181\pi\)
0.934500 + 0.355964i \(0.115848\pi\)
\(198\) −2.41770 4.18758i −0.171818 0.297598i
\(199\) −7.18270 + 12.4408i −0.509168 + 0.881905i 0.490775 + 0.871286i \(0.336714\pi\)
−0.999944 + 0.0106193i \(0.996620\pi\)
\(200\) 0 0
\(201\) 4.07532 + 2.35289i 0.287451 + 0.165960i
\(202\) −1.35682 0.783361i −0.0954656 0.0551171i
\(203\) 0.982807i 0.0689795i
\(204\) −0.741268 + 1.28391i −0.0518991 + 0.0898919i
\(205\) 0 0
\(206\) 0.793595 0.458182i 0.0552924 0.0319231i
\(207\) −1.45346 −0.101022
\(208\) −2.95036 2.07252i −0.204571 0.143704i
\(209\) 11.6448 0.805486
\(210\) 0 0
\(211\) 10.1115 + 17.5137i 0.696108 + 1.20569i 0.969806 + 0.243878i \(0.0784197\pi\)
−0.273698 + 0.961816i \(0.588247\pi\)
\(212\) −6.00741 + 10.4051i −0.412591 + 0.714628i
\(213\) 5.53608i 0.379326i
\(214\) −10.1345 5.85118i −0.692783 0.399978i
\(215\) 0 0
\(216\) 5.43044i 0.369495i
\(217\) −0.289054 + 0.500656i −0.0196223 + 0.0339868i
\(218\) 7.99511 + 13.8479i 0.541497 + 0.937901i
\(219\) 15.5865 8.99886i 1.05324 0.608086i
\(220\) 0 0
\(221\) −0.402849 + 4.52577i −0.0270985 + 0.304436i
\(222\) −8.27941 −0.555677
\(223\) 9.65189 5.57252i 0.646338 0.373164i −0.140714 0.990050i \(-0.544940\pi\)
0.787052 + 0.616887i \(0.211606\pi\)
\(224\) 1.04346 + 1.80732i 0.0697190 + 0.120757i
\(225\) 0 0
\(226\) 2.78203i 0.185058i
\(227\) 14.9885 + 8.65364i 0.994825 + 0.574362i 0.906713 0.421748i \(-0.138583\pi\)
0.0881117 + 0.996111i \(0.471917\pi\)
\(228\) 3.96494 + 2.28916i 0.262585 + 0.151603i
\(229\) 9.90350i 0.654442i 0.944948 + 0.327221i \(0.106112\pi\)
−0.944948 + 0.327221i \(0.893888\pi\)
\(230\) 0 0
\(231\) −3.67318 6.36213i −0.241677 0.418598i
\(232\) 0.407843 0.235468i 0.0267762 0.0154593i
\(233\) −19.1742 −1.25614 −0.628070 0.778156i \(-0.716155\pi\)
−0.628070 + 0.778156i \(0.716155\pi\)
\(234\) −2.45440 5.28432i −0.160449 0.345447i
\(235\) 0 0
\(236\) −10.7029 + 6.17932i −0.696699 + 0.402240i
\(237\) 0.962594 + 1.66726i 0.0625272 + 0.108300i
\(238\) 1.31495 2.27756i 0.0852356 0.147632i
\(239\) 2.16448i 0.140009i 0.997547 + 0.0700043i \(0.0223013\pi\)
−0.997547 + 0.0700043i \(0.977699\pi\)
\(240\) 0 0
\(241\) −13.9442 8.05067i −0.898223 0.518589i −0.0215996 0.999767i \(-0.506876\pi\)
−0.876623 + 0.481178i \(0.840209\pi\)
\(242\) 2.04653i 0.131556i
\(243\) 7.23941 12.5390i 0.464408 0.804379i
\(244\) 3.82102 + 6.61820i 0.244616 + 0.423687i
\(245\) 0 0
\(246\) 13.1334 0.837358
\(247\) 13.9763 + 1.24407i 0.889293 + 0.0791580i
\(248\) −0.277015 −0.0175905
\(249\) −11.4051 + 6.58473i −0.722768 + 0.417290i
\(250\) 0 0
\(251\) 9.04439 15.6653i 0.570877 0.988787i −0.425600 0.904912i \(-0.639937\pi\)
0.996476 0.0838757i \(-0.0267299\pi\)
\(252\) 3.37242i 0.212442i
\(253\) −2.33073 1.34565i −0.146532 0.0846003i
\(254\) 7.53415 + 4.34985i 0.472735 + 0.272934i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.02260 8.69939i −0.313301 0.542653i 0.665774 0.746154i \(-0.268102\pi\)
−0.979075 + 0.203500i \(0.934768\pi\)
\(258\) −7.92989 + 4.57832i −0.493693 + 0.285034i
\(259\) 14.6870 0.912607
\(260\) 0 0
\(261\) 0.761025 0.0471063
\(262\) −13.7473 + 7.93700i −0.849310 + 0.490350i
\(263\) −7.90133 13.6855i −0.487217 0.843884i 0.512675 0.858583i \(-0.328654\pi\)
−0.999892 + 0.0146985i \(0.995321\pi\)
\(264\) 1.76010 3.04858i 0.108327 0.187627i
\(265\) 0 0
\(266\) −7.03350 4.06079i −0.431251 0.248983i
\(267\) 7.04141 + 4.06536i 0.430927 + 0.248796i
\(268\) 4.00000i 0.244339i
\(269\) 3.69294 6.39635i 0.225162 0.389993i −0.731206 0.682157i \(-0.761042\pi\)
0.956368 + 0.292164i \(0.0943754\pi\)
\(270\) 0 0
\(271\) 26.8493 15.5014i 1.63098 0.941645i 0.647184 0.762334i \(-0.275947\pi\)
0.983793 0.179310i \(-0.0573866\pi\)
\(272\) 1.26018 0.0764099
\(273\) −3.72894 8.02841i −0.225686 0.485901i
\(274\) 7.22309 0.436363
\(275\) 0 0
\(276\) −0.529063 0.916364i −0.0318459 0.0551586i
\(277\) 2.35368 4.07668i 0.141419 0.244944i −0.786612 0.617447i \(-0.788167\pi\)
0.928031 + 0.372503i \(0.121500\pi\)
\(278\) 19.8740i 1.19196i
\(279\) −0.387678 0.223826i −0.0232097 0.0134001i
\(280\) 0 0
\(281\) 10.7771i 0.642910i −0.946925 0.321455i \(-0.895828\pi\)
0.946925 0.321455i \(-0.104172\pi\)
\(282\) −6.65801 + 11.5320i −0.396479 + 0.686721i
\(283\) 14.5610 + 25.2204i 0.865561 + 1.49919i 0.866489 + 0.499195i \(0.166371\pi\)
−0.000928800 1.00000i \(0.500296\pi\)
\(284\) 4.07532 2.35289i 0.241826 0.139618i
\(285\) 0 0
\(286\) 0.956541 10.7462i 0.0565615 0.635434i
\(287\) −23.2977 −1.37522
\(288\) −1.39948 + 0.807991i −0.0824652 + 0.0476113i
\(289\) 7.70597 + 13.3471i 0.453292 + 0.785125i
\(290\) 0 0
\(291\) 3.03325i 0.177812i
\(292\) −13.2488 7.64921i −0.775328 0.447636i
\(293\) −22.0186 12.7124i −1.28634 0.742668i −0.308339 0.951277i \(-0.599773\pi\)
−0.977999 + 0.208609i \(0.933106\pi\)
\(294\) 3.11143i 0.181462i
\(295\) 0 0
\(296\) 3.51883 + 6.09479i 0.204528 + 0.354253i
\(297\) 14.0722 8.12458i 0.816551 0.471436i
\(298\) 0.983169 0.0569535
\(299\) −2.65364 1.86408i −0.153464 0.107803i
\(300\) 0 0
\(301\) 14.0670 8.12158i 0.810808 0.468120i
\(302\) 4.03017 + 6.98046i 0.231910 + 0.401680i
\(303\) 0.921580 1.59622i 0.0529434 0.0917007i
\(304\) 3.89166i 0.223202i
\(305\) 0 0
\(306\) 1.76360 + 1.01822i 0.100819 + 0.0582076i
\(307\) 25.3305i 1.44569i −0.691012 0.722843i \(-0.742835\pi\)
0.691012 0.722843i \(-0.257165\pi\)
\(308\) −3.12228 + 5.40794i −0.177908 + 0.308146i
\(309\) 0.539025 + 0.933619i 0.0306641 + 0.0531117i
\(310\) 0 0
\(311\) −24.3495 −1.38074 −0.690368 0.723459i \(-0.742551\pi\)
−0.690368 + 0.723459i \(0.742551\pi\)
\(312\) 2.43820 3.47094i 0.138036 0.196503i
\(313\) −15.6891 −0.886802 −0.443401 0.896323i \(-0.646228\pi\)
−0.443401 + 0.896323i \(0.646228\pi\)
\(314\) −2.36748 + 1.36687i −0.133605 + 0.0771367i
\(315\) 0 0
\(316\) 0.818224 1.41721i 0.0460287 0.0797240i
\(317\) 19.4607i 1.09302i −0.837453 0.546510i \(-0.815956\pi\)
0.837453 0.546510i \(-0.184044\pi\)
\(318\) −12.2411 7.06738i −0.686445 0.396319i
\(319\) 1.22036 + 0.704577i 0.0683272 + 0.0394487i
\(320\) 0 0
\(321\) 6.88358 11.9227i 0.384204 0.665461i
\(322\) 0.938516 + 1.62556i 0.0523015 + 0.0905888i
\(323\) −4.24717 + 2.45211i −0.236319 + 0.136439i
\(324\) 1.54066 0.0855923
\(325\) 0 0
\(326\) 24.5769 1.36119
\(327\) −16.2913 + 9.40580i −0.900912 + 0.520142i
\(328\) −5.58184 9.66804i −0.308206 0.533828i
\(329\) 11.8108 20.4569i 0.651150 1.12782i
\(330\) 0 0
\(331\) 5.73925 + 3.31356i 0.315457 + 0.182129i 0.649366 0.760476i \(-0.275034\pi\)
−0.333909 + 0.942605i \(0.608368\pi\)
\(332\) 9.69455 + 5.59715i 0.532058 + 0.307184i
\(333\) 11.3727i 0.623221i
\(334\) −6.91817 + 11.9826i −0.378546 + 0.655660i
\(335\) 0 0
\(336\) −2.12621 + 1.22757i −0.115995 + 0.0669695i
\(337\) −11.0614 −0.602555 −0.301277 0.953537i \(-0.597413\pi\)
−0.301277 + 0.953537i \(0.597413\pi\)
\(338\) 2.29613 12.7956i 0.124893 0.695990i
\(339\) −3.27290 −0.177759
\(340\) 0 0
\(341\) −0.414448 0.717844i −0.0224436 0.0388734i
\(342\) 3.14443 5.44631i 0.170031 0.294503i
\(343\) 20.1279i 1.08680i
\(344\) 6.74056 + 3.89166i 0.363427 + 0.209824i
\(345\) 0 0
\(346\) 13.1728i 0.708172i
\(347\) 8.86035 15.3466i 0.475649 0.823847i −0.523962 0.851741i \(-0.675547\pi\)
0.999611 + 0.0278940i \(0.00888008\pi\)
\(348\) 0.277015 + 0.479805i 0.0148496 + 0.0257202i
\(349\) −15.3172 + 8.84341i −0.819913 + 0.473377i −0.850387 0.526158i \(-0.823632\pi\)
0.0304733 + 0.999536i \(0.490299\pi\)
\(350\) 0 0
\(351\) 17.7578 8.24791i 0.947839 0.440241i
\(352\) −2.99224 −0.159487
\(353\) 29.1183 16.8114i 1.54981 0.894783i 0.551654 0.834073i \(-0.313997\pi\)
0.998155 0.0607098i \(-0.0193364\pi\)
\(354\) −7.26962 12.5914i −0.386376 0.669223i
\(355\) 0 0
\(356\) 6.91127i 0.366296i
\(357\) 2.67942 + 1.54697i 0.141810 + 0.0818741i
\(358\) 2.69828 + 1.55786i 0.142609 + 0.0823352i
\(359\) 17.4880i 0.922981i −0.887145 0.461490i \(-0.847315\pi\)
0.887145 0.461490i \(-0.152685\pi\)
\(360\) 0 0
\(361\) −1.92748 3.33849i −0.101446 0.175710i
\(362\) 6.85407 3.95720i 0.360242 0.207986i
\(363\) −2.40762 −0.126367
\(364\) −4.32518 + 6.15717i −0.226701 + 0.322723i
\(365\) 0 0
\(366\) −7.78594 + 4.49521i −0.406978 + 0.234969i
\(367\) −3.67988 6.37373i −0.192088 0.332706i 0.753854 0.657042i \(-0.228193\pi\)
−0.945942 + 0.324336i \(0.894859\pi\)
\(368\) −0.449714 + 0.778928i −0.0234430 + 0.0406044i
\(369\) 18.0403i 0.939141i
\(370\) 0 0
\(371\) 21.7147 + 12.5370i 1.12737 + 0.650887i
\(372\) 0.325893i 0.0168968i
\(373\) 14.6008 25.2893i 0.756000 1.30943i −0.188875 0.982001i \(-0.560484\pi\)
0.944875 0.327430i \(-0.106183\pi\)
\(374\) 1.88538 + 3.26558i 0.0974909 + 0.168859i
\(375\) 0 0
\(376\) 11.3189 0.583727
\(377\) 1.38944 + 0.976027i 0.0715596 + 0.0502680i
\(378\) −11.3329 −0.582901
\(379\) 13.2943 7.67544i 0.682880 0.394261i −0.118059 0.993007i \(-0.537667\pi\)
0.800939 + 0.598746i \(0.204334\pi\)
\(380\) 0 0
\(381\) −5.11735 + 8.86350i −0.262170 + 0.454091i
\(382\) 13.9609i 0.714303i
\(383\) 2.76474 + 1.59622i 0.141272 + 0.0815632i 0.568970 0.822358i \(-0.307342\pi\)
−0.427698 + 0.903922i \(0.640675\pi\)
\(384\) −1.01883 0.588222i −0.0519919 0.0300176i
\(385\) 0 0
\(386\) −6.81379 + 11.8018i −0.346813 + 0.600697i
\(387\) 6.28885 + 10.8926i 0.319680 + 0.553703i
\(388\) −2.23289 + 1.28916i −0.113358 + 0.0654472i
\(389\) −28.9316 −1.46689 −0.733445 0.679749i \(-0.762089\pi\)
−0.733445 + 0.679749i \(0.762089\pi\)
\(390\) 0 0
\(391\) 1.13345 0.0573208
\(392\) −2.29044 + 1.32239i −0.115685 + 0.0667906i
\(393\) −9.33743 16.1729i −0.471011 0.815815i
\(394\) 8.86097 15.3477i 0.446409 0.773204i
\(395\) 0 0
\(396\) −4.18758 2.41770i −0.210434 0.121494i
\(397\) 4.32245 + 2.49557i 0.216937 + 0.125249i 0.604531 0.796581i \(-0.293360\pi\)
−0.387594 + 0.921830i \(0.626694\pi\)
\(398\) 14.3654i 0.720073i
\(399\) 4.77729 8.27451i 0.239164 0.414244i
\(400\) 0 0
\(401\) 3.46032 1.99782i 0.172800 0.0997662i −0.411105 0.911588i \(-0.634857\pi\)
0.583905 + 0.811822i \(0.301524\pi\)
\(402\) 4.70577 0.234703
\(403\) −0.420739 0.905851i −0.0209585 0.0451236i
\(404\) −1.56672 −0.0779474
\(405\) 0 0
\(406\) −0.491403 0.851136i −0.0243879 0.0422412i
\(407\) −10.5292 + 18.2371i −0.521911 + 0.903977i
\(408\) 1.48254i 0.0733965i
\(409\) −2.53695 1.46471i −0.125444 0.0724252i 0.435965 0.899964i \(-0.356407\pi\)
−0.561409 + 0.827538i \(0.689741\pi\)
\(410\) 0 0
\(411\) 8.49756i 0.419154i
\(412\) 0.458182 0.793595i 0.0225730 0.0390976i
\(413\) 12.8957 + 22.3361i 0.634558 + 1.09909i
\(414\) −1.25873 + 0.726729i −0.0618633 + 0.0357168i
\(415\) 0 0
\(416\) −3.59135 0.319674i −0.176081 0.0156733i
\(417\) −23.3806 −1.14495
\(418\) 10.0847 5.82239i 0.493257 0.284782i
\(419\) 4.85425 + 8.40780i 0.237145 + 0.410748i 0.959894 0.280363i \(-0.0904549\pi\)
−0.722749 + 0.691111i \(0.757122\pi\)
\(420\) 0 0
\(421\) 22.8217i 1.11226i 0.831094 + 0.556132i \(0.187715\pi\)
−0.831094 + 0.556132i \(0.812285\pi\)
\(422\) 17.5137 + 10.1115i 0.852554 + 0.492222i
\(423\) 15.8406 + 9.14555i 0.770194 + 0.444672i
\(424\) 12.0148i 0.583491i
\(425\) 0 0
\(426\) 2.76804 + 4.79438i 0.134112 + 0.232289i
\(427\) 13.8116 7.97416i 0.668392 0.385897i
\(428\) −11.7024 −0.565655
\(429\) 12.6423 + 1.12532i 0.610374 + 0.0543308i
\(430\) 0 0
\(431\) 10.0125 5.78073i 0.482286 0.278448i −0.239082 0.970999i \(-0.576847\pi\)
0.721369 + 0.692551i \(0.243513\pi\)
\(432\) −2.71522 4.70290i −0.130636 0.226268i
\(433\) 6.28278 10.8821i 0.301931 0.522960i −0.674642 0.738145i \(-0.735702\pi\)
0.976573 + 0.215185i \(0.0690354\pi\)
\(434\) 0.578108i 0.0277501i
\(435\) 0 0
\(436\) 13.8479 + 7.99511i 0.663196 + 0.382897i
\(437\) 3.50027i 0.167441i
\(438\) 8.99886 15.5865i 0.429982 0.744751i
\(439\) 0.905142 + 1.56775i 0.0432001 + 0.0748247i 0.886817 0.462121i \(-0.152911\pi\)
−0.843617 + 0.536946i \(0.819578\pi\)
\(440\) 0 0
\(441\) −4.27390 −0.203519
\(442\) 1.91401 + 4.12085i 0.0910400 + 0.196009i
\(443\) −16.7633 −0.796450 −0.398225 0.917288i \(-0.630374\pi\)
−0.398225 + 0.917288i \(0.630374\pi\)
\(444\) −7.17018 + 4.13970i −0.340282 + 0.196462i
\(445\) 0 0
\(446\) 5.57252 9.65189i 0.263867 0.457030i
\(447\) 1.15664i 0.0547073i
\(448\) 1.80732 + 1.04346i 0.0853880 + 0.0492988i
\(449\) −6.13311 3.54095i −0.289439 0.167108i 0.348250 0.937402i \(-0.386776\pi\)
−0.637689 + 0.770294i \(0.720109\pi\)
\(450\) 0 0
\(451\) 16.7022 28.9290i 0.786475 1.36222i
\(452\) 1.39101 + 2.40930i 0.0654277 + 0.113324i
\(453\) −8.21212 + 4.74127i −0.385839 + 0.222764i
\(454\) 17.3073 0.812271
\(455\) 0 0
\(456\) 4.57832 0.214400
\(457\) −0.944133 + 0.545096i −0.0441647 + 0.0254985i −0.521920 0.852995i \(-0.674784\pi\)
0.477755 + 0.878493i \(0.341451\pi\)
\(458\) 4.95175 + 8.57668i 0.231380 + 0.400762i
\(459\) −3.42168 + 5.92652i −0.159710 + 0.276626i
\(460\) 0 0
\(461\) −13.5007 7.79465i −0.628791 0.363033i 0.151493 0.988458i \(-0.451592\pi\)
−0.780284 + 0.625426i \(0.784925\pi\)
\(462\) −6.36213 3.67318i −0.295993 0.170892i
\(463\) 19.1896i 0.891817i 0.895079 + 0.445908i \(0.147119\pi\)
−0.895079 + 0.445908i \(0.852881\pi\)
\(464\) 0.235468 0.407843i 0.0109313 0.0189337i
\(465\) 0 0
\(466\) −16.6053 + 9.58708i −0.769226 + 0.444113i
\(467\) 23.1857 1.07290 0.536452 0.843931i \(-0.319764\pi\)
0.536452 + 0.843931i \(0.319764\pi\)
\(468\) −4.76773 3.34916i −0.220389 0.154815i
\(469\) −8.34767 −0.385460
\(470\) 0 0
\(471\) −1.60804 2.78521i −0.0740946 0.128336i
\(472\) −6.17932 + 10.7029i −0.284426 + 0.492641i
\(473\) 23.2895i 1.07085i
\(474\) 1.66726 + 0.962594i 0.0765799 + 0.0442134i
\(475\) 0 0
\(476\) 2.62990i 0.120541i
\(477\) −9.70786 + 16.8145i −0.444493 + 0.769884i
\(478\) 1.08224 + 1.87449i 0.0495005 + 0.0857374i
\(479\) −3.01812 + 1.74251i −0.137901 + 0.0796174i −0.567363 0.823467i \(-0.692037\pi\)
0.429462 + 0.903085i \(0.358703\pi\)
\(480\) 0 0
\(481\) −14.5857 + 20.7637i −0.665051 + 0.946742i
\(482\) −16.1013 −0.733396
\(483\) −1.91238 + 1.10411i −0.0870162 + 0.0502388i
\(484\) 1.02326 + 1.77234i 0.0465120 + 0.0805611i
\(485\) 0 0
\(486\) 14.4788i 0.656773i
\(487\) −1.85369 1.07023i −0.0839988 0.0484967i 0.457412 0.889255i \(-0.348776\pi\)
−0.541411 + 0.840758i \(0.682110\pi\)
\(488\) 6.61820 + 3.82102i 0.299592 + 0.172969i
\(489\) 28.9133i 1.30751i
\(490\) 0 0
\(491\) −13.6201 23.5908i −0.614668 1.06464i −0.990443 0.137926i \(-0.955956\pi\)
0.375774 0.926711i \(-0.377377\pi\)
\(492\) 11.3739 6.56672i 0.512775 0.296051i
\(493\) −0.593468 −0.0267284
\(494\) 12.7259 5.91077i 0.572565 0.265938i
\(495\) 0 0
\(496\) −0.239902 + 0.138508i −0.0107719 + 0.00621918i
\(497\) −4.91028 8.50486i −0.220256 0.381495i
\(498\) −6.58473 + 11.4051i −0.295069 + 0.511074i
\(499\) 22.7855i 1.02002i 0.860169 + 0.510010i \(0.170358\pi\)
−0.860169 + 0.510010i \(0.829642\pi\)
\(500\) 0 0
\(501\) −14.0969 8.13884i −0.629802 0.363616i
\(502\) 18.0888i 0.807341i
\(503\) 4.80162 8.31665i 0.214094 0.370821i −0.738898 0.673817i \(-0.764654\pi\)
0.952992 + 0.302996i \(0.0979869\pi\)
\(504\) 1.68621 + 2.92060i 0.0751098 + 0.130094i
\(505\) 0 0
\(506\) −2.69130 −0.119643
\(507\) 15.0533 + 2.70126i 0.668541 + 0.119967i
\(508\) 8.69969 0.385986
\(509\) 13.5627 7.83041i 0.601155 0.347077i −0.168341 0.985729i \(-0.553841\pi\)
0.769496 + 0.638652i \(0.220508\pi\)
\(510\) 0 0
\(511\) −15.9633 + 27.6492i −0.706173 + 1.22313i
\(512\) 1.00000i 0.0441942i
\(513\) 18.3021 + 10.5667i 0.808057 + 0.466532i
\(514\) −8.69939 5.02260i −0.383714 0.221537i
\(515\) 0 0
\(516\) −4.57832 + 7.92989i −0.201549 + 0.349094i
\(517\) 16.9344 + 29.3312i 0.744773 + 1.28998i
\(518\) 12.7193 7.34351i 0.558855 0.322655i
\(519\) 15.4970 0.680243
\(520\) 0 0
\(521\) 3.26689 0.143125 0.0715625 0.997436i \(-0.477201\pi\)
0.0715625 + 0.997436i \(0.477201\pi\)
\(522\) 0.659067 0.380513i 0.0288466 0.0166546i
\(523\) −7.99511 13.8479i −0.349602 0.605528i 0.636577 0.771213i \(-0.280350\pi\)
−0.986179 + 0.165685i \(0.947016\pi\)
\(524\) −7.93700 + 13.7473i −0.346730 + 0.600553i
\(525\) 0 0
\(526\) −13.6855 7.90133i −0.596716 0.344514i
\(527\) 0.302321 + 0.174545i 0.0131693 + 0.00760331i
\(528\) 3.52020i 0.153197i
\(529\) 11.0955 19.2180i 0.482414 0.835565i
\(530\) 0 0
\(531\) −17.2957 + 9.98567i −0.750569 + 0.433341i
\(532\) −8.12158 −0.352115
\(533\) 23.1370 32.9369i 1.00217 1.42666i
\(534\) 8.13071 0.351850
\(535\) 0 0
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) −1.83273 + 3.17438i −0.0790881 + 0.136985i
\(538\) 7.38587i 0.318428i
\(539\) −6.85354 3.95689i −0.295203 0.170435i
\(540\) 0 0
\(541\) 7.38554i 0.317529i −0.987316 0.158765i \(-0.949249\pi\)
0.987316 0.158765i \(-0.0507511\pi\)
\(542\) 15.5014 26.8493i 0.665843 1.15327i
\(543\) 4.65542 + 8.06342i 0.199783 + 0.346035i
\(544\) 1.09135 0.630092i 0.0467913 0.0270150i
\(545\) 0 0
\(546\) −7.24356 5.08833i −0.309996 0.217761i
\(547\) 11.4488 0.489515 0.244757 0.969584i \(-0.421292\pi\)
0.244757 + 0.969584i \(0.421292\pi\)
\(548\) 6.25538 3.61155i 0.267217 0.154278i
\(549\) 6.17470 + 10.6949i 0.263530 + 0.456447i
\(550\) 0 0
\(551\) 1.83273i 0.0780768i
\(552\) −0.916364 0.529063i −0.0390030 0.0225184i
\(553\) −2.95759 1.70757i −0.125770 0.0726131i
\(554\) 4.70735i 0.199996i
\(555\) 0 0
\(556\) 9.93700 + 17.2114i 0.421423 + 0.729926i
\(557\) −16.8071 + 9.70356i −0.712138 + 0.411153i −0.811852 0.583863i \(-0.801540\pi\)
0.0997144 + 0.995016i \(0.468207\pi\)
\(558\) −0.447652 −0.0189506
\(559\) −2.48813 + 27.9527i −0.105237 + 1.18227i
\(560\) 0 0
\(561\) −3.84177 + 2.21805i −0.162200 + 0.0936461i
\(562\) −5.38857 9.33328i −0.227303 0.393700i
\(563\) 4.44885 7.70563i 0.187497 0.324754i −0.756918 0.653509i \(-0.773296\pi\)
0.944415 + 0.328756i \(0.106629\pi\)
\(564\) 13.3160i 0.560706i
\(565\) 0 0
\(566\) 25.2204 + 14.5610i 1.06009 + 0.612044i
\(567\) 3.21524i 0.135027i
\(568\) 2.35289 4.07532i 0.0987249 0.170997i
\(569\) −3.44997 5.97552i −0.144630 0.250507i 0.784605 0.619996i \(-0.212866\pi\)
−0.929235 + 0.369490i \(0.879533\pi\)
\(570\) 0 0
\(571\) −32.4491 −1.35795 −0.678975 0.734161i \(-0.737576\pi\)
−0.678975 + 0.734161i \(0.737576\pi\)
\(572\) −4.54470 9.78473i −0.190023 0.409120i
\(573\) −16.4242 −0.686132
\(574\) −20.1764 + 11.6489i −0.842147 + 0.486214i
\(575\) 0 0
\(576\) −0.807991 + 1.39948i −0.0336663 + 0.0583117i
\(577\) 25.3915i 1.05706i 0.848914 + 0.528530i \(0.177257\pi\)
−0.848914 + 0.528530i \(0.822743\pi\)
\(578\) 13.3471 + 7.70597i 0.555167 + 0.320526i
\(579\) −13.8842 8.01604i −0.577007 0.333135i
\(580\) 0 0
\(581\) 11.6808 20.2317i 0.484601 0.839354i
\(582\) −1.51662 2.62687i −0.0628661 0.108887i
\(583\) −31.1346 + 17.9756i −1.28946 + 0.744473i
\(584\) −15.2984 −0.633053
\(585\) 0 0
\(586\) −25.4248 −1.05029
\(587\) −2.13382 + 1.23196i −0.0880722 + 0.0508485i −0.543389 0.839481i \(-0.682859\pi\)
0.455317 + 0.890329i \(0.349526\pi\)
\(588\) −1.55571 2.69457i −0.0641565 0.111122i
\(589\) 0.539025 0.933619i 0.0222101 0.0384691i
\(590\) 0 0
\(591\) 18.0556 + 10.4244i 0.742710 + 0.428804i
\(592\) 6.09479 + 3.51883i 0.250494 + 0.144623i
\(593\) 40.6651i 1.66992i −0.550313 0.834958i \(-0.685492\pi\)
0.550313 0.834958i \(-0.314508\pi\)
\(594\) 8.12458 14.0722i 0.333355 0.577389i
\(595\) 0 0
\(596\) 0.851450 0.491585i 0.0348767 0.0201361i
\(597\) −16.9001 −0.691675
\(598\) −3.23016 0.287524i −0.132091 0.0117577i
\(599\) −26.1916 −1.07016 −0.535079 0.844802i \(-0.679718\pi\)
−0.535079 + 0.844802i \(0.679718\pi\)
\(600\) 0 0
\(601\) 6.74916 + 11.6899i 0.275304 + 0.476840i 0.970212 0.242259i \(-0.0778882\pi\)
−0.694908 + 0.719099i \(0.744555\pi\)
\(602\) 8.12158 14.0670i 0.331011 0.573328i
\(603\) 6.46392i 0.263231i
\(604\) 6.98046 + 4.03017i 0.284031 + 0.163985i
\(605\) 0 0
\(606\) 1.84316i 0.0748733i
\(607\) 4.91431 8.51183i 0.199466 0.345485i −0.748890 0.662695i \(-0.769413\pi\)
0.948355 + 0.317210i \(0.102746\pi\)
\(608\) −1.94583 3.37028i −0.0789139 0.136683i
\(609\) 1.00131 0.578108i 0.0405752 0.0234261i
\(610\) 0 0
\(611\) 17.1915 + 37.0132i 0.695492 + 1.49739i
\(612\) 2.03643 0.0823180
\(613\) −17.8551 + 10.3086i −0.721161 + 0.416362i −0.815180 0.579208i \(-0.803362\pi\)
0.0940190 + 0.995570i \(0.470029\pi\)
\(614\) −12.6652 21.9368i −0.511127 0.885299i
\(615\) 0 0
\(616\) 6.24455i 0.251600i
\(617\) 15.4318 + 8.90958i 0.621262 + 0.358686i 0.777360 0.629056i \(-0.216558\pi\)
−0.156098 + 0.987742i \(0.549892\pi\)
\(618\) 0.933619 + 0.539025i 0.0375557 + 0.0216828i
\(619\) 29.3377i 1.17918i −0.807701 0.589592i \(-0.799289\pi\)
0.807701 0.589592i \(-0.200711\pi\)
\(620\) 0 0
\(621\) −2.44214 4.22992i −0.0979999 0.169741i
\(622\) −21.0873 + 12.1748i −0.845524 + 0.488164i
\(623\) −14.4232 −0.577855
\(624\) 0.376079 4.22502i 0.0150552 0.169136i
\(625\) 0 0
\(626\) −13.5872 + 7.84457i −0.543053 + 0.313532i
\(627\) 6.84971 + 11.8640i 0.273551 + 0.473804i
\(628\) −1.36687 + 2.36748i −0.0545439 + 0.0944728i
\(629\) 8.86875i 0.353620i
\(630\) 0 0
\(631\) −15.5662 8.98714i −0.619680 0.357772i 0.157064 0.987588i \(-0.449797\pi\)
−0.776744 + 0.629816i \(0.783130\pi\)
\(632\) 1.63645i 0.0650944i
\(633\) −11.8957 + 20.6039i −0.472810 + 0.818931i
\(634\) −9.73033 16.8534i −0.386441 0.669335i
\(635\) 0 0
\(636\) −14.1348 −0.560480
\(637\) −7.80305 5.48135i −0.309168 0.217179i
\(638\) 1.40915 0.0557890
\(639\) 6.58564 3.80222i 0.260524 0.150414i
\(640\) 0 0
\(641\) −12.7805 + 22.1365i −0.504800 + 0.874339i 0.495185 + 0.868788i \(0.335100\pi\)
−0.999985 + 0.00555129i \(0.998233\pi\)
\(642\) 13.7672i 0.543347i
\(643\) 19.0376 + 10.9914i 0.750769 + 0.433457i 0.825972 0.563712i \(-0.190627\pi\)
−0.0752028 + 0.997168i \(0.523960\pi\)
\(644\) 1.62556 + 0.938516i 0.0640560 + 0.0369827i
\(645\) 0 0
\(646\) −2.45211 + 4.24717i −0.0964769 + 0.167103i
\(647\) −15.5751 26.9769i −0.612321 1.06057i −0.990848 0.134981i \(-0.956903\pi\)
0.378527 0.925590i \(-0.376431\pi\)
\(648\) 1.33425 0.770331i 0.0524144 0.0302615i
\(649\) −36.9800 −1.45159
\(650\) 0 0
\(651\) −0.680112 −0.0266557
\(652\) 21.2842 12.2885i 0.833554 0.481253i
\(653\) 8.91711 + 15.4449i 0.348954 + 0.604405i 0.986064 0.166367i \(-0.0532038\pi\)
−0.637110 + 0.770773i \(0.719870\pi\)
\(654\) −9.40580 + 16.2913i −0.367796 + 0.637041i
\(655\) 0 0
\(656\) −9.66804 5.58184i −0.377473 0.217934i
\(657\) −21.4098 12.3610i −0.835277 0.482248i
\(658\) 23.6216i 0.920865i
\(659\) −9.89464 + 17.1380i −0.385440 + 0.667602i −0.991830 0.127565i \(-0.959284\pi\)
0.606390 + 0.795168i \(0.292617\pi\)
\(660\) 0 0
\(661\) −15.7895 + 9.11607i −0.614140 + 0.354574i −0.774584 0.632471i \(-0.782041\pi\)
0.160444 + 0.987045i \(0.448707\pi\)
\(662\) 6.62711 0.257570
\(663\) −4.84795 + 2.25172i −0.188279 + 0.0874495i
\(664\) 11.1943 0.434423
\(665\) 0 0
\(666\) 5.68636 + 9.84907i 0.220342 + 0.381644i
\(667\) 0.211787 0.366826i 0.00820042 0.0142035i
\(668\) 13.8363i 0.535344i
\(669\) 11.3549 + 6.55576i 0.439006 + 0.253460i
\(670\) 0 0
\(671\) 22.8668i 0.882763i
\(672\) −1.22757 + 2.12621i −0.0473546 + 0.0820205i
\(673\) 9.92322 + 17.1875i 0.382512 + 0.662530i 0.991421 0.130710i \(-0.0417257\pi\)
−0.608909 + 0.793240i \(0.708392\pi\)
\(674\) −9.57948 + 5.53072i −0.368988 + 0.213035i
\(675\) 0 0
\(676\) −4.40930 12.2294i −0.169589 0.470361i
\(677\) −4.02129 −0.154551 −0.0772753 0.997010i \(-0.524622\pi\)
−0.0772753 + 0.997010i \(0.524622\pi\)
\(678\) −2.83441 + 1.63645i −0.108855 + 0.0628474i
\(679\) 2.69037 + 4.65986i 0.103247 + 0.178829i
\(680\) 0 0
\(681\) 20.3610i 0.780237i
\(682\) −0.717844 0.414448i −0.0274877 0.0158700i
\(683\) −8.99680 5.19430i −0.344253 0.198754i 0.317898 0.948125i \(-0.397023\pi\)
−0.662151 + 0.749370i \(0.730356\pi\)
\(684\) 6.28885i 0.240460i
\(685\) 0 0
\(686\) 10.0639 + 17.4312i 0.384242 + 0.665527i
\(687\) −10.0900 + 5.82545i −0.384957 + 0.222255i
\(688\) 7.78333 0.296737
\(689\) −39.2889 + 18.2485i −1.49679 + 0.695211i
\(690\) 0 0
\(691\) −24.5864 + 14.1949i −0.935309 + 0.540001i −0.888487 0.458902i \(-0.848243\pi\)
−0.0468225 + 0.998903i \(0.514910\pi\)
\(692\) −6.58638 11.4079i −0.250376 0.433665i
\(693\) −5.04554 + 8.73913i −0.191664 + 0.331972i
\(694\) 17.7207i 0.672669i
\(695\) 0 0
\(696\) 0.479805 + 0.277015i 0.0181869 + 0.0105002i
\(697\) 14.0683i 0.532875i
\(698\) −8.84341 + 15.3172i −0.334728 + 0.579766i
\(699\) −11.2787 19.5352i −0.426598 0.738889i
\(700\) 0 0
\(701\) 16.7917 0.634213 0.317106 0.948390i \(-0.397289\pi\)
0.317106 + 0.948390i \(0.397289\pi\)
\(702\) 11.2547 16.0218i 0.424782 0.604703i
\(703\) −27.3882 −1.03297
\(704\) −2.59135 + 1.49612i −0.0976652 + 0.0563871i
\(705\) 0 0
\(706\) 16.8114 29.1183i 0.632707 1.09588i
\(707\) 3.26962i 0.122967i
\(708\) −12.5914 7.26962i −0.473212 0.273209i
\(709\) 41.9846 + 24.2398i 1.57676 + 0.910345i 0.995307 + 0.0967675i \(0.0308503\pi\)
0.581457 + 0.813577i \(0.302483\pi\)
\(710\) 0 0
\(711\) 1.32223 2.29018i 0.0495877 0.0858883i
\(712\) −3.45563 5.98533i −0.129505 0.224310i
\(713\) −0.215775 + 0.124578i −0.00808083 + 0.00466547i
\(714\) 3.09393 0.115787
\(715\) 0 0
\(716\) 3.11571 0.116440
\(717\) −2.20524 + 1.27319i −0.0823561 + 0.0475483i
\(718\) −8.74400 15.1450i −0.326323 0.565208i
\(719\) −6.14778 + 10.6483i −0.229273 + 0.397113i −0.957593 0.288125i \(-0.906968\pi\)
0.728320 + 0.685238i \(0.240302\pi\)
\(720\) 0 0
\(721\) −1.65617 0.956188i −0.0616789 0.0356103i
\(722\) −3.33849 1.92748i −0.124246 0.0717333i
\(723\) 18.9423i 0.704472i
\(724\) 3.95720 6.85407i 0.147068 0.254729i
\(725\) 0 0
\(726\) −2.08506 + 1.20381i −0.0773839 + 0.0446776i
\(727\) −36.1491 −1.34070 −0.670349 0.742046i \(-0.733855\pi\)
−0.670349 + 0.742046i \(0.733855\pi\)
\(728\) −0.667134 + 7.49486i −0.0247256 + 0.277778i
\(729\) 21.6555 0.802055
\(730\) 0 0
\(731\) −4.90421 8.49435i −0.181389 0.314175i
\(732\) −4.49521 + 7.78594i −0.166148 + 0.287777i
\(733\) 22.4789i 0.830278i 0.909758 + 0.415139i \(0.136267\pi\)
−0.909758 + 0.415139i \(0.863733\pi\)
\(734\) −6.37373 3.67988i −0.235259 0.135827i
\(735\) 0 0
\(736\) 0.899428i 0.0331534i
\(737\) 5.98447 10.3654i 0.220441 0.381815i
\(738\) −9.02015 15.6234i −0.332036 0.575104i
\(739\) −10.6967 + 6.17575i −0.393485 + 0.227179i −0.683669 0.729792i \(-0.739617\pi\)
0.290184 + 0.956971i \(0.406283\pi\)
\(740\) 0 0
\(741\) 6.95369 + 14.9713i 0.255450 + 0.549984i
\(742\) 25.0740 0.920494
\(743\) −19.8871 + 11.4818i −0.729587 + 0.421227i −0.818271 0.574832i \(-0.805067\pi\)
0.0886839 + 0.996060i \(0.471734\pi\)
\(744\) −0.162946 0.282231i −0.00597391 0.0103471i
\(745\) 0 0
\(746\) 29.2016i 1.06915i
\(747\) 15.6662 + 9.04489i 0.573197 + 0.330935i
\(748\) 3.26558 + 1.88538i 0.119401 + 0.0689365i
\(749\) 24.4219i 0.892355i
\(750\) 0 0
\(751\) −16.4263 28.4511i −0.599403 1.03820i −0.992909 0.118874i \(-0.962071\pi\)
0.393506 0.919322i \(-0.371262\pi\)
\(752\) 9.80244 5.65944i 0.357458 0.206379i
\(753\) 21.2804 0.775501
\(754\) 1.69130 + 0.150546i 0.0615935 + 0.00548258i
\(755\) 0 0
\(756\) −9.81457 + 5.66644i −0.356952 + 0.206086i
\(757\) 16.5309 + 28.6323i 0.600826 + 1.04066i 0.992696 + 0.120640i \(0.0384947\pi\)
−0.391871 + 0.920020i \(0.628172\pi\)
\(758\) 7.67544 13.2943i 0.278785 0.482869i
\(759\) 3.16616i 0.114924i
\(760\) 0 0
\(761\) −27.3347 15.7817i −0.990882 0.572086i −0.0853441 0.996352i \(-0.527199\pi\)
−0.905538 + 0.424266i \(0.860532\pi\)
\(762\) 10.2347i 0.370764i
\(763\) 16.6851 28.8995i 0.604043 1.04623i
\(764\) 6.98046 + 12.0905i 0.252544 + 0.437419i
\(765\) 0 0
\(766\) 3.19245 0.115348
\(767\) −44.3842 3.95074i −1.60262 0.142653i
\(768\) −1.17644 −0.0424512
\(769\) 36.8445 21.2722i 1.32865 0.767095i 0.343556 0.939132i \(-0.388368\pi\)
0.985090 + 0.172037i \(0.0550350\pi\)
\(770\) 0 0
\(771\) 5.90880 10.2343i 0.212800 0.368581i
\(772\) 13.6276i 0.490467i
\(773\) −0.923574 0.533226i −0.0332187 0.0191788i 0.483299 0.875456i \(-0.339439\pi\)
−0.516517 + 0.856277i \(0.672772\pi\)
\(774\) 10.8926 + 6.28885i 0.391527 + 0.226048i
\(775\) 0 0
\(776\) −1.28916 + 2.23289i −0.0462782 + 0.0801561i
\(777\) 8.63922 + 14.9636i 0.309930 + 0.536815i
\(778\) −25.0555 + 14.4658i −0.898283 + 0.518624i
\(779\) 43.4453 1.55659
\(780\) 0 0
\(781\) 14.0808 0.503850
\(782\) 0.981592 0.566723i 0.0351017 0.0202660i
\(783\) 1.27870 + 2.21477i 0.0456969 + 0.0791494i
\(784\) −1.32239 + 2.29044i −0.0472281 + 0.0818015i
\(785\) 0 0
\(786\) −16.1729 9.33743i −0.576869 0.333055i
\(787\) −0.0373447 0.0215610i −0.00133119 0.000768565i 0.499334 0.866409i \(-0.333578\pi\)
−0.500665 + 0.865641i \(0.666911\pi\)
\(788\) 17.7219i 0.631318i
\(789\) 9.29546 16.1002i 0.330927 0.573183i
\(790\) 0 0
\(791\) 5.02802 2.90293i 0.178776 0.103216i
\(792\) −4.83540 −0.171818
\(793\) −2.44296 + 27.4453i −0.0867522 + 0.974610i
\(794\) 4.99113 0.177129
\(795\) 0 0
\(796\) 7.18270 + 12.4408i 0.254584 + 0.440953i
\(797\) 17.2951 29.9559i 0.612623 1.06109i −0.378174 0.925735i \(-0.623448\pi\)
0.990797 0.135359i \(-0.0432188\pi\)
\(798\) 9.55458i 0.338229i
\(799\) −12.3529 7.13194i −0.437014 0.252310i
\(800\) 0 0
\(801\) 11.1685i 0.394619i
\(802\) 1.99782 3.46032i 0.0705453 0.122188i
\(803\) −22.8882 39.6436i −0.807708 1.39899i
\(804\) 4.07532 2.35289i 0.143725 0.0829799i
\(805\) 0 0
\(806\) −0.817296 0.574120i −0.0287880 0.0202225i
\(807\) 8.68906 0.305869
\(808\) −1.35682 + 0.783361i −0.0477328 + 0.0275586i
\(809\) 3.04046 + 5.26623i 0.106897 + 0.185151i 0.914512 0.404560i \(-0.132575\pi\)
−0.807615 + 0.589710i \(0.799242\pi\)
\(810\) 0 0
\(811\) 5.47145i 0.192129i 0.995375 + 0.0960644i \(0.0306255\pi\)
−0.995375 + 0.0960644i \(0.969375\pi\)
\(812\) −0.851136 0.491403i −0.0298690 0.0172449i
\(813\) 31.5866 + 18.2365i 1.10779 + 0.639584i
\(814\) 21.0583i 0.738094i
\(815\) 0 0
\(816\) 0.741268 + 1.28391i 0.0259496 + 0.0449460i
\(817\) −26.2320 + 15.1450i −0.917741 + 0.529858i
\(818\) −2.92942 −0.102425
\(819\) −6.98942 + 9.94987i −0.244230 + 0.347677i
\(820\) 0 0
\(821\) 38.1625 22.0331i 1.33188 0.768961i 0.346291 0.938127i \(-0.387441\pi\)
0.985588 + 0.169166i \(0.0541075\pi\)
\(822\) 4.24878 + 7.35910i 0.148193 + 0.256678i
\(823\) −6.25823 + 10.8396i −0.218148 + 0.377844i −0.954242 0.299036i \(-0.903335\pi\)
0.736094 + 0.676880i \(0.236668\pi\)
\(824\) 0.916364i 0.0319231i
\(825\) 0 0
\(826\) 22.3361 + 12.8957i 0.777171 + 0.448700i
\(827\) 51.7679i 1.80015i 0.435738 + 0.900074i \(0.356488\pi\)
−0.435738 + 0.900074i \(0.643512\pi\)
\(828\) −0.726729 + 1.25873i −0.0252556 + 0.0437440i
\(829\) −6.95883 12.0531i −0.241690 0.418620i 0.719506 0.694487i \(-0.244368\pi\)
−0.961196 + 0.275867i \(0.911035\pi\)
\(830\) 0 0
\(831\) 5.53793 0.192109
\(832\) −3.27004 + 1.51883i −0.113368 + 0.0526559i
\(833\) 3.33290 0.115478
\(834\) −20.2482 + 11.6903i −0.701139 + 0.404803i
\(835\) 0 0
\(836\) 5.82239 10.0847i 0.201371 0.348786i
\(837\) 1.50432i 0.0519967i
\(838\) 8.40780 + 4.85425i 0.290443 + 0.167687i
\(839\) 43.3416 + 25.0233i 1.49632 + 0.863899i 0.999991 0.00423634i \(-0.00134847\pi\)
0.496327 + 0.868136i \(0.334682\pi\)
\(840\) 0 0
\(841\) 14.3891 24.9227i 0.496176 0.859402i
\(842\) 11.4109 + 19.7642i 0.393245 + 0.681120i
\(843\) 10.9801 6.33935i 0.378174 0.218339i
\(844\) 20.2231 0.696108
\(845\) 0 0
\(846\) 18.2911 0.628861
\(847\) 3.69874 2.13547i 0.127090 0.0733755i
\(848\) 6.00741 + 10.4051i 0.206295 + 0.357314i
\(849\) −17.1302 + 29.6703i −0.587906 + 1.01828i
\(850\) 0 0
\(851\) 5.48183 + 3.16493i 0.187915 + 0.108493i
\(852\) 4.79438 + 2.76804i 0.164253 + 0.0948314i
\(853\) 12.7392i 0.436183i −0.975928 0.218092i \(-0.930017\pi\)
0.975928 0.218092i \(-0.0699832\pi\)
\(854\) 7.97416 13.8116i 0.272870 0.472625i
\(855\) 0 0
\(856\) −10.1345 + 5.85118i −0.346391 + 0.199989i
\(857\) 30.3306 1.03607 0.518036 0.855359i \(-0.326663\pi\)
0.518036 + 0.855359i \(0.326663\pi\)
\(858\) 11.5112 5.34658i 0.392985 0.182529i
\(859\) −48.7446 −1.66314 −0.831572 0.555417i \(-0.812559\pi\)
−0.831572 + 0.555417i \(0.812559\pi\)
\(860\) 0 0
\(861\) −13.7042 23.7364i −0.467038 0.808934i
\(862\) 5.78073 10.0125i 0.196893 0.341028i
\(863\) 17.6100i 0.599451i −0.954026 0.299725i \(-0.903105\pi\)
0.954026 0.299725i \(-0.0968950\pi\)
\(864\) −4.70290 2.71522i −0.159996 0.0923737i
\(865\) 0 0
\(866\) 12.5656i 0.426995i
\(867\) −9.06563 + 15.7021i −0.307885 + 0.533273i
\(868\) 0.289054 + 0.500656i 0.00981114 + 0.0169934i
\(869\) 4.24061 2.44832i 0.143853 0.0830535i
\(870\) 0 0
\(871\) 8.29009 11.8015i 0.280899 0.399877i
\(872\) 15.9902 0.541497
\(873\) −3.60831 + 2.08326i −0.122123 + 0.0705076i
\(874\) −1.75014 3.03132i −0.0591992 0.102536i
\(875\) 0 0
\(876\) 17.9977i 0.608086i
\(877\) −36.3115 20.9644i −1.22615 0.707918i −0.259928 0.965628i \(-0.583699\pi\)
−0.966222 + 0.257709i \(0.917032\pi\)
\(878\) 1.56775 + 0.905142i 0.0529091 + 0.0305471i
\(879\) 29.9109i 1.00887i
\(880\) 0 0
\(881\) 14.9695 + 25.9280i 0.504336 + 0.873535i 0.999987 + 0.00501392i \(0.00159599\pi\)
−0.495652 + 0.868521i \(0.665071\pi\)
\(882\) −3.70131 + 2.13695i −0.124630 + 0.0719549i
\(883\) 35.3391 1.18926 0.594629 0.804001i \(-0.297299\pi\)
0.594629 + 0.804001i \(0.297299\pi\)
\(884\) 3.71800 + 2.61176i 0.125050 + 0.0878430i
\(885\) 0 0
\(886\) −14.5175 + 8.38166i −0.487724 + 0.281587i
\(887\) −21.2859 36.8682i −0.714709 1.23791i −0.963071 0.269246i \(-0.913226\pi\)
0.248362 0.968667i \(-0.420108\pi\)
\(888\) −4.13970 + 7.17018i −0.138919 + 0.240615i
\(889\) 18.1555i 0.608917i
\(890\) 0 0
\(891\) 3.99240 + 2.30501i 0.133750 + 0.0772208i
\(892\) 11.1450i 0.373164i
\(893\) −22.0246 + 38.1478i −0.737026 + 1.27657i
\(894\) 0.578321 + 1.00168i 0.0193420 + 0.0335013i
\(895\) 0 0
\(896\) 2.08692 0.0697190
\(897\) 0.338256 3.80010i 0.0112940 0.126882i
\(898\) −7.08190 −0.236326
\(899\) 0.112979 0.0652284i 0.00376806 0.00217549i
\(900\) 0 0
\(901\) 7.57045 13.1124i 0.252208 0.436837i
\(902\) 33.4044i 1.11224i
\(903\) 16.5490 + 9.55458i 0.550717 + 0.317957i
\(904\) 2.40930 + 1.39101i 0.0801323 + 0.0462644i
\(905\) 0 0
\(906\) −4.74127 + 8.21212i −0.157518 + 0.272829i
\(907\) 7.22247 + 12.5097i 0.239818 + 0.415377i 0.960662 0.277720i \(-0.0895788\pi\)
−0.720844 + 0.693098i \(0.756245\pi\)
\(908\) 14.9885 8.65364i 0.497412 0.287181i
\(909\) −2.53179 −0.0839743
\(910\) 0 0
\(911\) −42.9419 −1.42273 −0.711364 0.702824i \(-0.751922\pi\)
−0.711364 + 0.702824i \(0.751922\pi\)
\(912\) 3.96494 2.28916i 0.131292 0.0758017i
\(913\) 16.7480 + 29.0084i 0.554278 + 0.960037i
\(914\) −0.545096 + 0.944133i −0.0180302 + 0.0312292i
\(915\) 0 0
\(916\) 8.57668 + 4.95175i 0.283382 + 0.163610i
\(917\) 28.6895 + 16.5639i 0.947410 + 0.546987i
\(918\) 6.84336i 0.225864i
\(919\) 20.3770 35.2940i 0.672175 1.16424i −0.305111 0.952317i \(-0.598693\pi\)
0.977286 0.211925i \(-0.0679733\pi\)
\(920\) 0 0
\(921\) 25.8074 14.8999i 0.850384 0.490970i
\(922\) −15.5893 −0.513406
\(923\) 16.9001 + 1.50432i 0.556273 + 0.0495151i
\(924\) −7.34636 −0.241677
\(925\) 0 0
\(926\) 9.59481 + 16.6187i 0.315305 + 0.546124i
\(927\) 0.740414 1.28243i 0.0243184 0.0421207i
\(928\) 0.470937i 0.0154593i
\(929\) 11.3326 + 6.54286i 0.371809 + 0.214664i 0.674249 0.738504i \(-0.264468\pi\)
−0.302439 + 0.953169i \(0.597801\pi\)
\(930\) 0 0
\(931\) 10.2926i 0.337325i
\(932\) −9.58708 + 16.6053i −0.314035 + 0.543925i
\(933\) −14.3229 24.8080i −0.468911 0.812178i
\(934\) 20.0794 11.5928i 0.657017 0.379329i
\(935\) 0 0
\(936\) −5.80356 0.516588i −0.189695 0.0168852i
\(937\) 41.0546 1.34120 0.670598 0.741821i \(-0.266038\pi\)
0.670598 + 0.741821i \(0.266038\pi\)
\(938\) −7.22930 + 4.17384i −0.236045 + 0.136281i
\(939\) −9.22869 15.9846i −0.301167 0.521636i
\(940\) 0 0
\(941\) 24.4162i 0.795945i 0.917397 + 0.397973i \(0.130286\pi\)
−0.917397 + 0.397973i \(0.869714\pi\)
\(942\) −2.78521 1.60804i −0.0907470 0.0523928i
\(943\) −8.69570 5.02047i −0.283171 0.163489i
\(944\) 12.3586i 0.402240i
\(945\) 0 0
\(946\) 11.6448 + 20.1693i 0.378604 + 0.655762i
\(947\) 3.99122 2.30433i 0.129697 0.0748807i −0.433748 0.901034i \(-0.642809\pi\)
0.563445 + 0.826154i \(0.309476\pi\)
\(948\) 1.92519 0.0625272
\(949\) −23.2357 50.0264i −0.754262 1.62393i
\(950\) 0 0
\(951\) 19.8271 11.4472i 0.642937 0.371200i
\(952\) −1.31495 2.27756i −0.0426178 0.0738162i
\(953\) −2.36493 + 4.09617i −0.0766075 + 0.132688i −0.901784 0.432187i \(-0.857742\pi\)
0.825177 + 0.564875i \(0.191075\pi\)
\(954\) 19.4157i 0.628607i
\(955\) 0 0
\(956\) 1.87449 + 1.08224i 0.0606255 + 0.0350021i
\(957\) 1.65779i 0.0535887i
\(958\) −1.74251 + 3.01812i −0.0562980 + 0.0975111i
\(959\) −7.53700 13.0545i −0.243383 0.421551i
\(960\) 0 0
\(961\) 30.9233 0.997525
\(962\) −2.24976 + 25.2747i −0.0725352 + 0.814889i
\(963\) −18.9108 −0.609392
\(964\) −13.9442 + 8.05067i −0.449111 + 0.259295i
\(965\) 0 0
\(966\) −1.10411 + 1.91238i −0.0355242 + 0.0615297i
\(967\) 23.8186i 0.765955i 0.923758 + 0.382977i \(0.125101\pi\)
−0.923758 + 0.382977i \(0.874899\pi\)
\(968\) 1.77234 + 1.02326i 0.0569653 + 0.0328889i
\(969\) −4.99656 2.88477i −0.160513 0.0926720i
\(970\) 0 0
\(971\) 15.8349 27.4269i 0.508167 0.880170i −0.491789 0.870715i \(-0.663657\pi\)
0.999955 0.00945572i \(-0.00300989\pi\)
\(972\) −7.23941 12.5390i −0.232204 0.402189i
\(973\) 35.9188 20.7377i 1.15150 0.664820i
\(974\) −2.14046 −0.0685847
\(975\) 0 0
\(976\) 7.64204 0.244616
\(977\) 23.2707 13.4354i 0.744497 0.429835i −0.0792052 0.996858i \(-0.525238\pi\)
0.823702 + 0.567023i \(0.191905\pi\)
\(978\) 14.4567 + 25.0397i 0.462273 + 0.800681i
\(979\) 10.3401 17.9095i 0.330470 0.572391i
\(980\) 0 0
\(981\) 22.3780 + 12.9200i 0.714475 + 0.412502i
\(982\) −23.5908 13.6201i −0.752812 0.434636i
\(983\) 8.22637i 0.262380i −0.991357 0.131190i \(-0.958120\pi\)
0.991357 0.131190i \(-0.0418799\pi\)
\(984\) 6.56672 11.3739i 0.209339 0.362587i
\(985\) 0 0
\(986\) −0.513958 + 0.296734i −0.0163678 + 0.00944993i
\(987\) 27.7894 0.884548
\(988\) 8.06556 11.4818i 0.256600 0.365286i
\(989\) 7.00054 0.222604
\(990\) 0 0
\(991\) 11.1157 + 19.2530i 0.353102 + 0.611591i 0.986791 0.161997i \(-0.0517935\pi\)
−0.633689 + 0.773588i \(0.718460\pi\)
\(992\) −0.138508 + 0.239902i −0.00439762 + 0.00761691i
\(993\) 7.79642i 0.247412i
\(994\) −8.50486 4.91028i −0.269758 0.155745i
\(995\) 0 0
\(996\) 13.1695i 0.417290i
\(997\) 11.7850 20.4122i 0.373234 0.646459i −0.616827 0.787098i \(-0.711582\pi\)
0.990061 + 0.140639i \(0.0449157\pi\)
\(998\) 11.3928 + 19.7328i 0.360631 + 0.624632i
\(999\) −33.0974 + 19.1088i −1.04716 + 0.604576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.m.e.101.7 16
5.2 odd 4 130.2.m.b.49.3 yes 8
5.3 odd 4 130.2.m.a.49.2 8
5.4 even 2 inner 650.2.m.e.101.2 16
13.2 odd 12 8450.2.a.cs.1.4 8
13.4 even 6 inner 650.2.m.e.251.7 16
13.11 odd 12 8450.2.a.cr.1.4 8
15.2 even 4 1170.2.bj.a.829.2 8
15.8 even 4 1170.2.bj.b.829.3 8
20.3 even 4 1040.2.df.c.49.3 8
20.7 even 4 1040.2.df.a.49.2 8
65.2 even 12 1690.2.b.e.339.13 16
65.3 odd 12 1690.2.c.f.1689.4 8
65.4 even 6 inner 650.2.m.e.251.2 16
65.17 odd 12 130.2.m.a.69.2 yes 8
65.23 odd 12 1690.2.c.e.1689.4 8
65.24 odd 12 8450.2.a.cs.1.5 8
65.28 even 12 1690.2.b.e.339.4 16
65.37 even 12 1690.2.b.e.339.5 16
65.42 odd 12 1690.2.c.e.1689.5 8
65.43 odd 12 130.2.m.b.69.3 yes 8
65.54 odd 12 8450.2.a.cr.1.5 8
65.62 odd 12 1690.2.c.f.1689.5 8
65.63 even 12 1690.2.b.e.339.12 16
195.17 even 12 1170.2.bj.b.199.3 8
195.173 even 12 1170.2.bj.a.199.2 8
260.43 even 12 1040.2.df.a.849.2 8
260.147 even 12 1040.2.df.c.849.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.2 8 5.3 odd 4
130.2.m.a.69.2 yes 8 65.17 odd 12
130.2.m.b.49.3 yes 8 5.2 odd 4
130.2.m.b.69.3 yes 8 65.43 odd 12
650.2.m.e.101.2 16 5.4 even 2 inner
650.2.m.e.101.7 16 1.1 even 1 trivial
650.2.m.e.251.2 16 65.4 even 6 inner
650.2.m.e.251.7 16 13.4 even 6 inner
1040.2.df.a.49.2 8 20.7 even 4
1040.2.df.a.849.2 8 260.43 even 12
1040.2.df.c.49.3 8 20.3 even 4
1040.2.df.c.849.3 8 260.147 even 12
1170.2.bj.a.199.2 8 195.173 even 12
1170.2.bj.a.829.2 8 15.2 even 4
1170.2.bj.b.199.3 8 195.17 even 12
1170.2.bj.b.829.3 8 15.8 even 4
1690.2.b.e.339.4 16 65.28 even 12
1690.2.b.e.339.5 16 65.37 even 12
1690.2.b.e.339.12 16 65.63 even 12
1690.2.b.e.339.13 16 65.2 even 12
1690.2.c.e.1689.4 8 65.23 odd 12
1690.2.c.e.1689.5 8 65.42 odd 12
1690.2.c.f.1689.4 8 65.3 odd 12
1690.2.c.f.1689.5 8 65.62 odd 12
8450.2.a.cr.1.4 8 13.11 odd 12
8450.2.a.cr.1.5 8 65.54 odd 12
8450.2.a.cs.1.4 8 13.2 odd 12
8450.2.a.cs.1.5 8 65.24 odd 12