Properties

Label 130.2.m.b.49.3
Level $130$
Weight $2$
Character 130.49
Analytic conductor $1.038$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(49,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.50027374224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(1.17644i\) of defining polynomial
Character \(\chi\) \(=\) 130.49
Dual form 130.2.m.b.69.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.01883 - 0.588222i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.235468 + 2.22364i) q^{5} +(1.01883 + 0.588222i) q^{6} +(1.04346 - 1.80732i) q^{7} -1.00000 q^{8} +(-0.807991 + 1.39948i) q^{9} +(-2.04346 + 0.907896i) q^{10} +(2.59135 - 1.49612i) q^{11} +1.17644i q^{12} +(-1.51883 - 3.27004i) q^{13} +2.08692 q^{14} +(1.06809 + 2.40401i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.09135 - 0.630092i) q^{17} -1.61598 q^{18} +(-3.37028 - 1.94583i) q^{19} +(-1.80799 - 1.31574i) q^{20} -2.45514i q^{21} +(2.59135 + 1.49612i) q^{22} +(-0.778928 + 0.449714i) q^{23} +(-1.01883 + 0.588222i) q^{24} +(-4.88911 - 1.04719i) q^{25} +(2.07252 - 2.95036i) q^{26} +5.43044i q^{27} +(1.04346 + 1.80732i) q^{28} +(-0.235468 - 0.407843i) q^{29} +(-1.54789 + 2.12700i) q^{30} -0.277015i q^{31} +(0.500000 - 0.866025i) q^{32} +(1.76010 - 3.04858i) q^{33} -1.26018i q^{34} +(3.77313 + 2.74584i) q^{35} +(-0.807991 - 1.39948i) q^{36} +(-3.51883 - 6.09479i) q^{37} -3.89166i q^{38} +(-3.47094 - 2.43820i) q^{39} +(0.235468 - 2.22364i) q^{40} +(9.66804 - 5.58184i) q^{41} +(2.12621 - 1.22757i) q^{42} +(6.74056 + 3.89166i) q^{43} +2.99224i q^{44} +(-2.92168 - 2.12621i) q^{45} +(-0.778928 - 0.449714i) q^{46} -11.3189 q^{47} +(-1.01883 - 0.588222i) q^{48} +(1.32239 + 2.29044i) q^{49} +(-1.53766 - 4.75769i) q^{50} -1.48254 q^{51} +(3.59135 + 0.319674i) q^{52} +12.0148i q^{53} +(-4.70290 + 2.71522i) q^{54} +(2.71664 + 6.11451i) q^{55} +(-1.04346 + 1.80732i) q^{56} -4.57832 q^{57} +(0.235468 - 0.407843i) q^{58} +(10.7029 + 6.17932i) q^{59} +(-2.61598 - 0.277015i) q^{60} +(-3.82102 + 6.61820i) q^{61} +(0.239902 - 0.138508i) q^{62} +(1.68621 + 2.92060i) q^{63} +1.00000 q^{64} +(7.62901 - 2.60733i) q^{65} +3.52020 q^{66} +(2.00000 + 3.46410i) q^{67} +(1.09135 - 0.630092i) q^{68} +(-0.529063 + 0.916364i) q^{69} +(-0.491403 + 4.64054i) q^{70} +(4.07532 + 2.35289i) q^{71} +(0.807991 - 1.39948i) q^{72} -15.2984 q^{73} +(3.51883 - 6.09479i) q^{74} +(-5.59715 + 1.80897i) q^{75} +(3.37028 - 1.94583i) q^{76} -6.24455i q^{77} +(0.376079 - 4.22502i) q^{78} -1.63645 q^{79} +(2.04346 - 0.907896i) q^{80} +(0.770331 + 1.33425i) q^{81} +(9.66804 + 5.58184i) q^{82} +11.1943 q^{83} +(2.12621 + 1.22757i) q^{84} +(1.65807 - 2.27840i) q^{85} +7.78333i q^{86} +(-0.479805 - 0.277015i) q^{87} +(-2.59135 + 1.49612i) q^{88} +(-5.98533 + 3.45563i) q^{89} +(0.380513 - 3.59335i) q^{90} +(-7.49486 - 0.667134i) q^{91} -0.899428i q^{92} +(-0.162946 - 0.282231i) q^{93} +(-5.65944 - 9.80244i) q^{94} +(5.12041 - 7.03609i) q^{95} -1.17644i q^{96} +(1.28916 - 2.23289i) q^{97} +(-1.32239 + 2.29044i) q^{98} +4.83540i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} - 3 q^{5} - 5 q^{7} - 8 q^{8} + 8 q^{9} - 3 q^{10} - 3 q^{11} - 4 q^{13} - 10 q^{14} - 10 q^{15} - 4 q^{16} + 15 q^{17} + 16 q^{18} + 9 q^{19} - 3 q^{22} + 6 q^{23} + 5 q^{25} + q^{26}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.01883 0.588222i 0.588222 0.339610i −0.176172 0.984359i \(-0.556372\pi\)
0.764394 + 0.644749i \(0.223038\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.235468 + 2.22364i −0.105305 + 0.994440i
\(6\) 1.01883 + 0.588222i 0.415936 + 0.240140i
\(7\) 1.04346 1.80732i 0.394390 0.683104i −0.598633 0.801024i \(-0.704289\pi\)
0.993023 + 0.117919i \(0.0376224\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.807991 + 1.39948i −0.269330 + 0.466494i
\(10\) −2.04346 + 0.907896i −0.646198 + 0.287102i
\(11\) 2.59135 1.49612i 0.781322 0.451096i −0.0555766 0.998454i \(-0.517700\pi\)
0.836899 + 0.547358i \(0.184366\pi\)
\(12\) 1.17644i 0.339610i
\(13\) −1.51883 3.27004i −0.421248 0.906946i
\(14\) 2.08692 0.557752
\(15\) 1.06809 + 2.40401i 0.275779 + 0.620714i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.09135 0.630092i −0.264692 0.152820i 0.361781 0.932263i \(-0.382169\pi\)
−0.626473 + 0.779443i \(0.715502\pi\)
\(18\) −1.61598 −0.380890
\(19\) −3.37028 1.94583i −0.773195 0.446404i 0.0608181 0.998149i \(-0.480629\pi\)
−0.834013 + 0.551744i \(0.813962\pi\)
\(20\) −1.80799 1.31574i −0.404279 0.294208i
\(21\) 2.45514i 0.535756i
\(22\) 2.59135 + 1.49612i 0.552478 + 0.318973i
\(23\) −0.778928 + 0.449714i −0.162418 + 0.0937719i −0.579006 0.815324i \(-0.696559\pi\)
0.416588 + 0.909095i \(0.363226\pi\)
\(24\) −1.01883 + 0.588222i −0.207968 + 0.120070i
\(25\) −4.88911 1.04719i −0.977822 0.209438i
\(26\) 2.07252 2.95036i 0.406455 0.578614i
\(27\) 5.43044i 1.04509i
\(28\) 1.04346 + 1.80732i 0.197195 + 0.341552i
\(29\) −0.235468 0.407843i −0.0437254 0.0757346i 0.843334 0.537389i \(-0.180589\pi\)
−0.887060 + 0.461654i \(0.847256\pi\)
\(30\) −1.54789 + 2.12700i −0.282605 + 0.388335i
\(31\) 0.277015i 0.0497534i −0.999691 0.0248767i \(-0.992081\pi\)
0.999691 0.0248767i \(-0.00791932\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 1.76010 3.04858i 0.306394 0.530689i
\(34\) 1.26018i 0.216120i
\(35\) 3.77313 + 2.74584i 0.637775 + 0.464132i
\(36\) −0.807991 1.39948i −0.134665 0.233247i
\(37\) −3.51883 6.09479i −0.578492 1.00198i −0.995653 0.0931448i \(-0.970308\pi\)
0.417161 0.908833i \(-0.363025\pi\)
\(38\) 3.89166i 0.631311i
\(39\) −3.47094 2.43820i −0.555795 0.390425i
\(40\) 0.235468 2.22364i 0.0372308 0.351588i
\(41\) 9.66804 5.58184i 1.50989 0.871738i 0.509960 0.860198i \(-0.329660\pi\)
0.999933 0.0115395i \(-0.00367323\pi\)
\(42\) 2.12621 1.22757i 0.328082 0.189418i
\(43\) 6.74056 + 3.89166i 1.02793 + 0.593473i 0.916390 0.400287i \(-0.131090\pi\)
0.111536 + 0.993760i \(0.464423\pi\)
\(44\) 2.99224i 0.451096i
\(45\) −2.92168 2.12621i −0.435538 0.316957i
\(46\) −0.778928 0.449714i −0.114847 0.0663067i
\(47\) −11.3189 −1.65103 −0.825514 0.564381i \(-0.809115\pi\)
−0.825514 + 0.564381i \(0.809115\pi\)
\(48\) −1.01883 0.588222i −0.147055 0.0849025i
\(49\) 1.32239 + 2.29044i 0.188912 + 0.327206i
\(50\) −1.53766 4.75769i −0.217458 0.672839i
\(51\) −1.48254 −0.207597
\(52\) 3.59135 + 0.319674i 0.498031 + 0.0443309i
\(53\) 12.0148i 1.65036i 0.564868 + 0.825181i \(0.308927\pi\)
−0.564868 + 0.825181i \(0.691073\pi\)
\(54\) −4.70290 + 2.71522i −0.639984 + 0.369495i
\(55\) 2.71664 + 6.11451i 0.366311 + 0.824480i
\(56\) −1.04346 + 1.80732i −0.139438 + 0.241514i
\(57\) −4.57832 −0.606413
\(58\) 0.235468 0.407843i 0.0309185 0.0535525i
\(59\) 10.7029 + 6.17932i 1.39340 + 0.804479i 0.993690 0.112163i \(-0.0357779\pi\)
0.399709 + 0.916642i \(0.369111\pi\)
\(60\) −2.61598 0.277015i −0.337722 0.0357625i
\(61\) −3.82102 + 6.61820i −0.489232 + 0.847374i −0.999923 0.0123900i \(-0.996056\pi\)
0.510692 + 0.859764i \(0.329389\pi\)
\(62\) 0.239902 0.138508i 0.0304676 0.0175905i
\(63\) 1.68621 + 2.92060i 0.212442 + 0.367961i
\(64\) 1.00000 0.125000
\(65\) 7.62901 2.60733i 0.946262 0.323400i
\(66\) 3.52020 0.433306
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 1.09135 0.630092i 0.132346 0.0764099i
\(69\) −0.529063 + 0.916364i −0.0636917 + 0.110317i
\(70\) −0.491403 + 4.64054i −0.0587339 + 0.554651i
\(71\) 4.07532 + 2.35289i 0.483651 + 0.279236i 0.721937 0.691959i \(-0.243252\pi\)
−0.238286 + 0.971195i \(0.576585\pi\)
\(72\) 0.807991 1.39948i 0.0952226 0.164930i
\(73\) −15.2984 −1.79054 −0.895272 0.445520i \(-0.853019\pi\)
−0.895272 + 0.445520i \(0.853019\pi\)
\(74\) 3.51883 6.09479i 0.409056 0.708505i
\(75\) −5.59715 + 1.80897i −0.646303 + 0.208882i
\(76\) 3.37028 1.94583i 0.386598 0.223202i
\(77\) 6.24455i 0.711633i
\(78\) 0.376079 4.22502i 0.0425825 0.478390i
\(79\) −1.63645 −0.184115 −0.0920574 0.995754i \(-0.529344\pi\)
−0.0920574 + 0.995754i \(0.529344\pi\)
\(80\) 2.04346 0.907896i 0.228466 0.101506i
\(81\) 0.770331 + 1.33425i 0.0855923 + 0.148250i
\(82\) 9.66804 + 5.58184i 1.06766 + 0.616412i
\(83\) 11.1943 1.22873 0.614367 0.789020i \(-0.289411\pi\)
0.614367 + 0.789020i \(0.289411\pi\)
\(84\) 2.12621 + 1.22757i 0.231989 + 0.133939i
\(85\) 1.65807 2.27840i 0.179843 0.247127i
\(86\) 7.78333i 0.839298i
\(87\) −0.479805 0.277015i −0.0514405 0.0296992i
\(88\) −2.59135 + 1.49612i −0.276239 + 0.159487i
\(89\) −5.98533 + 3.45563i −0.634444 + 0.366296i −0.782471 0.622687i \(-0.786041\pi\)
0.148027 + 0.988983i \(0.452708\pi\)
\(90\) 0.380513 3.59335i 0.0401096 0.378773i
\(91\) −7.49486 0.667134i −0.785674 0.0699347i
\(92\) 0.899428i 0.0937719i
\(93\) −0.162946 0.282231i −0.0168968 0.0292660i
\(94\) −5.65944 9.80244i −0.583727 1.01104i
\(95\) 5.12041 7.03609i 0.525343 0.721888i
\(96\) 1.17644i 0.120070i
\(97\) 1.28916 2.23289i 0.130894 0.226716i −0.793127 0.609056i \(-0.791548\pi\)
0.924022 + 0.382340i \(0.124882\pi\)
\(98\) −1.32239 + 2.29044i −0.133581 + 0.231369i
\(99\) 4.83540i 0.485976i
\(100\) 3.35145 3.71050i 0.335145 0.371050i
\(101\) −0.783361 1.35682i −0.0779474 0.135009i 0.824417 0.565983i \(-0.191503\pi\)
−0.902364 + 0.430974i \(0.858170\pi\)
\(102\) −0.741268 1.28391i −0.0733965 0.127126i
\(103\) 0.916364i 0.0902920i −0.998980 0.0451460i \(-0.985625\pi\)
0.998980 0.0451460i \(-0.0143753\pi\)
\(104\) 1.51883 + 3.27004i 0.148934 + 0.320654i
\(105\) 5.45934 + 0.578108i 0.532777 + 0.0564176i
\(106\) −10.4051 + 6.00741i −1.01064 + 0.583491i
\(107\) 10.1345 5.85118i 0.979743 0.565655i 0.0775504 0.996988i \(-0.475290\pi\)
0.902193 + 0.431334i \(0.141957\pi\)
\(108\) −4.70290 2.71522i −0.452537 0.261272i
\(109\) 15.9902i 1.53159i −0.643087 0.765793i \(-0.722347\pi\)
0.643087 0.765793i \(-0.277653\pi\)
\(110\) −3.93700 + 5.40993i −0.375378 + 0.515817i
\(111\) −7.17018 4.13970i −0.680563 0.392923i
\(112\) −2.08692 −0.197195
\(113\) 2.40930 + 1.39101i 0.226648 + 0.130855i 0.609025 0.793151i \(-0.291561\pi\)
−0.382377 + 0.924007i \(0.624894\pi\)
\(114\) −2.28916 3.96494i −0.214400 0.371351i
\(115\) −0.816587 1.83794i −0.0761471 0.171389i
\(116\) 0.470937 0.0437254
\(117\) 5.80356 + 0.516588i 0.536539 + 0.0477586i
\(118\) 12.3586i 1.13771i
\(119\) −2.27756 + 1.31495i −0.208784 + 0.120541i
\(120\) −1.06809 2.40401i −0.0975027 0.219455i
\(121\) −1.02326 + 1.77234i −0.0930240 + 0.161122i
\(122\) −7.64204 −0.691878
\(123\) 6.56672 11.3739i 0.592101 1.02555i
\(124\) 0.239902 + 0.138508i 0.0215439 + 0.0124384i
\(125\) 3.47980 10.6250i 0.311243 0.950330i
\(126\) −1.68621 + 2.92060i −0.150220 + 0.260188i
\(127\) −7.53415 + 4.34985i −0.668548 + 0.385986i −0.795526 0.605919i \(-0.792805\pi\)
0.126978 + 0.991906i \(0.459472\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 9.15664 0.806197
\(130\) 6.07252 + 5.30325i 0.532595 + 0.465126i
\(131\) −15.8740 −1.38692 −0.693459 0.720496i \(-0.743914\pi\)
−0.693459 + 0.720496i \(0.743914\pi\)
\(132\) 1.76010 + 3.04858i 0.153197 + 0.265345i
\(133\) −7.03350 + 4.06079i −0.609882 + 0.352115i
\(134\) −2.00000 + 3.46410i −0.172774 + 0.299253i
\(135\) −12.0753 1.27870i −1.03928 0.110053i
\(136\) 1.09135 + 0.630092i 0.0935827 + 0.0540300i
\(137\) −3.61155 + 6.25538i −0.308555 + 0.534433i −0.978047 0.208386i \(-0.933179\pi\)
0.669491 + 0.742820i \(0.266512\pi\)
\(138\) −1.05813 −0.0900737
\(139\) 9.93700 17.2114i 0.842846 1.45985i −0.0446337 0.999003i \(-0.514212\pi\)
0.887479 0.460848i \(-0.152455\pi\)
\(140\) −4.26453 + 1.89470i −0.360419 + 0.160132i
\(141\) −11.5320 + 6.65801i −0.971171 + 0.560706i
\(142\) 4.70577i 0.394900i
\(143\) −8.82819 6.20147i −0.738250 0.518593i
\(144\) 1.61598 0.134665
\(145\) 0.962340 0.427562i 0.0799180 0.0355071i
\(146\) −7.64921 13.2488i −0.633053 1.09648i
\(147\) 2.69457 + 1.55571i 0.222245 + 0.128313i
\(148\) 7.03766 0.578492
\(149\) −0.851450 0.491585i −0.0697535 0.0402722i 0.464718 0.885459i \(-0.346156\pi\)
−0.534471 + 0.845187i \(0.679489\pi\)
\(150\) −4.36519 3.94279i −0.356416 0.321927i
\(151\) 8.06034i 0.655941i 0.944688 + 0.327971i \(0.106365\pi\)
−0.944688 + 0.327971i \(0.893635\pi\)
\(152\) 3.37028 + 1.94583i 0.273366 + 0.157828i
\(153\) 1.76360 1.01822i 0.142579 0.0823180i
\(154\) 5.40794 3.12228i 0.435784 0.251600i
\(155\) 0.615981 + 0.0652284i 0.0494768 + 0.00523927i
\(156\) 3.84702 1.78682i 0.308008 0.143060i
\(157\) 2.73373i 0.218176i −0.994032 0.109088i \(-0.965207\pi\)
0.994032 0.109088i \(-0.0347930\pi\)
\(158\) −0.818224 1.41721i −0.0650944 0.112747i
\(159\) 7.06738 + 12.2411i 0.560480 + 0.970779i
\(160\) 1.80799 + 1.31574i 0.142934 + 0.104018i
\(161\) 1.87703i 0.147931i
\(162\) −0.770331 + 1.33425i −0.0605229 + 0.104829i
\(163\) 12.2885 21.2842i 0.962506 1.66711i 0.246334 0.969185i \(-0.420774\pi\)
0.716172 0.697924i \(-0.245893\pi\)
\(164\) 11.1637i 0.871738i
\(165\) 6.36448 + 4.63166i 0.495474 + 0.360574i
\(166\) 5.59715 + 9.69455i 0.434423 + 0.752443i
\(167\) −6.91817 11.9826i −0.535344 0.927243i −0.999147 0.0413047i \(-0.986849\pi\)
0.463802 0.885939i \(-0.346485\pi\)
\(168\) 2.45514i 0.189418i
\(169\) −8.38631 + 9.93327i −0.645101 + 0.764097i
\(170\) 2.80219 + 0.296734i 0.214918 + 0.0227584i
\(171\) 5.44631 3.14443i 0.416490 0.240460i
\(172\) −6.74056 + 3.89166i −0.513963 + 0.296737i
\(173\) −11.4079 6.58638i −0.867330 0.500753i −0.000869643 1.00000i \(-0.500277\pi\)
−0.866460 + 0.499247i \(0.833610\pi\)
\(174\) 0.554031i 0.0420010i
\(175\) −6.99420 + 7.74350i −0.528712 + 0.585354i
\(176\) −2.59135 1.49612i −0.195330 0.112774i
\(177\) 14.5392 1.09284
\(178\) −5.98533 3.45563i −0.448620 0.259011i
\(179\) −1.55786 2.69828i −0.116440 0.201679i 0.801915 0.597438i \(-0.203815\pi\)
−0.918354 + 0.395759i \(0.870481\pi\)
\(180\) 3.30219 1.46714i 0.246131 0.109354i
\(181\) 7.91439 0.588272 0.294136 0.955764i \(-0.404968\pi\)
0.294136 + 0.955764i \(0.404968\pi\)
\(182\) −3.16967 6.82430i −0.234952 0.505851i
\(183\) 8.99043i 0.664592i
\(184\) 0.778928 0.449714i 0.0574233 0.0331534i
\(185\) 14.3812 6.38946i 1.05732 0.469763i
\(186\) 0.162946 0.282231i 0.0119478 0.0206942i
\(187\) −3.77077 −0.275746
\(188\) 5.65944 9.80244i 0.412757 0.714916i
\(189\) 9.81457 + 5.66644i 0.713905 + 0.412173i
\(190\) 8.65364 + 0.916364i 0.627801 + 0.0664800i
\(191\) −6.98046 + 12.0905i −0.505088 + 0.874839i 0.494894 + 0.868953i \(0.335207\pi\)
−0.999983 + 0.00588562i \(0.998127\pi\)
\(192\) 1.01883 0.588222i 0.0735277 0.0424512i
\(193\) 6.81379 + 11.8018i 0.490467 + 0.849514i 0.999940 0.0109726i \(-0.00349276\pi\)
−0.509472 + 0.860487i \(0.670159\pi\)
\(194\) 2.57832 0.185113
\(195\) 6.23897 7.14398i 0.446782 0.511591i
\(196\) −2.64477 −0.188912
\(197\) 8.86097 + 15.3477i 0.631318 + 1.09348i 0.987282 + 0.158976i \(0.0508191\pi\)
−0.355964 + 0.934500i \(0.615848\pi\)
\(198\) −4.18758 + 2.41770i −0.297598 + 0.171818i
\(199\) 7.18270 12.4408i 0.509168 0.881905i −0.490775 0.871286i \(-0.663286\pi\)
0.999944 0.0106193i \(-0.00338028\pi\)
\(200\) 4.88911 + 1.04719i 0.345712 + 0.0740477i
\(201\) 4.07532 + 2.35289i 0.287451 + 0.165960i
\(202\) 0.783361 1.35682i 0.0551171 0.0954656i
\(203\) −0.982807 −0.0689795
\(204\) 0.741268 1.28391i 0.0518991 0.0898919i
\(205\) 10.1355 + 22.8125i 0.707892 + 1.59330i
\(206\) 0.793595 0.458182i 0.0552924 0.0319231i
\(207\) 1.45346i 0.101022i
\(208\) −2.07252 + 2.95036i −0.143704 + 0.204571i
\(209\) −11.6448 −0.805486
\(210\) 2.22901 + 5.01698i 0.153816 + 0.346204i
\(211\) 10.1115 + 17.5137i 0.696108 + 1.20569i 0.969806 + 0.243878i \(0.0784197\pi\)
−0.273698 + 0.961816i \(0.588247\pi\)
\(212\) −10.4051 6.00741i −0.714628 0.412591i
\(213\) 5.53608 0.379326
\(214\) 10.1345 + 5.85118i 0.692783 + 0.399978i
\(215\) −10.2408 + 14.0722i −0.698419 + 0.959715i
\(216\) 5.43044i 0.369495i
\(217\) −0.500656 0.289054i −0.0339868 0.0196223i
\(218\) 13.8479 7.99511i 0.937901 0.541497i
\(219\) −15.5865 + 8.99886i −1.05324 + 0.608086i
\(220\) −6.65364 0.704577i −0.448588 0.0475026i
\(221\) −0.402849 + 4.52577i −0.0270985 + 0.304436i
\(222\) 8.27941i 0.555677i
\(223\) −5.57252 9.65189i −0.373164 0.646338i 0.616887 0.787052i \(-0.288394\pi\)
−0.990050 + 0.140714i \(0.955060\pi\)
\(224\) −1.04346 1.80732i −0.0697190 0.120757i
\(225\) 5.41588 5.99609i 0.361059 0.399740i
\(226\) 2.78203i 0.185058i
\(227\) −8.65364 + 14.9885i −0.574362 + 0.994825i 0.421748 + 0.906713i \(0.361417\pi\)
−0.996111 + 0.0881117i \(0.971917\pi\)
\(228\) 2.28916 3.96494i 0.151603 0.262585i
\(229\) 9.90350i 0.654442i −0.944948 0.327221i \(-0.893888\pi\)
0.944948 0.327221i \(-0.106112\pi\)
\(230\) 1.18341 1.62616i 0.0780319 0.107226i
\(231\) −3.67318 6.36213i −0.241677 0.418598i
\(232\) 0.235468 + 0.407843i 0.0154593 + 0.0267762i
\(233\) 19.1742i 1.25614i 0.778156 + 0.628070i \(0.216155\pi\)
−0.778156 + 0.628070i \(0.783845\pi\)
\(234\) 2.45440 + 5.28432i 0.160449 + 0.345447i
\(235\) 2.66524 25.1691i 0.173861 1.64185i
\(236\) −10.7029 + 6.17932i −0.696699 + 0.402240i
\(237\) −1.66726 + 0.962594i −0.108300 + 0.0625272i
\(238\) −2.27756 1.31495i −0.147632 0.0852356i
\(239\) 2.16448i 0.140009i −0.997547 0.0700043i \(-0.977699\pi\)
0.997547 0.0700043i \(-0.0223013\pi\)
\(240\) 1.54789 2.12700i 0.0999161 0.137297i
\(241\) −13.9442 8.05067i −0.898223 0.518589i −0.0215996 0.999767i \(-0.506876\pi\)
−0.876623 + 0.481178i \(0.840209\pi\)
\(242\) −2.04653 −0.131556
\(243\) −12.5390 7.23941i −0.804379 0.464408i
\(244\) −3.82102 6.61820i −0.244616 0.423687i
\(245\) −5.40449 + 2.40118i −0.345280 + 0.153406i
\(246\) 13.1334 0.837358
\(247\) −1.24407 + 13.9763i −0.0791580 + 0.889293i
\(248\) 0.277015i 0.0175905i
\(249\) 11.4051 6.58473i 0.722768 0.417290i
\(250\) 10.9414 2.29891i 0.691997 0.145396i
\(251\) 9.04439 15.6653i 0.570877 0.988787i −0.425600 0.904912i \(-0.639937\pi\)
0.996476 0.0838757i \(-0.0267299\pi\)
\(252\) −3.37242 −0.212442
\(253\) −1.34565 + 2.33073i −0.0846003 + 0.146532i
\(254\) −7.53415 4.34985i −0.472735 0.272934i
\(255\) 0.349090 3.29662i 0.0218609 0.206442i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 8.69939 5.02260i 0.542653 0.313301i −0.203500 0.979075i \(-0.565232\pi\)
0.746154 + 0.665774i \(0.231898\pi\)
\(258\) 4.57832 + 7.92989i 0.285034 + 0.493693i
\(259\) −14.6870 −0.912607
\(260\) −1.55649 + 7.91058i −0.0965294 + 0.490594i
\(261\) 0.761025 0.0471063
\(262\) −7.93700 13.7473i −0.490350 0.849310i
\(263\) −13.6855 + 7.90133i −0.843884 + 0.487217i −0.858583 0.512675i \(-0.828654\pi\)
0.0146985 + 0.999892i \(0.495321\pi\)
\(264\) −1.76010 + 3.04858i −0.108327 + 0.187627i
\(265\) −26.7166 2.82911i −1.64119 0.173791i
\(266\) −7.03350 4.06079i −0.431251 0.248983i
\(267\) −4.06536 + 7.04141i −0.248796 + 0.430927i
\(268\) −4.00000 −0.244339
\(269\) −3.69294 + 6.39635i −0.225162 + 0.389993i −0.956368 0.292164i \(-0.905625\pi\)
0.731206 + 0.682157i \(0.238958\pi\)
\(270\) −4.93028 11.0969i −0.300047 0.675335i
\(271\) 26.8493 15.5014i 1.63098 0.941645i 0.647184 0.762334i \(-0.275947\pi\)
0.983793 0.179310i \(-0.0573866\pi\)
\(272\) 1.26018i 0.0764099i
\(273\) −8.02841 + 3.72894i −0.485901 + 0.225686i
\(274\) −7.22309 −0.436363
\(275\) −14.2361 + 4.60104i −0.858471 + 0.277453i
\(276\) −0.529063 0.916364i −0.0318459 0.0551586i
\(277\) 4.07668 + 2.35368i 0.244944 + 0.141419i 0.617447 0.786612i \(-0.288167\pi\)
−0.372503 + 0.928031i \(0.621500\pi\)
\(278\) 19.8740 1.19196
\(279\) 0.387678 + 0.223826i 0.0232097 + 0.0134001i
\(280\) −3.77313 2.74584i −0.225488 0.164095i
\(281\) 10.7771i 0.642910i −0.946925 0.321455i \(-0.895828\pi\)
0.946925 0.321455i \(-0.104172\pi\)
\(282\) −11.5320 6.65801i −0.686721 0.396479i
\(283\) 25.2204 14.5610i 1.49919 0.865561i 0.499195 0.866489i \(-0.333629\pi\)
1.00000 0.000928800i \(0.000295646\pi\)
\(284\) −4.07532 + 2.35289i −0.241826 + 0.139618i
\(285\) 1.07805 10.1805i 0.0638582 0.603042i
\(286\) 0.956541 10.7462i 0.0565615 0.635434i
\(287\) 23.2977i 1.37522i
\(288\) 0.807991 + 1.39948i 0.0476113 + 0.0824652i
\(289\) −7.70597 13.3471i −0.453292 0.785125i
\(290\) 0.851450 + 0.619630i 0.0499988 + 0.0363859i
\(291\) 3.03325i 0.177812i
\(292\) 7.64921 13.2488i 0.447636 0.775328i
\(293\) −12.7124 + 22.0186i −0.742668 + 1.28634i 0.208609 + 0.977999i \(0.433106\pi\)
−0.951277 + 0.308339i \(0.900227\pi\)
\(294\) 3.11143i 0.181462i
\(295\) −16.2608 + 22.3443i −0.946738 + 1.30094i
\(296\) 3.51883 + 6.09479i 0.204528 + 0.354253i
\(297\) 8.12458 + 14.0722i 0.471436 + 0.816551i
\(298\) 0.983169i 0.0569535i
\(299\) 2.65364 + 1.86408i 0.153464 + 0.107803i
\(300\) 1.23196 5.75176i 0.0711274 0.332078i
\(301\) 14.0670 8.12158i 0.810808 0.468120i
\(302\) −6.98046 + 4.03017i −0.401680 + 0.231910i
\(303\) −1.59622 0.921580i −0.0917007 0.0529434i
\(304\) 3.89166i 0.223202i
\(305\) −13.8167 10.0549i −0.791144 0.575744i
\(306\) 1.76360 + 1.01822i 0.100819 + 0.0582076i
\(307\) 25.3305 1.44569 0.722843 0.691012i \(-0.242835\pi\)
0.722843 + 0.691012i \(0.242835\pi\)
\(308\) 5.40794 + 3.12228i 0.308146 + 0.177908i
\(309\) −0.539025 0.933619i −0.0306641 0.0531117i
\(310\) 0.251501 + 0.566069i 0.0142843 + 0.0321506i
\(311\) −24.3495 −1.38074 −0.690368 0.723459i \(-0.742551\pi\)
−0.690368 + 0.723459i \(0.742551\pi\)
\(312\) 3.47094 + 2.43820i 0.196503 + 0.138036i
\(313\) 15.6891i 0.886802i 0.896323 + 0.443401i \(0.146228\pi\)
−0.896323 + 0.443401i \(0.853772\pi\)
\(314\) 2.36748 1.36687i 0.133605 0.0771367i
\(315\) −6.89140 + 3.06181i −0.388287 + 0.172513i
\(316\) 0.818224 1.41721i 0.0460287 0.0797240i
\(317\) 19.4607 1.09302 0.546510 0.837453i \(-0.315956\pi\)
0.546510 + 0.837453i \(0.315956\pi\)
\(318\) −7.06738 + 12.2411i −0.396319 + 0.686445i
\(319\) −1.22036 0.704577i −0.0683272 0.0394487i
\(320\) −0.235468 + 2.22364i −0.0131631 + 0.124305i
\(321\) 6.88358 11.9227i 0.384204 0.665461i
\(322\) −1.62556 + 0.938516i −0.0905888 + 0.0523015i
\(323\) 2.45211 + 4.24717i 0.136439 + 0.236319i
\(324\) −1.54066 −0.0855923
\(325\) 4.00137 + 17.5781i 0.221956 + 0.975057i
\(326\) 24.5769 1.36119
\(327\) −9.40580 16.2913i −0.520142 0.900912i
\(328\) −9.66804 + 5.58184i −0.533828 + 0.308206i
\(329\) −11.8108 + 20.4569i −0.651150 + 1.12782i
\(330\) −0.828895 + 7.82763i −0.0456292 + 0.430897i
\(331\) 5.73925 + 3.31356i 0.315457 + 0.182129i 0.649366 0.760476i \(-0.275034\pi\)
−0.333909 + 0.942605i \(0.608368\pi\)
\(332\) −5.59715 + 9.69455i −0.307184 + 0.532058i
\(333\) 11.3727 0.623221
\(334\) 6.91817 11.9826i 0.378546 0.655660i
\(335\) −8.17384 + 3.63158i −0.446584 + 0.198415i
\(336\) −2.12621 + 1.22757i −0.115995 + 0.0669695i
\(337\) 11.0614i 0.602555i −0.953537 0.301277i \(-0.902587\pi\)
0.953537 0.301277i \(-0.0974130\pi\)
\(338\) −12.7956 2.29613i −0.695990 0.124893i
\(339\) 3.27290 0.177759
\(340\) 1.14412 + 2.57514i 0.0620484 + 0.139656i
\(341\) −0.414448 0.717844i −0.0224436 0.0388734i
\(342\) 5.44631 + 3.14443i 0.294503 + 0.170031i
\(343\) 20.1279 1.08680
\(344\) −6.74056 3.89166i −0.363427 0.209824i
\(345\) −1.91308 1.39222i −0.102997 0.0749545i
\(346\) 13.1728i 0.708172i
\(347\) 15.3466 + 8.86035i 0.823847 + 0.475649i 0.851741 0.523962i \(-0.175547\pi\)
−0.0278940 + 0.999611i \(0.508880\pi\)
\(348\) 0.479805 0.277015i 0.0257202 0.0148496i
\(349\) 15.3172 8.84341i 0.819913 0.473377i −0.0304733 0.999536i \(-0.509701\pi\)
0.850387 + 0.526158i \(0.176368\pi\)
\(350\) −10.2032 2.18540i −0.545382 0.116815i
\(351\) 17.7578 8.24791i 0.947839 0.440241i
\(352\) 2.99224i 0.159487i
\(353\) −16.8114 29.1183i −0.894783 1.54981i −0.834073 0.551654i \(-0.813997\pi\)
−0.0607098 0.998155i \(-0.519336\pi\)
\(354\) 7.26962 + 12.5914i 0.386376 + 0.669223i
\(355\) −6.19157 + 8.50799i −0.328614 + 0.451557i
\(356\) 6.91127i 0.366296i
\(357\) −1.54697 + 2.67942i −0.0818741 + 0.141810i
\(358\) 1.55786 2.69828i 0.0823352 0.142609i
\(359\) 17.4880i 0.922981i 0.887145 + 0.461490i \(0.152685\pi\)
−0.887145 + 0.461490i \(0.847315\pi\)
\(360\) 2.92168 + 2.12621i 0.153986 + 0.112061i
\(361\) −1.92748 3.33849i −0.101446 0.175710i
\(362\) 3.95720 + 6.85407i 0.207986 + 0.360242i
\(363\) 2.40762i 0.126367i
\(364\) 4.32518 6.15717i 0.226701 0.322723i
\(365\) 3.60229 34.0181i 0.188553 1.78059i
\(366\) −7.78594 + 4.49521i −0.406978 + 0.234969i
\(367\) 6.37373 3.67988i 0.332706 0.192088i −0.324336 0.945942i \(-0.605141\pi\)
0.657042 + 0.753854i \(0.271807\pi\)
\(368\) 0.778928 + 0.449714i 0.0406044 + 0.0234430i
\(369\) 18.0403i 0.939141i
\(370\) 12.7240 + 9.25973i 0.661490 + 0.481390i
\(371\) 21.7147 + 12.5370i 1.12737 + 0.650887i
\(372\) 0.325893 0.0168968
\(373\) −25.2893 14.6008i −1.30943 0.756000i −0.327430 0.944875i \(-0.606183\pi\)
−0.982001 + 0.188875i \(0.939516\pi\)
\(374\) −1.88538 3.26558i −0.0974909 0.168859i
\(375\) −2.70454 12.8720i −0.139662 0.664706i
\(376\) 11.3189 0.583727
\(377\) −0.976027 + 1.38944i −0.0502680 + 0.0715596i
\(378\) 11.3329i 0.582901i
\(379\) −13.2943 + 7.67544i −0.682880 + 0.394261i −0.800939 0.598746i \(-0.795666\pi\)
0.118059 + 0.993007i \(0.462333\pi\)
\(380\) 3.53323 + 7.95245i 0.181251 + 0.407952i
\(381\) −5.11735 + 8.86350i −0.262170 + 0.454091i
\(382\) −13.9609 −0.714303
\(383\) 1.59622 2.76474i 0.0815632 0.141272i −0.822358 0.568970i \(-0.807342\pi\)
0.903922 + 0.427698i \(0.140675\pi\)
\(384\) 1.01883 + 0.588222i 0.0519919 + 0.0300176i
\(385\) 13.8856 + 1.47039i 0.707676 + 0.0749383i
\(386\) −6.81379 + 11.8018i −0.346813 + 0.600697i
\(387\) −10.8926 + 6.28885i −0.553703 + 0.319680i
\(388\) 1.28916 + 2.23289i 0.0654472 + 0.113358i
\(389\) 28.9316 1.46689 0.733445 0.679749i \(-0.237911\pi\)
0.733445 + 0.679749i \(0.237911\pi\)
\(390\) 9.30635 + 1.83112i 0.471246 + 0.0927224i
\(391\) 1.13345 0.0573208
\(392\) −1.32239 2.29044i −0.0667906 0.115685i
\(393\) −16.1729 + 9.33743i −0.815815 + 0.471011i
\(394\) −8.86097 + 15.3477i −0.446409 + 0.773204i
\(395\) 0.385332 3.63886i 0.0193881 0.183091i
\(396\) −4.18758 2.41770i −0.210434 0.121494i
\(397\) −2.49557 + 4.32245i −0.125249 + 0.216937i −0.921830 0.387594i \(-0.873306\pi\)
0.796581 + 0.604531i \(0.206640\pi\)
\(398\) 14.3654 0.720073
\(399\) −4.77729 + 8.27451i −0.239164 + 0.414244i
\(400\) 1.53766 + 4.75769i 0.0768830 + 0.237884i
\(401\) 3.46032 1.99782i 0.172800 0.0997662i −0.411105 0.911588i \(-0.634857\pi\)
0.583905 + 0.811822i \(0.301524\pi\)
\(402\) 4.70577i 0.234703i
\(403\) −0.905851 + 0.420739i −0.0451236 + 0.0209585i
\(404\) 1.56672 0.0779474
\(405\) −3.14828 + 1.39876i −0.156439 + 0.0695050i
\(406\) −0.491403 0.851136i −0.0243879 0.0422412i
\(407\) −18.2371 10.5292i −0.903977 0.521911i
\(408\) 1.48254 0.0733965
\(409\) 2.53695 + 1.46471i 0.125444 + 0.0724252i 0.561409 0.827538i \(-0.310259\pi\)
−0.435965 + 0.899964i \(0.643593\pi\)
\(410\) −14.6885 + 20.1838i −0.725413 + 0.996809i
\(411\) 8.49756i 0.419154i
\(412\) 0.793595 + 0.458182i 0.0390976 + 0.0225730i
\(413\) 22.3361 12.8957i 1.09909 0.634558i
\(414\) 1.25873 0.726729i 0.0618633 0.0357168i
\(415\) −2.63591 + 24.8920i −0.129392 + 1.22190i
\(416\) −3.59135 0.319674i −0.176081 0.0156733i
\(417\) 23.3806i 1.14495i
\(418\) −5.82239 10.0847i −0.284782 0.493257i
\(419\) −4.85425 8.40780i −0.237145 0.410748i 0.722749 0.691111i \(-0.242878\pi\)
−0.959894 + 0.280363i \(0.909545\pi\)
\(420\) −3.23033 + 4.43887i −0.157624 + 0.216595i
\(421\) 22.8217i 1.11226i 0.831094 + 0.556132i \(0.187715\pi\)
−0.831094 + 0.556132i \(0.812285\pi\)
\(422\) −10.1115 + 17.5137i −0.492222 + 0.852554i
\(423\) 9.14555 15.8406i 0.444672 0.770194i
\(424\) 12.0148i 0.583491i
\(425\) 4.67591 + 4.22345i 0.226815 + 0.204867i
\(426\) 2.76804 + 4.79438i 0.134112 + 0.232289i
\(427\) 7.97416 + 13.8116i 0.385897 + 0.668392i
\(428\) 11.7024i 0.565655i
\(429\) −12.6423 1.12532i −0.610374 0.0543308i
\(430\) −17.3073 1.83273i −0.834631 0.0883820i
\(431\) 10.0125 5.78073i 0.482286 0.278448i −0.239082 0.970999i \(-0.576847\pi\)
0.721369 + 0.692551i \(0.243513\pi\)
\(432\) 4.70290 2.71522i 0.226268 0.130636i
\(433\) −10.8821 6.28278i −0.522960 0.301931i 0.215185 0.976573i \(-0.430965\pi\)
−0.738145 + 0.674642i \(0.764298\pi\)
\(434\) 0.578108i 0.0277501i
\(435\) 0.728960 1.00168i 0.0349510 0.0480270i
\(436\) 13.8479 + 7.99511i 0.663196 + 0.382897i
\(437\) 3.50027 0.167441
\(438\) −15.5865 8.99886i −0.744751 0.429982i
\(439\) −0.905142 1.56775i −0.0432001 0.0748247i 0.843617 0.536946i \(-0.180422\pi\)
−0.886817 + 0.462121i \(0.847089\pi\)
\(440\) −2.71664 6.11451i −0.129511 0.291498i
\(441\) −4.27390 −0.203519
\(442\) −4.12085 + 1.91401i −0.196009 + 0.0910400i
\(443\) 16.7633i 0.796450i 0.917288 + 0.398225i \(0.130374\pi\)
−0.917288 + 0.398225i \(0.869626\pi\)
\(444\) 7.17018 4.13970i 0.340282 0.196462i
\(445\) −6.27471 14.1229i −0.297450 0.669489i
\(446\) 5.57252 9.65189i 0.263867 0.457030i
\(447\) −1.15664 −0.0547073
\(448\) 1.04346 1.80732i 0.0492988 0.0853880i
\(449\) 6.13311 + 3.54095i 0.289439 + 0.167108i 0.637689 0.770294i \(-0.279891\pi\)
−0.348250 + 0.937402i \(0.613224\pi\)
\(450\) 7.90071 + 1.69224i 0.372443 + 0.0797731i
\(451\) 16.7022 28.9290i 0.786475 1.36222i
\(452\) −2.40930 + 1.39101i −0.113324 + 0.0654277i
\(453\) 4.74127 + 8.21212i 0.222764 + 0.385839i
\(454\) −17.3073 −0.812271
\(455\) 3.24827 16.5087i 0.152281 0.773942i
\(456\) 4.57832 0.214400
\(457\) −0.545096 0.944133i −0.0254985 0.0441647i 0.852995 0.521920i \(-0.174784\pi\)
−0.878493 + 0.477755i \(0.841451\pi\)
\(458\) 8.57668 4.95175i 0.400762 0.231380i
\(459\) 3.42168 5.92652i 0.159710 0.276626i
\(460\) 2.00000 + 0.211787i 0.0932505 + 0.00987462i
\(461\) −13.5007 7.79465i −0.628791 0.363033i 0.151493 0.988458i \(-0.451592\pi\)
−0.780284 + 0.625426i \(0.784925\pi\)
\(462\) 3.67318 6.36213i 0.170892 0.295993i
\(463\) 19.1896 0.891817 0.445908 0.895079i \(-0.352881\pi\)
0.445908 + 0.895079i \(0.352881\pi\)
\(464\) −0.235468 + 0.407843i −0.0109313 + 0.0189337i
\(465\) 0.665949 0.295877i 0.0308826 0.0137210i
\(466\) −16.6053 + 9.58708i −0.769226 + 0.444113i
\(467\) 23.1857i 1.07290i 0.843931 + 0.536452i \(0.180236\pi\)
−0.843931 + 0.536452i \(0.819764\pi\)
\(468\) −3.34916 + 4.76773i −0.154815 + 0.220389i
\(469\) 8.34767 0.385460
\(470\) 23.1297 10.2764i 1.06689 0.474013i
\(471\) −1.60804 2.78521i −0.0740946 0.128336i
\(472\) −10.7029 6.17932i −0.492641 0.284426i
\(473\) 23.2895 1.07085
\(474\) −1.66726 0.962594i −0.0765799 0.0442134i
\(475\) 14.4400 + 13.0427i 0.662553 + 0.598441i
\(476\) 2.62990i 0.120541i
\(477\) −16.8145 9.70786i −0.769884 0.444493i
\(478\) 1.87449 1.08224i 0.0857374 0.0495005i
\(479\) 3.01812 1.74251i 0.137901 0.0796174i −0.429462 0.903085i \(-0.641297\pi\)
0.567363 + 0.823467i \(0.307963\pi\)
\(480\) 2.61598 + 0.277015i 0.119403 + 0.0126440i
\(481\) −14.5857 + 20.7637i −0.665051 + 0.946742i
\(482\) 16.1013i 0.733396i
\(483\) 1.10411 + 1.91238i 0.0502388 + 0.0870162i
\(484\) −1.02326 1.77234i −0.0465120 0.0805611i
\(485\) 4.66158 + 3.39240i 0.211671 + 0.154041i
\(486\) 14.4788i 0.656773i
\(487\) 1.07023 1.85369i 0.0484967 0.0839988i −0.840758 0.541411i \(-0.817890\pi\)
0.889255 + 0.457412i \(0.151224\pi\)
\(488\) 3.82102 6.61820i 0.172969 0.299592i
\(489\) 28.9133i 1.30751i
\(490\) −4.78172 3.47983i −0.216016 0.157203i
\(491\) −13.6201 23.5908i −0.614668 1.06464i −0.990443 0.137926i \(-0.955956\pi\)
0.375774 0.926711i \(-0.377377\pi\)
\(492\) 6.56672 + 11.3739i 0.296051 + 0.512775i
\(493\) 0.593468i 0.0267284i
\(494\) −12.7259 + 5.91077i −0.572565 + 0.265938i
\(495\) −10.7522 1.13858i −0.483274 0.0511755i
\(496\) −0.239902 + 0.138508i −0.0107719 + 0.00621918i
\(497\) 8.50486 4.91028i 0.381495 0.220256i
\(498\) 11.4051 + 6.58473i 0.511074 + 0.295069i
\(499\) 22.7855i 1.02002i −0.860169 0.510010i \(-0.829642\pi\)
0.860169 0.510010i \(-0.170358\pi\)
\(500\) 7.46163 + 8.32611i 0.333694 + 0.372355i
\(501\) −14.0969 8.13884i −0.629802 0.363616i
\(502\) 18.0888 0.807341
\(503\) −8.31665 4.80162i −0.370821 0.214094i 0.302996 0.952992i \(-0.402013\pi\)
−0.673817 + 0.738898i \(0.735346\pi\)
\(504\) −1.68621 2.92060i −0.0751098 0.130094i
\(505\) 3.20153 1.42242i 0.142466 0.0632969i
\(506\) −2.69130 −0.119643
\(507\) −2.70126 + 15.0533i −0.119967 + 0.668541i
\(508\) 8.69969i 0.385986i
\(509\) −13.5627 + 7.83041i −0.601155 + 0.347077i −0.769496 0.638652i \(-0.779492\pi\)
0.168341 + 0.985729i \(0.446159\pi\)
\(510\) 3.02950 1.34599i 0.134149 0.0596014i
\(511\) −15.9633 + 27.6492i −0.706173 + 1.22313i
\(512\) −1.00000 −0.0441942
\(513\) 10.5667 18.3021i 0.466532 0.808057i
\(514\) 8.69939 + 5.02260i 0.383714 + 0.221537i
\(515\) 2.03766 + 0.215775i 0.0897900 + 0.00950818i
\(516\) −4.57832 + 7.92989i −0.201549 + 0.349094i
\(517\) −29.3312 + 16.9344i −1.28998 + 0.744773i
\(518\) −7.34351 12.7193i −0.322655 0.558855i
\(519\) −15.4970 −0.680243
\(520\) −7.62901 + 2.60733i −0.334554 + 0.114339i
\(521\) 3.26689 0.143125 0.0715625 0.997436i \(-0.477201\pi\)
0.0715625 + 0.997436i \(0.477201\pi\)
\(522\) 0.380513 + 0.659067i 0.0166546 + 0.0288466i
\(523\) −13.8479 + 7.99511i −0.605528 + 0.349602i −0.771213 0.636577i \(-0.780350\pi\)
0.165685 + 0.986179i \(0.447016\pi\)
\(524\) 7.93700 13.7473i 0.346730 0.600553i
\(525\) −2.57100 + 12.0035i −0.112208 + 0.523874i
\(526\) −13.6855 7.90133i −0.596716 0.344514i
\(527\) −0.174545 + 0.302321i −0.00760331 + 0.0131693i
\(528\) −3.52020 −0.153197
\(529\) −11.0955 + 19.2180i −0.482414 + 0.835565i
\(530\) −10.9082 24.5518i −0.473822 1.06646i
\(531\) −17.2957 + 9.98567i −0.750569 + 0.433341i
\(532\) 8.12158i 0.352115i
\(533\) −32.9369 23.1370i −1.42666 1.00217i
\(534\) −8.13071 −0.351850
\(535\) 10.6245 + 23.9133i 0.459338 + 1.03386i
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) −3.17438 1.83273i −0.136985 0.0790881i
\(538\) −7.38587 −0.318428
\(539\) 6.85354 + 3.95689i 0.295203 + 0.170435i
\(540\) 7.14504 9.81818i 0.307474 0.422507i
\(541\) 7.38554i 0.317529i −0.987316 0.158765i \(-0.949249\pi\)
0.987316 0.158765i \(-0.0507511\pi\)
\(542\) 26.8493 + 15.5014i 1.15327 + 0.665843i
\(543\) 8.06342 4.65542i 0.346035 0.199783i
\(544\) −1.09135 + 0.630092i −0.0467913 + 0.0270150i
\(545\) 35.5564 + 3.76519i 1.52307 + 0.161283i
\(546\) −7.24356 5.08833i −0.309996 0.217761i
\(547\) 11.4488i 0.489515i 0.969584 + 0.244757i \(0.0787083\pi\)
−0.969584 + 0.244757i \(0.921292\pi\)
\(548\) −3.61155 6.25538i −0.154278 0.267217i
\(549\) −6.17470 10.6949i −0.263530 0.456447i
\(550\) −11.1027 10.0283i −0.473420 0.427609i
\(551\) 1.83273i 0.0780768i
\(552\) 0.529063 0.916364i 0.0225184 0.0390030i
\(553\) −1.70757 + 2.95759i −0.0726131 + 0.125770i
\(554\) 4.70735i 0.199996i
\(555\) 10.8935 14.9691i 0.462405 0.635403i
\(556\) 9.93700 + 17.2114i 0.421423 + 0.729926i
\(557\) −9.70356 16.8071i −0.411153 0.712138i 0.583863 0.811852i \(-0.301540\pi\)
−0.995016 + 0.0997144i \(0.968207\pi\)
\(558\) 0.447652i 0.0189506i
\(559\) 2.48813 27.9527i 0.105237 1.18227i
\(560\) 0.491403 4.64054i 0.0207656 0.196099i
\(561\) −3.84177 + 2.21805i −0.162200 + 0.0936461i
\(562\) 9.33328 5.38857i 0.393700 0.227303i
\(563\) −7.70563 4.44885i −0.324754 0.187497i 0.328756 0.944415i \(-0.393371\pi\)
−0.653509 + 0.756918i \(0.726704\pi\)
\(564\) 13.3160i 0.560706i
\(565\) −3.66042 + 5.02988i −0.153995 + 0.211608i
\(566\) 25.2204 + 14.5610i 1.06009 + 0.612044i
\(567\) 3.21524 0.135027
\(568\) −4.07532 2.35289i −0.170997 0.0987249i
\(569\) 3.44997 + 5.97552i 0.144630 + 0.250507i 0.929235 0.369490i \(-0.120467\pi\)
−0.784605 + 0.619996i \(0.787134\pi\)
\(570\) 9.35561 4.15664i 0.391863 0.174102i
\(571\) −32.4491 −1.35795 −0.678975 0.734161i \(-0.737576\pi\)
−0.678975 + 0.734161i \(0.737576\pi\)
\(572\) 9.78473 4.54470i 0.409120 0.190023i
\(573\) 16.4242i 0.686132i
\(574\) 20.1764 11.6489i 0.842147 0.486214i
\(575\) 4.27920 1.38301i 0.178455 0.0576757i
\(576\) −0.807991 + 1.39948i −0.0336663 + 0.0583117i
\(577\) −25.3915 −1.05706 −0.528530 0.848914i \(-0.677257\pi\)
−0.528530 + 0.848914i \(0.677257\pi\)
\(578\) 7.70597 13.3471i 0.320526 0.555167i
\(579\) 13.8842 + 8.01604i 0.577007 + 0.333135i
\(580\) −0.110891 + 1.04719i −0.00460449 + 0.0434823i
\(581\) 11.6808 20.2317i 0.484601 0.839354i
\(582\) 2.62687 1.51662i 0.108887 0.0628661i
\(583\) 17.9756 + 31.1346i 0.744473 + 1.28946i
\(584\) 15.2984 0.633053
\(585\) −2.51526 + 12.7834i −0.103993 + 0.528527i
\(586\) −25.4248 −1.05029
\(587\) −1.23196 2.13382i −0.0508485 0.0880722i 0.839481 0.543389i \(-0.182859\pi\)
−0.890329 + 0.455317i \(0.849526\pi\)
\(588\) −2.69457 + 1.55571i −0.111122 + 0.0641565i
\(589\) −0.539025 + 0.933619i −0.0222101 + 0.0384691i
\(590\) −27.4811 2.91007i −1.13138 0.119806i
\(591\) 18.0556 + 10.4244i 0.742710 + 0.428804i
\(592\) −3.51883 + 6.09479i −0.144623 + 0.250494i
\(593\) −40.6651 −1.66992 −0.834958 0.550313i \(-0.814508\pi\)
−0.834958 + 0.550313i \(0.814508\pi\)
\(594\) −8.12458 + 14.0722i −0.333355 + 0.577389i
\(595\) −2.38768 5.37410i −0.0978852 0.220316i
\(596\) 0.851450 0.491585i 0.0348767 0.0201361i
\(597\) 16.9001i 0.691675i
\(598\) −0.287524 + 3.23016i −0.0117577 + 0.132091i
\(599\) 26.1916 1.07016 0.535079 0.844802i \(-0.320282\pi\)
0.535079 + 0.844802i \(0.320282\pi\)
\(600\) 5.59715 1.80897i 0.228503 0.0738509i
\(601\) 6.74916 + 11.6899i 0.275304 + 0.476840i 0.970212 0.242259i \(-0.0778882\pi\)
−0.694908 + 0.719099i \(0.744555\pi\)
\(602\) 14.0670 + 8.12158i 0.573328 + 0.331011i
\(603\) −6.46392 −0.263231
\(604\) −6.98046 4.03017i −0.284031 0.163985i
\(605\) −3.70010 2.69270i −0.150431 0.109474i
\(606\) 1.84316i 0.0748733i
\(607\) 8.51183 + 4.91431i 0.345485 + 0.199466i 0.662695 0.748890i \(-0.269413\pi\)
−0.317210 + 0.948355i \(0.602746\pi\)
\(608\) −3.37028 + 1.94583i −0.136683 + 0.0789139i
\(609\) −1.00131 + 0.578108i −0.0405752 + 0.0234261i
\(610\) 1.79946 16.9931i 0.0728580 0.688031i
\(611\) 17.1915 + 37.0132i 0.695492 + 1.49739i
\(612\) 2.03643i 0.0823180i
\(613\) 10.3086 + 17.8551i 0.416362 + 0.721161i 0.995570 0.0940190i \(-0.0299715\pi\)
−0.579208 + 0.815180i \(0.696638\pi\)
\(614\) 12.6652 + 21.9368i 0.511127 + 0.885299i
\(615\) 23.7451 + 17.2802i 0.957497 + 0.696805i
\(616\) 6.24455i 0.251600i
\(617\) −8.90958 + 15.4318i −0.358686 + 0.621262i −0.987742 0.156098i \(-0.950108\pi\)
0.629056 + 0.777360i \(0.283442\pi\)
\(618\) 0.539025 0.933619i 0.0216828 0.0375557i
\(619\) 29.3377i 1.17918i 0.807701 + 0.589592i \(0.200711\pi\)
−0.807701 + 0.589592i \(0.799289\pi\)
\(620\) −0.364480 + 0.500841i −0.0146379 + 0.0201143i
\(621\) −2.44214 4.22992i −0.0979999 0.169741i
\(622\) −12.1748 21.0873i −0.488164 0.845524i
\(623\) 14.4232i 0.577855i
\(624\) −0.376079 + 4.22502i −0.0150552 + 0.169136i
\(625\) 22.8068 + 10.2397i 0.912271 + 0.409587i
\(626\) −13.5872 + 7.84457i −0.543053 + 0.313532i
\(627\) −11.8640 + 6.84971i −0.473804 + 0.273551i
\(628\) 2.36748 + 1.36687i 0.0944728 + 0.0545439i
\(629\) 8.86875i 0.353620i
\(630\) −6.09730 4.43723i −0.242922 0.176783i
\(631\) −15.5662 8.98714i −0.619680 0.357772i 0.157064 0.987588i \(-0.449797\pi\)
−0.776744 + 0.629816i \(0.783130\pi\)
\(632\) 1.63645 0.0650944
\(633\) 20.6039 + 11.8957i 0.818931 + 0.472810i
\(634\) 9.73033 + 16.8534i 0.386441 + 0.669335i
\(635\) −7.89841 17.7775i −0.313439 0.705477i
\(636\) −14.1348 −0.560480
\(637\) 5.48135 7.80305i 0.217179 0.309168i
\(638\) 1.40915i 0.0557890i
\(639\) −6.58564 + 3.80222i −0.260524 + 0.150414i
\(640\) −2.04346 + 0.907896i −0.0807748 + 0.0358877i
\(641\) −12.7805 + 22.1365i −0.504800 + 0.874339i 0.495185 + 0.868788i \(0.335100\pi\)
−0.999985 + 0.00555129i \(0.998233\pi\)
\(642\) 13.7672 0.543347
\(643\) 10.9914 19.0376i 0.433457 0.750769i −0.563712 0.825972i \(-0.690627\pi\)
0.997168 + 0.0752028i \(0.0239604\pi\)
\(644\) −1.62556 0.938516i −0.0640560 0.0369827i
\(645\) −2.15610 + 20.3610i −0.0848964 + 0.801715i
\(646\) −2.45211 + 4.24717i −0.0964769 + 0.167103i
\(647\) 26.9769 15.5751i 1.06057 0.612321i 0.134981 0.990848i \(-0.456903\pi\)
0.925590 + 0.378527i \(0.123569\pi\)
\(648\) −0.770331 1.33425i −0.0302615 0.0524144i
\(649\) 36.9800 1.45159
\(650\) −13.2224 + 12.2543i −0.518625 + 0.480654i
\(651\) −0.680112 −0.0266557
\(652\) 12.2885 + 21.2842i 0.481253 + 0.833554i
\(653\) 15.4449 8.91711i 0.604405 0.348954i −0.166367 0.986064i \(-0.553204\pi\)
0.770773 + 0.637110i \(0.219870\pi\)
\(654\) 9.40580 16.2913i 0.367796 0.637041i
\(655\) 3.73783 35.2980i 0.146049 1.37921i
\(656\) −9.66804 5.58184i −0.377473 0.217934i
\(657\) 12.3610 21.4098i 0.482248 0.835277i
\(658\) −23.6216 −0.920865
\(659\) 9.89464 17.1380i 0.385440 0.667602i −0.606390 0.795168i \(-0.707383\pi\)
0.991830 + 0.127565i \(0.0407162\pi\)
\(660\) −7.19338 + 3.19597i −0.280002 + 0.124403i
\(661\) −15.7895 + 9.11607i −0.614140 + 0.354574i −0.774584 0.632471i \(-0.782041\pi\)
0.160444 + 0.987045i \(0.448707\pi\)
\(662\) 6.62711i 0.257570i
\(663\) 2.25172 + 4.84795i 0.0874495 + 0.188279i
\(664\) −11.1943 −0.434423
\(665\) −7.37355 16.5961i −0.285934 0.643570i
\(666\) 5.68636 + 9.84907i 0.220342 + 0.381644i
\(667\) 0.366826 + 0.211787i 0.0142035 + 0.00820042i
\(668\) 13.8363 0.535344
\(669\) −11.3549 6.55576i −0.439006 0.253460i
\(670\) −7.23196 5.26296i −0.279395 0.203326i
\(671\) 22.8668i 0.882763i
\(672\) −2.12621 1.22757i −0.0820205 0.0473546i
\(673\) 17.1875 9.92322i 0.662530 0.382512i −0.130710 0.991421i \(-0.541726\pi\)
0.793240 + 0.608909i \(0.208392\pi\)
\(674\) 9.57948 5.53072i 0.368988 0.213035i
\(675\) 5.68671 26.5500i 0.218882 1.02191i
\(676\) −4.40930 12.2294i −0.169589 0.470361i
\(677\) 4.02129i 0.154551i −0.997010 0.0772753i \(-0.975378\pi\)
0.997010 0.0772753i \(-0.0246220\pi\)
\(678\) 1.63645 + 2.83441i 0.0628474 + 0.108855i
\(679\) −2.69037 4.65986i −0.103247 0.178829i
\(680\) −1.65807 + 2.27840i −0.0635843 + 0.0873727i
\(681\) 20.3610i 0.780237i
\(682\) 0.414448 0.717844i 0.0158700 0.0274877i
\(683\) −5.19430 + 8.99680i −0.198754 + 0.344253i −0.948125 0.317898i \(-0.897023\pi\)
0.749370 + 0.662151i \(0.230356\pi\)
\(684\) 6.28885i 0.240460i
\(685\) −13.0593 9.50371i −0.498970 0.363118i
\(686\) 10.0639 + 17.4312i 0.384242 + 0.665527i
\(687\) −5.82545 10.0900i −0.222255 0.384957i
\(688\) 7.78333i 0.296737i
\(689\) 39.2889 18.2485i 1.49679 0.695211i
\(690\) 0.249155 2.35289i 0.00948518 0.0895729i
\(691\) −24.5864 + 14.1949i −0.935309 + 0.540001i −0.888487 0.458902i \(-0.848243\pi\)
−0.0468225 + 0.998903i \(0.514910\pi\)
\(692\) 11.4079 6.58638i 0.433665 0.250376i
\(693\) 8.73913 + 5.04554i 0.331972 + 0.191664i
\(694\) 17.7207i 0.672669i
\(695\) 35.9320 + 26.1490i 1.36298 + 0.991888i
\(696\) 0.479805 + 0.277015i 0.0181869 + 0.0105002i
\(697\) −14.0683 −0.532875
\(698\) 15.3172 + 8.84341i 0.579766 + 0.334728i
\(699\) 11.2787 + 19.5352i 0.426598 + 0.738889i
\(700\) −3.20897 9.92891i −0.121288 0.375277i
\(701\) 16.7917 0.634213 0.317106 0.948390i \(-0.397289\pi\)
0.317106 + 0.948390i \(0.397289\pi\)
\(702\) 16.0218 + 11.2547i 0.604703 + 0.424782i
\(703\) 27.3882i 1.03297i
\(704\) 2.59135 1.49612i 0.0976652 0.0563871i
\(705\) −12.0896 27.2107i −0.455319 1.02482i
\(706\) 16.8114 29.1183i 0.632707 1.09588i
\(707\) −3.26962 −0.122967
\(708\) −7.26962 + 12.5914i −0.273209 + 0.473212i
\(709\) −41.9846 24.2398i −1.57676 0.910345i −0.995307 0.0967675i \(-0.969150\pi\)
−0.581457 0.813577i \(-0.697517\pi\)
\(710\) −10.4639 1.10806i −0.392704 0.0415848i
\(711\) 1.32223 2.29018i 0.0495877 0.0858883i
\(712\) 5.98533 3.45563i 0.224310 0.129505i
\(713\) 0.124578 + 0.215775i 0.00466547 + 0.00808083i
\(714\) −3.09393 −0.115787
\(715\) 15.8686 18.1704i 0.593451 0.679535i
\(716\) 3.11571 0.116440
\(717\) −1.27319 2.20524i −0.0475483 0.0823561i
\(718\) −15.1450 + 8.74400i −0.565208 + 0.326323i
\(719\) 6.14778 10.6483i 0.229273 0.397113i −0.728320 0.685238i \(-0.759698\pi\)
0.957593 + 0.288125i \(0.0930317\pi\)
\(720\) −0.380513 + 3.59335i −0.0141809 + 0.133916i
\(721\) −1.65617 0.956188i −0.0616789 0.0356103i
\(722\) 1.92748 3.33849i 0.0717333 0.124246i
\(723\) −18.9423 −0.704472
\(724\) −3.95720 + 6.85407i −0.147068 + 0.254729i
\(725\) 0.724141 + 2.24057i 0.0268939 + 0.0832127i
\(726\) −2.08506 + 1.20381i −0.0773839 + 0.0446776i
\(727\) 36.1491i 1.34070i −0.742046 0.670349i \(-0.766145\pi\)
0.742046 0.670349i \(-0.233855\pi\)
\(728\) 7.49486 + 0.667134i 0.277778 + 0.0247256i
\(729\) −21.6555 −0.802055
\(730\) 31.2617 13.8894i 1.15705 0.514069i
\(731\) −4.90421 8.49435i −0.181389 0.314175i
\(732\) −7.78594 4.49521i −0.287777 0.166148i
\(733\) 22.4789 0.830278 0.415139 0.909758i \(-0.363733\pi\)
0.415139 + 0.909758i \(0.363733\pi\)
\(734\) 6.37373 + 3.67988i 0.235259 + 0.135827i
\(735\) −4.09383 + 5.62543i −0.151003 + 0.207497i
\(736\) 0.899428i 0.0331534i
\(737\) 10.3654 + 5.98447i 0.381815 + 0.220441i
\(738\) −15.6234 + 9.02015i −0.575104 + 0.332036i
\(739\) 10.6967 6.17575i 0.393485 0.227179i −0.290184 0.956971i \(-0.593717\pi\)
0.683669 + 0.729792i \(0.260383\pi\)
\(740\) −1.65715 + 15.6492i −0.0609179 + 0.575276i
\(741\) 6.95369 + 14.9713i 0.255450 + 0.549984i
\(742\) 25.0740i 0.920494i
\(743\) 11.4818 + 19.8871i 0.421227 + 0.729587i 0.996060 0.0886839i \(-0.0282661\pi\)
−0.574832 + 0.818271i \(0.694933\pi\)
\(744\) 0.162946 + 0.282231i 0.00597391 + 0.0103471i
\(745\) 1.29359 1.77756i 0.0473936 0.0651248i
\(746\) 29.2016i 1.06915i
\(747\) −9.04489 + 15.6662i −0.330935 + 0.573197i
\(748\) 1.88538 3.26558i 0.0689365 0.119401i
\(749\) 24.4219i 0.892355i
\(750\) 9.79519 8.77819i 0.357670 0.320534i
\(751\) −16.4263 28.4511i −0.599403 1.03820i −0.992909 0.118874i \(-0.962071\pi\)
0.393506 0.919322i \(-0.371262\pi\)
\(752\) 5.65944 + 9.80244i 0.206379 + 0.357458i
\(753\) 21.2804i 0.775501i
\(754\) −1.69130 0.150546i −0.0615935 0.00548258i
\(755\) −17.9233 1.89796i −0.652294 0.0690737i
\(756\) −9.81457 + 5.66644i −0.356952 + 0.206086i
\(757\) −28.6323 + 16.5309i −1.04066 + 0.600826i −0.920020 0.391871i \(-0.871828\pi\)
−0.120640 + 0.992696i \(0.538495\pi\)
\(758\) −13.2943 7.67544i −0.482869 0.278785i
\(759\) 3.16616i 0.114924i
\(760\) −5.12041 + 7.03609i −0.185737 + 0.255226i
\(761\) −27.3347 15.7817i −0.990882 0.572086i −0.0853441 0.996352i \(-0.527199\pi\)
−0.905538 + 0.424266i \(0.860532\pi\)
\(762\) −10.2347 −0.370764
\(763\) −28.8995 16.6851i −1.04623 0.604043i
\(764\) −6.98046 12.0905i −0.252544 0.437419i
\(765\) 1.84887 + 4.16137i 0.0668461 + 0.150455i
\(766\) 3.19245 0.115348
\(767\) 3.95074 44.3842i 0.142653 1.60262i
\(768\) 1.17644i 0.0424512i
\(769\) −36.8445 + 21.2722i −1.32865 + 0.767095i −0.985090 0.172037i \(-0.944965\pi\)
−0.343556 + 0.939132i \(0.611632\pi\)
\(770\) 5.66940 + 12.7605i 0.204311 + 0.459856i
\(771\) 5.90880 10.2343i 0.212800 0.368581i
\(772\) −13.6276 −0.490467
\(773\) −0.533226 + 0.923574i −0.0191788 + 0.0332187i −0.875456 0.483299i \(-0.839439\pi\)
0.856277 + 0.516517i \(0.172772\pi\)
\(774\) −10.8926 6.28885i −0.391527 0.226048i
\(775\) −0.290088 + 1.35436i −0.0104203 + 0.0486500i
\(776\) −1.28916 + 2.23289i −0.0462782 + 0.0801561i
\(777\) −14.9636 + 8.63922i −0.536815 + 0.309930i
\(778\) 14.4658 + 25.0555i 0.518624 + 0.898283i
\(779\) −43.4453 −1.55659
\(780\) 3.06738 + 8.97510i 0.109830 + 0.321360i
\(781\) 14.0808 0.503850
\(782\) 0.566723 + 0.981592i 0.0202660 + 0.0351017i
\(783\) 2.21477 1.27870i 0.0791494 0.0456969i
\(784\) 1.32239 2.29044i 0.0472281 0.0818015i
\(785\) 6.07883 + 0.643708i 0.216963 + 0.0229749i
\(786\) −16.1729 9.33743i −0.576869 0.333055i
\(787\) 0.0215610 0.0373447i 0.000768565 0.00133119i −0.865641 0.500665i \(-0.833089\pi\)
0.866409 + 0.499334i \(0.166422\pi\)
\(788\) −17.7219 −0.631318
\(789\) −9.29546 + 16.1002i −0.330927 + 0.573183i
\(790\) 3.34401 1.48572i 0.118975 0.0528597i
\(791\) 5.02802 2.90293i 0.178776 0.103216i
\(792\) 4.83540i 0.171818i
\(793\) 27.4453 + 2.44296i 0.974610 + 0.0867522i
\(794\) −4.99113 −0.177129
\(795\) −28.8838 + 12.8329i −1.02440 + 0.455136i
\(796\) 7.18270 + 12.4408i 0.254584 + 0.440953i
\(797\) 29.9559 + 17.2951i 1.06109 + 0.612623i 0.925735 0.378174i \(-0.123448\pi\)
0.135359 + 0.990797i \(0.456781\pi\)
\(798\) −9.55458 −0.338229
\(799\) 12.3529 + 7.13194i 0.437014 + 0.252310i
\(800\) −3.35145 + 3.71050i −0.118492 + 0.131186i
\(801\) 11.1685i 0.394619i
\(802\) 3.46032 + 1.99782i 0.122188 + 0.0705453i
\(803\) −39.6436 + 22.8882i −1.39899 + 0.807708i
\(804\) −4.07532 + 2.35289i −0.143725 + 0.0829799i
\(805\) −4.17384 0.441982i −0.147108 0.0155778i
\(806\) −0.817296 0.574120i −0.0287880 0.0202225i
\(807\) 8.68906i 0.305869i
\(808\) 0.783361 + 1.35682i 0.0275586 + 0.0477328i
\(809\) −3.04046 5.26623i −0.106897 0.185151i 0.807615 0.589710i \(-0.200758\pi\)
−0.914512 + 0.404560i \(0.867425\pi\)
\(810\) −2.78550 2.02711i −0.0978726 0.0712254i
\(811\) 5.47145i 0.192129i 0.995375 + 0.0960644i \(0.0306255\pi\)
−0.995375 + 0.0960644i \(0.969375\pi\)
\(812\) 0.491403 0.851136i 0.0172449 0.0298690i
\(813\) 18.2365 31.5866i 0.639584 1.10779i
\(814\) 21.0583i 0.738094i
\(815\) 44.4348 + 32.3368i 1.55648 + 1.13271i
\(816\) 0.741268 + 1.28391i 0.0259496 + 0.0449460i
\(817\) −15.1450 26.2320i −0.529858 0.917741i
\(818\) 2.92942i 0.102425i
\(819\) 6.98942 9.94987i 0.244230 0.347677i
\(820\) −24.8240 2.62870i −0.866891 0.0917981i
\(821\) 38.1625 22.0331i 1.33188 0.768961i 0.346291 0.938127i \(-0.387441\pi\)
0.985588 + 0.169166i \(0.0541075\pi\)
\(822\) −7.35910 + 4.24878i −0.256678 + 0.148193i
\(823\) 10.8396 + 6.25823i 0.377844 + 0.218148i 0.676880 0.736094i \(-0.263332\pi\)
−0.299036 + 0.954242i \(0.596665\pi\)
\(824\) 0.916364i 0.0319231i
\(825\) −11.7978 + 13.0617i −0.410745 + 0.454749i
\(826\) 22.3361 + 12.8957i 0.777171 + 0.448700i
\(827\) −51.7679 −1.80015 −0.900074 0.435738i \(-0.856488\pi\)
−0.900074 + 0.435738i \(0.856488\pi\)
\(828\) 1.25873 + 0.726729i 0.0437440 + 0.0252556i
\(829\) 6.95883 + 12.0531i 0.241690 + 0.418620i 0.961196 0.275867i \(-0.0889649\pi\)
−0.719506 + 0.694487i \(0.755632\pi\)
\(830\) −22.8751 + 10.1633i −0.794006 + 0.352772i
\(831\) 5.53793 0.192109
\(832\) −1.51883 3.27004i −0.0526559 0.113368i
\(833\) 3.33290i 0.115478i
\(834\) 20.2482 11.6903i 0.701139 0.404803i
\(835\) 28.2740 12.5620i 0.978462 0.434725i
\(836\) 5.82239 10.0847i 0.201371 0.348786i
\(837\) 1.50432 0.0519967
\(838\) 4.85425 8.40780i 0.167687 0.290443i
\(839\) −43.3416 25.0233i −1.49632 0.863899i −0.496327 0.868136i \(-0.665318\pi\)
−0.999991 + 0.00423634i \(0.998652\pi\)
\(840\) −5.45934 0.578108i −0.188365 0.0199466i
\(841\) 14.3891 24.9227i 0.496176 0.859402i
\(842\) −19.7642 + 11.4109i −0.681120 + 0.393245i
\(843\) −6.33935 10.9801i −0.218339 0.378174i
\(844\) −20.2231 −0.696108
\(845\) −20.1132 20.9871i −0.691917 0.721977i
\(846\) 18.2911 0.628861
\(847\) 2.13547 + 3.69874i 0.0733755 + 0.127090i
\(848\) 10.4051 6.00741i 0.357314 0.206295i
\(849\) 17.1302 29.6703i 0.587906 1.01828i
\(850\) −1.31966 + 6.16118i −0.0452638 + 0.211327i
\(851\) 5.48183 + 3.16493i 0.187915 + 0.108493i
\(852\) −2.76804 + 4.79438i −0.0948314 + 0.164253i
\(853\) −12.7392 −0.436183 −0.218092 0.975928i \(-0.569983\pi\)
−0.218092 + 0.975928i \(0.569983\pi\)
\(854\) −7.97416 + 13.8116i −0.272870 + 0.472625i
\(855\) 5.70963 + 12.8510i 0.195265 + 0.439495i
\(856\) −10.1345 + 5.85118i −0.346391 + 0.199989i
\(857\) 30.3306i 1.03607i 0.855359 + 0.518036i \(0.173337\pi\)
−0.855359 + 0.518036i \(0.826663\pi\)
\(858\) −5.34658 11.5112i −0.182529 0.392985i
\(859\) 48.7446 1.66314 0.831572 0.555417i \(-0.187441\pi\)
0.831572 + 0.555417i \(0.187441\pi\)
\(860\) −7.06645 15.9049i −0.240964 0.542353i
\(861\) −13.7042 23.7364i −0.467038 0.808934i
\(862\) 10.0125 + 5.78073i 0.341028 + 0.196893i
\(863\) −17.6100 −0.599451 −0.299725 0.954026i \(-0.596895\pi\)
−0.299725 + 0.954026i \(0.596895\pi\)
\(864\) 4.70290 + 2.71522i 0.159996 + 0.0923737i
\(865\) 17.3319 23.8162i 0.589303 0.809776i
\(866\) 12.5656i 0.426995i
\(867\) −15.7021 9.06563i −0.533273 0.307885i
\(868\) 0.500656 0.289054i 0.0169934 0.00981114i
\(869\) −4.24061 + 2.44832i −0.143853 + 0.0830535i
\(870\) 1.23196 + 0.130457i 0.0417674 + 0.00442290i
\(871\) 8.29009 11.8015i 0.280899 0.399877i
\(872\) 15.9902i 0.541497i
\(873\) 2.08326 + 3.60831i 0.0705076 + 0.122123i
\(874\) 1.75014 + 3.03132i 0.0591992 + 0.102536i
\(875\) −15.5718 17.3759i −0.526423 0.587413i
\(876\) 17.9977i 0.608086i
\(877\) 20.9644 36.3115i 0.707918 1.22615i −0.257709 0.966222i \(-0.582968\pi\)
0.965628 0.259928i \(-0.0836989\pi\)
\(878\) 0.905142 1.56775i 0.0305471 0.0529091i
\(879\) 29.9109i 1.00887i
\(880\) 3.93700 5.40993i 0.132716 0.182369i
\(881\) 14.9695 + 25.9280i 0.504336 + 0.873535i 0.999987 + 0.00501392i \(0.00159599\pi\)
−0.495652 + 0.868521i \(0.665071\pi\)
\(882\) −2.13695 3.70131i −0.0719549 0.124630i
\(883\) 35.3391i 1.18926i −0.804001 0.594629i \(-0.797299\pi\)
0.804001 0.594629i \(-0.202701\pi\)
\(884\) −3.71800 2.61176i −0.125050 0.0878430i
\(885\) −3.42353 + 32.3300i −0.115081 + 1.08676i
\(886\) −14.5175 + 8.38166i −0.487724 + 0.281587i
\(887\) 36.8682 21.2859i 1.23791 0.714709i 0.269246 0.963071i \(-0.413226\pi\)
0.968667 + 0.248362i \(0.0798922\pi\)
\(888\) 7.17018 + 4.13970i 0.240615 + 0.138919i
\(889\) 18.1555i 0.608917i
\(890\) 9.09343 12.4955i 0.304812 0.418850i
\(891\) 3.99240 + 2.30501i 0.133750 + 0.0772208i
\(892\) 11.1450 0.373164
\(893\) 38.1478 + 22.0246i 1.27657 + 0.737026i
\(894\) −0.578321 1.00168i −0.0193420 0.0335013i
\(895\) 6.36683 2.82874i 0.212820 0.0945544i
\(896\) 2.08692 0.0697190
\(897\) 3.80010 + 0.338256i 0.126882 + 0.0112940i
\(898\) 7.08190i 0.236326i
\(899\) −0.112979 + 0.0652284i −0.00376806 + 0.00217549i
\(900\) 2.48483 + 7.68834i 0.0828276 + 0.256278i
\(901\) 7.57045 13.1124i 0.252208 0.436837i
\(902\) 33.4044 1.11224
\(903\) 9.55458 16.5490i 0.317957 0.550717i
\(904\) −2.40930 1.39101i −0.0801323 0.0462644i
\(905\) −1.86359 + 17.5987i −0.0619478 + 0.585002i
\(906\) −4.74127 + 8.21212i −0.157518 + 0.272829i
\(907\) −12.5097 + 7.22247i −0.415377 + 0.239818i −0.693098 0.720844i \(-0.743755\pi\)
0.277720 + 0.960662i \(0.410421\pi\)
\(908\) −8.65364 14.9885i −0.287181 0.497412i
\(909\) 2.53179 0.0839743
\(910\) 15.9211 5.44129i 0.527780 0.180377i
\(911\) −42.9419 −1.42273 −0.711364 0.702824i \(-0.751922\pi\)
−0.711364 + 0.702824i \(0.751922\pi\)
\(912\) 2.28916 + 3.96494i 0.0758017 + 0.131292i
\(913\) 29.0084 16.7480i 0.960037 0.554278i
\(914\) 0.545096 0.944133i 0.0180302 0.0312292i
\(915\) −19.9914 2.11696i −0.660897 0.0699846i
\(916\) 8.57668 + 4.95175i 0.283382 + 0.163610i
\(917\) −16.5639 + 28.6895i −0.546987 + 0.947410i
\(918\) 6.84336 0.225864
\(919\) −20.3770 + 35.2940i −0.672175 + 1.16424i 0.305111 + 0.952317i \(0.401307\pi\)
−0.977286 + 0.211925i \(0.932027\pi\)
\(920\) 0.816587 + 1.83794i 0.0269221 + 0.0605952i
\(921\) 25.8074 14.8999i 0.850384 0.490970i
\(922\) 15.5893i 0.513406i
\(923\) 1.50432 16.9001i 0.0495151 0.556273i
\(924\) 7.34636 0.241677
\(925\) 10.8215 + 33.4830i 0.355810 + 1.10091i
\(926\) 9.59481 + 16.6187i 0.315305 + 0.546124i
\(927\) 1.28243 + 0.740414i 0.0421207 + 0.0243184i
\(928\) −0.470937 −0.0154593
\(929\) −11.3326 6.54286i −0.371809 0.214664i 0.302439 0.953169i \(-0.402199\pi\)
−0.674249 + 0.738504i \(0.735532\pi\)
\(930\) 0.589211 + 0.428790i 0.0193210 + 0.0140606i
\(931\) 10.2926i 0.337325i
\(932\) −16.6053 9.58708i −0.543925 0.314035i
\(933\) −24.8080 + 14.3229i −0.812178 + 0.468911i
\(934\) −20.0794 + 11.5928i −0.657017 + 0.379329i
\(935\) 0.887897 8.38482i 0.0290373 0.274213i
\(936\) −5.80356 0.516588i −0.189695 0.0168852i
\(937\) 41.0546i 1.34120i 0.741821 + 0.670598i \(0.233962\pi\)
−0.741821 + 0.670598i \(0.766038\pi\)
\(938\) 4.17384 + 7.22930i 0.136281 + 0.236045i
\(939\) 9.22869 + 15.9846i 0.301167 + 0.521636i
\(940\) 20.4644 + 14.8927i 0.667476 + 0.485746i
\(941\) 24.4162i 0.795945i 0.917397 + 0.397973i \(0.130286\pi\)
−0.917397 + 0.397973i \(0.869714\pi\)
\(942\) 1.60804 2.78521i 0.0523928 0.0907470i
\(943\) −5.02047 + 8.69570i −0.163489 + 0.283171i
\(944\) 12.3586i 0.402240i
\(945\) −14.9111 + 20.4897i −0.485059 + 0.666532i
\(946\) 11.6448 + 20.1693i 0.378604 + 0.655762i
\(947\) 2.30433 + 3.99122i 0.0748807 + 0.129697i 0.901034 0.433748i \(-0.142809\pi\)
−0.826154 + 0.563445i \(0.809476\pi\)
\(948\) 1.92519i 0.0625272i
\(949\) 23.2357 + 50.0264i 0.754262 + 1.62393i
\(950\) −4.07532 + 19.0268i −0.132221 + 0.617310i
\(951\) 19.8271 11.4472i 0.642937 0.371200i
\(952\) 2.27756 1.31495i 0.0738162 0.0426178i
\(953\) 4.09617 + 2.36493i 0.132688 + 0.0766075i 0.564875 0.825177i \(-0.308925\pi\)
−0.432187 + 0.901784i \(0.642258\pi\)
\(954\) 19.4157i 0.628607i
\(955\) −25.2412 18.3689i −0.816787 0.594405i
\(956\) 1.87449 + 1.08224i 0.0606255 + 0.0350021i
\(957\) −1.65779 −0.0535887
\(958\) 3.01812 + 1.74251i 0.0975111 + 0.0562980i
\(959\) 7.53700 + 13.0545i 0.243383 + 0.421551i
\(960\) 1.06809 + 2.40401i 0.0344724 + 0.0775892i
\(961\) 30.9233 0.997525
\(962\) −25.2747 2.24976i −0.814889 0.0725352i
\(963\) 18.9108i 0.609392i
\(964\) 13.9442 8.05067i 0.449111 0.259295i
\(965\) −27.8474 + 12.3724i −0.896440 + 0.398282i
\(966\) −1.10411 + 1.91238i −0.0355242 + 0.0615297i
\(967\) −23.8186 −0.765955 −0.382977 0.923758i \(-0.625101\pi\)
−0.382977 + 0.923758i \(0.625101\pi\)
\(968\) 1.02326 1.77234i 0.0328889 0.0569653i
\(969\) 4.99656 + 2.88477i 0.160513 + 0.0926720i
\(970\) −0.607113 + 5.73325i −0.0194932 + 0.184083i
\(971\) 15.8349 27.4269i 0.508167 0.880170i −0.491789 0.870715i \(-0.663657\pi\)
0.999955 0.00945572i \(-0.00300989\pi\)
\(972\) 12.5390 7.23941i 0.402189 0.232204i
\(973\) −20.7377 35.9188i −0.664820 1.15150i
\(974\) 2.14046 0.0685847
\(975\) 14.4165 + 15.5554i 0.461698 + 0.498171i
\(976\) 7.64204 0.244616
\(977\) 13.4354 + 23.2707i 0.429835 + 0.744497i 0.996858 0.0792052i \(-0.0252382\pi\)
−0.567023 + 0.823702i \(0.691905\pi\)
\(978\) 25.0397 14.4567i 0.800681 0.462273i
\(979\) −10.3401 + 17.9095i −0.330470 + 0.572391i
\(980\) 0.622761 5.88101i 0.0198934 0.187862i
\(981\) 22.3780 + 12.9200i 0.714475 + 0.412502i
\(982\) 13.6201 23.5908i 0.434636 0.752812i
\(983\) −8.22637 −0.262380 −0.131190 0.991357i \(-0.541880\pi\)
−0.131190 + 0.991357i \(0.541880\pi\)
\(984\) −6.56672 + 11.3739i −0.209339 + 0.362587i
\(985\) −36.2141 + 16.0897i −1.15388 + 0.512660i
\(986\) −0.513958 + 0.296734i −0.0163678 + 0.00944993i
\(987\) 27.7894i 0.884548i
\(988\) −11.4818 8.06556i −0.365286 0.256600i
\(989\) −7.00054 −0.222604
\(990\) −4.39004 9.88093i −0.139525 0.314037i
\(991\) 11.1157 + 19.2530i 0.353102 + 0.611591i 0.986791 0.161997i \(-0.0517935\pi\)
−0.633689 + 0.773588i \(0.718460\pi\)
\(992\) −0.239902 0.138508i −0.00761691 0.00439762i
\(993\) 7.79642 0.247412
\(994\) 8.50486 + 4.91028i 0.269758 + 0.155745i
\(995\) 25.9725 + 18.9011i 0.823384 + 0.599206i
\(996\) 13.1695i 0.417290i
\(997\) 20.4122 + 11.7850i 0.646459 + 0.373234i 0.787098 0.616827i \(-0.211582\pi\)
−0.140639 + 0.990061i \(0.544916\pi\)
\(998\) 19.7328 11.3928i 0.624632 0.360631i
\(999\) 33.0974 19.1088i 1.04716 0.604576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.m.b.49.3 yes 8
3.2 odd 2 1170.2.bj.a.829.2 8
4.3 odd 2 1040.2.df.a.49.2 8
5.2 odd 4 650.2.m.e.101.2 16
5.3 odd 4 650.2.m.e.101.7 16
5.4 even 2 130.2.m.a.49.2 8
13.2 odd 12 1690.2.b.e.339.13 16
13.3 even 3 1690.2.c.e.1689.5 8
13.4 even 6 130.2.m.a.69.2 yes 8
13.10 even 6 1690.2.c.f.1689.5 8
13.11 odd 12 1690.2.b.e.339.5 16
15.14 odd 2 1170.2.bj.b.829.3 8
20.19 odd 2 1040.2.df.c.49.3 8
39.17 odd 6 1170.2.bj.b.199.3 8
52.43 odd 6 1040.2.df.c.849.3 8
65.2 even 12 8450.2.a.cr.1.5 8
65.4 even 6 inner 130.2.m.b.69.3 yes 8
65.17 odd 12 650.2.m.e.251.2 16
65.24 odd 12 1690.2.b.e.339.12 16
65.28 even 12 8450.2.a.cs.1.4 8
65.29 even 6 1690.2.c.f.1689.4 8
65.37 even 12 8450.2.a.cs.1.5 8
65.43 odd 12 650.2.m.e.251.7 16
65.49 even 6 1690.2.c.e.1689.4 8
65.54 odd 12 1690.2.b.e.339.4 16
65.63 even 12 8450.2.a.cr.1.4 8
195.134 odd 6 1170.2.bj.a.199.2 8
260.199 odd 6 1040.2.df.a.849.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.2 8 5.4 even 2
130.2.m.a.69.2 yes 8 13.4 even 6
130.2.m.b.49.3 yes 8 1.1 even 1 trivial
130.2.m.b.69.3 yes 8 65.4 even 6 inner
650.2.m.e.101.2 16 5.2 odd 4
650.2.m.e.101.7 16 5.3 odd 4
650.2.m.e.251.2 16 65.17 odd 12
650.2.m.e.251.7 16 65.43 odd 12
1040.2.df.a.49.2 8 4.3 odd 2
1040.2.df.a.849.2 8 260.199 odd 6
1040.2.df.c.49.3 8 20.19 odd 2
1040.2.df.c.849.3 8 52.43 odd 6
1170.2.bj.a.199.2 8 195.134 odd 6
1170.2.bj.a.829.2 8 3.2 odd 2
1170.2.bj.b.199.3 8 39.17 odd 6
1170.2.bj.b.829.3 8 15.14 odd 2
1690.2.b.e.339.4 16 65.54 odd 12
1690.2.b.e.339.5 16 13.11 odd 12
1690.2.b.e.339.12 16 65.24 odd 12
1690.2.b.e.339.13 16 13.2 odd 12
1690.2.c.e.1689.4 8 65.49 even 6
1690.2.c.e.1689.5 8 13.3 even 3
1690.2.c.f.1689.4 8 65.29 even 6
1690.2.c.f.1689.5 8 13.10 even 6
8450.2.a.cr.1.4 8 65.63 even 12
8450.2.a.cr.1.5 8 65.2 even 12
8450.2.a.cs.1.4 8 65.28 even 12
8450.2.a.cs.1.5 8 65.37 even 12