Properties

Label 8450.2.a.cs.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,10,8,16,0,0,0,0,10,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 20x^{6} + 132x^{4} - 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.83766\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.83766 q^{3} +1.00000 q^{4} -1.83766 q^{6} +4.79742 q^{7} +1.00000 q^{8} +0.376989 q^{9} +1.65153 q^{11} -1.83766 q^{12} +4.79742 q^{14} +1.00000 q^{16} -0.0805241 q^{17} +0.376989 q^{18} -4.24776 q^{19} -8.81603 q^{21} +1.65153 q^{22} -5.89928 q^{23} -1.83766 q^{24} +4.82020 q^{27} +4.79742 q^{28} +4.42044 q^{29} +4.06163 q^{31} +1.00000 q^{32} -3.03494 q^{33} -0.0805241 q^{34} +0.376989 q^{36} +1.81708 q^{37} -4.24776 q^{38} +6.78855 q^{41} -8.81603 q^{42} -8.49552 q^{43} +1.65153 q^{44} -5.89928 q^{46} -0.448597 q^{47} -1.83766 q^{48} +16.0153 q^{49} +0.147976 q^{51} +11.5770 q^{53} +4.82020 q^{54} +4.79742 q^{56} +7.80593 q^{57} +4.42044 q^{58} +2.10800 q^{59} -3.12832 q^{61} +4.06163 q^{62} +1.80858 q^{63} +1.00000 q^{64} -3.03494 q^{66} +4.00000 q^{67} -0.0805241 q^{68} +10.8409 q^{69} -7.35063 q^{71} +0.376989 q^{72} -10.5752 q^{73} +1.81708 q^{74} -4.24776 q^{76} +7.92308 q^{77} +14.6468 q^{79} -9.98885 q^{81} +6.78855 q^{82} +12.4289 q^{83} -8.81603 q^{84} -8.49552 q^{86} -8.12325 q^{87} +1.65153 q^{88} -8.35955 q^{89} -5.89928 q^{92} -7.46388 q^{93} -0.448597 q^{94} -1.83766 q^{96} +5.80593 q^{97} +16.0153 q^{98} +0.622608 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 10 q^{7} + 8 q^{8} + 16 q^{9} + 10 q^{14} + 8 q^{16} + 16 q^{18} + 10 q^{28} - 6 q^{29} + 8 q^{32} + 20 q^{33} + 16 q^{36} + 40 q^{37} - 6 q^{47} + 30 q^{49} + 20 q^{51} + 10 q^{56}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.83766 −1.06097 −0.530486 0.847693i \(-0.677991\pi\)
−0.530486 + 0.847693i \(0.677991\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.83766 −0.750221
\(7\) 4.79742 1.81326 0.906628 0.421931i \(-0.138647\pi\)
0.906628 + 0.421931i \(0.138647\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.376989 0.125663
\(10\) 0 0
\(11\) 1.65153 0.497954 0.248977 0.968509i \(-0.419906\pi\)
0.248977 + 0.968509i \(0.419906\pi\)
\(12\) −1.83766 −0.530486
\(13\) 0 0
\(14\) 4.79742 1.28217
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.0805241 −0.0195300 −0.00976499 0.999952i \(-0.503108\pi\)
−0.00976499 + 0.999952i \(0.503108\pi\)
\(18\) 0.376989 0.0888572
\(19\) −4.24776 −0.974502 −0.487251 0.873262i \(-0.662000\pi\)
−0.487251 + 0.873262i \(0.662000\pi\)
\(20\) 0 0
\(21\) −8.81603 −1.92382
\(22\) 1.65153 0.352107
\(23\) −5.89928 −1.23009 −0.615043 0.788494i \(-0.710861\pi\)
−0.615043 + 0.788494i \(0.710861\pi\)
\(24\) −1.83766 −0.375111
\(25\) 0 0
\(26\) 0 0
\(27\) 4.82020 0.927648
\(28\) 4.79742 0.906628
\(29\) 4.42044 0.820854 0.410427 0.911893i \(-0.365380\pi\)
0.410427 + 0.911893i \(0.365380\pi\)
\(30\) 0 0
\(31\) 4.06163 0.729490 0.364745 0.931108i \(-0.381156\pi\)
0.364745 + 0.931108i \(0.381156\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.03494 −0.528316
\(34\) −0.0805241 −0.0138098
\(35\) 0 0
\(36\) 0.376989 0.0628316
\(37\) 1.81708 0.298726 0.149363 0.988782i \(-0.452278\pi\)
0.149363 + 0.988782i \(0.452278\pi\)
\(38\) −4.24776 −0.689077
\(39\) 0 0
\(40\) 0 0
\(41\) 6.78855 1.06019 0.530097 0.847937i \(-0.322156\pi\)
0.530097 + 0.847937i \(0.322156\pi\)
\(42\) −8.81603 −1.36034
\(43\) −8.49552 −1.29555 −0.647777 0.761830i \(-0.724301\pi\)
−0.647777 + 0.761830i \(0.724301\pi\)
\(44\) 1.65153 0.248977
\(45\) 0 0
\(46\) −5.89928 −0.869802
\(47\) −0.448597 −0.0654345 −0.0327173 0.999465i \(-0.510416\pi\)
−0.0327173 + 0.999465i \(0.510416\pi\)
\(48\) −1.83766 −0.265243
\(49\) 16.0153 2.28790
\(50\) 0 0
\(51\) 0.147976 0.0207208
\(52\) 0 0
\(53\) 11.5770 1.59022 0.795112 0.606463i \(-0.207412\pi\)
0.795112 + 0.606463i \(0.207412\pi\)
\(54\) 4.82020 0.655946
\(55\) 0 0
\(56\) 4.79742 0.641083
\(57\) 7.80593 1.03392
\(58\) 4.42044 0.580432
\(59\) 2.10800 0.274439 0.137219 0.990541i \(-0.456183\pi\)
0.137219 + 0.990541i \(0.456183\pi\)
\(60\) 0 0
\(61\) −3.12832 −0.400540 −0.200270 0.979741i \(-0.564182\pi\)
−0.200270 + 0.979741i \(0.564182\pi\)
\(62\) 4.06163 0.515827
\(63\) 1.80858 0.227859
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.03494 −0.373576
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −0.0805241 −0.00976499
\(69\) 10.8409 1.30509
\(70\) 0 0
\(71\) −7.35063 −0.872360 −0.436180 0.899859i \(-0.643669\pi\)
−0.436180 + 0.899859i \(0.643669\pi\)
\(72\) 0.376989 0.0444286
\(73\) −10.5752 −1.23773 −0.618866 0.785496i \(-0.712408\pi\)
−0.618866 + 0.785496i \(0.712408\pi\)
\(74\) 1.81708 0.211231
\(75\) 0 0
\(76\) −4.24776 −0.487251
\(77\) 7.92308 0.902918
\(78\) 0 0
\(79\) 14.6468 1.64789 0.823947 0.566667i \(-0.191767\pi\)
0.823947 + 0.566667i \(0.191767\pi\)
\(80\) 0 0
\(81\) −9.98885 −1.10987
\(82\) 6.78855 0.749670
\(83\) 12.4289 1.36425 0.682127 0.731234i \(-0.261055\pi\)
0.682127 + 0.731234i \(0.261055\pi\)
\(84\) −8.81603 −0.961908
\(85\) 0 0
\(86\) −8.49552 −0.916095
\(87\) −8.12325 −0.870904
\(88\) 1.65153 0.176053
\(89\) −8.35955 −0.886111 −0.443055 0.896494i \(-0.646105\pi\)
−0.443055 + 0.896494i \(0.646105\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.89928 −0.615043
\(93\) −7.46388 −0.773968
\(94\) −0.448597 −0.0462692
\(95\) 0 0
\(96\) −1.83766 −0.187555
\(97\) 5.80593 0.589503 0.294751 0.955574i \(-0.404763\pi\)
0.294751 + 0.955574i \(0.404763\pi\)
\(98\) 16.0153 1.61779
\(99\) 0.622608 0.0625744
\(100\) 0 0
\(101\) −1.23752 −0.123138 −0.0615688 0.998103i \(-0.519610\pi\)
−0.0615688 + 0.998103i \(0.519610\pi\)
\(102\) 0.147976 0.0146518
\(103\) 9.38847 0.925073 0.462537 0.886600i \(-0.346939\pi\)
0.462537 + 0.886600i \(0.346939\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 11.5770 1.12446
\(107\) 18.5066 1.78910 0.894550 0.446968i \(-0.147496\pi\)
0.894550 + 0.446968i \(0.147496\pi\)
\(108\) 4.82020 0.463824
\(109\) −9.08638 −0.870317 −0.435158 0.900354i \(-0.643308\pi\)
−0.435158 + 0.900354i \(0.643308\pi\)
\(110\) 0 0
\(111\) −3.33918 −0.316941
\(112\) 4.79742 0.453314
\(113\) 15.9407 1.49958 0.749788 0.661678i \(-0.230155\pi\)
0.749788 + 0.661678i \(0.230155\pi\)
\(114\) 7.80593 0.731092
\(115\) 0 0
\(116\) 4.42044 0.410427
\(117\) 0 0
\(118\) 2.10800 0.194058
\(119\) −0.386309 −0.0354128
\(120\) 0 0
\(121\) −8.27246 −0.752042
\(122\) −3.12832 −0.283225
\(123\) −12.4750 −1.12484
\(124\) 4.06163 0.364745
\(125\) 0 0
\(126\) 1.80858 0.161121
\(127\) −0.892954 −0.0792369 −0.0396184 0.999215i \(-0.512614\pi\)
−0.0396184 + 0.999215i \(0.512614\pi\)
\(128\) 1.00000 0.0883883
\(129\) 15.6119 1.37455
\(130\) 0 0
\(131\) −1.11770 −0.0976541 −0.0488271 0.998807i \(-0.515548\pi\)
−0.0488271 + 0.998807i \(0.515548\pi\)
\(132\) −3.03494 −0.264158
\(133\) −20.3783 −1.76702
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −0.0805241 −0.00690489
\(137\) −8.20936 −0.701373 −0.350686 0.936493i \(-0.614052\pi\)
−0.350686 + 0.936493i \(0.614052\pi\)
\(138\) 10.8409 0.922836
\(139\) 5.11770 0.434078 0.217039 0.976163i \(-0.430360\pi\)
0.217039 + 0.976163i \(0.430360\pi\)
\(140\) 0 0
\(141\) 0.824367 0.0694242
\(142\) −7.35063 −0.616852
\(143\) 0 0
\(144\) 0.376989 0.0314158
\(145\) 0 0
\(146\) −10.5752 −0.875209
\(147\) −29.4306 −2.42740
\(148\) 1.81708 0.149363
\(149\) −4.14215 −0.339338 −0.169669 0.985501i \(-0.554270\pi\)
−0.169669 + 0.985501i \(0.554270\pi\)
\(150\) 0 0
\(151\) −4.43389 −0.360825 −0.180412 0.983591i \(-0.557743\pi\)
−0.180412 + 0.983591i \(0.557743\pi\)
\(152\) −4.24776 −0.344539
\(153\) −0.0303567 −0.00245420
\(154\) 7.92308 0.638460
\(155\) 0 0
\(156\) 0 0
\(157\) 8.32411 0.664337 0.332168 0.943220i \(-0.392220\pi\)
0.332168 + 0.943220i \(0.392220\pi\)
\(158\) 14.6468 1.16524
\(159\) −21.2746 −1.68718
\(160\) 0 0
\(161\) −28.3014 −2.23046
\(162\) −9.98885 −0.784798
\(163\) 0.943288 0.0738840 0.0369420 0.999317i \(-0.488238\pi\)
0.0369420 + 0.999317i \(0.488238\pi\)
\(164\) 6.78855 0.530097
\(165\) 0 0
\(166\) 12.4289 0.964673
\(167\) 4.30062 0.332792 0.166396 0.986059i \(-0.446787\pi\)
0.166396 + 0.986059i \(0.446787\pi\)
\(168\) −8.81603 −0.680171
\(169\) 0 0
\(170\) 0 0
\(171\) −1.60136 −0.122459
\(172\) −8.49552 −0.647777
\(173\) 0.994872 0.0756387 0.0378194 0.999285i \(-0.487959\pi\)
0.0378194 + 0.999285i \(0.487959\pi\)
\(174\) −8.12325 −0.615822
\(175\) 0 0
\(176\) 1.65153 0.124489
\(177\) −3.87379 −0.291172
\(178\) −8.35955 −0.626575
\(179\) −20.4357 −1.52744 −0.763719 0.645549i \(-0.776629\pi\)
−0.763719 + 0.645549i \(0.776629\pi\)
\(180\) 0 0
\(181\) 19.9522 1.48303 0.741517 0.670934i \(-0.234107\pi\)
0.741517 + 0.670934i \(0.234107\pi\)
\(182\) 0 0
\(183\) 5.74878 0.424962
\(184\) −5.89928 −0.434901
\(185\) 0 0
\(186\) −7.46388 −0.547278
\(187\) −0.132988 −0.00972503
\(188\) −0.448597 −0.0327173
\(189\) 23.1245 1.68206
\(190\) 0 0
\(191\) −7.67972 −0.555685 −0.277843 0.960627i \(-0.589619\pi\)
−0.277843 + 0.960627i \(0.589619\pi\)
\(192\) −1.83766 −0.132622
\(193\) 15.1914 1.09350 0.546751 0.837295i \(-0.315864\pi\)
0.546751 + 0.837295i \(0.315864\pi\)
\(194\) 5.80593 0.416841
\(195\) 0 0
\(196\) 16.0153 1.14395
\(197\) −3.01327 −0.214686 −0.107343 0.994222i \(-0.534234\pi\)
−0.107343 + 0.994222i \(0.534234\pi\)
\(198\) 0.622608 0.0442468
\(199\) −9.72106 −0.689107 −0.344554 0.938767i \(-0.611970\pi\)
−0.344554 + 0.938767i \(0.611970\pi\)
\(200\) 0 0
\(201\) −7.35063 −0.518474
\(202\) −1.23752 −0.0870714
\(203\) 21.2067 1.48842
\(204\) 0.147976 0.0103604
\(205\) 0 0
\(206\) 9.38847 0.654126
\(207\) −2.22397 −0.154576
\(208\) 0 0
\(209\) −7.01529 −0.485257
\(210\) 0 0
\(211\) −4.79064 −0.329802 −0.164901 0.986310i \(-0.552730\pi\)
−0.164901 + 0.986310i \(0.552730\pi\)
\(212\) 11.5770 0.795112
\(213\) 13.5080 0.925550
\(214\) 18.5066 1.26508
\(215\) 0 0
\(216\) 4.82020 0.327973
\(217\) 19.4853 1.32275
\(218\) −9.08638 −0.615407
\(219\) 19.4336 1.31320
\(220\) 0 0
\(221\) 0 0
\(222\) −3.33918 −0.224111
\(223\) 14.0434 0.940419 0.470209 0.882555i \(-0.344178\pi\)
0.470209 + 0.882555i \(0.344178\pi\)
\(224\) 4.79742 0.320541
\(225\) 0 0
\(226\) 15.9407 1.06036
\(227\) −2.88019 −0.191165 −0.0955823 0.995422i \(-0.530471\pi\)
−0.0955823 + 0.995422i \(0.530471\pi\)
\(228\) 7.80593 0.516960
\(229\) −6.70802 −0.443279 −0.221639 0.975129i \(-0.571141\pi\)
−0.221639 + 0.975129i \(0.571141\pi\)
\(230\) 0 0
\(231\) −14.5599 −0.957972
\(232\) 4.42044 0.290216
\(233\) −17.5959 −1.15275 −0.576374 0.817186i \(-0.695533\pi\)
−0.576374 + 0.817186i \(0.695533\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.10800 0.137219
\(237\) −26.9158 −1.74837
\(238\) −0.386309 −0.0250407
\(239\) −11.3119 −0.731708 −0.365854 0.930672i \(-0.619223\pi\)
−0.365854 + 0.930672i \(0.619223\pi\)
\(240\) 0 0
\(241\) 5.08019 0.327244 0.163622 0.986523i \(-0.447682\pi\)
0.163622 + 0.986523i \(0.447682\pi\)
\(242\) −8.27246 −0.531774
\(243\) 3.89550 0.249896
\(244\) −3.12832 −0.200270
\(245\) 0 0
\(246\) −12.4750 −0.795379
\(247\) 0 0
\(248\) 4.06163 0.257913
\(249\) −22.8401 −1.44744
\(250\) 0 0
\(251\) 19.5704 1.23527 0.617637 0.786463i \(-0.288090\pi\)
0.617637 + 0.786463i \(0.288090\pi\)
\(252\) 1.80858 0.113930
\(253\) −9.74283 −0.612526
\(254\) −0.892954 −0.0560289
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.98398 −0.123757 −0.0618786 0.998084i \(-0.519709\pi\)
−0.0618786 + 0.998084i \(0.519709\pi\)
\(258\) 15.6119 0.971952
\(259\) 8.71731 0.541668
\(260\) 0 0
\(261\) 1.66646 0.103151
\(262\) −1.11770 −0.0690519
\(263\) 0.608563 0.0375256 0.0187628 0.999824i \(-0.494027\pi\)
0.0187628 + 0.999824i \(0.494027\pi\)
\(264\) −3.03494 −0.186788
\(265\) 0 0
\(266\) −20.3783 −1.24947
\(267\) 15.3620 0.940139
\(268\) 4.00000 0.244339
\(269\) −17.7448 −1.08192 −0.540961 0.841048i \(-0.681939\pi\)
−0.540961 + 0.841048i \(0.681939\pi\)
\(270\) 0 0
\(271\) −16.0279 −0.973626 −0.486813 0.873506i \(-0.661841\pi\)
−0.486813 + 0.873506i \(0.661841\pi\)
\(272\) −0.0805241 −0.00488249
\(273\) 0 0
\(274\) −8.20936 −0.495945
\(275\) 0 0
\(276\) 10.8409 0.652544
\(277\) 11.9042 0.715253 0.357626 0.933865i \(-0.383586\pi\)
0.357626 + 0.933865i \(0.383586\pi\)
\(278\) 5.11770 0.306939
\(279\) 1.53119 0.0916699
\(280\) 0 0
\(281\) 11.3975 0.679920 0.339960 0.940440i \(-0.389587\pi\)
0.339960 + 0.940440i \(0.389587\pi\)
\(282\) 0.824367 0.0490904
\(283\) −20.4123 −1.21339 −0.606694 0.794935i \(-0.707505\pi\)
−0.606694 + 0.794935i \(0.707505\pi\)
\(284\) −7.35063 −0.436180
\(285\) 0 0
\(286\) 0 0
\(287\) 32.5676 1.92240
\(288\) 0.376989 0.0222143
\(289\) −16.9935 −0.999619
\(290\) 0 0
\(291\) −10.6693 −0.625446
\(292\) −10.5752 −0.618866
\(293\) 4.18768 0.244647 0.122323 0.992490i \(-0.460965\pi\)
0.122323 + 0.992490i \(0.460965\pi\)
\(294\) −29.4306 −1.71643
\(295\) 0 0
\(296\) 1.81708 0.105616
\(297\) 7.96069 0.461926
\(298\) −4.14215 −0.239948
\(299\) 0 0
\(300\) 0 0
\(301\) −40.7566 −2.34917
\(302\) −4.43389 −0.255142
\(303\) 2.27413 0.130646
\(304\) −4.24776 −0.243626
\(305\) 0 0
\(306\) −0.0303567 −0.00173538
\(307\) 18.0170 1.02828 0.514142 0.857705i \(-0.328110\pi\)
0.514142 + 0.857705i \(0.328110\pi\)
\(308\) 7.92308 0.451459
\(309\) −17.2528 −0.981478
\(310\) 0 0
\(311\) 5.17816 0.293626 0.146813 0.989164i \(-0.453098\pi\)
0.146813 + 0.989164i \(0.453098\pi\)
\(312\) 0 0
\(313\) 32.6333 1.84455 0.922273 0.386539i \(-0.126330\pi\)
0.922273 + 0.386539i \(0.126330\pi\)
\(314\) 8.32411 0.469757
\(315\) 0 0
\(316\) 14.6468 0.823947
\(317\) 23.7385 1.33328 0.666642 0.745378i \(-0.267731\pi\)
0.666642 + 0.745378i \(0.267731\pi\)
\(318\) −21.2746 −1.19302
\(319\) 7.30047 0.408748
\(320\) 0 0
\(321\) −34.0088 −1.89819
\(322\) −28.3014 −1.57717
\(323\) 0.342047 0.0190320
\(324\) −9.98885 −0.554936
\(325\) 0 0
\(326\) 0.943288 0.0522439
\(327\) 16.6977 0.923383
\(328\) 6.78855 0.374835
\(329\) −2.15211 −0.118650
\(330\) 0 0
\(331\) 30.4752 1.67507 0.837534 0.546386i \(-0.183997\pi\)
0.837534 + 0.546386i \(0.183997\pi\)
\(332\) 12.4289 0.682127
\(333\) 0.685020 0.0375389
\(334\) 4.30062 0.235319
\(335\) 0 0
\(336\) −8.81603 −0.480954
\(337\) 19.2799 1.05024 0.525121 0.851027i \(-0.324020\pi\)
0.525121 + 0.851027i \(0.324020\pi\)
\(338\) 0 0
\(339\) −29.2936 −1.59101
\(340\) 0 0
\(341\) 6.70788 0.363252
\(342\) −1.60136 −0.0865916
\(343\) 43.2502 2.33529
\(344\) −8.49552 −0.458048
\(345\) 0 0
\(346\) 0.994872 0.0534846
\(347\) 15.3720 0.825211 0.412605 0.910910i \(-0.364619\pi\)
0.412605 + 0.910910i \(0.364619\pi\)
\(348\) −8.12325 −0.435452
\(349\) 15.2035 0.813827 0.406913 0.913467i \(-0.366605\pi\)
0.406913 + 0.913467i \(0.366605\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.65153 0.0880267
\(353\) −26.9017 −1.43183 −0.715917 0.698185i \(-0.753991\pi\)
−0.715917 + 0.698185i \(0.753991\pi\)
\(354\) −3.87379 −0.205890
\(355\) 0 0
\(356\) −8.35955 −0.443055
\(357\) 0.709903 0.0375721
\(358\) −20.4357 −1.08006
\(359\) −20.8348 −1.09962 −0.549809 0.835291i \(-0.685299\pi\)
−0.549809 + 0.835291i \(0.685299\pi\)
\(360\) 0 0
\(361\) −0.956554 −0.0503449
\(362\) 19.9522 1.04866
\(363\) 15.2020 0.797896
\(364\) 0 0
\(365\) 0 0
\(366\) 5.74878 0.300494
\(367\) 34.5729 1.80469 0.902346 0.431013i \(-0.141844\pi\)
0.902346 + 0.431013i \(0.141844\pi\)
\(368\) −5.89928 −0.307521
\(369\) 2.55921 0.133227
\(370\) 0 0
\(371\) 55.5398 2.88348
\(372\) −7.46388 −0.386984
\(373\) 25.0064 1.29478 0.647391 0.762158i \(-0.275860\pi\)
0.647391 + 0.762158i \(0.275860\pi\)
\(374\) −0.132988 −0.00687663
\(375\) 0 0
\(376\) −0.448597 −0.0231346
\(377\) 0 0
\(378\) 23.1245 1.18940
\(379\) −3.75953 −0.193114 −0.0965571 0.995327i \(-0.530783\pi\)
−0.0965571 + 0.995327i \(0.530783\pi\)
\(380\) 0 0
\(381\) 1.64094 0.0840682
\(382\) −7.67972 −0.392929
\(383\) 3.93892 0.201269 0.100635 0.994923i \(-0.467913\pi\)
0.100635 + 0.994923i \(0.467913\pi\)
\(384\) −1.83766 −0.0937776
\(385\) 0 0
\(386\) 15.1914 0.773223
\(387\) −3.20272 −0.162803
\(388\) 5.80593 0.294751
\(389\) −19.1589 −0.971394 −0.485697 0.874127i \(-0.661434\pi\)
−0.485697 + 0.874127i \(0.661434\pi\)
\(390\) 0 0
\(391\) 0.475035 0.0240235
\(392\) 16.0153 0.808894
\(393\) 2.05396 0.103608
\(394\) −3.01327 −0.151806
\(395\) 0 0
\(396\) 0.622608 0.0312872
\(397\) −6.45538 −0.323986 −0.161993 0.986792i \(-0.551792\pi\)
−0.161993 + 0.986792i \(0.551792\pi\)
\(398\) −9.72106 −0.487273
\(399\) 37.4484 1.87476
\(400\) 0 0
\(401\) 34.6424 1.72996 0.864980 0.501807i \(-0.167331\pi\)
0.864980 + 0.501807i \(0.167331\pi\)
\(402\) −7.35063 −0.366616
\(403\) 0 0
\(404\) −1.23752 −0.0615688
\(405\) 0 0
\(406\) 21.2067 1.05247
\(407\) 3.00096 0.148752
\(408\) 0.147976 0.00732590
\(409\) 18.6071 0.920063 0.460031 0.887903i \(-0.347838\pi\)
0.460031 + 0.887903i \(0.347838\pi\)
\(410\) 0 0
\(411\) 15.0860 0.744137
\(412\) 9.38847 0.462537
\(413\) 10.1130 0.497628
\(414\) −2.22397 −0.109302
\(415\) 0 0
\(416\) 0 0
\(417\) −9.40459 −0.460545
\(418\) −7.01529 −0.343129
\(419\) 22.9495 1.12116 0.560579 0.828101i \(-0.310579\pi\)
0.560579 + 0.828101i \(0.310579\pi\)
\(420\) 0 0
\(421\) 34.8196 1.69700 0.848501 0.529194i \(-0.177505\pi\)
0.848501 + 0.529194i \(0.177505\pi\)
\(422\) −4.79064 −0.233205
\(423\) −0.169116 −0.00822271
\(424\) 11.5770 0.562229
\(425\) 0 0
\(426\) 13.5080 0.654463
\(427\) −15.0079 −0.726282
\(428\) 18.5066 0.894550
\(429\) 0 0
\(430\) 0 0
\(431\) −20.4986 −0.987385 −0.493692 0.869637i \(-0.664353\pi\)
−0.493692 + 0.869637i \(0.664353\pi\)
\(432\) 4.82020 0.231912
\(433\) 2.14503 0.103083 0.0515417 0.998671i \(-0.483587\pi\)
0.0515417 + 0.998671i \(0.483587\pi\)
\(434\) 19.4853 0.935326
\(435\) 0 0
\(436\) −9.08638 −0.435158
\(437\) 25.0587 1.19872
\(438\) 19.4336 0.928573
\(439\) 1.05195 0.0502068 0.0251034 0.999685i \(-0.492008\pi\)
0.0251034 + 0.999685i \(0.492008\pi\)
\(440\) 0 0
\(441\) 6.03759 0.287504
\(442\) 0 0
\(443\) 18.3043 0.869665 0.434833 0.900511i \(-0.356807\pi\)
0.434833 + 0.900511i \(0.356807\pi\)
\(444\) −3.33918 −0.158470
\(445\) 0 0
\(446\) 14.0434 0.664976
\(447\) 7.61186 0.360029
\(448\) 4.79742 0.226657
\(449\) −13.9524 −0.658453 −0.329226 0.944251i \(-0.606788\pi\)
−0.329226 + 0.944251i \(0.606788\pi\)
\(450\) 0 0
\(451\) 11.2115 0.527927
\(452\) 15.9407 0.749788
\(453\) 8.14798 0.382825
\(454\) −2.88019 −0.135174
\(455\) 0 0
\(456\) 7.80593 0.365546
\(457\) −29.4331 −1.37682 −0.688411 0.725321i \(-0.741691\pi\)
−0.688411 + 0.725321i \(0.741691\pi\)
\(458\) −6.70802 −0.313445
\(459\) −0.388142 −0.0181169
\(460\) 0 0
\(461\) 9.09372 0.423537 0.211768 0.977320i \(-0.432078\pi\)
0.211768 + 0.977320i \(0.432078\pi\)
\(462\) −14.5599 −0.677388
\(463\) 41.6642 1.93630 0.968150 0.250372i \(-0.0805529\pi\)
0.968150 + 0.250372i \(0.0805529\pi\)
\(464\) 4.42044 0.205214
\(465\) 0 0
\(466\) −17.5959 −0.815116
\(467\) −38.1079 −1.76342 −0.881712 0.471789i \(-0.843609\pi\)
−0.881712 + 0.471789i \(0.843609\pi\)
\(468\) 0 0
\(469\) 19.1897 0.886098
\(470\) 0 0
\(471\) −15.2969 −0.704843
\(472\) 2.10800 0.0970288
\(473\) −14.0306 −0.645126
\(474\) −26.9158 −1.23628
\(475\) 0 0
\(476\) −0.386309 −0.0177064
\(477\) 4.36440 0.199832
\(478\) −11.3119 −0.517395
\(479\) 15.0374 0.687077 0.343538 0.939139i \(-0.388374\pi\)
0.343538 + 0.939139i \(0.388374\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 5.08019 0.231396
\(483\) 52.0083 2.36646
\(484\) −8.27246 −0.376021
\(485\) 0 0
\(486\) 3.89550 0.176703
\(487\) 4.56256 0.206749 0.103375 0.994642i \(-0.467036\pi\)
0.103375 + 0.994642i \(0.467036\pi\)
\(488\) −3.12832 −0.141612
\(489\) −1.73344 −0.0783890
\(490\) 0 0
\(491\) 8.41606 0.379812 0.189906 0.981802i \(-0.439182\pi\)
0.189906 + 0.981802i \(0.439182\pi\)
\(492\) −12.4750 −0.562418
\(493\) −0.355952 −0.0160313
\(494\) 0 0
\(495\) 0 0
\(496\) 4.06163 0.182372
\(497\) −35.2641 −1.58181
\(498\) −22.8401 −1.02349
\(499\) 12.5587 0.562206 0.281103 0.959678i \(-0.409300\pi\)
0.281103 + 0.959678i \(0.409300\pi\)
\(500\) 0 0
\(501\) −7.90307 −0.353083
\(502\) 19.5704 0.873471
\(503\) −7.84324 −0.349713 −0.174856 0.984594i \(-0.555946\pi\)
−0.174856 + 0.984594i \(0.555946\pi\)
\(504\) 1.80858 0.0805605
\(505\) 0 0
\(506\) −9.74283 −0.433121
\(507\) 0 0
\(508\) −0.892954 −0.0396184
\(509\) 36.2850 1.60830 0.804152 0.594424i \(-0.202620\pi\)
0.804152 + 0.594424i \(0.202620\pi\)
\(510\) 0 0
\(511\) −50.7337 −2.24433
\(512\) 1.00000 0.0441942
\(513\) −20.4750 −0.903995
\(514\) −1.98398 −0.0875095
\(515\) 0 0
\(516\) 15.6119 0.687274
\(517\) −0.740869 −0.0325834
\(518\) 8.71731 0.383017
\(519\) −1.82823 −0.0802506
\(520\) 0 0
\(521\) 1.95007 0.0854341 0.0427171 0.999087i \(-0.486399\pi\)
0.0427171 + 0.999087i \(0.486399\pi\)
\(522\) 1.66646 0.0729388
\(523\) −9.08638 −0.397319 −0.198660 0.980069i \(-0.563659\pi\)
−0.198660 + 0.980069i \(0.563659\pi\)
\(524\) −1.11770 −0.0488271
\(525\) 0 0
\(526\) 0.608563 0.0265346
\(527\) −0.327059 −0.0142469
\(528\) −3.03494 −0.132079
\(529\) 11.8016 0.513111
\(530\) 0 0
\(531\) 0.794695 0.0344868
\(532\) −20.3783 −0.883511
\(533\) 0 0
\(534\) 15.3620 0.664779
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 37.5539 1.62057
\(538\) −17.7448 −0.765035
\(539\) 26.4497 1.13927
\(540\) 0 0
\(541\) 35.7827 1.53842 0.769209 0.638997i \(-0.220650\pi\)
0.769209 + 0.638997i \(0.220650\pi\)
\(542\) −16.0279 −0.688458
\(543\) −36.6653 −1.57346
\(544\) −0.0805241 −0.00345244
\(545\) 0 0
\(546\) 0 0
\(547\) −29.0584 −1.24245 −0.621223 0.783634i \(-0.713364\pi\)
−0.621223 + 0.783634i \(0.713364\pi\)
\(548\) −8.20936 −0.350686
\(549\) −1.17934 −0.0503331
\(550\) 0 0
\(551\) −18.7769 −0.799925
\(552\) 10.8409 0.461418
\(553\) 70.2669 2.98805
\(554\) 11.9042 0.505760
\(555\) 0 0
\(556\) 5.11770 0.217039
\(557\) −33.0984 −1.40243 −0.701213 0.712952i \(-0.747358\pi\)
−0.701213 + 0.712952i \(0.747358\pi\)
\(558\) 1.53119 0.0648204
\(559\) 0 0
\(560\) 0 0
\(561\) 0.244386 0.0103180
\(562\) 11.3975 0.480776
\(563\) 10.4632 0.440971 0.220485 0.975390i \(-0.429236\pi\)
0.220485 + 0.975390i \(0.429236\pi\)
\(564\) 0.824367 0.0347121
\(565\) 0 0
\(566\) −20.4123 −0.857995
\(567\) −47.9207 −2.01248
\(568\) −7.35063 −0.308426
\(569\) 8.63244 0.361891 0.180945 0.983493i \(-0.442084\pi\)
0.180945 + 0.983493i \(0.442084\pi\)
\(570\) 0 0
\(571\) −14.3069 −0.598724 −0.299362 0.954140i \(-0.596774\pi\)
−0.299362 + 0.954140i \(0.596774\pi\)
\(572\) 0 0
\(573\) 14.1127 0.589567
\(574\) 32.5676 1.35934
\(575\) 0 0
\(576\) 0.376989 0.0157079
\(577\) 11.9697 0.498306 0.249153 0.968464i \(-0.419848\pi\)
0.249153 + 0.968464i \(0.419848\pi\)
\(578\) −16.9935 −0.706837
\(579\) −27.9166 −1.16018
\(580\) 0 0
\(581\) 59.6269 2.47374
\(582\) −10.6693 −0.442257
\(583\) 19.1197 0.791858
\(584\) −10.5752 −0.437605
\(585\) 0 0
\(586\) 4.18768 0.172991
\(587\) 5.50796 0.227338 0.113669 0.993519i \(-0.463740\pi\)
0.113669 + 0.993519i \(0.463740\pi\)
\(588\) −29.4306 −1.21370
\(589\) −17.2528 −0.710889
\(590\) 0 0
\(591\) 5.53735 0.227776
\(592\) 1.81708 0.0746816
\(593\) −24.6037 −1.01035 −0.505177 0.863016i \(-0.668573\pi\)
−0.505177 + 0.863016i \(0.668573\pi\)
\(594\) 7.96069 0.326631
\(595\) 0 0
\(596\) −4.14215 −0.169669
\(597\) 17.8640 0.731124
\(598\) 0 0
\(599\) −35.3159 −1.44297 −0.721484 0.692431i \(-0.756540\pi\)
−0.721484 + 0.692431i \(0.756540\pi\)
\(600\) 0 0
\(601\) 34.9214 1.42447 0.712236 0.701940i \(-0.247682\pi\)
0.712236 + 0.701940i \(0.247682\pi\)
\(602\) −40.7566 −1.66111
\(603\) 1.50796 0.0614088
\(604\) −4.43389 −0.180412
\(605\) 0 0
\(606\) 2.27413 0.0923804
\(607\) −24.9627 −1.01320 −0.506602 0.862180i \(-0.669099\pi\)
−0.506602 + 0.862180i \(0.669099\pi\)
\(608\) −4.24776 −0.172269
\(609\) −38.9707 −1.57917
\(610\) 0 0
\(611\) 0 0
\(612\) −0.0303567 −0.00122710
\(613\) 16.1266 0.651347 0.325674 0.945482i \(-0.394409\pi\)
0.325674 + 0.945482i \(0.394409\pi\)
\(614\) 18.0170 0.727107
\(615\) 0 0
\(616\) 7.92308 0.319230
\(617\) −28.5073 −1.14766 −0.573831 0.818974i \(-0.694543\pi\)
−0.573831 + 0.818974i \(0.694543\pi\)
\(618\) −17.2528 −0.694010
\(619\) 0.338217 0.0135941 0.00679705 0.999977i \(-0.497836\pi\)
0.00679705 + 0.999977i \(0.497836\pi\)
\(620\) 0 0
\(621\) −28.4357 −1.14109
\(622\) 5.17816 0.207625
\(623\) −40.1043 −1.60675
\(624\) 0 0
\(625\) 0 0
\(626\) 32.6333 1.30429
\(627\) 12.8917 0.514845
\(628\) 8.32411 0.332168
\(629\) −0.146319 −0.00583412
\(630\) 0 0
\(631\) −32.1930 −1.28158 −0.640791 0.767715i \(-0.721394\pi\)
−0.640791 + 0.767715i \(0.721394\pi\)
\(632\) 14.6468 0.582618
\(633\) 8.80357 0.349910
\(634\) 23.7385 0.942774
\(635\) 0 0
\(636\) −21.2746 −0.843592
\(637\) 0 0
\(638\) 7.30047 0.289028
\(639\) −2.77111 −0.109623
\(640\) 0 0
\(641\) 12.5996 0.497655 0.248827 0.968548i \(-0.419955\pi\)
0.248827 + 0.968548i \(0.419955\pi\)
\(642\) −34.0088 −1.34222
\(643\) 19.4055 0.765280 0.382640 0.923898i \(-0.375015\pi\)
0.382640 + 0.923898i \(0.375015\pi\)
\(644\) −28.3014 −1.11523
\(645\) 0 0
\(646\) 0.342047 0.0134577
\(647\) −18.6943 −0.734949 −0.367475 0.930034i \(-0.619777\pi\)
−0.367475 + 0.930034i \(0.619777\pi\)
\(648\) −9.98885 −0.392399
\(649\) 3.48143 0.136658
\(650\) 0 0
\(651\) −35.8074 −1.40340
\(652\) 0.943288 0.0369420
\(653\) −17.8699 −0.699305 −0.349652 0.936879i \(-0.613700\pi\)
−0.349652 + 0.936879i \(0.613700\pi\)
\(654\) 16.6977 0.652930
\(655\) 0 0
\(656\) 6.78855 0.265048
\(657\) −3.98673 −0.155537
\(658\) −2.15211 −0.0838979
\(659\) −39.0893 −1.52270 −0.761352 0.648339i \(-0.775464\pi\)
−0.761352 + 0.648339i \(0.775464\pi\)
\(660\) 0 0
\(661\) −40.3696 −1.57020 −0.785098 0.619372i \(-0.787387\pi\)
−0.785098 + 0.619372i \(0.787387\pi\)
\(662\) 30.4752 1.18445
\(663\) 0 0
\(664\) 12.4289 0.482336
\(665\) 0 0
\(666\) 0.685020 0.0265440
\(667\) −26.0774 −1.00972
\(668\) 4.30062 0.166396
\(669\) −25.8071 −0.997759
\(670\) 0 0
\(671\) −5.16650 −0.199451
\(672\) −8.81603 −0.340086
\(673\) 21.1833 0.816558 0.408279 0.912857i \(-0.366129\pi\)
0.408279 + 0.912857i \(0.366129\pi\)
\(674\) 19.2799 0.742634
\(675\) 0 0
\(676\) 0 0
\(677\) 2.48027 0.0953245 0.0476622 0.998864i \(-0.484823\pi\)
0.0476622 + 0.998864i \(0.484823\pi\)
\(678\) −29.2936 −1.12501
\(679\) 27.8535 1.06892
\(680\) 0 0
\(681\) 5.29280 0.202820
\(682\) 6.70788 0.256858
\(683\) −12.8579 −0.491993 −0.245997 0.969271i \(-0.579115\pi\)
−0.245997 + 0.969271i \(0.579115\pi\)
\(684\) −1.60136 −0.0612295
\(685\) 0 0
\(686\) 43.2502 1.65130
\(687\) 12.3271 0.470307
\(688\) −8.49552 −0.323888
\(689\) 0 0
\(690\) 0 0
\(691\) −1.12646 −0.0428526 −0.0214263 0.999770i \(-0.506821\pi\)
−0.0214263 + 0.999770i \(0.506821\pi\)
\(692\) 0.994872 0.0378194
\(693\) 2.98691 0.113464
\(694\) 15.3720 0.583512
\(695\) 0 0
\(696\) −8.12325 −0.307911
\(697\) −0.546642 −0.0207055
\(698\) 15.2035 0.575462
\(699\) 32.3353 1.22303
\(700\) 0 0
\(701\) −9.39602 −0.354883 −0.177441 0.984131i \(-0.556782\pi\)
−0.177441 + 0.984131i \(0.556782\pi\)
\(702\) 0 0
\(703\) −7.71852 −0.291110
\(704\) 1.65153 0.0622443
\(705\) 0 0
\(706\) −26.9017 −1.01246
\(707\) −5.93690 −0.223280
\(708\) −3.87379 −0.145586
\(709\) 17.8713 0.671172 0.335586 0.942010i \(-0.391066\pi\)
0.335586 + 0.942010i \(0.391066\pi\)
\(710\) 0 0
\(711\) 5.52169 0.207079
\(712\) −8.35955 −0.313287
\(713\) −23.9607 −0.897335
\(714\) 0.709903 0.0265675
\(715\) 0 0
\(716\) −20.4357 −0.763719
\(717\) 20.7875 0.776322
\(718\) −20.8348 −0.777547
\(719\) −2.31296 −0.0862588 −0.0431294 0.999069i \(-0.513733\pi\)
−0.0431294 + 0.999069i \(0.513733\pi\)
\(720\) 0 0
\(721\) 45.0405 1.67740
\(722\) −0.956554 −0.0355992
\(723\) −9.33566 −0.347197
\(724\) 19.9522 0.741517
\(725\) 0 0
\(726\) 15.2020 0.564198
\(727\) −17.9866 −0.667087 −0.333543 0.942735i \(-0.608244\pi\)
−0.333543 + 0.942735i \(0.608244\pi\)
\(728\) 0 0
\(729\) 22.8079 0.844739
\(730\) 0 0
\(731\) 0.684094 0.0253021
\(732\) 5.74878 0.212481
\(733\) 45.2898 1.67282 0.836408 0.548108i \(-0.184652\pi\)
0.836408 + 0.548108i \(0.184652\pi\)
\(734\) 34.5729 1.27611
\(735\) 0 0
\(736\) −5.89928 −0.217451
\(737\) 6.60611 0.243339
\(738\) 2.55921 0.0942058
\(739\) −45.0044 −1.65551 −0.827756 0.561088i \(-0.810383\pi\)
−0.827756 + 0.561088i \(0.810383\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 55.5398 2.03893
\(743\) 6.56669 0.240908 0.120454 0.992719i \(-0.461565\pi\)
0.120454 + 0.992719i \(0.461565\pi\)
\(744\) −7.46388 −0.273639
\(745\) 0 0
\(746\) 25.0064 0.915549
\(747\) 4.68558 0.171436
\(748\) −0.132988 −0.00486251
\(749\) 88.7840 3.24410
\(750\) 0 0
\(751\) −27.3499 −0.998013 −0.499006 0.866598i \(-0.666302\pi\)
−0.499006 + 0.866598i \(0.666302\pi\)
\(752\) −0.448597 −0.0163586
\(753\) −35.9638 −1.31059
\(754\) 0 0
\(755\) 0 0
\(756\) 23.1245 0.841031
\(757\) −39.0526 −1.41939 −0.709696 0.704509i \(-0.751167\pi\)
−0.709696 + 0.704509i \(0.751167\pi\)
\(758\) −3.75953 −0.136552
\(759\) 17.9040 0.649874
\(760\) 0 0
\(761\) 28.4342 1.03074 0.515369 0.856968i \(-0.327655\pi\)
0.515369 + 0.856968i \(0.327655\pi\)
\(762\) 1.64094 0.0594452
\(763\) −43.5912 −1.57811
\(764\) −7.67972 −0.277843
\(765\) 0 0
\(766\) 3.93892 0.142319
\(767\) 0 0
\(768\) −1.83766 −0.0663108
\(769\) −29.2424 −1.05451 −0.527254 0.849708i \(-0.676778\pi\)
−0.527254 + 0.849708i \(0.676778\pi\)
\(770\) 0 0
\(771\) 3.64587 0.131303
\(772\) 15.1914 0.546751
\(773\) −20.8212 −0.748887 −0.374444 0.927250i \(-0.622166\pi\)
−0.374444 + 0.927250i \(0.622166\pi\)
\(774\) −3.20272 −0.115119
\(775\) 0 0
\(776\) 5.80593 0.208421
\(777\) −16.0194 −0.574694
\(778\) −19.1589 −0.686879
\(779\) −28.8361 −1.03316
\(780\) 0 0
\(781\) −12.1398 −0.434395
\(782\) 0.475035 0.0169872
\(783\) 21.3074 0.761463
\(784\) 16.0153 0.571974
\(785\) 0 0
\(786\) 2.05396 0.0732622
\(787\) 20.9569 0.747031 0.373516 0.927624i \(-0.378152\pi\)
0.373516 + 0.927624i \(0.378152\pi\)
\(788\) −3.01327 −0.107343
\(789\) −1.11833 −0.0398137
\(790\) 0 0
\(791\) 76.4744 2.71912
\(792\) 0.622608 0.0221234
\(793\) 0 0
\(794\) −6.45538 −0.229093
\(795\) 0 0
\(796\) −9.72106 −0.344554
\(797\) 18.5740 0.657924 0.328962 0.944343i \(-0.393301\pi\)
0.328962 + 0.944343i \(0.393301\pi\)
\(798\) 37.4484 1.32566
\(799\) 0.0361228 0.00127793
\(800\) 0 0
\(801\) −3.15146 −0.111351
\(802\) 34.6424 1.22327
\(803\) −17.4652 −0.616334
\(804\) −7.35063 −0.259237
\(805\) 0 0
\(806\) 0 0
\(807\) 32.6090 1.14789
\(808\) −1.23752 −0.0435357
\(809\) 28.1410 0.989383 0.494692 0.869069i \(-0.335281\pi\)
0.494692 + 0.869069i \(0.335281\pi\)
\(810\) 0 0
\(811\) 17.1410 0.601903 0.300952 0.953639i \(-0.402696\pi\)
0.300952 + 0.953639i \(0.402696\pi\)
\(812\) 21.2067 0.744210
\(813\) 29.4538 1.03299
\(814\) 3.00096 0.105184
\(815\) 0 0
\(816\) 0.147976 0.00518019
\(817\) 36.0869 1.26252
\(818\) 18.6071 0.650583
\(819\) 0 0
\(820\) 0 0
\(821\) −13.3822 −0.467043 −0.233521 0.972352i \(-0.575025\pi\)
−0.233521 + 0.972352i \(0.575025\pi\)
\(822\) 15.0860 0.526184
\(823\) −21.6095 −0.753259 −0.376629 0.926364i \(-0.622917\pi\)
−0.376629 + 0.926364i \(0.622917\pi\)
\(824\) 9.38847 0.327063
\(825\) 0 0
\(826\) 10.1130 0.351876
\(827\) 5.85827 0.203712 0.101856 0.994799i \(-0.467522\pi\)
0.101856 + 0.994799i \(0.467522\pi\)
\(828\) −2.22397 −0.0772882
\(829\) −21.2783 −0.739026 −0.369513 0.929225i \(-0.620476\pi\)
−0.369513 + 0.929225i \(0.620476\pi\)
\(830\) 0 0
\(831\) −21.8758 −0.758864
\(832\) 0 0
\(833\) −1.28962 −0.0446826
\(834\) −9.40459 −0.325654
\(835\) 0 0
\(836\) −7.01529 −0.242629
\(837\) 19.5778 0.676709
\(838\) 22.9495 0.792778
\(839\) −19.5222 −0.673981 −0.336990 0.941508i \(-0.609409\pi\)
−0.336990 + 0.941508i \(0.609409\pi\)
\(840\) 0 0
\(841\) −9.45975 −0.326198
\(842\) 34.8196 1.19996
\(843\) −20.9448 −0.721376
\(844\) −4.79064 −0.164901
\(845\) 0 0
\(846\) −0.169116 −0.00581433
\(847\) −39.6865 −1.36364
\(848\) 11.5770 0.397556
\(849\) 37.5109 1.28737
\(850\) 0 0
\(851\) −10.7195 −0.367459
\(852\) 13.5080 0.462775
\(853\) 33.3923 1.14333 0.571665 0.820487i \(-0.306298\pi\)
0.571665 + 0.820487i \(0.306298\pi\)
\(854\) −15.0079 −0.513559
\(855\) 0 0
\(856\) 18.5066 0.632542
\(857\) 22.7514 0.777172 0.388586 0.921412i \(-0.372964\pi\)
0.388586 + 0.921412i \(0.372964\pi\)
\(858\) 0 0
\(859\) 7.99391 0.272749 0.136374 0.990657i \(-0.456455\pi\)
0.136374 + 0.990657i \(0.456455\pi\)
\(860\) 0 0
\(861\) −59.8480 −2.03962
\(862\) −20.4986 −0.698186
\(863\) 11.7205 0.398971 0.199486 0.979901i \(-0.436073\pi\)
0.199486 + 0.979901i \(0.436073\pi\)
\(864\) 4.82020 0.163986
\(865\) 0 0
\(866\) 2.14503 0.0728909
\(867\) 31.2283 1.06057
\(868\) 19.4853 0.661376
\(869\) 24.1896 0.820575
\(870\) 0 0
\(871\) 0 0
\(872\) −9.08638 −0.307704
\(873\) 2.18877 0.0740787
\(874\) 25.0587 0.847624
\(875\) 0 0
\(876\) 19.4336 0.656600
\(877\) 1.72808 0.0583530 0.0291765 0.999574i \(-0.490712\pi\)
0.0291765 + 0.999574i \(0.490712\pi\)
\(878\) 1.05195 0.0355016
\(879\) −7.69553 −0.259564
\(880\) 0 0
\(881\) −33.5662 −1.13087 −0.565436 0.824792i \(-0.691292\pi\)
−0.565436 + 0.824792i \(0.691292\pi\)
\(882\) 6.03759 0.203296
\(883\) 18.2526 0.614249 0.307124 0.951669i \(-0.400633\pi\)
0.307124 + 0.951669i \(0.400633\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 18.3043 0.614946
\(887\) −23.4791 −0.788351 −0.394176 0.919035i \(-0.628970\pi\)
−0.394176 + 0.919035i \(0.628970\pi\)
\(888\) −3.33918 −0.112055
\(889\) −4.28388 −0.143677
\(890\) 0 0
\(891\) −16.4968 −0.552665
\(892\) 14.0434 0.470209
\(893\) 1.90553 0.0637661
\(894\) 7.61186 0.254579
\(895\) 0 0
\(896\) 4.79742 0.160271
\(897\) 0 0
\(898\) −13.9524 −0.465596
\(899\) 17.9542 0.598805
\(900\) 0 0
\(901\) −0.932228 −0.0310570
\(902\) 11.2115 0.373301
\(903\) 74.8967 2.49241
\(904\) 15.9407 0.530180
\(905\) 0 0
\(906\) 8.14798 0.270698
\(907\) 26.6800 0.885895 0.442948 0.896547i \(-0.353933\pi\)
0.442948 + 0.896547i \(0.353933\pi\)
\(908\) −2.88019 −0.0955823
\(909\) −0.466531 −0.0154739
\(910\) 0 0
\(911\) −33.1591 −1.09861 −0.549305 0.835622i \(-0.685108\pi\)
−0.549305 + 0.835622i \(0.685108\pi\)
\(912\) 7.80593 0.258480
\(913\) 20.5267 0.679335
\(914\) −29.4331 −0.973559
\(915\) 0 0
\(916\) −6.70802 −0.221639
\(917\) −5.36209 −0.177072
\(918\) −0.388142 −0.0128106
\(919\) −38.5789 −1.27260 −0.636301 0.771441i \(-0.719536\pi\)
−0.636301 + 0.771441i \(0.719536\pi\)
\(920\) 0 0
\(921\) −33.1091 −1.09098
\(922\) 9.09372 0.299486
\(923\) 0 0
\(924\) −14.5599 −0.478986
\(925\) 0 0
\(926\) 41.6642 1.36917
\(927\) 3.53935 0.116248
\(928\) 4.42044 0.145108
\(929\) −24.5973 −0.807011 −0.403505 0.914977i \(-0.632208\pi\)
−0.403505 + 0.914977i \(0.632208\pi\)
\(930\) 0 0
\(931\) −68.0291 −2.22956
\(932\) −17.5959 −0.576374
\(933\) −9.51568 −0.311530
\(934\) −38.1079 −1.24693
\(935\) 0 0
\(936\) 0 0
\(937\) −25.6787 −0.838886 −0.419443 0.907782i \(-0.637775\pi\)
−0.419443 + 0.907782i \(0.637775\pi\)
\(938\) 19.1897 0.626566
\(939\) −59.9690 −1.95701
\(940\) 0 0
\(941\) −27.7630 −0.905047 −0.452524 0.891752i \(-0.649476\pi\)
−0.452524 + 0.891752i \(0.649476\pi\)
\(942\) −15.2969 −0.498399
\(943\) −40.0476 −1.30413
\(944\) 2.10800 0.0686097
\(945\) 0 0
\(946\) −14.0306 −0.456173
\(947\) −10.0291 −0.325902 −0.162951 0.986634i \(-0.552101\pi\)
−0.162951 + 0.986634i \(0.552101\pi\)
\(948\) −26.9158 −0.874185
\(949\) 0 0
\(950\) 0 0
\(951\) −43.6232 −1.41458
\(952\) −0.386309 −0.0125203
\(953\) −34.9592 −1.13244 −0.566220 0.824254i \(-0.691595\pi\)
−0.566220 + 0.824254i \(0.691595\pi\)
\(954\) 4.36440 0.141303
\(955\) 0 0
\(956\) −11.3119 −0.365854
\(957\) −13.4158 −0.433670
\(958\) 15.0374 0.485837
\(959\) −39.3838 −1.27177
\(960\) 0 0
\(961\) −14.5032 −0.467845
\(962\) 0 0
\(963\) 6.97679 0.224824
\(964\) 5.08019 0.163622
\(965\) 0 0
\(966\) 52.0083 1.67334
\(967\) −8.61013 −0.276883 −0.138442 0.990371i \(-0.544209\pi\)
−0.138442 + 0.990371i \(0.544209\pi\)
\(968\) −8.27246 −0.265887
\(969\) −0.628566 −0.0201924
\(970\) 0 0
\(971\) −28.4894 −0.914268 −0.457134 0.889398i \(-0.651124\pi\)
−0.457134 + 0.889398i \(0.651124\pi\)
\(972\) 3.89550 0.124948
\(973\) 24.5518 0.787094
\(974\) 4.56256 0.146194
\(975\) 0 0
\(976\) −3.12832 −0.100135
\(977\) −23.1128 −0.739444 −0.369722 0.929142i \(-0.620547\pi\)
−0.369722 + 0.929142i \(0.620547\pi\)
\(978\) −1.73344 −0.0554294
\(979\) −13.8060 −0.441242
\(980\) 0 0
\(981\) −3.42547 −0.109367
\(982\) 8.41606 0.268567
\(983\) 28.0211 0.893736 0.446868 0.894600i \(-0.352539\pi\)
0.446868 + 0.894600i \(0.352539\pi\)
\(984\) −12.4750 −0.397690
\(985\) 0 0
\(986\) −0.355952 −0.0113358
\(987\) 3.95484 0.125884
\(988\) 0 0
\(989\) 50.1175 1.59364
\(990\) 0 0
\(991\) 24.8714 0.790067 0.395034 0.918667i \(-0.370733\pi\)
0.395034 + 0.918667i \(0.370733\pi\)
\(992\) 4.06163 0.128957
\(993\) −56.0030 −1.77720
\(994\) −35.2641 −1.11851
\(995\) 0 0
\(996\) −22.8401 −0.723718
\(997\) 26.6892 0.845254 0.422627 0.906304i \(-0.361108\pi\)
0.422627 + 0.906304i \(0.361108\pi\)
\(998\) 12.5587 0.397539
\(999\) 8.75869 0.277113
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cs.1.3 8
5.2 odd 4 1690.2.b.e.339.14 16
5.3 odd 4 1690.2.b.e.339.3 16
5.4 even 2 8450.2.a.cr.1.6 8
13.6 odd 12 650.2.m.e.101.3 16
13.11 odd 12 650.2.m.e.251.3 16
13.12 even 2 8450.2.a.cr.1.3 8
65.8 even 4 1690.2.c.f.1689.3 8
65.12 odd 4 1690.2.b.e.339.6 16
65.18 even 4 1690.2.c.e.1689.3 8
65.19 odd 12 650.2.m.e.101.6 16
65.24 odd 12 650.2.m.e.251.6 16
65.32 even 12 130.2.m.a.49.3 8
65.37 even 12 130.2.m.b.69.2 yes 8
65.38 odd 4 1690.2.b.e.339.11 16
65.47 even 4 1690.2.c.e.1689.6 8
65.57 even 4 1690.2.c.f.1689.6 8
65.58 even 12 130.2.m.b.49.2 yes 8
65.63 even 12 130.2.m.a.69.3 yes 8
65.64 even 2 inner 8450.2.a.cs.1.6 8
195.32 odd 12 1170.2.bj.b.829.4 8
195.128 odd 12 1170.2.bj.b.199.4 8
195.167 odd 12 1170.2.bj.a.199.1 8
195.188 odd 12 1170.2.bj.a.829.1 8
260.63 odd 12 1040.2.df.c.849.2 8
260.123 odd 12 1040.2.df.a.49.3 8
260.167 odd 12 1040.2.df.a.849.3 8
260.227 odd 12 1040.2.df.c.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.3 8 65.32 even 12
130.2.m.a.69.3 yes 8 65.63 even 12
130.2.m.b.49.2 yes 8 65.58 even 12
130.2.m.b.69.2 yes 8 65.37 even 12
650.2.m.e.101.3 16 13.6 odd 12
650.2.m.e.101.6 16 65.19 odd 12
650.2.m.e.251.3 16 13.11 odd 12
650.2.m.e.251.6 16 65.24 odd 12
1040.2.df.a.49.3 8 260.123 odd 12
1040.2.df.a.849.3 8 260.167 odd 12
1040.2.df.c.49.2 8 260.227 odd 12
1040.2.df.c.849.2 8 260.63 odd 12
1170.2.bj.a.199.1 8 195.167 odd 12
1170.2.bj.a.829.1 8 195.188 odd 12
1170.2.bj.b.199.4 8 195.128 odd 12
1170.2.bj.b.829.4 8 195.32 odd 12
1690.2.b.e.339.3 16 5.3 odd 4
1690.2.b.e.339.6 16 65.12 odd 4
1690.2.b.e.339.11 16 65.38 odd 4
1690.2.b.e.339.14 16 5.2 odd 4
1690.2.c.e.1689.3 8 65.18 even 4
1690.2.c.e.1689.6 8 65.47 even 4
1690.2.c.f.1689.3 8 65.8 even 4
1690.2.c.f.1689.6 8 65.57 even 4
8450.2.a.cr.1.3 8 13.12 even 2
8450.2.a.cr.1.6 8 5.4 even 2
8450.2.a.cs.1.3 8 1.1 even 1 trivial
8450.2.a.cs.1.6 8 65.64 even 2 inner