Properties

Label 1170.2.bj.a.199.1
Level $1170$
Weight $2$
Character 1170.199
Analytic conductor $9.342$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(199,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.50027374224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.1
Root \(-1.83766i\) of defining polynomial
Character \(\chi\) \(=\) 1170.199
Dual form 1170.2.bj.a.829.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-2.21022 - 0.339024i) q^{5} +(-2.39871 - 4.15469i) q^{7} +1.00000 q^{8} +(1.39871 - 1.74459i) q^{10} +(-1.43026 - 0.825763i) q^{11} +(1.09146 + 3.43638i) q^{13} +4.79742 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.0697360 + 0.0402621i) q^{17} +(3.67867 - 2.12388i) q^{19} +(0.811505 + 2.08362i) q^{20} +(1.43026 - 0.825763i) q^{22} +(-5.10893 - 2.94964i) q^{23} +(4.77013 + 1.49863i) q^{25} +(-3.52172 - 0.772959i) q^{26} +(-2.39871 + 4.15469i) q^{28} +(-2.21022 + 3.82821i) q^{29} +4.06163i q^{31} +(-0.500000 - 0.866025i) q^{32} -0.0805241i q^{34} +(3.89314 + 9.99600i) q^{35} +(-0.908541 + 1.57364i) q^{37} +4.24776i q^{38} +(-2.21022 - 0.339024i) q^{40} +(5.87906 + 3.39427i) q^{41} +(-7.35733 + 4.24776i) q^{43} +1.65153i q^{44} +(5.10893 - 2.94964i) q^{46} +0.448597 q^{47} +(-8.00764 + 13.8696i) q^{49} +(-3.68292 + 3.38173i) q^{50} +(2.43026 - 2.66342i) q^{52} +11.5770i q^{53} +(2.88124 + 2.31001i) q^{55} +(-2.39871 - 4.15469i) q^{56} +(-2.21022 - 3.82821i) q^{58} +(-1.82559 + 1.05400i) q^{59} +(1.56416 + 2.70920i) q^{61} +(-3.51747 - 2.03081i) q^{62} +1.00000 q^{64} +(-1.24735 - 7.96518i) q^{65} +(2.00000 - 3.46410i) q^{67} +(0.0697360 + 0.0402621i) q^{68} +(-10.6034 - 1.62644i) q^{70} +(6.36584 - 3.67532i) q^{71} +10.5752 q^{73} +(-0.908541 - 1.57364i) q^{74} +(-3.67867 - 2.12388i) q^{76} +7.92308i q^{77} -14.6468 q^{79} +(1.39871 - 1.74459i) q^{80} +(-5.87906 + 3.39427i) q^{82} -12.4289 q^{83} +(0.167781 - 0.0653458i) q^{85} -8.49552i q^{86} +(-1.43026 - 0.825763i) q^{88} +(-7.23958 - 4.17978i) q^{89} +(11.6590 - 12.7776i) q^{91} +5.89928i q^{92} +(-0.224298 + 0.388496i) q^{94} +(-8.85070 + 3.44708i) q^{95} +(2.90296 + 5.02808i) q^{97} +(-8.00764 - 13.8696i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 3 q^{5} - 5 q^{7} + 8 q^{8} - 3 q^{10} + 3 q^{11} - 4 q^{13} + 10 q^{14} - 4 q^{16} - 15 q^{17} + 9 q^{19} - 3 q^{22} - 6 q^{23} + 5 q^{25} - q^{26} - 5 q^{28} + 3 q^{29} - 4 q^{32}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.21022 0.339024i −0.988439 0.151616i
\(6\) 0 0
\(7\) −2.39871 4.15469i −0.906628 1.57033i −0.818717 0.574198i \(-0.805314\pi\)
−0.0879113 0.996128i \(-0.528019\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.39871 1.74459i 0.442312 0.551689i
\(11\) −1.43026 0.825763i −0.431241 0.248977i 0.268634 0.963242i \(-0.413428\pi\)
−0.699875 + 0.714265i \(0.746761\pi\)
\(12\) 0 0
\(13\) 1.09146 + 3.43638i 0.302716 + 0.953081i
\(14\) 4.79742 1.28217
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.0697360 + 0.0402621i −0.0169135 + 0.00976499i −0.508433 0.861102i \(-0.669775\pi\)
0.491519 + 0.870867i \(0.336442\pi\)
\(18\) 0 0
\(19\) 3.67867 2.12388i 0.843944 0.487251i −0.0146590 0.999893i \(-0.504666\pi\)
0.858603 + 0.512641i \(0.171333\pi\)
\(20\) 0.811505 + 2.08362i 0.181458 + 0.465911i
\(21\) 0 0
\(22\) 1.43026 0.825763i 0.304933 0.176053i
\(23\) −5.10893 2.94964i −1.06529 0.615043i −0.138396 0.990377i \(-0.544195\pi\)
−0.926890 + 0.375334i \(0.877528\pi\)
\(24\) 0 0
\(25\) 4.77013 + 1.49863i 0.954025 + 0.299727i
\(26\) −3.52172 0.772959i −0.690667 0.151590i
\(27\) 0 0
\(28\) −2.39871 + 4.15469i −0.453314 + 0.785163i
\(29\) −2.21022 + 3.82821i −0.410427 + 0.710881i −0.994936 0.100506i \(-0.967954\pi\)
0.584509 + 0.811387i \(0.301287\pi\)
\(30\) 0 0
\(31\) 4.06163i 0.729490i 0.931108 + 0.364745i \(0.118844\pi\)
−0.931108 + 0.364745i \(0.881156\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 0.0805241i 0.0138098i
\(35\) 3.89314 + 9.99600i 0.658060 + 1.68963i
\(36\) 0 0
\(37\) −0.908541 + 1.57364i −0.149363 + 0.258705i −0.930992 0.365039i \(-0.881056\pi\)
0.781629 + 0.623744i \(0.214389\pi\)
\(38\) 4.24776i 0.689077i
\(39\) 0 0
\(40\) −2.21022 0.339024i −0.349466 0.0536044i
\(41\) 5.87906 + 3.39427i 0.918154 + 0.530097i 0.883046 0.469287i \(-0.155489\pi\)
0.0351085 + 0.999384i \(0.488822\pi\)
\(42\) 0 0
\(43\) −7.35733 + 4.24776i −1.12198 + 0.647777i −0.941906 0.335876i \(-0.890968\pi\)
−0.180076 + 0.983653i \(0.557634\pi\)
\(44\) 1.65153i 0.248977i
\(45\) 0 0
\(46\) 5.10893 2.94964i 0.753271 0.434901i
\(47\) 0.448597 0.0654345 0.0327173 0.999465i \(-0.489584\pi\)
0.0327173 + 0.999465i \(0.489584\pi\)
\(48\) 0 0
\(49\) −8.00764 + 13.8696i −1.14395 + 1.98138i
\(50\) −3.68292 + 3.38173i −0.520843 + 0.478249i
\(51\) 0 0
\(52\) 2.43026 2.66342i 0.337017 0.369350i
\(53\) 11.5770i 1.59022i 0.606463 + 0.795112i \(0.292588\pi\)
−0.606463 + 0.795112i \(0.707412\pi\)
\(54\) 0 0
\(55\) 2.88124 + 2.31001i 0.388506 + 0.311482i
\(56\) −2.39871 4.15469i −0.320541 0.555194i
\(57\) 0 0
\(58\) −2.21022 3.82821i −0.290216 0.502669i
\(59\) −1.82559 + 1.05400i −0.237671 + 0.137219i −0.614106 0.789224i \(-0.710483\pi\)
0.376435 + 0.926443i \(0.377150\pi\)
\(60\) 0 0
\(61\) 1.56416 + 2.70920i 0.200270 + 0.346878i 0.948615 0.316431i \(-0.102485\pi\)
−0.748345 + 0.663309i \(0.769151\pi\)
\(62\) −3.51747 2.03081i −0.446719 0.257913i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.24735 7.96518i −0.154714 0.987959i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 0.0697360 + 0.0402621i 0.00845673 + 0.00488249i
\(69\) 0 0
\(70\) −10.6034 1.62644i −1.26734 0.194397i
\(71\) 6.36584 3.67532i 0.755486 0.436180i −0.0721869 0.997391i \(-0.522998\pi\)
0.827673 + 0.561211i \(0.189664\pi\)
\(72\) 0 0
\(73\) 10.5752 1.23773 0.618866 0.785496i \(-0.287592\pi\)
0.618866 + 0.785496i \(0.287592\pi\)
\(74\) −0.908541 1.57364i −0.105616 0.182932i
\(75\) 0 0
\(76\) −3.67867 2.12388i −0.421972 0.243626i
\(77\) 7.92308i 0.902918i
\(78\) 0 0
\(79\) −14.6468 −1.64789 −0.823947 0.566667i \(-0.808233\pi\)
−0.823947 + 0.566667i \(0.808233\pi\)
\(80\) 1.39871 1.74459i 0.156381 0.195051i
\(81\) 0 0
\(82\) −5.87906 + 3.39427i −0.649233 + 0.374835i
\(83\) −12.4289 −1.36425 −0.682127 0.731234i \(-0.738945\pi\)
−0.682127 + 0.731234i \(0.738945\pi\)
\(84\) 0 0
\(85\) 0.167781 0.0653458i 0.0181985 0.00708774i
\(86\) 8.49552i 0.916095i
\(87\) 0 0
\(88\) −1.43026 0.825763i −0.152467 0.0880267i
\(89\) −7.23958 4.17978i −0.767394 0.443055i 0.0645500 0.997914i \(-0.479439\pi\)
−0.831944 + 0.554859i \(0.812772\pi\)
\(90\) 0 0
\(91\) 11.6590 12.7776i 1.22220 1.33945i
\(92\) 5.89928i 0.615043i
\(93\) 0 0
\(94\) −0.224298 + 0.388496i −0.0231346 + 0.0400703i
\(95\) −8.85070 + 3.44708i −0.908063 + 0.353663i
\(96\) 0 0
\(97\) 2.90296 + 5.02808i 0.294751 + 0.510524i 0.974927 0.222525i \(-0.0714298\pi\)
−0.680176 + 0.733049i \(0.738097\pi\)
\(98\) −8.00764 13.8696i −0.808894 1.40105i
\(99\) 0 0
\(100\) −1.08721 4.88037i −0.108721 0.488037i
\(101\) 0.618759 1.07172i 0.0615688 0.106640i −0.833598 0.552372i \(-0.813723\pi\)
0.895167 + 0.445731i \(0.147056\pi\)
\(102\) 0 0
\(103\) 9.38847i 0.925073i 0.886600 + 0.462537i \(0.153061\pi\)
−0.886600 + 0.462537i \(0.846939\pi\)
\(104\) 1.09146 + 3.43638i 0.107026 + 0.336965i
\(105\) 0 0
\(106\) −10.0260 5.78850i −0.973809 0.562229i
\(107\) 16.0272 + 9.25330i 1.54941 + 0.894550i 0.998187 + 0.0601893i \(0.0191704\pi\)
0.551219 + 0.834361i \(0.314163\pi\)
\(108\) 0 0
\(109\) 9.08638i 0.870317i 0.900354 + 0.435158i \(0.143308\pi\)
−0.900354 + 0.435158i \(0.856692\pi\)
\(110\) −3.44115 + 1.34022i −0.328101 + 0.127785i
\(111\) 0 0
\(112\) 4.79742 0.453314
\(113\) 13.8051 7.97036i 1.29867 0.749788i 0.318497 0.947924i \(-0.396822\pi\)
0.980175 + 0.198136i \(0.0634886\pi\)
\(114\) 0 0
\(115\) 10.2918 + 8.25140i 0.959720 + 0.769447i
\(116\) 4.42044 0.410427
\(117\) 0 0
\(118\) 2.10800i 0.194058i
\(119\) 0.334553 + 0.193154i 0.0306684 + 0.0177064i
\(120\) 0 0
\(121\) −4.13623 7.16416i −0.376021 0.651287i
\(122\) −3.12832 −0.283225
\(123\) 0 0
\(124\) 3.51747 2.03081i 0.315878 0.182372i
\(125\) −10.0349 4.92950i −0.897553 0.440908i
\(126\) 0 0
\(127\) −0.773321 0.446477i −0.0686211 0.0396184i 0.465297 0.885155i \(-0.345948\pi\)
−0.533918 + 0.845536i \(0.679281\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 7.52172 + 2.90236i 0.659699 + 0.254554i
\(131\) 1.11770 0.0976541 0.0488271 0.998807i \(-0.484452\pi\)
0.0488271 + 0.998807i \(0.484452\pi\)
\(132\) 0 0
\(133\) −17.6481 10.1891i −1.53029 0.883511i
\(134\) 2.00000 + 3.46410i 0.172774 + 0.299253i
\(135\) 0 0
\(136\) −0.0697360 + 0.0402621i −0.00597981 + 0.00345244i
\(137\) −4.10468 7.10951i −0.350686 0.607407i 0.635684 0.771950i \(-0.280718\pi\)
−0.986370 + 0.164543i \(0.947385\pi\)
\(138\) 0 0
\(139\) 2.55885 + 4.43206i 0.217039 + 0.375922i 0.953901 0.300120i \(-0.0970268\pi\)
−0.736862 + 0.676043i \(0.763693\pi\)
\(140\) 6.71022 8.36955i 0.567117 0.707356i
\(141\) 0 0
\(142\) 7.35063i 0.616852i
\(143\) 1.27656 5.81622i 0.106752 0.486377i
\(144\) 0 0
\(145\) 6.18292 7.71186i 0.513463 0.640435i
\(146\) −5.28760 + 9.15839i −0.437605 + 0.757953i
\(147\) 0 0
\(148\) 1.81708 0.149363
\(149\) −3.58721 + 2.07107i −0.293875 + 0.169669i −0.639688 0.768634i \(-0.720937\pi\)
0.345813 + 0.938304i \(0.387603\pi\)
\(150\) 0 0
\(151\) 4.43389i 0.360825i 0.983591 + 0.180412i \(0.0577432\pi\)
−0.983591 + 0.180412i \(0.942257\pi\)
\(152\) 3.67867 2.12388i 0.298379 0.172269i
\(153\) 0 0
\(154\) −6.86158 3.96154i −0.552922 0.319230i
\(155\) 1.37699 8.97708i 0.110602 0.721056i
\(156\) 0 0
\(157\) 8.32411i 0.664337i 0.943220 + 0.332168i \(0.107780\pi\)
−0.943220 + 0.332168i \(0.892220\pi\)
\(158\) 7.32340 12.6845i 0.582618 1.00912i
\(159\) 0 0
\(160\) 0.811505 + 2.08362i 0.0641551 + 0.164724i
\(161\) 28.3014i 2.23046i
\(162\) 0 0
\(163\) 0.471644 + 0.816912i 0.0369420 + 0.0639855i 0.883905 0.467666i \(-0.154905\pi\)
−0.846963 + 0.531651i \(0.821572\pi\)
\(164\) 6.78855i 0.530097i
\(165\) 0 0
\(166\) 6.21447 10.7638i 0.482336 0.835431i
\(167\) 2.15031 3.72445i 0.166396 0.288206i −0.770754 0.637133i \(-0.780120\pi\)
0.937150 + 0.348926i \(0.113454\pi\)
\(168\) 0 0
\(169\) −10.6174 + 7.50134i −0.816726 + 0.577026i
\(170\) −0.0272996 + 0.177976i −0.00209379 + 0.0136501i
\(171\) 0 0
\(172\) 7.35733 + 4.24776i 0.560991 + 0.323888i
\(173\) −0.861584 + 0.497436i −0.0655050 + 0.0378194i −0.532395 0.846496i \(-0.678708\pi\)
0.466890 + 0.884316i \(0.345374\pi\)
\(174\) 0 0
\(175\) −5.21579 23.4132i −0.394277 1.76987i
\(176\) 1.43026 0.825763i 0.107810 0.0622443i
\(177\) 0 0
\(178\) 7.23958 4.17978i 0.542630 0.313287i
\(179\) −10.2179 + 17.6979i −0.763719 + 1.32280i 0.177203 + 0.984174i \(0.443295\pi\)
−0.940921 + 0.338625i \(0.890038\pi\)
\(180\) 0 0
\(181\) −19.9522 −1.48303 −0.741517 0.670934i \(-0.765893\pi\)
−0.741517 + 0.670934i \(0.765893\pi\)
\(182\) 5.23619 + 16.4858i 0.388132 + 1.22201i
\(183\) 0 0
\(184\) −5.10893 2.94964i −0.376635 0.217451i
\(185\) 2.54157 3.17007i 0.186860 0.233068i
\(186\) 0 0
\(187\) 0.132988 0.00972503
\(188\) −0.224298 0.388496i −0.0163586 0.0283340i
\(189\) 0 0
\(190\) 1.44009 9.38847i 0.104475 0.681111i
\(191\) −3.83986 6.65083i −0.277843 0.481238i 0.693006 0.720932i \(-0.256286\pi\)
−0.970848 + 0.239695i \(0.922953\pi\)
\(192\) 0 0
\(193\) 7.59571 13.1562i 0.546751 0.947001i −0.451743 0.892148i \(-0.649198\pi\)
0.998494 0.0548529i \(-0.0174690\pi\)
\(194\) −5.80593 −0.416841
\(195\) 0 0
\(196\) 16.0153 1.14395
\(197\) 1.50663 2.60956i 0.107343 0.185924i −0.807350 0.590073i \(-0.799099\pi\)
0.914693 + 0.404149i \(0.132432\pi\)
\(198\) 0 0
\(199\) 4.86053 + 8.41868i 0.344554 + 0.596785i 0.985273 0.170991i \(-0.0546969\pi\)
−0.640719 + 0.767776i \(0.721364\pi\)
\(200\) 4.77013 + 1.49863i 0.337299 + 0.105969i
\(201\) 0 0
\(202\) 0.618759 + 1.07172i 0.0435357 + 0.0754061i
\(203\) 21.2067 1.48842
\(204\) 0 0
\(205\) −11.8433 9.49523i −0.827169 0.663175i
\(206\) −8.13065 4.69423i −0.566489 0.327063i
\(207\) 0 0
\(208\) −3.52172 0.772959i −0.244188 0.0535951i
\(209\) −7.01529 −0.485257
\(210\) 0 0
\(211\) 2.39532 4.14882i 0.164901 0.285616i −0.771719 0.635963i \(-0.780603\pi\)
0.936620 + 0.350347i \(0.113936\pi\)
\(212\) 10.0260 5.78850i 0.688587 0.397556i
\(213\) 0 0
\(214\) −16.0272 + 9.25330i −1.09560 + 0.632542i
\(215\) 17.7014 6.89416i 1.20723 0.470178i
\(216\) 0 0
\(217\) 16.8748 9.74267i 1.14554 0.661376i
\(218\) −7.86903 4.54319i −0.532958 0.307704i
\(219\) 0 0
\(220\) 0.559907 3.65023i 0.0377490 0.246099i
\(221\) −0.214470 0.195695i −0.0144268 0.0131639i
\(222\) 0 0
\(223\) −7.02172 + 12.1620i −0.470209 + 0.814426i −0.999420 0.0340642i \(-0.989155\pi\)
0.529210 + 0.848491i \(0.322488\pi\)
\(224\) −2.39871 + 4.15469i −0.160271 + 0.277597i
\(225\) 0 0
\(226\) 15.9407i 1.06036i
\(227\) 1.44009 + 2.49431i 0.0955823 + 0.165553i 0.909851 0.414934i \(-0.136195\pi\)
−0.814269 + 0.580487i \(0.802862\pi\)
\(228\) 0 0
\(229\) 6.70802i 0.443279i −0.975129 0.221639i \(-0.928859\pi\)
0.975129 0.221639i \(-0.0711408\pi\)
\(230\) −12.2918 + 4.78730i −0.810500 + 0.315665i
\(231\) 0 0
\(232\) −2.21022 + 3.82821i −0.145108 + 0.251334i
\(233\) 17.5959i 1.15275i 0.817186 + 0.576374i \(0.195533\pi\)
−0.817186 + 0.576374i \(0.804467\pi\)
\(234\) 0 0
\(235\) −0.991496 0.152085i −0.0646781 0.00992094i
\(236\) 1.82559 + 1.05400i 0.118836 + 0.0686097i
\(237\) 0 0
\(238\) −0.334553 + 0.193154i −0.0216858 + 0.0125203i
\(239\) 11.3119i 0.731708i −0.930672 0.365854i \(-0.880777\pi\)
0.930672 0.365854i \(-0.119223\pi\)
\(240\) 0 0
\(241\) −4.39957 + 2.54010i −0.283401 + 0.163622i −0.634962 0.772543i \(-0.718984\pi\)
0.351561 + 0.936165i \(0.385651\pi\)
\(242\) 8.27246 0.531774
\(243\) 0 0
\(244\) 1.56416 2.70920i 0.100135 0.173439i
\(245\) 22.4008 27.9401i 1.43113 1.78503i
\(246\) 0 0
\(247\) 11.3136 + 10.3232i 0.719865 + 0.656848i
\(248\) 4.06163i 0.257913i
\(249\) 0 0
\(250\) 9.28654 6.22577i 0.587332 0.393752i
\(251\) −9.78522 16.9485i −0.617637 1.06978i −0.989916 0.141658i \(-0.954757\pi\)
0.372278 0.928121i \(-0.378577\pi\)
\(252\) 0 0
\(253\) 4.87141 + 8.43753i 0.306263 + 0.530463i
\(254\) 0.773321 0.446477i 0.0485225 0.0280145i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.71818 + 0.991989i 0.107177 + 0.0618786i 0.552630 0.833427i \(-0.313624\pi\)
−0.445453 + 0.895305i \(0.646958\pi\)
\(258\) 0 0
\(259\) 8.71731 0.541668
\(260\) −6.27438 + 5.06282i −0.389120 + 0.313983i
\(261\) 0 0
\(262\) −0.558851 + 0.967959i −0.0345259 + 0.0598007i
\(263\) −0.527031 0.304282i −0.0324981 0.0187628i 0.483663 0.875254i \(-0.339306\pi\)
−0.516161 + 0.856492i \(0.672639\pi\)
\(264\) 0 0
\(265\) 3.92488 25.5877i 0.241104 1.57184i
\(266\) 17.6481 10.1891i 1.08208 0.624737i
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) 8.87242 + 15.3675i 0.540961 + 0.936972i 0.998849 + 0.0479623i \(0.0152727\pi\)
−0.457888 + 0.889010i \(0.651394\pi\)
\(270\) 0 0
\(271\) −13.8806 8.01395i −0.843185 0.486813i 0.0151607 0.999885i \(-0.495174\pi\)
−0.858346 + 0.513072i \(0.828507\pi\)
\(272\) 0.0805241i 0.00488249i
\(273\) 0 0
\(274\) 8.20936 0.495945
\(275\) −5.58502 6.08244i −0.336789 0.366785i
\(276\) 0 0
\(277\) −10.3093 + 5.95209i −0.619427 + 0.357626i −0.776646 0.629937i \(-0.783081\pi\)
0.157219 + 0.987564i \(0.449747\pi\)
\(278\) −5.11770 −0.306939
\(279\) 0 0
\(280\) 3.89314 + 9.99600i 0.232659 + 0.597375i
\(281\) 11.3975i 0.679920i 0.940440 + 0.339960i \(0.110413\pi\)
−0.940440 + 0.339960i \(0.889587\pi\)
\(282\) 0 0
\(283\) 17.6776 + 10.2062i 1.05082 + 0.606694i 0.922880 0.385087i \(-0.125829\pi\)
0.127945 + 0.991781i \(0.459162\pi\)
\(284\) −6.36584 3.67532i −0.377743 0.218090i
\(285\) 0 0
\(286\) 4.39871 + 4.01365i 0.260101 + 0.237332i
\(287\) 32.5676i 1.92240i
\(288\) 0 0
\(289\) −8.49676 + 14.7168i −0.499809 + 0.865695i
\(290\) 3.58721 + 9.21049i 0.210648 + 0.540859i
\(291\) 0 0
\(292\) −5.28760 9.15839i −0.309433 0.535954i
\(293\) −2.09384 3.62664i −0.122323 0.211870i 0.798360 0.602180i \(-0.205701\pi\)
−0.920684 + 0.390310i \(0.872368\pi\)
\(294\) 0 0
\(295\) 4.39227 1.71066i 0.255728 0.0995983i
\(296\) −0.908541 + 1.57364i −0.0528079 + 0.0914659i
\(297\) 0 0
\(298\) 4.14215i 0.239948i
\(299\) 4.55991 20.7756i 0.263706 1.20149i
\(300\) 0 0
\(301\) 35.2962 + 20.3783i 2.03444 + 1.17459i
\(302\) −3.83986 2.21694i −0.220959 0.127571i
\(303\) 0 0
\(304\) 4.24776i 0.243626i
\(305\) −2.53865 6.51822i −0.145363 0.373232i
\(306\) 0 0
\(307\) 18.0170 1.02828 0.514142 0.857705i \(-0.328110\pi\)
0.514142 + 0.857705i \(0.328110\pi\)
\(308\) 6.86158 3.96154i 0.390975 0.225730i
\(309\) 0 0
\(310\) 7.08588 + 5.68105i 0.402451 + 0.322662i
\(311\) 5.17816 0.293626 0.146813 0.989164i \(-0.453098\pi\)
0.146813 + 0.989164i \(0.453098\pi\)
\(312\) 0 0
\(313\) 32.6333i 1.84455i −0.386539 0.922273i \(-0.626330\pi\)
0.386539 0.922273i \(-0.373670\pi\)
\(314\) −7.20889 4.16206i −0.406821 0.234878i
\(315\) 0 0
\(316\) 7.32340 + 12.6845i 0.411973 + 0.713559i
\(317\) 23.7385 1.33328 0.666642 0.745378i \(-0.267731\pi\)
0.666642 + 0.745378i \(0.267731\pi\)
\(318\) 0 0
\(319\) 6.32239 3.65023i 0.353986 0.204374i
\(320\) −2.21022 0.339024i −0.123555 0.0189520i
\(321\) 0 0
\(322\) −24.5097 14.1507i −1.36587 0.788587i
\(323\) −0.171024 + 0.296221i −0.00951600 + 0.0164822i
\(324\) 0 0
\(325\) 0.0565168 + 18.0277i 0.00313499 + 0.999995i
\(326\) −0.943288 −0.0522439
\(327\) 0 0
\(328\) 5.87906 + 3.39427i 0.324617 + 0.187417i
\(329\) −1.07605 1.86378i −0.0593248 0.102754i
\(330\) 0 0
\(331\) 26.3923 15.2376i 1.45065 0.837534i 0.452132 0.891951i \(-0.350663\pi\)
0.998518 + 0.0544174i \(0.0173301\pi\)
\(332\) 6.21447 + 10.7638i 0.341063 + 0.590739i
\(333\) 0 0
\(334\) 2.15031 + 3.72445i 0.117660 + 0.203793i
\(335\) −5.59485 + 6.97837i −0.305679 + 0.381269i
\(336\) 0 0
\(337\) 19.2799i 1.05024i −0.851027 0.525121i \(-0.824020\pi\)
0.851027 0.525121i \(-0.175980\pi\)
\(338\) −1.18763 12.9456i −0.0645987 0.704150i
\(339\) 0 0
\(340\) −0.140482 0.112630i −0.00761870 0.00610823i
\(341\) 3.35394 5.80920i 0.181626 0.314586i
\(342\) 0 0
\(343\) 43.2502 2.33529
\(344\) −7.35733 + 4.24776i −0.396681 + 0.229024i
\(345\) 0 0
\(346\) 0.994872i 0.0534846i
\(347\) −13.3125 + 7.68598i −0.714653 + 0.412605i −0.812782 0.582569i \(-0.802048\pi\)
0.0981283 + 0.995174i \(0.468714\pi\)
\(348\) 0 0
\(349\) −13.1667 7.60177i −0.704795 0.406913i 0.104336 0.994542i \(-0.466728\pi\)
−0.809131 + 0.587629i \(0.800062\pi\)
\(350\) 22.8843 + 7.18959i 1.22322 + 0.384300i
\(351\) 0 0
\(352\) 1.65153i 0.0880267i
\(353\) −13.4509 + 23.2976i −0.715917 + 1.24000i 0.246688 + 0.969095i \(0.420658\pi\)
−0.962605 + 0.270909i \(0.912676\pi\)
\(354\) 0 0
\(355\) −15.3159 + 5.96508i −0.812884 + 0.316594i
\(356\) 8.35955i 0.443055i
\(357\) 0 0
\(358\) −10.2179 17.6979i −0.540031 0.935361i
\(359\) 20.8348i 1.09962i 0.835291 + 0.549809i \(0.185299\pi\)
−0.835291 + 0.549809i \(0.814701\pi\)
\(360\) 0 0
\(361\) −0.478277 + 0.828400i −0.0251725 + 0.0436000i
\(362\) 9.97609 17.2791i 0.524332 0.908169i
\(363\) 0 0
\(364\) −16.8952 3.70821i −0.885549 0.194363i
\(365\) −23.3735 3.58525i −1.22342 0.187660i
\(366\) 0 0
\(367\) −29.9410 17.2865i −1.56291 0.902346i −0.996961 0.0779051i \(-0.975177\pi\)
−0.565948 0.824441i \(-0.691490\pi\)
\(368\) 5.10893 2.94964i 0.266321 0.153761i
\(369\) 0 0
\(370\) 1.47457 + 3.78610i 0.0766593 + 0.196830i
\(371\) 48.0989 27.7699i 2.49717 1.44174i
\(372\) 0 0
\(373\) −21.6562 + 12.5032i −1.12131 + 0.647391i −0.941736 0.336353i \(-0.890806\pi\)
−0.179578 + 0.983744i \(0.557473\pi\)
\(374\) −0.0664939 + 0.115171i −0.00343832 + 0.00595534i
\(375\) 0 0
\(376\) 0.448597 0.0231346
\(377\) −15.5676 3.41682i −0.801770 0.175975i
\(378\) 0 0
\(379\) −3.25585 1.87977i −0.167242 0.0965571i 0.414043 0.910257i \(-0.364116\pi\)
−0.581285 + 0.813700i \(0.697450\pi\)
\(380\) 7.41061 + 5.94139i 0.380156 + 0.304787i
\(381\) 0 0
\(382\) 7.67972 0.392929
\(383\) 1.96946 + 3.41120i 0.100635 + 0.174304i 0.911946 0.410310i \(-0.134579\pi\)
−0.811312 + 0.584614i \(0.801246\pi\)
\(384\) 0 0
\(385\) 2.68611 17.5117i 0.136897 0.892480i
\(386\) 7.59571 + 13.1562i 0.386612 + 0.669631i
\(387\) 0 0
\(388\) 2.90296 5.02808i 0.147376 0.255262i
\(389\) 19.1589 0.971394 0.485697 0.874127i \(-0.338566\pi\)
0.485697 + 0.874127i \(0.338566\pi\)
\(390\) 0 0
\(391\) 0.475035 0.0240235
\(392\) −8.00764 + 13.8696i −0.404447 + 0.700523i
\(393\) 0 0
\(394\) 1.50663 + 2.60956i 0.0759031 + 0.131468i
\(395\) 32.3726 + 4.96562i 1.62884 + 0.249847i
\(396\) 0 0
\(397\) 3.22769 + 5.59052i 0.161993 + 0.280580i 0.935583 0.353106i \(-0.114874\pi\)
−0.773590 + 0.633686i \(0.781541\pi\)
\(398\) −9.72106 −0.487273
\(399\) 0 0
\(400\) −3.68292 + 3.38173i −0.184146 + 0.169087i
\(401\) −30.0012 17.3212i −1.49819 0.864980i −0.498191 0.867067i \(-0.666002\pi\)
−0.999998 + 0.00208777i \(0.999335\pi\)
\(402\) 0 0
\(403\) −13.9573 + 4.43310i −0.695262 + 0.220828i
\(404\) −1.23752 −0.0615688
\(405\) 0 0
\(406\) −10.6034 + 18.3655i −0.526236 + 0.911467i
\(407\) 2.59891 1.50048i 0.128823 0.0743760i
\(408\) 0 0
\(409\) −16.1142 + 9.30356i −0.796798 + 0.460031i −0.842350 0.538931i \(-0.818829\pi\)
0.0455524 + 0.998962i \(0.485495\pi\)
\(410\) 14.1447 5.50894i 0.698559 0.272067i
\(411\) 0 0
\(412\) 8.13065 4.69423i 0.400569 0.231268i
\(413\) 8.75811 + 5.05650i 0.430958 + 0.248814i
\(414\) 0 0
\(415\) 27.4707 + 4.21371i 1.34848 + 0.206843i
\(416\) 2.43026 2.66342i 0.119153 0.130585i
\(417\) 0 0
\(418\) 3.50764 6.07542i 0.171564 0.297158i
\(419\) −11.4748 + 19.8749i −0.560579 + 0.970951i 0.436867 + 0.899526i \(0.356088\pi\)
−0.997446 + 0.0714252i \(0.977245\pi\)
\(420\) 0 0
\(421\) 34.8196i 1.69700i 0.529194 + 0.848501i \(0.322495\pi\)
−0.529194 + 0.848501i \(0.677505\pi\)
\(422\) 2.39532 + 4.14882i 0.116602 + 0.201961i
\(423\) 0 0
\(424\) 11.5770i 0.562229i
\(425\) −0.392987 + 0.0875464i −0.0190627 + 0.00424662i
\(426\) 0 0
\(427\) 7.50394 12.9972i 0.363141 0.628979i
\(428\) 18.5066i 0.894550i
\(429\) 0 0
\(430\) −2.88019 + 18.7769i −0.138895 + 0.905504i
\(431\) −17.7523 10.2493i −0.855100 0.493692i 0.00726828 0.999974i \(-0.497686\pi\)
−0.862368 + 0.506281i \(0.831020\pi\)
\(432\) 0 0
\(433\) 1.85765 1.07251i 0.0892728 0.0515417i −0.454699 0.890645i \(-0.650253\pi\)
0.543972 + 0.839103i \(0.316920\pi\)
\(434\) 19.4853i 0.935326i
\(435\) 0 0
\(436\) 7.86903 4.54319i 0.376858 0.217579i
\(437\) −25.0587 −1.19872
\(438\) 0 0
\(439\) −0.525975 + 0.911016i −0.0251034 + 0.0434804i −0.878304 0.478102i \(-0.841325\pi\)
0.853201 + 0.521583i \(0.174658\pi\)
\(440\) 2.88124 + 2.31001i 0.137358 + 0.110125i
\(441\) 0 0
\(442\) 0.276712 0.0878888i 0.0131618 0.00418044i
\(443\) 18.3043i 0.869665i 0.900511 + 0.434833i \(0.143193\pi\)
−0.900511 + 0.434833i \(0.856807\pi\)
\(444\) 0 0
\(445\) 14.5840 + 11.6926i 0.691348 + 0.554283i
\(446\) −7.02172 12.1620i −0.332488 0.575887i
\(447\) 0 0
\(448\) −2.39871 4.15469i −0.113329 0.196291i
\(449\) 12.0831 6.97618i 0.570237 0.329226i −0.187007 0.982359i \(-0.559879\pi\)
0.757244 + 0.653132i \(0.226545\pi\)
\(450\) 0 0
\(451\) −5.60573 9.70942i −0.263964 0.457199i
\(452\) −13.8051 7.97036i −0.649336 0.374894i
\(453\) 0 0
\(454\) −2.88019 −0.135174
\(455\) −30.1009 + 24.2885i −1.41115 + 1.13866i
\(456\) 0 0
\(457\) −14.7165 + 25.4898i −0.688411 + 1.19236i 0.283941 + 0.958842i \(0.408358\pi\)
−0.972352 + 0.233520i \(0.924975\pi\)
\(458\) 5.80932 + 3.35401i 0.271452 + 0.156723i
\(459\) 0 0
\(460\) 2.00000 13.0387i 0.0932505 0.607933i
\(461\) −7.87540 + 4.54686i −0.366794 + 0.211768i −0.672057 0.740500i \(-0.734589\pi\)
0.305263 + 0.952268i \(0.401256\pi\)
\(462\) 0 0
\(463\) −41.6642 −1.93630 −0.968150 0.250372i \(-0.919447\pi\)
−0.968150 + 0.250372i \(0.919447\pi\)
\(464\) −2.21022 3.82821i −0.102607 0.177720i
\(465\) 0 0
\(466\) −15.2385 8.79797i −0.705911 0.407558i
\(467\) 38.1079i 1.76342i −0.471789 0.881712i \(-0.656391\pi\)
0.471789 0.881712i \(-0.343609\pi\)
\(468\) 0 0
\(469\) −19.1897 −0.886098
\(470\) 0.627458 0.782618i 0.0289425 0.0360995i
\(471\) 0 0
\(472\) −1.82559 + 1.05400i −0.0840294 + 0.0485144i
\(473\) 14.0306 0.645126
\(474\) 0 0
\(475\) 20.7306 4.61819i 0.951186 0.211897i
\(476\) 0.386309i 0.0177064i
\(477\) 0 0
\(478\) 9.79641 + 5.65596i 0.448078 + 0.258698i
\(479\) 13.0228 + 7.51871i 0.595026 + 0.343538i 0.767082 0.641549i \(-0.221708\pi\)
−0.172056 + 0.985087i \(0.555041\pi\)
\(480\) 0 0
\(481\) −6.39926 1.40453i −0.291781 0.0640411i
\(482\) 5.08019i 0.231396i
\(483\) 0 0
\(484\) −4.13623 + 7.16416i −0.188010 + 0.325644i
\(485\) −4.71154 12.0973i −0.213940 0.549312i
\(486\) 0 0
\(487\) 2.28128 + 3.95129i 0.103375 + 0.179050i 0.913073 0.407796i \(-0.133703\pi\)
−0.809698 + 0.586846i \(0.800369\pi\)
\(488\) 1.56416 + 2.70920i 0.0708062 + 0.122640i
\(489\) 0 0
\(490\) 12.9965 + 33.3697i 0.587122 + 1.50749i
\(491\) −4.20803 + 7.28853i −0.189906 + 0.328927i −0.945219 0.326438i \(-0.894152\pi\)
0.755313 + 0.655364i \(0.227485\pi\)
\(492\) 0 0
\(493\) 0.355952i 0.0160313i
\(494\) −14.5969 + 4.63625i −0.656746 + 0.208595i
\(495\) 0 0
\(496\) −3.51747 2.03081i −0.157939 0.0911862i
\(497\) −30.5396 17.6321i −1.36989 0.790906i
\(498\) 0 0
\(499\) 12.5587i 0.562206i −0.959678 0.281103i \(-0.909300\pi\)
0.959678 0.281103i \(-0.0907002\pi\)
\(500\) 0.748402 + 11.1553i 0.0334696 + 0.498879i
\(501\) 0 0
\(502\) 19.5704 0.873471
\(503\) −6.79244 + 3.92162i −0.302860 + 0.174856i −0.643727 0.765255i \(-0.722613\pi\)
0.340867 + 0.940112i \(0.389279\pi\)
\(504\) 0 0
\(505\) −1.73093 + 2.15896i −0.0770254 + 0.0960726i
\(506\) −9.74283 −0.433121
\(507\) 0 0
\(508\) 0.892954i 0.0396184i
\(509\) −31.4237 18.1425i −1.39283 0.804152i −0.399203 0.916862i \(-0.630713\pi\)
−0.993628 + 0.112711i \(0.964047\pi\)
\(510\) 0 0
\(511\) −25.3668 43.9367i −1.12216 1.94364i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −1.71818 + 0.991989i −0.0757855 + 0.0437548i
\(515\) 3.18292 20.7506i 0.140256 0.914379i
\(516\) 0 0
\(517\) −0.641611 0.370435i −0.0282180 0.0162917i
\(518\) −4.35866 + 7.54942i −0.191508 + 0.331702i
\(519\) 0 0
\(520\) −1.24735 7.96518i −0.0546997 0.349296i
\(521\) −1.95007 −0.0854341 −0.0427171 0.999087i \(-0.513601\pi\)
−0.0427171 + 0.999087i \(0.513601\pi\)
\(522\) 0 0
\(523\) −7.86903 4.54319i −0.344089 0.198660i 0.317990 0.948094i \(-0.396992\pi\)
−0.662079 + 0.749434i \(0.730326\pi\)
\(524\) −0.558851 0.967959i −0.0244135 0.0422855i
\(525\) 0 0
\(526\) 0.527031 0.304282i 0.0229797 0.0132673i
\(527\) −0.163529 0.283241i −0.00712346 0.0123382i
\(528\) 0 0
\(529\) 5.90078 + 10.2204i 0.256556 + 0.444367i
\(530\) 20.1971 + 16.1929i 0.877308 + 0.703374i
\(531\) 0 0
\(532\) 20.3783i 0.883511i
\(533\) −5.24727 + 23.9074i −0.227285 + 1.03554i
\(534\) 0 0
\(535\) −32.2865 25.8854i −1.39587 1.11912i
\(536\) 2.00000 3.46410i 0.0863868 0.149626i
\(537\) 0 0
\(538\) −17.7448 −0.765035
\(539\) 22.9061 13.2248i 0.986635 0.569634i
\(540\) 0 0
\(541\) 35.7827i 1.53842i −0.638997 0.769209i \(-0.720650\pi\)
0.638997 0.769209i \(-0.279350\pi\)
\(542\) 13.8806 8.01395i 0.596222 0.344229i
\(543\) 0 0
\(544\) 0.0697360 + 0.0402621i 0.00298990 + 0.00172622i
\(545\) 3.08050 20.0829i 0.131954 0.860256i
\(546\) 0 0
\(547\) 29.0584i 1.24245i −0.783634 0.621223i \(-0.786636\pi\)
0.783634 0.621223i \(-0.213364\pi\)
\(548\) −4.10468 + 7.10951i −0.175343 + 0.303703i
\(549\) 0 0
\(550\) 8.06006 1.79555i 0.343682 0.0765626i
\(551\) 18.7769i 0.799925i
\(552\) 0 0
\(553\) 35.1335 + 60.8529i 1.49403 + 2.58773i
\(554\) 11.9042i 0.505760i
\(555\) 0 0
\(556\) 2.55885 4.43206i 0.108519 0.187961i
\(557\) −16.5492 + 28.6641i −0.701213 + 1.21454i 0.266828 + 0.963744i \(0.414024\pi\)
−0.968041 + 0.250792i \(0.919309\pi\)
\(558\) 0 0
\(559\) −22.6271 20.6463i −0.957026 0.873247i
\(560\) −10.6034 1.62644i −0.448073 0.0687298i
\(561\) 0 0
\(562\) −9.87055 5.69877i −0.416364 0.240388i
\(563\) −9.06138 + 5.23159i −0.381892 + 0.220485i −0.678641 0.734470i \(-0.737431\pi\)
0.296749 + 0.954955i \(0.404097\pi\)
\(564\) 0 0
\(565\) −33.2144 + 12.9360i −1.39734 + 0.544221i
\(566\) −17.6776 + 10.2062i −0.743045 + 0.428997i
\(567\) 0 0
\(568\) 6.36584 3.67532i 0.267105 0.154213i
\(569\) 4.31622 7.47591i 0.180945 0.313407i −0.761257 0.648450i \(-0.775418\pi\)
0.942203 + 0.335043i \(0.108751\pi\)
\(570\) 0 0
\(571\) 14.3069 0.598724 0.299362 0.954140i \(-0.403226\pi\)
0.299362 + 0.954140i \(0.403226\pi\)
\(572\) −5.67528 + 1.80257i −0.237295 + 0.0753694i
\(573\) 0 0
\(574\) 28.2043 + 16.2838i 1.17723 + 0.679672i
\(575\) −19.9498 21.7266i −0.831964 0.906061i
\(576\) 0 0
\(577\) −11.9697 −0.498306 −0.249153 0.968464i \(-0.580152\pi\)
−0.249153 + 0.968464i \(0.580152\pi\)
\(578\) −8.49676 14.7168i −0.353419 0.612139i
\(579\) 0 0
\(580\) −9.77013 1.49863i −0.405682 0.0622274i
\(581\) 29.8135 + 51.6384i 1.23687 + 2.14232i
\(582\) 0 0
\(583\) 9.55986 16.5582i 0.395929 0.685769i
\(584\) 10.5752 0.437605
\(585\) 0 0
\(586\) 4.18768 0.172991
\(587\) −2.75398 + 4.77003i −0.113669 + 0.196880i −0.917247 0.398319i \(-0.869594\pi\)
0.803578 + 0.595199i \(0.202927\pi\)
\(588\) 0 0
\(589\) 8.62640 + 14.9414i 0.355445 + 0.615648i
\(590\) −0.714665 + 4.65915i −0.0294223 + 0.191814i
\(591\) 0 0
\(592\) −0.908541 1.57364i −0.0373408 0.0646762i
\(593\) −24.6037 −1.01035 −0.505177 0.863016i \(-0.668573\pi\)
−0.505177 + 0.863016i \(0.668573\pi\)
\(594\) 0 0
\(595\) −0.673951 0.540335i −0.0276293 0.0221516i
\(596\) 3.58721 + 2.07107i 0.146938 + 0.0848345i
\(597\) 0 0
\(598\) 15.7123 + 14.3368i 0.642523 + 0.586276i
\(599\) −35.3159 −1.44297 −0.721484 0.692431i \(-0.756540\pi\)
−0.721484 + 0.692431i \(0.756540\pi\)
\(600\) 0 0
\(601\) −17.4607 + 30.2428i −0.712236 + 1.23363i 0.251780 + 0.967785i \(0.418984\pi\)
−0.964016 + 0.265845i \(0.914349\pi\)
\(602\) −35.2962 + 20.3783i −1.43857 + 0.830557i
\(603\) 0 0
\(604\) 3.83986 2.21694i 0.156242 0.0902062i
\(605\) 6.71315 + 17.2366i 0.272928 + 0.700769i
\(606\) 0 0
\(607\) −21.6183 + 12.4813i −0.877461 + 0.506602i −0.869820 0.493369i \(-0.835765\pi\)
−0.00764039 + 0.999971i \(0.502432\pi\)
\(608\) −3.67867 2.12388i −0.149190 0.0861347i
\(609\) 0 0
\(610\) 6.91427 + 1.06058i 0.279950 + 0.0429415i
\(611\) 0.489625 + 1.54155i 0.0198081 + 0.0623644i
\(612\) 0 0
\(613\) −8.06330 + 13.9660i −0.325674 + 0.564083i −0.981648 0.190700i \(-0.938924\pi\)
0.655975 + 0.754783i \(0.272258\pi\)
\(614\) −9.00850 + 15.6032i −0.363554 + 0.629693i
\(615\) 0 0
\(616\) 7.92308i 0.319230i
\(617\) 14.2537 + 24.6881i 0.573831 + 0.993904i 0.996168 + 0.0874652i \(0.0278767\pi\)
−0.422337 + 0.906439i \(0.638790\pi\)
\(618\) 0 0
\(619\) 0.338217i 0.0135941i 0.999977 + 0.00679705i \(0.00216358\pi\)
−0.999977 + 0.00679705i \(0.997836\pi\)
\(620\) −8.46287 + 3.29603i −0.339877 + 0.132372i
\(621\) 0 0
\(622\) −2.58908 + 4.48442i −0.103813 + 0.179809i
\(623\) 40.1043i 1.60675i
\(624\) 0 0
\(625\) 20.5082 + 14.2973i 0.820328 + 0.571894i
\(626\) 28.2613 + 16.3167i 1.12955 + 0.652145i
\(627\) 0 0
\(628\) 7.20889 4.16206i 0.287666 0.166084i
\(629\) 0.146319i 0.00583412i
\(630\) 0 0
\(631\) 27.8799 16.0965i 1.10988 0.640791i 0.171084 0.985256i \(-0.445273\pi\)
0.938799 + 0.344465i \(0.111940\pi\)
\(632\) −14.6468 −0.582618
\(633\) 0 0
\(634\) −11.8692 + 20.5581i −0.471387 + 0.816467i
\(635\) 1.55784 + 1.24899i 0.0618210 + 0.0495645i
\(636\) 0 0
\(637\) −56.4014 12.3792i −2.23470 0.490480i
\(638\) 7.30047i 0.289028i
\(639\) 0 0
\(640\) 1.39871 1.74459i 0.0552890 0.0689611i
\(641\) −6.29981 10.9116i −0.248827 0.430982i 0.714373 0.699765i \(-0.246712\pi\)
−0.963201 + 0.268783i \(0.913379\pi\)
\(642\) 0 0
\(643\) −9.70277 16.8057i −0.382640 0.662752i 0.608799 0.793325i \(-0.291652\pi\)
−0.991439 + 0.130573i \(0.958318\pi\)
\(644\) 24.5097 14.1507i 0.965818 0.557615i
\(645\) 0 0
\(646\) −0.171024 0.296221i −0.00672883 0.0116547i
\(647\) 16.1897 + 9.34715i 0.636485 + 0.367475i 0.783259 0.621695i \(-0.213556\pi\)
−0.146774 + 0.989170i \(0.546889\pi\)
\(648\) 0 0
\(649\) 3.48143 0.136658
\(650\) −15.6407 8.96489i −0.613478 0.351632i
\(651\) 0 0
\(652\) 0.471644 0.816912i 0.0184710 0.0319927i
\(653\) 15.4758 + 8.93497i 0.605616 + 0.349652i 0.771248 0.636535i \(-0.219633\pi\)
−0.165632 + 0.986188i \(0.552966\pi\)
\(654\) 0 0
\(655\) −2.47037 0.378928i −0.0965252 0.0148059i
\(656\) −5.87906 + 3.39427i −0.229539 + 0.132524i
\(657\) 0 0
\(658\) 2.15211 0.0838979
\(659\) 19.5447 + 33.8523i 0.761352 + 1.31870i 0.942154 + 0.335180i \(0.108797\pi\)
−0.180803 + 0.983519i \(0.557870\pi\)
\(660\) 0 0
\(661\) −34.9611 20.1848i −1.35983 0.785098i −0.370229 0.928941i \(-0.620721\pi\)
−0.989601 + 0.143843i \(0.954054\pi\)
\(662\) 30.4752i 1.18445i
\(663\) 0 0
\(664\) −12.4289 −0.482336
\(665\) 35.5518 + 28.5034i 1.37864 + 1.10531i
\(666\) 0 0
\(667\) 22.5837 13.0387i 0.874444 0.504861i
\(668\) −4.30062 −0.166396
\(669\) 0 0
\(670\) −3.24602 8.33447i −0.125405 0.321989i
\(671\) 5.16650i 0.199451i
\(672\) 0 0
\(673\) −18.3453 10.5917i −0.707160 0.408279i 0.102849 0.994697i \(-0.467204\pi\)
−0.810009 + 0.586418i \(0.800538\pi\)
\(674\) 16.6969 + 9.63995i 0.643140 + 0.371317i
\(675\) 0 0
\(676\) 11.8051 + 5.44430i 0.454041 + 0.209396i
\(677\) 2.48027i 0.0953245i −0.998864 0.0476622i \(-0.984823\pi\)
0.998864 0.0476622i \(-0.0151771\pi\)
\(678\) 0 0
\(679\) 13.9268 24.1218i 0.534460 0.925711i
\(680\) 0.167781 0.0653458i 0.00643413 0.00250590i
\(681\) 0 0
\(682\) 3.35394 + 5.80920i 0.128429 + 0.222446i
\(683\) 6.42894 + 11.1352i 0.245997 + 0.426078i 0.962411 0.271596i \(-0.0875515\pi\)
−0.716415 + 0.697675i \(0.754218\pi\)
\(684\) 0 0
\(685\) 6.66194 + 17.1052i 0.254540 + 0.653554i
\(686\) −21.6251 + 37.4557i −0.825649 + 1.43007i
\(687\) 0 0
\(688\) 8.49552i 0.323888i
\(689\) −39.7830 + 12.6358i −1.51561 + 0.481386i
\(690\) 0 0
\(691\) 0.975544 + 0.563231i 0.0371115 + 0.0214263i 0.518441 0.855113i \(-0.326513\pi\)
−0.481329 + 0.876540i \(0.659846\pi\)
\(692\) 0.861584 + 0.497436i 0.0327525 + 0.0189097i
\(693\) 0 0
\(694\) 15.3720i 0.583512i
\(695\) −4.15304 10.6633i −0.157534 0.404483i
\(696\) 0 0
\(697\) −0.546642 −0.0207055
\(698\) 13.1667 7.60177i 0.498365 0.287731i
\(699\) 0 0
\(700\) −17.6685 + 16.2236i −0.667807 + 0.613195i
\(701\) −9.39602 −0.354883 −0.177441 0.984131i \(-0.556782\pi\)
−0.177441 + 0.984131i \(0.556782\pi\)
\(702\) 0 0
\(703\) 7.71852i 0.291110i
\(704\) −1.43026 0.825763i −0.0539051 0.0311221i
\(705\) 0 0
\(706\) −13.4509 23.2976i −0.506230 0.876816i
\(707\) −5.93690 −0.223280
\(708\) 0 0
\(709\) 15.4770 8.93567i 0.581252 0.335586i −0.180379 0.983597i \(-0.557732\pi\)
0.761631 + 0.648011i \(0.224399\pi\)
\(710\) 2.49204 16.2465i 0.0935247 0.609720i
\(711\) 0 0
\(712\) −7.23958 4.17978i −0.271315 0.156644i
\(713\) 11.9803 20.7506i 0.448667 0.777115i
\(714\) 0 0
\(715\) −4.79332 + 12.4223i −0.179260 + 0.464569i
\(716\) 20.4357 0.763719
\(717\) 0 0
\(718\) −18.0434 10.4174i −0.673375 0.388773i
\(719\) −1.15648 2.00308i −0.0431294 0.0747023i 0.843655 0.536886i \(-0.180399\pi\)
−0.886784 + 0.462184i \(0.847066\pi\)
\(720\) 0 0
\(721\) 39.0062 22.5202i 1.45267 0.838698i
\(722\) −0.478277 0.828400i −0.0177996 0.0308299i
\(723\) 0 0
\(724\) 9.97609 + 17.2791i 0.370759 + 0.642173i
\(725\) −16.2801 + 14.9487i −0.604628 + 0.555182i
\(726\) 0 0
\(727\) 17.9866i 0.667087i 0.942735 + 0.333543i \(0.108244\pi\)
−0.942735 + 0.333543i \(0.891756\pi\)
\(728\) 11.6590 12.7776i 0.432112 0.473568i
\(729\) 0 0
\(730\) 14.7917 18.4494i 0.547464 0.682843i
\(731\) 0.342047 0.592443i 0.0126511 0.0219123i
\(732\) 0 0
\(733\) 45.2898 1.67282 0.836408 0.548108i \(-0.184652\pi\)
0.836408 + 0.548108i \(0.184652\pi\)
\(734\) 29.9410 17.2865i 1.10514 0.638055i
\(735\) 0 0
\(736\) 5.89928i 0.217451i
\(737\) −5.72106 + 3.30305i −0.210738 + 0.121670i
\(738\) 0 0
\(739\) 38.9749 + 22.5022i 1.43372 + 0.827756i 0.997402 0.0720387i \(-0.0229505\pi\)
0.436314 + 0.899795i \(0.356284\pi\)
\(740\) −4.01615 0.616035i −0.147636 0.0226459i
\(741\) 0 0
\(742\) 55.5398i 2.03893i
\(743\) 3.28334 5.68692i 0.120454 0.208633i −0.799493 0.600676i \(-0.794898\pi\)
0.919947 + 0.392043i \(0.128232\pi\)
\(744\) 0 0
\(745\) 8.63065 3.36138i 0.316203 0.123151i
\(746\) 25.0064i 0.915549i
\(747\) 0 0
\(748\) −0.0664939 0.115171i −0.00243126 0.00421106i
\(749\) 88.7840i 3.24410i
\(750\) 0 0
\(751\) −13.6750 + 23.6857i −0.499006 + 0.864304i −0.999999 0.00114692i \(-0.999635\pi\)
0.500993 + 0.865451i \(0.332968\pi\)
\(752\) −0.224298 + 0.388496i −0.00817932 + 0.0141670i
\(753\) 0 0
\(754\) 10.7428 11.7735i 0.391231 0.428765i
\(755\) 1.50320 9.79986i 0.0547069 0.356653i
\(756\) 0 0
\(757\) 33.8205 + 19.5263i 1.22923 + 0.709696i 0.966869 0.255275i \(-0.0821658\pi\)
0.262360 + 0.964970i \(0.415499\pi\)
\(758\) 3.25585 1.87977i 0.118258 0.0682762i
\(759\) 0 0
\(760\) −8.85070 + 3.44708i −0.321049 + 0.125039i
\(761\) 24.6247 14.2171i 0.892645 0.515369i 0.0178384 0.999841i \(-0.494322\pi\)
0.874807 + 0.484472i \(0.160988\pi\)
\(762\) 0 0
\(763\) 37.7511 21.7956i 1.36668 0.789054i
\(764\) −3.83986 + 6.65083i −0.138921 + 0.240619i
\(765\) 0 0
\(766\) −3.93892 −0.142319
\(767\) −5.61451 5.12301i −0.202728 0.184981i
\(768\) 0 0
\(769\) −25.3247 14.6212i −0.913231 0.527254i −0.0317619 0.999495i \(-0.510112\pi\)
−0.881469 + 0.472241i \(0.843445\pi\)
\(770\) 13.8225 + 11.0821i 0.498130 + 0.399371i
\(771\) 0 0
\(772\) −15.1914 −0.546751
\(773\) −10.4106 18.0317i −0.374444 0.648555i 0.615800 0.787902i \(-0.288833\pi\)
−0.990244 + 0.139347i \(0.955500\pi\)
\(774\) 0 0
\(775\) −6.08689 + 19.3745i −0.218648 + 0.695951i
\(776\) 2.90296 + 5.02808i 0.104210 + 0.180498i
\(777\) 0 0
\(778\) −9.57944 + 16.5921i −0.343440 + 0.594855i
\(779\) 28.8361 1.03316
\(780\) 0 0
\(781\) −12.1398 −0.434395
\(782\) −0.237517 + 0.411392i −0.00849361 + 0.0147114i
\(783\) 0 0
\(784\) −8.00764 13.8696i −0.285987 0.495344i
\(785\) 2.82208 18.3981i 0.100724 0.656656i
\(786\) 0 0
\(787\) −10.4784 18.1492i −0.373516 0.646948i 0.616588 0.787286i \(-0.288514\pi\)
−0.990104 + 0.140338i \(0.955181\pi\)
\(788\) −3.01327 −0.107343
\(789\) 0 0
\(790\) −20.4867 + 25.5527i −0.728883 + 0.909124i
\(791\) −66.2288 38.2372i −2.35482 1.35956i
\(792\) 0 0
\(793\) −7.60264 + 8.33203i −0.269978 + 0.295879i
\(794\) −6.45538 −0.229093
\(795\) 0 0
\(796\) 4.86053 8.41868i 0.172277 0.298392i
\(797\) 16.0855 9.28699i 0.569779 0.328962i −0.187282 0.982306i \(-0.559968\pi\)
0.757061 + 0.653344i \(0.226635\pi\)
\(798\) 0 0
\(799\) −0.0312833 + 0.0180614i −0.00110672 + 0.000638967i
\(800\) −1.08721 4.88037i −0.0384386 0.172547i
\(801\) 0 0
\(802\) 30.0012 17.3212i 1.05938 0.611633i
\(803\) −15.1253 8.73261i −0.533761 0.308167i
\(804\) 0 0
\(805\) 9.59485 62.5522i 0.338174 2.20468i
\(806\) 3.13947 14.3039i 0.110583 0.503834i
\(807\) 0 0
\(808\) 0.618759 1.07172i 0.0217679 0.0377030i
\(809\) −14.0705 + 24.3708i −0.494692 + 0.856831i −0.999981 0.00611875i \(-0.998052\pi\)
0.505290 + 0.862950i \(0.331386\pi\)
\(810\) 0 0
\(811\) 17.1410i 0.601903i 0.953639 + 0.300952i \(0.0973043\pi\)
−0.953639 + 0.300952i \(0.902696\pi\)
\(812\) −10.6034 18.3655i −0.372105 0.644504i
\(813\) 0 0
\(814\) 3.00096i 0.105184i
\(815\) −0.765484 1.96545i −0.0268137 0.0688468i
\(816\) 0 0
\(817\) −18.0434 + 31.2522i −0.631260 + 1.09337i
\(818\) 18.6071i 0.650583i
\(819\) 0 0
\(820\) −2.30148 + 15.0042i −0.0803712 + 0.523968i
\(821\) −11.5893 6.69111i −0.404471 0.233521i 0.283940 0.958842i \(-0.408358\pi\)
−0.688411 + 0.725321i \(0.741692\pi\)
\(822\) 0 0
\(823\) −18.7144 + 10.8047i −0.652341 + 0.376629i −0.789353 0.613940i \(-0.789584\pi\)
0.137011 + 0.990569i \(0.456250\pi\)
\(824\) 9.38847i 0.327063i
\(825\) 0 0
\(826\) −8.75811 + 5.05650i −0.304734 + 0.175938i
\(827\) −5.85827 −0.203712 −0.101856 0.994799i \(-0.532478\pi\)
−0.101856 + 0.994799i \(0.532478\pi\)
\(828\) 0 0
\(829\) 10.6392 18.4276i 0.369513 0.640016i −0.619976 0.784621i \(-0.712858\pi\)
0.989489 + 0.144605i \(0.0461911\pi\)
\(830\) −17.3845 + 21.6834i −0.603425 + 0.752643i
\(831\) 0 0
\(832\) 1.09146 + 3.43638i 0.0378395 + 0.119135i
\(833\) 1.28962i 0.0446826i
\(834\) 0 0
\(835\) −6.01533 + 7.50283i −0.208169 + 0.259646i
\(836\) 3.50764 + 6.07542i 0.121314 + 0.210123i
\(837\) 0 0
\(838\) −11.4748 19.8749i −0.396389 0.686566i
\(839\) 16.9067 9.76109i 0.583684 0.336990i −0.178912 0.983865i \(-0.557258\pi\)
0.762596 + 0.646875i \(0.223924\pi\)
\(840\) 0 0
\(841\) 4.72987 + 8.19238i 0.163099 + 0.282496i
\(842\) −30.1546 17.4098i −1.03920 0.599981i
\(843\) 0 0
\(844\) −4.79064 −0.164901
\(845\) 26.0100 12.9800i 0.894770 0.446526i
\(846\) 0 0
\(847\) −19.8433 + 34.3695i −0.681822 + 1.18095i
\(848\) −10.0260 5.78850i −0.344293 0.198778i
\(849\) 0 0
\(850\) 0.120676 0.384110i 0.00413916 0.0131749i
\(851\) 9.28334 5.35974i 0.318229 0.183730i
\(852\) 0 0
\(853\) −33.3923 −1.14333 −0.571665 0.820487i \(-0.693702\pi\)
−0.571665 + 0.820487i \(0.693702\pi\)
\(854\) 7.50394 + 12.9972i 0.256779 + 0.444755i
\(855\) 0 0
\(856\) 16.0272 + 9.25330i 0.547798 + 0.316271i
\(857\) 22.7514i 0.777172i 0.921412 + 0.388586i \(0.127036\pi\)
−0.921412 + 0.388586i \(0.872964\pi\)
\(858\) 0 0
\(859\) −7.99391 −0.272749 −0.136374 0.990657i \(-0.543545\pi\)
−0.136374 + 0.990657i \(0.543545\pi\)
\(860\) −14.8212 11.8828i −0.505399 0.405200i
\(861\) 0 0
\(862\) 17.7523 10.2493i 0.604647 0.349093i
\(863\) −11.7205 −0.398971 −0.199486 0.979901i \(-0.563927\pi\)
−0.199486 + 0.979901i \(0.563927\pi\)
\(864\) 0 0
\(865\) 2.07293 0.807344i 0.0704818 0.0274505i
\(866\) 2.14503i 0.0728909i
\(867\) 0 0
\(868\) −16.8748 9.74267i −0.572768 0.330688i
\(869\) 20.9488 + 12.0948i 0.710639 + 0.410288i
\(870\) 0 0
\(871\) 14.0869 + 3.09184i 0.477316 + 0.104763i
\(872\) 9.08638i 0.307704i
\(873\) 0 0
\(874\) 12.5294 21.7015i 0.423812 0.734064i
\(875\) 3.59040 + 53.5165i 0.121378 + 1.80919i
\(876\) 0 0
\(877\) 0.864038 + 1.49656i 0.0291765 + 0.0505352i 0.880245 0.474520i \(-0.157378\pi\)
−0.851068 + 0.525055i \(0.824045\pi\)
\(878\) −0.525975 0.911016i −0.0177508 0.0307453i
\(879\) 0 0
\(880\) −3.44115 + 1.34022i −0.116001 + 0.0451789i
\(881\) 16.7831 29.0691i 0.565436 0.979364i −0.431573 0.902078i \(-0.642041\pi\)
0.997009 0.0772861i \(-0.0246255\pi\)
\(882\) 0 0
\(883\) 18.2526i 0.614249i 0.951669 + 0.307124i \(0.0993667\pi\)
−0.951669 + 0.307124i \(0.900633\pi\)
\(884\) −0.0622419 + 0.283584i −0.00209342 + 0.00953795i
\(885\) 0 0
\(886\) −15.8520 9.15217i −0.532559 0.307473i
\(887\) −20.3335 11.7395i −0.682732 0.394176i 0.118152 0.992996i \(-0.462303\pi\)
−0.800884 + 0.598820i \(0.795636\pi\)
\(888\) 0 0
\(889\) 4.28388i 0.143677i
\(890\) −17.4181 + 6.78382i −0.583856 + 0.227394i
\(891\) 0 0
\(892\) 14.0434 0.470209
\(893\) 1.65024 0.952765i 0.0552231 0.0318831i
\(894\) 0 0
\(895\) 28.5837 35.6520i 0.955448 1.19172i
\(896\) 4.79742 0.160271
\(897\) 0 0
\(898\) 13.9524i 0.465596i
\(899\) −15.5488 8.97708i −0.518580 0.299402i
\(900\) 0 0
\(901\) −0.466114 0.807333i −0.0155285 0.0268962i
\(902\) 11.2115 0.373301
\(903\) 0 0
\(904\) 13.8051 7.97036i 0.459150 0.265090i
\(905\) 44.0987 + 6.76427i 1.46589 + 0.224852i
\(906\) 0 0
\(907\) 23.1056 + 13.3400i 0.767208 + 0.442948i 0.831878 0.554959i \(-0.187266\pi\)
−0.0646698 + 0.997907i \(0.520599\pi\)
\(908\) 1.44009 2.49431i 0.0477911 0.0827767i
\(909\) 0 0
\(910\) −5.98405 38.2124i −0.198369 1.26673i
\(911\) 33.1591 1.09861 0.549305 0.835622i \(-0.314892\pi\)
0.549305 + 0.835622i \(0.314892\pi\)
\(912\) 0 0
\(913\) 17.7767 + 10.2634i 0.588322 + 0.339668i
\(914\) −14.7165 25.4898i −0.486780 0.843127i
\(915\) 0 0
\(916\) −5.80932 + 3.35401i −0.191945 + 0.110820i
\(917\) −2.68105 4.64371i −0.0885360 0.153349i
\(918\) 0 0
\(919\) −19.2895 33.4103i −0.636301 1.10211i −0.986238 0.165332i \(-0.947130\pi\)
0.349937 0.936773i \(-0.386203\pi\)
\(920\) 10.2918 + 8.25140i 0.339312 + 0.272041i
\(921\) 0 0
\(922\) 9.09372i 0.299486i
\(923\) 19.5778 + 17.8640i 0.644413 + 0.588000i
\(924\) 0 0
\(925\) −6.69216 + 6.14488i −0.220037 + 0.202043i
\(926\) 20.8321 36.0823i 0.684585 1.18574i
\(927\) 0 0
\(928\) 4.42044 0.145108
\(929\) −21.3019 + 12.2986i −0.698892 + 0.403505i −0.806935 0.590641i \(-0.798875\pi\)
0.108043 + 0.994146i \(0.465542\pi\)
\(930\) 0 0
\(931\) 68.0291i 2.22956i
\(932\) 15.2385 8.79797i 0.499155 0.288187i
\(933\) 0 0
\(934\) 33.0024 + 19.0540i 1.07987 + 0.623464i
\(935\) −0.293932 0.0450861i −0.00961260 0.00147447i
\(936\) 0 0
\(937\) 25.6787i 0.838886i −0.907782 0.419443i \(-0.862225\pi\)
0.907782 0.419443i \(-0.137775\pi\)
\(938\) 9.59485 16.6188i 0.313283 0.542622i
\(939\) 0 0
\(940\) 0.364038 + 0.934703i 0.0118736 + 0.0304867i
\(941\) 27.7630i 0.905047i 0.891752 + 0.452524i \(0.149476\pi\)
−0.891752 + 0.452524i \(0.850524\pi\)
\(942\) 0 0
\(943\) −20.0238 34.6822i −0.652064 1.12941i
\(944\) 2.10800i 0.0686097i
\(945\) 0 0
\(946\) −7.01529 + 12.1508i −0.228087 + 0.395058i
\(947\) −5.01454 + 8.68544i −0.162951 + 0.282239i −0.935926 0.352198i \(-0.885435\pi\)
0.772975 + 0.634437i \(0.218768\pi\)
\(948\) 0 0
\(949\) 11.5424 + 36.3404i 0.374682 + 1.17966i
\(950\) −6.36584 + 20.2623i −0.206535 + 0.657397i
\(951\) 0 0
\(952\) 0.334553 + 0.193154i 0.0108429 + 0.00626017i
\(953\) 30.2756 17.4796i 0.980722 0.566220i 0.0782342 0.996935i \(-0.475072\pi\)
0.902488 + 0.430715i \(0.141738\pi\)
\(954\) 0 0
\(955\) 6.23214 + 16.0016i 0.201667 + 0.517800i
\(956\) −9.79641 + 5.65596i −0.316839 + 0.182927i
\(957\) 0 0
\(958\) −13.0228 + 7.51871i −0.420747 + 0.242918i
\(959\) −19.6919 + 34.1073i −0.635884 + 1.10138i
\(960\) 0 0
\(961\) 14.5032 0.467845
\(962\) 4.41599 4.83966i 0.142377 0.156037i
\(963\) 0 0
\(964\) 4.39957 + 2.54010i 0.141701 + 0.0818110i
\(965\) −21.2484 + 26.5028i −0.684011 + 0.853157i
\(966\) 0 0
\(967\) 8.61013 0.276883 0.138442 0.990371i \(-0.455791\pi\)
0.138442 + 0.990371i \(0.455791\pi\)
\(968\) −4.13623 7.16416i −0.132943 0.230265i
\(969\) 0 0
\(970\) 12.8324 + 1.96835i 0.412022 + 0.0631999i
\(971\) −14.2447 24.6725i −0.457134 0.791779i 0.541674 0.840589i \(-0.317791\pi\)
−0.998808 + 0.0488092i \(0.984457\pi\)
\(972\) 0 0
\(973\) 12.2759 21.2625i 0.393547 0.681644i
\(974\) −4.56256 −0.146194
\(975\) 0 0
\(976\) −3.12832 −0.100135
\(977\) 11.5564 20.0163i 0.369722 0.640377i −0.619800 0.784760i \(-0.712786\pi\)
0.989522 + 0.144383i \(0.0461196\pi\)
\(978\) 0 0
\(979\) 6.90301 + 11.9564i 0.220621 + 0.382127i
\(980\) −35.3973 5.42957i −1.13072 0.173441i
\(981\) 0 0
\(982\) −4.20803 7.28853i −0.134284 0.232586i
\(983\) 28.0211 0.893736 0.446868 0.894600i \(-0.352539\pi\)
0.446868 + 0.894600i \(0.352539\pi\)
\(984\) 0 0
\(985\) −4.21469 + 5.25692i −0.134291 + 0.167499i
\(986\) 0.308263 + 0.177976i 0.00981710 + 0.00566791i
\(987\) 0 0
\(988\) 3.28334 14.9594i 0.104457 0.475923i
\(989\) 50.1175 1.59364
\(990\) 0 0
\(991\) −12.4357 + 21.5393i −0.395034 + 0.684218i −0.993105 0.117224i \(-0.962600\pi\)
0.598072 + 0.801443i \(0.295934\pi\)
\(992\) 3.51747 2.03081i 0.111680 0.0644784i
\(993\) 0 0
\(994\) 30.5396 17.6321i 0.968658 0.559255i
\(995\) −7.88869 20.2550i −0.250088 0.642125i
\(996\) 0 0
\(997\) 23.1135 13.3446i 0.732012 0.422627i −0.0871459 0.996196i \(-0.527775\pi\)
0.819158 + 0.573568i \(0.194441\pi\)
\(998\) 10.8762 + 6.27936i 0.344279 + 0.198770i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bj.a.199.1 8
3.2 odd 2 130.2.m.b.69.2 yes 8
5.4 even 2 1170.2.bj.b.199.4 8
12.11 even 2 1040.2.df.a.849.3 8
13.10 even 6 1170.2.bj.b.829.4 8
15.2 even 4 650.2.m.e.251.6 16
15.8 even 4 650.2.m.e.251.3 16
15.14 odd 2 130.2.m.a.69.3 yes 8
39.17 odd 6 1690.2.c.f.1689.6 8
39.20 even 12 1690.2.b.e.339.6 16
39.23 odd 6 130.2.m.a.49.3 8
39.32 even 12 1690.2.b.e.339.14 16
39.35 odd 6 1690.2.c.e.1689.6 8
60.59 even 2 1040.2.df.c.849.2 8
65.49 even 6 inner 1170.2.bj.a.829.1 8
156.23 even 6 1040.2.df.c.49.2 8
195.23 even 12 650.2.m.e.101.3 16
195.32 odd 12 8450.2.a.cr.1.6 8
195.59 even 12 1690.2.b.e.339.11 16
195.62 even 12 650.2.m.e.101.6 16
195.74 odd 6 1690.2.c.f.1689.3 8
195.98 odd 12 8450.2.a.cr.1.3 8
195.134 odd 6 1690.2.c.e.1689.3 8
195.137 odd 12 8450.2.a.cs.1.6 8
195.149 even 12 1690.2.b.e.339.3 16
195.179 odd 6 130.2.m.b.49.2 yes 8
195.188 odd 12 8450.2.a.cs.1.3 8
780.179 even 6 1040.2.df.a.49.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.3 8 39.23 odd 6
130.2.m.a.69.3 yes 8 15.14 odd 2
130.2.m.b.49.2 yes 8 195.179 odd 6
130.2.m.b.69.2 yes 8 3.2 odd 2
650.2.m.e.101.3 16 195.23 even 12
650.2.m.e.101.6 16 195.62 even 12
650.2.m.e.251.3 16 15.8 even 4
650.2.m.e.251.6 16 15.2 even 4
1040.2.df.a.49.3 8 780.179 even 6
1040.2.df.a.849.3 8 12.11 even 2
1040.2.df.c.49.2 8 156.23 even 6
1040.2.df.c.849.2 8 60.59 even 2
1170.2.bj.a.199.1 8 1.1 even 1 trivial
1170.2.bj.a.829.1 8 65.49 even 6 inner
1170.2.bj.b.199.4 8 5.4 even 2
1170.2.bj.b.829.4 8 13.10 even 6
1690.2.b.e.339.3 16 195.149 even 12
1690.2.b.e.339.6 16 39.20 even 12
1690.2.b.e.339.11 16 195.59 even 12
1690.2.b.e.339.14 16 39.32 even 12
1690.2.c.e.1689.3 8 195.134 odd 6
1690.2.c.e.1689.6 8 39.35 odd 6
1690.2.c.f.1689.3 8 195.74 odd 6
1690.2.c.f.1689.6 8 39.17 odd 6
8450.2.a.cr.1.3 8 195.98 odd 12
8450.2.a.cr.1.6 8 195.32 odd 12
8450.2.a.cs.1.3 8 195.188 odd 12
8450.2.a.cs.1.6 8 195.137 odd 12