Properties

Label 1690.2.c.e.1689.3
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,8,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.50027374224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.3
Root \(-1.83766i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.e.1689.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.83766i q^{3} +1.00000 q^{4} +(2.21022 - 0.339024i) q^{5} +1.83766i q^{6} +4.79742 q^{7} -1.00000 q^{8} -0.376989 q^{9} +(-2.21022 + 0.339024i) q^{10} +1.65153i q^{11} -1.83766i q^{12} -4.79742 q^{14} +(-0.623011 - 4.06163i) q^{15} +1.00000 q^{16} -0.0805241i q^{17} +0.376989 q^{18} -4.24776i q^{19} +(2.21022 - 0.339024i) q^{20} -8.81603i q^{21} -1.65153i q^{22} +5.89928i q^{23} +1.83766i q^{24} +(4.77013 - 1.49863i) q^{25} -4.82020i q^{27} +4.79742 q^{28} -4.42044 q^{29} +(0.623011 + 4.06163i) q^{30} -4.06163i q^{31} -1.00000 q^{32} +3.03494 q^{33} +0.0805241i q^{34} +(10.6034 - 1.62644i) q^{35} -0.376989 q^{36} +1.81708 q^{37} +4.24776i q^{38} +(-2.21022 + 0.339024i) q^{40} -6.78855i q^{41} +8.81603i q^{42} +8.49552i q^{43} +1.65153i q^{44} +(-0.833228 + 0.127808i) q^{45} -5.89928i q^{46} -0.448597 q^{47} -1.83766i q^{48} +16.0153 q^{49} +(-4.77013 + 1.49863i) q^{50} -0.147976 q^{51} +11.5770i q^{53} +4.82020i q^{54} +(0.559907 + 3.65023i) q^{55} -4.79742 q^{56} -7.80593 q^{57} +4.42044 q^{58} -2.10800i q^{59} +(-0.623011 - 4.06163i) q^{60} -3.12832 q^{61} +4.06163i q^{62} -1.80858 q^{63} +1.00000 q^{64} -3.03494 q^{66} -4.00000 q^{67} -0.0805241i q^{68} +10.8409 q^{69} +(-10.6034 + 1.62644i) q^{70} +7.35063i q^{71} +0.376989 q^{72} +10.5752 q^{73} -1.81708 q^{74} +(-2.75398 - 8.76586i) q^{75} -4.24776i q^{76} +7.92308i q^{77} -14.6468 q^{79} +(2.21022 - 0.339024i) q^{80} -9.98885 q^{81} +6.78855i q^{82} +12.4289 q^{83} -8.81603i q^{84} +(-0.0272996 - 0.177976i) q^{85} -8.49552i q^{86} +8.12325i q^{87} -1.65153i q^{88} +8.35955i q^{89} +(0.833228 - 0.127808i) q^{90} +5.89928i q^{92} -7.46388 q^{93} +0.448597 q^{94} +(-1.44009 - 9.38847i) q^{95} +1.83766i q^{96} -5.80593 q^{97} -16.0153 q^{98} -0.622608i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 3 q^{5} + 10 q^{7} - 8 q^{8} - 16 q^{9} + 3 q^{10} - 10 q^{14} + 8 q^{15} + 8 q^{16} + 16 q^{18} - 3 q^{20} + 5 q^{25} + 10 q^{28} + 6 q^{29} - 8 q^{30} - 8 q^{32} - 20 q^{33}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.83766i 1.06097i −0.847693 0.530486i \(-0.822009\pi\)
0.847693 0.530486i \(-0.177991\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.21022 0.339024i 0.988439 0.151616i
\(6\) 1.83766i 0.750221i
\(7\) 4.79742 1.81326 0.906628 0.421931i \(-0.138647\pi\)
0.906628 + 0.421931i \(0.138647\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.376989 −0.125663
\(10\) −2.21022 + 0.339024i −0.698932 + 0.107209i
\(11\) 1.65153i 0.497954i 0.968509 + 0.248977i \(0.0800944\pi\)
−0.968509 + 0.248977i \(0.919906\pi\)
\(12\) 1.83766i 0.530486i
\(13\) 0 0
\(14\) −4.79742 −1.28217
\(15\) −0.623011 4.06163i −0.160861 1.04871i
\(16\) 1.00000 0.250000
\(17\) 0.0805241i 0.0195300i −0.999952 0.00976499i \(-0.996892\pi\)
0.999952 0.00976499i \(-0.00310834\pi\)
\(18\) 0.376989 0.0888572
\(19\) 4.24776i 0.974502i −0.873262 0.487251i \(-0.838000\pi\)
0.873262 0.487251i \(-0.162000\pi\)
\(20\) 2.21022 0.339024i 0.494220 0.0758081i
\(21\) 8.81603i 1.92382i
\(22\) 1.65153i 0.352107i
\(23\) 5.89928i 1.23009i 0.788494 + 0.615043i \(0.210861\pi\)
−0.788494 + 0.615043i \(0.789139\pi\)
\(24\) 1.83766i 0.375111i
\(25\) 4.77013 1.49863i 0.954025 0.299727i
\(26\) 0 0
\(27\) 4.82020i 0.927648i
\(28\) 4.79742 0.906628
\(29\) −4.42044 −0.820854 −0.410427 0.911893i \(-0.634620\pi\)
−0.410427 + 0.911893i \(0.634620\pi\)
\(30\) 0.623011 + 4.06163i 0.113746 + 0.741548i
\(31\) 4.06163i 0.729490i −0.931108 0.364745i \(-0.881156\pi\)
0.931108 0.364745i \(-0.118844\pi\)
\(32\) −1.00000 −0.176777
\(33\) 3.03494 0.528316
\(34\) 0.0805241i 0.0138098i
\(35\) 10.6034 1.62644i 1.79229 0.274919i
\(36\) −0.376989 −0.0628316
\(37\) 1.81708 0.298726 0.149363 0.988782i \(-0.452278\pi\)
0.149363 + 0.988782i \(0.452278\pi\)
\(38\) 4.24776i 0.689077i
\(39\) 0 0
\(40\) −2.21022 + 0.339024i −0.349466 + 0.0536044i
\(41\) 6.78855i 1.06019i −0.847937 0.530097i \(-0.822156\pi\)
0.847937 0.530097i \(-0.177844\pi\)
\(42\) 8.81603i 1.36034i
\(43\) 8.49552i 1.29555i 0.761830 + 0.647777i \(0.224301\pi\)
−0.761830 + 0.647777i \(0.775699\pi\)
\(44\) 1.65153i 0.248977i
\(45\) −0.833228 + 0.127808i −0.124210 + 0.0190526i
\(46\) 5.89928i 0.869802i
\(47\) −0.448597 −0.0654345 −0.0327173 0.999465i \(-0.510416\pi\)
−0.0327173 + 0.999465i \(0.510416\pi\)
\(48\) 1.83766i 0.265243i
\(49\) 16.0153 2.28790
\(50\) −4.77013 + 1.49863i −0.674598 + 0.211939i
\(51\) −0.147976 −0.0207208
\(52\) 0 0
\(53\) 11.5770i 1.59022i 0.606463 + 0.795112i \(0.292588\pi\)
−0.606463 + 0.795112i \(0.707412\pi\)
\(54\) 4.82020i 0.655946i
\(55\) 0.559907 + 3.65023i 0.0754979 + 0.492197i
\(56\) −4.79742 −0.641083
\(57\) −7.80593 −1.03392
\(58\) 4.42044 0.580432
\(59\) 2.10800i 0.274439i −0.990541 0.137219i \(-0.956183\pi\)
0.990541 0.137219i \(-0.0438165\pi\)
\(60\) −0.623011 4.06163i −0.0804303 0.524354i
\(61\) −3.12832 −0.400540 −0.200270 0.979741i \(-0.564182\pi\)
−0.200270 + 0.979741i \(0.564182\pi\)
\(62\) 4.06163i 0.515827i
\(63\) −1.80858 −0.227859
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.03494 −0.373576
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0.0805241i 0.00976499i
\(69\) 10.8409 1.30509
\(70\) −10.6034 + 1.62644i −1.26734 + 0.194397i
\(71\) 7.35063i 0.872360i 0.899859 + 0.436180i \(0.143669\pi\)
−0.899859 + 0.436180i \(0.856331\pi\)
\(72\) 0.376989 0.0444286
\(73\) 10.5752 1.23773 0.618866 0.785496i \(-0.287592\pi\)
0.618866 + 0.785496i \(0.287592\pi\)
\(74\) −1.81708 −0.211231
\(75\) −2.75398 8.76586i −0.318002 1.01219i
\(76\) 4.24776i 0.487251i
\(77\) 7.92308i 0.902918i
\(78\) 0 0
\(79\) −14.6468 −1.64789 −0.823947 0.566667i \(-0.808233\pi\)
−0.823947 + 0.566667i \(0.808233\pi\)
\(80\) 2.21022 0.339024i 0.247110 0.0379041i
\(81\) −9.98885 −1.10987
\(82\) 6.78855i 0.749670i
\(83\) 12.4289 1.36425 0.682127 0.731234i \(-0.261055\pi\)
0.682127 + 0.731234i \(0.261055\pi\)
\(84\) 8.81603i 0.961908i
\(85\) −0.0272996 0.177976i −0.00296106 0.0193042i
\(86\) 8.49552i 0.916095i
\(87\) 8.12325i 0.870904i
\(88\) 1.65153i 0.176053i
\(89\) 8.35955i 0.886111i 0.896494 + 0.443055i \(0.146105\pi\)
−0.896494 + 0.443055i \(0.853895\pi\)
\(90\) 0.833228 0.127808i 0.0878300 0.0134722i
\(91\) 0 0
\(92\) 5.89928i 0.615043i
\(93\) −7.46388 −0.773968
\(94\) 0.448597 0.0462692
\(95\) −1.44009 9.38847i −0.147750 0.963237i
\(96\) 1.83766i 0.187555i
\(97\) −5.80593 −0.589503 −0.294751 0.955574i \(-0.595237\pi\)
−0.294751 + 0.955574i \(0.595237\pi\)
\(98\) −16.0153 −1.61779
\(99\) 0.622608i 0.0625744i
\(100\) 4.77013 1.49863i 0.477013 0.149863i
\(101\) 1.23752 0.123138 0.0615688 0.998103i \(-0.480390\pi\)
0.0615688 + 0.998103i \(0.480390\pi\)
\(102\) 0.147976 0.0146518
\(103\) 9.38847i 0.925073i −0.886600 0.462537i \(-0.846939\pi\)
0.886600 0.462537i \(-0.153061\pi\)
\(104\) 0 0
\(105\) −2.98885 19.4853i −0.291682 1.90157i
\(106\) 11.5770i 1.12446i
\(107\) 18.5066i 1.78910i −0.446968 0.894550i \(-0.647496\pi\)
0.446968 0.894550i \(-0.352504\pi\)
\(108\) 4.82020i 0.463824i
\(109\) 9.08638i 0.870317i −0.900354 0.435158i \(-0.856692\pi\)
0.900354 0.435158i \(-0.143308\pi\)
\(110\) −0.559907 3.65023i −0.0533851 0.348036i
\(111\) 3.33918i 0.316941i
\(112\) 4.79742 0.453314
\(113\) 15.9407i 1.49958i 0.661678 + 0.749788i \(0.269845\pi\)
−0.661678 + 0.749788i \(0.730155\pi\)
\(114\) 7.80593 0.731092
\(115\) 2.00000 + 13.0387i 0.186501 + 1.21587i
\(116\) −4.42044 −0.410427
\(117\) 0 0
\(118\) 2.10800i 0.194058i
\(119\) 0.386309i 0.0354128i
\(120\) 0.623011 + 4.06163i 0.0568728 + 0.370774i
\(121\) 8.27246 0.752042
\(122\) 3.12832 0.283225
\(123\) −12.4750 −1.12484
\(124\) 4.06163i 0.364745i
\(125\) 10.0349 4.92950i 0.897553 0.440908i
\(126\) 1.80858 0.161121
\(127\) 0.892954i 0.0792369i −0.999215 0.0396184i \(-0.987386\pi\)
0.999215 0.0396184i \(-0.0126142\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 15.6119 1.37455
\(130\) 0 0
\(131\) −1.11770 −0.0976541 −0.0488271 0.998807i \(-0.515548\pi\)
−0.0488271 + 0.998807i \(0.515548\pi\)
\(132\) 3.03494 0.264158
\(133\) 20.3783i 1.76702i
\(134\) 4.00000 0.345547
\(135\) −1.63416 10.6537i −0.140646 0.916923i
\(136\) 0.0805241i 0.00690489i
\(137\) −8.20936 −0.701373 −0.350686 0.936493i \(-0.614052\pi\)
−0.350686 + 0.936493i \(0.614052\pi\)
\(138\) −10.8409 −0.922836
\(139\) −5.11770 −0.434078 −0.217039 0.976163i \(-0.569640\pi\)
−0.217039 + 0.976163i \(0.569640\pi\)
\(140\) 10.6034 1.62644i 0.896147 0.137460i
\(141\) 0.824367i 0.0694242i
\(142\) 7.35063i 0.616852i
\(143\) 0 0
\(144\) −0.376989 −0.0314158
\(145\) −9.77013 + 1.49863i −0.811365 + 0.124455i
\(146\) −10.5752 −0.875209
\(147\) 29.4306i 2.42740i
\(148\) 1.81708 0.149363
\(149\) 4.14215i 0.339338i −0.985501 0.169669i \(-0.945730\pi\)
0.985501 0.169669i \(-0.0542699\pi\)
\(150\) 2.75398 + 8.76586i 0.224861 + 0.715730i
\(151\) 4.43389i 0.360825i −0.983591 0.180412i \(-0.942257\pi\)
0.983591 0.180412i \(-0.0577432\pi\)
\(152\) 4.24776i 0.344539i
\(153\) 0.0303567i 0.00245420i
\(154\) 7.92308i 0.638460i
\(155\) −1.37699 8.97708i −0.110602 0.721056i
\(156\) 0 0
\(157\) 8.32411i 0.664337i −0.943220 0.332168i \(-0.892220\pi\)
0.943220 0.332168i \(-0.107780\pi\)
\(158\) 14.6468 1.16524
\(159\) 21.2746 1.68718
\(160\) −2.21022 + 0.339024i −0.174733 + 0.0268022i
\(161\) 28.3014i 2.23046i
\(162\) 9.98885 0.784798
\(163\) −0.943288 −0.0738840 −0.0369420 0.999317i \(-0.511762\pi\)
−0.0369420 + 0.999317i \(0.511762\pi\)
\(164\) 6.78855i 0.530097i
\(165\) 6.70788 1.02892i 0.522208 0.0801012i
\(166\) −12.4289 −0.964673
\(167\) 4.30062 0.332792 0.166396 0.986059i \(-0.446787\pi\)
0.166396 + 0.986059i \(0.446787\pi\)
\(168\) 8.81603i 0.680171i
\(169\) 0 0
\(170\) 0.0272996 + 0.177976i 0.00209379 + 0.0136501i
\(171\) 1.60136i 0.122459i
\(172\) 8.49552i 0.647777i
\(173\) 0.994872i 0.0756387i −0.999285 0.0378194i \(-0.987959\pi\)
0.999285 0.0378194i \(-0.0120411\pi\)
\(174\) 8.12325i 0.615822i
\(175\) 22.8843 7.18959i 1.72989 0.543482i
\(176\) 1.65153i 0.124489i
\(177\) −3.87379 −0.291172
\(178\) 8.35955i 0.626575i
\(179\) −20.4357 −1.52744 −0.763719 0.645549i \(-0.776629\pi\)
−0.763719 + 0.645549i \(0.776629\pi\)
\(180\) −0.833228 + 0.127808i −0.0621052 + 0.00952628i
\(181\) −19.9522 −1.48303 −0.741517 0.670934i \(-0.765893\pi\)
−0.741517 + 0.670934i \(0.765893\pi\)
\(182\) 0 0
\(183\) 5.74878i 0.424962i
\(184\) 5.89928i 0.434901i
\(185\) 4.01615 0.616035i 0.295273 0.0452918i
\(186\) 7.46388 0.547278
\(187\) 0.132988 0.00972503
\(188\) −0.448597 −0.0327173
\(189\) 23.1245i 1.68206i
\(190\) 1.44009 + 9.38847i 0.104475 + 0.681111i
\(191\) −7.67972 −0.555685 −0.277843 0.960627i \(-0.589619\pi\)
−0.277843 + 0.960627i \(0.589619\pi\)
\(192\) 1.83766i 0.132622i
\(193\) −15.1914 −1.09350 −0.546751 0.837295i \(-0.684136\pi\)
−0.546751 + 0.837295i \(0.684136\pi\)
\(194\) 5.80593 0.416841
\(195\) 0 0
\(196\) 16.0153 1.14395
\(197\) 3.01327 0.214686 0.107343 0.994222i \(-0.465766\pi\)
0.107343 + 0.994222i \(0.465766\pi\)
\(198\) 0.622608i 0.0442468i
\(199\) −9.72106 −0.689107 −0.344554 0.938767i \(-0.611970\pi\)
−0.344554 + 0.938767i \(0.611970\pi\)
\(200\) −4.77013 + 1.49863i −0.337299 + 0.105969i
\(201\) 7.35063i 0.518474i
\(202\) −1.23752 −0.0870714
\(203\) −21.2067 −1.48842
\(204\) −0.147976 −0.0103604
\(205\) −2.30148 15.0042i −0.160742 1.04794i
\(206\) 9.38847i 0.654126i
\(207\) 2.22397i 0.154576i
\(208\) 0 0
\(209\) 7.01529 0.485257
\(210\) 2.98885 + 19.4853i 0.206250 + 1.34462i
\(211\) −4.79064 −0.329802 −0.164901 0.986310i \(-0.552730\pi\)
−0.164901 + 0.986310i \(0.552730\pi\)
\(212\) 11.5770i 0.795112i
\(213\) 13.5080 0.925550
\(214\) 18.5066i 1.26508i
\(215\) 2.88019 + 18.7769i 0.196427 + 1.28058i
\(216\) 4.82020i 0.327973i
\(217\) 19.4853i 1.32275i
\(218\) 9.08638i 0.615407i
\(219\) 19.4336i 1.31320i
\(220\) 0.559907 + 3.65023i 0.0377490 + 0.246099i
\(221\) 0 0
\(222\) 3.33918i 0.224111i
\(223\) 14.0434 0.940419 0.470209 0.882555i \(-0.344178\pi\)
0.470209 + 0.882555i \(0.344178\pi\)
\(224\) −4.79742 −0.320541
\(225\) −1.79829 + 0.564969i −0.119886 + 0.0376646i
\(226\) 15.9407i 1.06036i
\(227\) 2.88019 0.191165 0.0955823 0.995422i \(-0.469529\pi\)
0.0955823 + 0.995422i \(0.469529\pi\)
\(228\) −7.80593 −0.516960
\(229\) 6.70802i 0.443279i 0.975129 + 0.221639i \(0.0711408\pi\)
−0.975129 + 0.221639i \(0.928859\pi\)
\(230\) −2.00000 13.0387i −0.131876 0.859747i
\(231\) 14.5599 0.957972
\(232\) 4.42044 0.290216
\(233\) 17.5959i 1.15275i 0.817186 + 0.576374i \(0.195533\pi\)
−0.817186 + 0.576374i \(0.804467\pi\)
\(234\) 0 0
\(235\) −0.991496 + 0.152085i −0.0646781 + 0.00992094i
\(236\) 2.10800i 0.137219i
\(237\) 26.9158i 1.74837i
\(238\) 0.386309i 0.0250407i
\(239\) 11.3119i 0.731708i −0.930672 0.365854i \(-0.880777\pi\)
0.930672 0.365854i \(-0.119223\pi\)
\(240\) −0.623011 4.06163i −0.0402152 0.262177i
\(241\) 5.08019i 0.327244i 0.986523 + 0.163622i \(0.0523177\pi\)
−0.986523 + 0.163622i \(0.947682\pi\)
\(242\) −8.27246 −0.531774
\(243\) 3.89550i 0.249896i
\(244\) −3.12832 −0.200270
\(245\) 35.3973 5.42957i 2.26145 0.346882i
\(246\) 12.4750 0.795379
\(247\) 0 0
\(248\) 4.06163i 0.257913i
\(249\) 22.8401i 1.44744i
\(250\) −10.0349 + 4.92950i −0.634665 + 0.311769i
\(251\) −19.5704 −1.23527 −0.617637 0.786463i \(-0.711910\pi\)
−0.617637 + 0.786463i \(0.711910\pi\)
\(252\) −1.80858 −0.113930
\(253\) −9.74283 −0.612526
\(254\) 0.892954i 0.0560289i
\(255\) −0.327059 + 0.0501674i −0.0204812 + 0.00314160i
\(256\) 1.00000 0.0625000
\(257\) 1.98398i 0.123757i −0.998084 0.0618786i \(-0.980291\pi\)
0.998084 0.0618786i \(-0.0197091\pi\)
\(258\) −15.6119 −0.971952
\(259\) 8.71731 0.541668
\(260\) 0 0
\(261\) 1.66646 0.103151
\(262\) 1.11770 0.0690519
\(263\) 0.608563i 0.0375256i 0.999824 + 0.0187628i \(0.00597274\pi\)
−0.999824 + 0.0187628i \(0.994027\pi\)
\(264\) −3.03494 −0.186788
\(265\) 3.92488 + 25.5877i 0.241104 + 1.57184i
\(266\) 20.3783i 1.24947i
\(267\) 15.3620 0.940139
\(268\) −4.00000 −0.244339
\(269\) 17.7448 1.08192 0.540961 0.841048i \(-0.318061\pi\)
0.540961 + 0.841048i \(0.318061\pi\)
\(270\) 1.63416 + 10.6537i 0.0994520 + 0.648363i
\(271\) 16.0279i 0.973626i −0.873506 0.486813i \(-0.838159\pi\)
0.873506 0.486813i \(-0.161841\pi\)
\(272\) 0.0805241i 0.00488249i
\(273\) 0 0
\(274\) 8.20936 0.495945
\(275\) 2.47503 + 7.87799i 0.149250 + 0.475061i
\(276\) 10.8409 0.652544
\(277\) 11.9042i 0.715253i 0.933865 + 0.357626i \(0.116414\pi\)
−0.933865 + 0.357626i \(0.883586\pi\)
\(278\) 5.11770 0.306939
\(279\) 1.53119i 0.0916699i
\(280\) −10.6034 + 1.62644i −0.633672 + 0.0971986i
\(281\) 11.3975i 0.679920i 0.940440 + 0.339960i \(0.110413\pi\)
−0.940440 + 0.339960i \(0.889587\pi\)
\(282\) 0.824367i 0.0490904i
\(283\) 20.4123i 1.21339i 0.794935 + 0.606694i \(0.207505\pi\)
−0.794935 + 0.606694i \(0.792495\pi\)
\(284\) 7.35063i 0.436180i
\(285\) −17.2528 + 2.64640i −1.02197 + 0.156759i
\(286\) 0 0
\(287\) 32.5676i 1.92240i
\(288\) 0.376989 0.0222143
\(289\) 16.9935 0.999619
\(290\) 9.77013 1.49863i 0.573722 0.0880028i
\(291\) 10.6693i 0.625446i
\(292\) 10.5752 0.618866
\(293\) −4.18768 −0.244647 −0.122323 0.992490i \(-0.539035\pi\)
−0.122323 + 0.992490i \(0.539035\pi\)
\(294\) 29.4306i 1.71643i
\(295\) −0.714665 4.65915i −0.0416094 0.271266i
\(296\) −1.81708 −0.105616
\(297\) 7.96069 0.461926
\(298\) 4.14215i 0.239948i
\(299\) 0 0
\(300\) −2.75398 8.76586i −0.159001 0.506097i
\(301\) 40.7566i 2.34917i
\(302\) 4.43389i 0.255142i
\(303\) 2.27413i 0.130646i
\(304\) 4.24776i 0.243626i
\(305\) −6.91427 + 1.06058i −0.395910 + 0.0607284i
\(306\) 0.0303567i 0.00173538i
\(307\) 18.0170 1.02828 0.514142 0.857705i \(-0.328110\pi\)
0.514142 + 0.857705i \(0.328110\pi\)
\(308\) 7.92308i 0.451459i
\(309\) −17.2528 −0.981478
\(310\) 1.37699 + 8.97708i 0.0782077 + 0.509864i
\(311\) −5.17816 −0.293626 −0.146813 0.989164i \(-0.546902\pi\)
−0.146813 + 0.989164i \(0.546902\pi\)
\(312\) 0 0
\(313\) 32.6333i 1.84455i 0.386539 + 0.922273i \(0.373670\pi\)
−0.386539 + 0.922273i \(0.626330\pi\)
\(314\) 8.32411i 0.469757i
\(315\) −3.99735 + 0.613152i −0.225225 + 0.0345472i
\(316\) −14.6468 −0.823947
\(317\) −23.7385 −1.33328 −0.666642 0.745378i \(-0.732269\pi\)
−0.666642 + 0.745378i \(0.732269\pi\)
\(318\) −21.2746 −1.19302
\(319\) 7.30047i 0.408748i
\(320\) 2.21022 0.339024i 0.123555 0.0189520i
\(321\) −34.0088 −1.89819
\(322\) 28.3014i 1.57717i
\(323\) −0.342047 −0.0190320
\(324\) −9.98885 −0.554936
\(325\) 0 0
\(326\) 0.943288 0.0522439
\(327\) −16.6977 −0.923383
\(328\) 6.78855i 0.374835i
\(329\) −2.15211 −0.118650
\(330\) −6.70788 + 1.02892i −0.369257 + 0.0566401i
\(331\) 30.4752i 1.67507i −0.546386 0.837534i \(-0.683997\pi\)
0.546386 0.837534i \(-0.316003\pi\)
\(332\) 12.4289 0.682127
\(333\) −0.685020 −0.0375389
\(334\) −4.30062 −0.235319
\(335\) −8.84087 + 1.35610i −0.483028 + 0.0740915i
\(336\) 8.81603i 0.480954i
\(337\) 19.2799i 1.05024i 0.851027 + 0.525121i \(0.175980\pi\)
−0.851027 + 0.525121i \(0.824020\pi\)
\(338\) 0 0
\(339\) 29.2936 1.59101
\(340\) −0.0272996 0.177976i −0.00148053 0.00965210i
\(341\) 6.70788 0.363252
\(342\) 1.60136i 0.0865916i
\(343\) 43.2502 2.33529
\(344\) 8.49552i 0.458048i
\(345\) 23.9607 3.67532i 1.29000 0.197872i
\(346\) 0.994872i 0.0534846i
\(347\) 15.3720i 0.825211i −0.910910 0.412605i \(-0.864619\pi\)
0.910910 0.412605i \(-0.135381\pi\)
\(348\) 8.12325i 0.435452i
\(349\) 15.2035i 0.813827i −0.913467 0.406913i \(-0.866605\pi\)
0.913467 0.406913i \(-0.133395\pi\)
\(350\) −22.8843 + 7.18959i −1.22322 + 0.384300i
\(351\) 0 0
\(352\) 1.65153i 0.0880267i
\(353\) −26.9017 −1.43183 −0.715917 0.698185i \(-0.753991\pi\)
−0.715917 + 0.698185i \(0.753991\pi\)
\(354\) 3.87379 0.205890
\(355\) 2.49204 + 16.2465i 0.132264 + 0.862275i
\(356\) 8.35955i 0.443055i
\(357\) −0.709903 −0.0375721
\(358\) 20.4357 1.08006
\(359\) 20.8348i 1.09962i 0.835291 + 0.549809i \(0.185299\pi\)
−0.835291 + 0.549809i \(0.814701\pi\)
\(360\) 0.833228 0.127808i 0.0439150 0.00673610i
\(361\) 0.956554 0.0503449
\(362\) 19.9522 1.04866
\(363\) 15.2020i 0.797896i
\(364\) 0 0
\(365\) 23.3735 3.58525i 1.22342 0.187660i
\(366\) 5.74878i 0.300494i
\(367\) 34.5729i 1.80469i −0.431013 0.902346i \(-0.641844\pi\)
0.431013 0.902346i \(-0.358156\pi\)
\(368\) 5.89928i 0.307521i
\(369\) 2.55921i 0.133227i
\(370\) −4.01615 + 0.616035i −0.208790 + 0.0320261i
\(371\) 55.5398i 2.88348i
\(372\) −7.46388 −0.386984
\(373\) 25.0064i 1.29478i 0.762158 + 0.647391i \(0.224140\pi\)
−0.762158 + 0.647391i \(0.775860\pi\)
\(374\) −0.132988 −0.00687663
\(375\) −9.05873 18.4408i −0.467791 0.952279i
\(376\) 0.448597 0.0231346
\(377\) 0 0
\(378\) 23.1245i 1.18940i
\(379\) 3.75953i 0.193114i −0.995327 0.0965571i \(-0.969217\pi\)
0.995327 0.0965571i \(-0.0307830\pi\)
\(380\) −1.44009 9.38847i −0.0738752 0.481618i
\(381\) −1.64094 −0.0840682
\(382\) 7.67972 0.392929
\(383\) 3.93892 0.201269 0.100635 0.994923i \(-0.467913\pi\)
0.100635 + 0.994923i \(0.467913\pi\)
\(384\) 1.83766i 0.0937776i
\(385\) 2.68611 + 17.5117i 0.136897 + 0.892480i
\(386\) 15.1914 0.773223
\(387\) 3.20272i 0.162803i
\(388\) −5.80593 −0.294751
\(389\) −19.1589 −0.971394 −0.485697 0.874127i \(-0.661434\pi\)
−0.485697 + 0.874127i \(0.661434\pi\)
\(390\) 0 0
\(391\) 0.475035 0.0240235
\(392\) −16.0153 −0.808894
\(393\) 2.05396i 0.103608i
\(394\) −3.01327 −0.151806
\(395\) −32.3726 + 4.96562i −1.62884 + 0.249847i
\(396\) 0.622608i 0.0312872i
\(397\) −6.45538 −0.323986 −0.161993 0.986792i \(-0.551792\pi\)
−0.161993 + 0.986792i \(0.551792\pi\)
\(398\) 9.72106 0.487273
\(399\) −37.4484 −1.87476
\(400\) 4.77013 1.49863i 0.238506 0.0749317i
\(401\) 34.6424i 1.72996i 0.501807 + 0.864980i \(0.332669\pi\)
−0.501807 + 0.864980i \(0.667331\pi\)
\(402\) 7.35063i 0.366616i
\(403\) 0 0
\(404\) 1.23752 0.0615688
\(405\) −22.0775 + 3.38646i −1.09704 + 0.168275i
\(406\) 21.2067 1.05247
\(407\) 3.00096i 0.148752i
\(408\) 0.147976 0.00732590
\(409\) 18.6071i 0.920063i 0.887903 + 0.460031i \(0.152162\pi\)
−0.887903 + 0.460031i \(0.847838\pi\)
\(410\) 2.30148 + 15.0042i 0.113662 + 0.741003i
\(411\) 15.0860i 0.744137i
\(412\) 9.38847i 0.462537i
\(413\) 10.1130i 0.497628i
\(414\) 2.22397i 0.109302i
\(415\) 27.4707 4.21371i 1.34848 0.206843i
\(416\) 0 0
\(417\) 9.40459i 0.460545i
\(418\) −7.01529 −0.343129
\(419\) −22.9495 −1.12116 −0.560579 0.828101i \(-0.689421\pi\)
−0.560579 + 0.828101i \(0.689421\pi\)
\(420\) −2.98885 19.4853i −0.145841 0.950787i
\(421\) 34.8196i 1.69700i −0.529194 0.848501i \(-0.677505\pi\)
0.529194 0.848501i \(-0.322495\pi\)
\(422\) 4.79064 0.233205
\(423\) 0.169116 0.00822271
\(424\) 11.5770i 0.562229i
\(425\) −0.120676 0.384110i −0.00585366 0.0186321i
\(426\) −13.5080 −0.654463
\(427\) −15.0079 −0.726282
\(428\) 18.5066i 0.894550i
\(429\) 0 0
\(430\) −2.88019 18.7769i −0.138895 0.905504i
\(431\) 20.4986i 0.987385i 0.869637 + 0.493692i \(0.164353\pi\)
−0.869637 + 0.493692i \(0.835647\pi\)
\(432\) 4.82020i 0.231912i
\(433\) 2.14503i 0.103083i −0.998671 0.0515417i \(-0.983587\pi\)
0.998671 0.0515417i \(-0.0164135\pi\)
\(434\) 19.4853i 0.935326i
\(435\) 2.75398 + 17.9542i 0.132043 + 0.860836i
\(436\) 9.08638i 0.435158i
\(437\) 25.0587 1.19872
\(438\) 19.4336i 0.928573i
\(439\) 1.05195 0.0502068 0.0251034 0.999685i \(-0.492008\pi\)
0.0251034 + 0.999685i \(0.492008\pi\)
\(440\) −0.559907 3.65023i −0.0266925 0.174018i
\(441\) −6.03759 −0.287504
\(442\) 0 0
\(443\) 18.3043i 0.869665i 0.900511 + 0.434833i \(0.143193\pi\)
−0.900511 + 0.434833i \(0.856807\pi\)
\(444\) 3.33918i 0.158470i
\(445\) 2.83409 + 18.4764i 0.134349 + 0.875867i
\(446\) −14.0434 −0.664976
\(447\) −7.61186 −0.360029
\(448\) 4.79742 0.226657
\(449\) 13.9524i 0.658453i 0.944251 + 0.329226i \(0.106788\pi\)
−0.944251 + 0.329226i \(0.893212\pi\)
\(450\) 1.79829 0.564969i 0.0847720 0.0266329i
\(451\) 11.2115 0.527927
\(452\) 15.9407i 0.749788i
\(453\) −8.14798 −0.382825
\(454\) −2.88019 −0.135174
\(455\) 0 0
\(456\) 7.80593 0.365546
\(457\) 29.4331 1.37682 0.688411 0.725321i \(-0.258309\pi\)
0.688411 + 0.725321i \(0.258309\pi\)
\(458\) 6.70802i 0.313445i
\(459\) −0.388142 −0.0181169
\(460\) 2.00000 + 13.0387i 0.0932505 + 0.607933i
\(461\) 9.09372i 0.423537i −0.977320 0.211768i \(-0.932078\pi\)
0.977320 0.211768i \(-0.0679223\pi\)
\(462\) −14.5599 −0.677388
\(463\) −41.6642 −1.93630 −0.968150 0.250372i \(-0.919447\pi\)
−0.968150 + 0.250372i \(0.919447\pi\)
\(464\) −4.42044 −0.205214
\(465\) −16.4968 + 2.53044i −0.765021 + 0.117346i
\(466\) 17.5959i 0.815116i
\(467\) 38.1079i 1.76342i −0.471789 0.881712i \(-0.656391\pi\)
0.471789 0.881712i \(-0.343609\pi\)
\(468\) 0 0
\(469\) −19.1897 −0.886098
\(470\) 0.991496 0.152085i 0.0457343 0.00701516i
\(471\) −15.2969 −0.704843
\(472\) 2.10800i 0.0970288i
\(473\) −14.0306 −0.645126
\(474\) 26.9158i 1.23628i
\(475\) −6.36584 20.2623i −0.292085 0.929700i
\(476\) 0.386309i 0.0177064i
\(477\) 4.36440i 0.199832i
\(478\) 11.3119i 0.517395i
\(479\) 15.0374i 0.687077i −0.939139 0.343538i \(-0.888374\pi\)
0.939139 0.343538i \(-0.111626\pi\)
\(480\) 0.623011 + 4.06163i 0.0284364 + 0.185387i
\(481\) 0 0
\(482\) 5.08019i 0.231396i
\(483\) 52.0083 2.36646
\(484\) 8.27246 0.376021
\(485\) −12.8324 + 1.96835i −0.582688 + 0.0893782i
\(486\) 3.89550i 0.176703i
\(487\) −4.56256 −0.206749 −0.103375 0.994642i \(-0.532964\pi\)
−0.103375 + 0.994642i \(0.532964\pi\)
\(488\) 3.12832 0.141612
\(489\) 1.73344i 0.0783890i
\(490\) −35.3973 + 5.42957i −1.59909 + 0.245283i
\(491\) −8.41606 −0.379812 −0.189906 0.981802i \(-0.560818\pi\)
−0.189906 + 0.981802i \(0.560818\pi\)
\(492\) −12.4750 −0.562418
\(493\) 0.355952i 0.0160313i
\(494\) 0 0
\(495\) −0.211079 1.37610i −0.00948730 0.0618511i
\(496\) 4.06163i 0.182372i
\(497\) 35.2641i 1.58181i
\(498\) 22.8401i 1.02349i
\(499\) 12.5587i 0.562206i 0.959678 + 0.281103i \(0.0907002\pi\)
−0.959678 + 0.281103i \(0.909300\pi\)
\(500\) 10.0349 4.92950i 0.448776 0.220454i
\(501\) 7.90307i 0.353083i
\(502\) 19.5704 0.873471
\(503\) 7.84324i 0.349713i −0.984594 0.174856i \(-0.944054\pi\)
0.984594 0.174856i \(-0.0559461\pi\)
\(504\) 1.80858 0.0805605
\(505\) 2.73518 0.419548i 0.121714 0.0186697i
\(506\) 9.74283 0.433121
\(507\) 0 0
\(508\) 0.892954i 0.0396184i
\(509\) 36.2850i 1.60830i 0.594424 + 0.804152i \(0.297380\pi\)
−0.594424 + 0.804152i \(0.702620\pi\)
\(510\) 0.327059 0.0501674i 0.0144824 0.00222145i
\(511\) 50.7337 2.24433
\(512\) −1.00000 −0.0441942
\(513\) −20.4750 −0.903995
\(514\) 1.98398i 0.0875095i
\(515\) −3.18292 20.7506i −0.140256 0.914379i
\(516\) 15.6119 0.687274
\(517\) 0.740869i 0.0325834i
\(518\) −8.71731 −0.383017
\(519\) −1.82823 −0.0802506
\(520\) 0 0
\(521\) 1.95007 0.0854341 0.0427171 0.999087i \(-0.486399\pi\)
0.0427171 + 0.999087i \(0.486399\pi\)
\(522\) −1.66646 −0.0729388
\(523\) 9.08638i 0.397319i −0.980069 0.198660i \(-0.936341\pi\)
0.980069 0.198660i \(-0.0636589\pi\)
\(524\) −1.11770 −0.0488271
\(525\) −13.2120 42.0536i −0.576619 1.83537i
\(526\) 0.608563i 0.0265346i
\(527\) −0.327059 −0.0142469
\(528\) 3.03494 0.132079
\(529\) −11.8016 −0.513111
\(530\) −3.92488 25.5877i −0.170486 1.11146i
\(531\) 0.794695i 0.0344868i
\(532\) 20.3783i 0.883511i
\(533\) 0 0
\(534\) −15.3620 −0.664779
\(535\) −6.27418 40.9036i −0.271257 1.76842i
\(536\) 4.00000 0.172774
\(537\) 37.5539i 1.62057i
\(538\) −17.7448 −0.765035
\(539\) 26.4497i 1.13927i
\(540\) −1.63416 10.6537i −0.0703232 0.458462i
\(541\) 35.7827i 1.53842i 0.638997 + 0.769209i \(0.279350\pi\)
−0.638997 + 0.769209i \(0.720650\pi\)
\(542\) 16.0279i 0.688458i
\(543\) 36.6653i 1.57346i
\(544\) 0.0805241i 0.00345244i
\(545\) −3.08050 20.0829i −0.131954 0.860256i
\(546\) 0 0
\(547\) 29.0584i 1.24245i 0.783634 + 0.621223i \(0.213364\pi\)
−0.783634 + 0.621223i \(0.786636\pi\)
\(548\) −8.20936 −0.350686
\(549\) 1.17934 0.0503331
\(550\) −2.47503 7.87799i −0.105536 0.335919i
\(551\) 18.7769i 0.799925i
\(552\) −10.8409 −0.461418
\(553\) −70.2669 −2.98805
\(554\) 11.9042i 0.505760i
\(555\) −1.13206 7.38031i −0.0480533 0.313277i
\(556\) −5.11770 −0.217039
\(557\) −33.0984 −1.40243 −0.701213 0.712952i \(-0.747358\pi\)
−0.701213 + 0.712952i \(0.747358\pi\)
\(558\) 1.53119i 0.0648204i
\(559\) 0 0
\(560\) 10.6034 1.62644i 0.448073 0.0687298i
\(561\) 0.244386i 0.0103180i
\(562\) 11.3975i 0.480776i
\(563\) 10.4632i 0.440971i −0.975390 0.220485i \(-0.929236\pi\)
0.975390 0.220485i \(-0.0707641\pi\)
\(564\) 0.824367i 0.0347121i
\(565\) 5.40429 + 35.2325i 0.227360 + 1.48224i
\(566\) 20.4123i 0.857995i
\(567\) −47.9207 −2.01248
\(568\) 7.35063i 0.308426i
\(569\) 8.63244 0.361891 0.180945 0.983493i \(-0.442084\pi\)
0.180945 + 0.983493i \(0.442084\pi\)
\(570\) 17.2528 2.64640i 0.722640 0.110845i
\(571\) 14.3069 0.598724 0.299362 0.954140i \(-0.403226\pi\)
0.299362 + 0.954140i \(0.403226\pi\)
\(572\) 0 0
\(573\) 14.1127i 0.589567i
\(574\) 32.5676i 1.35934i
\(575\) 8.84087 + 28.1403i 0.368690 + 1.17353i
\(576\) −0.376989 −0.0157079
\(577\) −11.9697 −0.498306 −0.249153 0.968464i \(-0.580152\pi\)
−0.249153 + 0.968464i \(0.580152\pi\)
\(578\) −16.9935 −0.706837
\(579\) 27.9166i 1.16018i
\(580\) −9.77013 + 1.49863i −0.405682 + 0.0622274i
\(581\) 59.6269 2.47374
\(582\) 10.6693i 0.442257i
\(583\) −19.1197 −0.791858
\(584\) −10.5752 −0.437605
\(585\) 0 0
\(586\) 4.18768 0.172991
\(587\) −5.50796 −0.227338 −0.113669 0.993519i \(-0.536260\pi\)
−0.113669 + 0.993519i \(0.536260\pi\)
\(588\) 29.4306i 1.21370i
\(589\) −17.2528 −0.710889
\(590\) 0.714665 + 4.65915i 0.0294223 + 0.191814i
\(591\) 5.53735i 0.227776i
\(592\) 1.81708 0.0746816
\(593\) 24.6037 1.01035 0.505177 0.863016i \(-0.331427\pi\)
0.505177 + 0.863016i \(0.331427\pi\)
\(594\) −7.96069 −0.326631
\(595\) −0.130968 0.853826i −0.00536916 0.0350035i
\(596\) 4.14215i 0.169669i
\(597\) 17.8640i 0.731124i
\(598\) 0 0
\(599\) 35.3159 1.44297 0.721484 0.692431i \(-0.243460\pi\)
0.721484 + 0.692431i \(0.243460\pi\)
\(600\) 2.75398 + 8.76586i 0.112431 + 0.357865i
\(601\) 34.9214 1.42447 0.712236 0.701940i \(-0.247682\pi\)
0.712236 + 0.701940i \(0.247682\pi\)
\(602\) 40.7566i 1.66111i
\(603\) 1.50796 0.0614088
\(604\) 4.43389i 0.180412i
\(605\) 18.2839 2.80456i 0.743348 0.114022i
\(606\) 2.27413i 0.0923804i
\(607\) 24.9627i 1.01320i 0.862180 + 0.506602i \(0.169099\pi\)
−0.862180 + 0.506602i \(0.830901\pi\)
\(608\) 4.24776i 0.172269i
\(609\) 38.9707i 1.57917i
\(610\) 6.91427 1.06058i 0.279950 0.0429415i
\(611\) 0 0
\(612\) 0.0303567i 0.00122710i
\(613\) 16.1266 0.651347 0.325674 0.945482i \(-0.394409\pi\)
0.325674 + 0.945482i \(0.394409\pi\)
\(614\) −18.0170 −0.727107
\(615\) −27.5725 + 4.22934i −1.11183 + 0.170543i
\(616\) 7.92308i 0.319230i
\(617\) 28.5073 1.14766 0.573831 0.818974i \(-0.305457\pi\)
0.573831 + 0.818974i \(0.305457\pi\)
\(618\) 17.2528 0.694010
\(619\) 0.338217i 0.0135941i −0.999977 0.00679705i \(-0.997836\pi\)
0.999977 0.00679705i \(-0.00216358\pi\)
\(620\) −1.37699 8.97708i −0.0553012 0.360528i
\(621\) 28.4357 1.14109
\(622\) 5.17816 0.207625
\(623\) 40.1043i 1.60675i
\(624\) 0 0
\(625\) 20.5082 14.2973i 0.820328 0.571894i
\(626\) 32.6333i 1.30429i
\(627\) 12.8917i 0.514845i
\(628\) 8.32411i 0.332168i
\(629\) 0.146319i 0.00583412i
\(630\) 3.99735 0.613152i 0.159258 0.0244285i
\(631\) 32.1930i 1.28158i −0.767715 0.640791i \(-0.778606\pi\)
0.767715 0.640791i \(-0.221394\pi\)
\(632\) 14.6468 0.582618
\(633\) 8.80357i 0.349910i
\(634\) 23.7385 0.942774
\(635\) −0.302733 1.97362i −0.0120136 0.0783208i
\(636\) 21.2746 0.843592
\(637\) 0 0
\(638\) 7.30047i 0.289028i
\(639\) 2.77111i 0.109623i
\(640\) −2.21022 + 0.339024i −0.0873665 + 0.0134011i
\(641\) −12.5996 −0.497655 −0.248827 0.968548i \(-0.580045\pi\)
−0.248827 + 0.968548i \(0.580045\pi\)
\(642\) 34.0088 1.34222
\(643\) 19.4055 0.765280 0.382640 0.923898i \(-0.375015\pi\)
0.382640 + 0.923898i \(0.375015\pi\)
\(644\) 28.3014i 1.11523i
\(645\) 34.5056 5.29280i 1.35866 0.208404i
\(646\) 0.342047 0.0134577
\(647\) 18.6943i 0.734949i −0.930034 0.367475i \(-0.880223\pi\)
0.930034 0.367475i \(-0.119777\pi\)
\(648\) 9.98885 0.392399
\(649\) 3.48143 0.136658
\(650\) 0 0
\(651\) −35.8074 −1.40340
\(652\) −0.943288 −0.0369420
\(653\) 17.8699i 0.699305i −0.936879 0.349652i \(-0.886300\pi\)
0.936879 0.349652i \(-0.113700\pi\)
\(654\) 16.6977 0.652930
\(655\) −2.47037 + 0.378928i −0.0965252 + 0.0148059i
\(656\) 6.78855i 0.265048i
\(657\) −3.98673 −0.155537
\(658\) 2.15211 0.0838979
\(659\) 39.0893 1.52270 0.761352 0.648339i \(-0.224536\pi\)
0.761352 + 0.648339i \(0.224536\pi\)
\(660\) 6.70788 1.02892i 0.261104 0.0400506i
\(661\) 40.3696i 1.57020i −0.619372 0.785098i \(-0.712613\pi\)
0.619372 0.785098i \(-0.287387\pi\)
\(662\) 30.4752i 1.18445i
\(663\) 0 0
\(664\) −12.4289 −0.482336
\(665\) −6.90874 45.0405i −0.267909 1.74659i
\(666\) 0.685020 0.0265440
\(667\) 26.0774i 1.00972i
\(668\) 4.30062 0.166396
\(669\) 25.8071i 0.997759i
\(670\) 8.84087 1.35610i 0.341553 0.0523906i
\(671\) 5.16650i 0.199451i
\(672\) 8.81603i 0.340086i
\(673\) 21.1833i 0.816558i −0.912857 0.408279i \(-0.866129\pi\)
0.912857 0.408279i \(-0.133871\pi\)
\(674\) 19.2799i 0.742634i
\(675\) −7.22372 22.9929i −0.278041 0.884999i
\(676\) 0 0
\(677\) 2.48027i 0.0953245i −0.998864 0.0476622i \(-0.984823\pi\)
0.998864 0.0476622i \(-0.0151771\pi\)
\(678\) −29.2936 −1.12501
\(679\) −27.8535 −1.06892
\(680\) 0.0272996 + 0.177976i 0.00104689 + 0.00682506i
\(681\) 5.29280i 0.202820i
\(682\) −6.70788 −0.256858
\(683\) 12.8579 0.491993 0.245997 0.969271i \(-0.420885\pi\)
0.245997 + 0.969271i \(0.420885\pi\)
\(684\) 1.60136i 0.0612295i
\(685\) −18.1445 + 2.78317i −0.693264 + 0.106339i
\(686\) −43.2502 −1.65130
\(687\) 12.3271 0.470307
\(688\) 8.49552i 0.323888i
\(689\) 0 0
\(690\) −23.9607 + 3.67532i −0.912168 + 0.139917i
\(691\) 1.12646i 0.0428526i 0.999770 + 0.0214263i \(0.00682073\pi\)
−0.999770 + 0.0214263i \(0.993179\pi\)
\(692\) 0.994872i 0.0378194i
\(693\) 2.98691i 0.113464i
\(694\) 15.3720i 0.583512i
\(695\) −11.3112 + 1.73502i −0.429060 + 0.0658132i
\(696\) 8.12325i 0.307911i
\(697\) −0.546642 −0.0207055
\(698\) 15.2035i 0.575462i
\(699\) 32.3353 1.22303
\(700\) 22.8843 7.18959i 0.864946 0.271741i
\(701\) 9.39602 0.354883 0.177441 0.984131i \(-0.443218\pi\)
0.177441 + 0.984131i \(0.443218\pi\)
\(702\) 0 0
\(703\) 7.71852i 0.291110i
\(704\) 1.65153i 0.0622443i
\(705\) 0.279480 + 1.82203i 0.0105258 + 0.0686217i
\(706\) 26.9017 1.01246
\(707\) 5.93690 0.223280
\(708\) −3.87379 −0.145586
\(709\) 17.8713i 0.671172i −0.942010 0.335586i \(-0.891066\pi\)
0.942010 0.335586i \(-0.108934\pi\)
\(710\) −2.49204 16.2465i −0.0935247 0.609720i
\(711\) 5.52169 0.207079
\(712\) 8.35955i 0.313287i
\(713\) 23.9607 0.897335
\(714\) 0.709903 0.0265675
\(715\) 0 0
\(716\) −20.4357 −0.763719
\(717\) −20.7875 −0.776322
\(718\) 20.8348i 0.777547i
\(719\) −2.31296 −0.0862588 −0.0431294 0.999069i \(-0.513733\pi\)
−0.0431294 + 0.999069i \(0.513733\pi\)
\(720\) −0.833228 + 0.127808i −0.0310526 + 0.00476314i
\(721\) 45.0405i 1.67740i
\(722\) −0.956554 −0.0355992
\(723\) 9.33566 0.347197
\(724\) −19.9522 −0.741517
\(725\) −21.0860 + 6.62462i −0.783116 + 0.246032i
\(726\) 15.2020i 0.564198i
\(727\) 17.9866i 0.667087i −0.942735 0.333543i \(-0.891756\pi\)
0.942735 0.333543i \(-0.108244\pi\)
\(728\) 0 0
\(729\) −22.8079 −0.844739
\(730\) −23.3735 + 3.58525i −0.865091 + 0.132696i
\(731\) 0.684094 0.0253021
\(732\) 5.74878i 0.212481i
\(733\) 45.2898 1.67282 0.836408 0.548108i \(-0.184652\pi\)
0.836408 + 0.548108i \(0.184652\pi\)
\(734\) 34.5729i 1.27611i
\(735\) −9.97769 65.0481i −0.368033 2.39934i
\(736\) 5.89928i 0.217451i
\(737\) 6.60611i 0.243339i
\(738\) 2.55921i 0.0942058i
\(739\) 45.0044i 1.65551i 0.561088 + 0.827756i \(0.310383\pi\)
−0.561088 + 0.827756i \(0.689617\pi\)
\(740\) 4.01615 0.616035i 0.147636 0.0226459i
\(741\) 0 0
\(742\) 55.5398i 2.03893i
\(743\) 6.56669 0.240908 0.120454 0.992719i \(-0.461565\pi\)
0.120454 + 0.992719i \(0.461565\pi\)
\(744\) 7.46388 0.273639
\(745\) −1.40429 9.15505i −0.0514492 0.335415i
\(746\) 25.0064i 0.915549i
\(747\) −4.68558 −0.171436
\(748\) 0.132988 0.00486251
\(749\) 88.7840i 3.24410i
\(750\) 9.05873 + 18.4408i 0.330778 + 0.673363i
\(751\) 27.3499 0.998013 0.499006 0.866598i \(-0.333698\pi\)
0.499006 + 0.866598i \(0.333698\pi\)
\(752\) −0.448597 −0.0163586
\(753\) 35.9638i 1.31059i
\(754\) 0 0
\(755\) −1.50320 9.79986i −0.0547069 0.356653i
\(756\) 23.1245i 0.841031i
\(757\) 39.0526i 1.41939i 0.704509 + 0.709696i \(0.251167\pi\)
−0.704509 + 0.709696i \(0.748833\pi\)
\(758\) 3.75953i 0.136552i
\(759\) 17.9040i 0.649874i
\(760\) 1.44009 + 9.38847i 0.0522376 + 0.340556i
\(761\) 28.4342i 1.03074i 0.856968 + 0.515369i \(0.172345\pi\)
−0.856968 + 0.515369i \(0.827655\pi\)
\(762\) 1.64094 0.0594452
\(763\) 43.5912i 1.57811i
\(764\) −7.67972 −0.277843
\(765\) 0.0102917 + 0.0670950i 0.000372096 + 0.00242583i
\(766\) −3.93892 −0.142319
\(767\) 0 0
\(768\) 1.83766i 0.0663108i
\(769\) 29.2424i 1.05451i −0.849708 0.527254i \(-0.823222\pi\)
0.849708 0.527254i \(-0.176778\pi\)
\(770\) −2.68611 17.5117i −0.0968008 0.631079i
\(771\) −3.64587 −0.131303
\(772\) −15.1914 −0.546751
\(773\) −20.8212 −0.748887 −0.374444 0.927250i \(-0.622166\pi\)
−0.374444 + 0.927250i \(0.622166\pi\)
\(774\) 3.20272i 0.115119i
\(775\) −6.08689 19.3745i −0.218648 0.695951i
\(776\) 5.80593 0.208421
\(777\) 16.0194i 0.574694i
\(778\) 19.1589 0.686879
\(779\) −28.8361 −1.03316
\(780\) 0 0
\(781\) −12.1398 −0.434395
\(782\) −0.475035 −0.0169872
\(783\) 21.3074i 0.761463i
\(784\) 16.0153 0.571974
\(785\) −2.82208 18.3981i −0.100724 0.656656i
\(786\) 2.05396i 0.0732622i
\(787\) 20.9569 0.747031 0.373516 0.927624i \(-0.378152\pi\)
0.373516 + 0.927624i \(0.378152\pi\)
\(788\) 3.01327 0.107343
\(789\) 1.11833 0.0398137
\(790\) 32.3726 4.96562i 1.15177 0.176669i
\(791\) 76.4744i 2.71912i
\(792\) 0.622608i 0.0221234i
\(793\) 0 0
\(794\) 6.45538 0.229093
\(795\) 47.0214 7.21259i 1.66768 0.255804i
\(796\) −9.72106 −0.344554
\(797\) 18.5740i 0.657924i 0.944343 + 0.328962i \(0.106699\pi\)
−0.944343 + 0.328962i \(0.893301\pi\)
\(798\) 37.4484 1.32566
\(799\) 0.0361228i 0.00127793i
\(800\) −4.77013 + 1.49863i −0.168649 + 0.0529847i
\(801\) 3.15146i 0.111351i
\(802\) 34.6424i 1.22327i
\(803\) 17.4652i 0.616334i
\(804\) 7.35063i 0.259237i
\(805\) 9.59485 + 62.5522i 0.338174 + 2.20468i
\(806\) 0 0
\(807\) 32.6090i 1.14789i
\(808\) −1.23752 −0.0435357
\(809\) −28.1410 −0.989383 −0.494692 0.869069i \(-0.664719\pi\)
−0.494692 + 0.869069i \(0.664719\pi\)
\(810\) 22.0775 3.38646i 0.775725 0.118988i
\(811\) 17.1410i 0.601903i −0.953639 0.300952i \(-0.902696\pi\)
0.953639 0.300952i \(-0.0973043\pi\)
\(812\) −21.2067 −0.744210
\(813\) −29.4538 −1.03299
\(814\) 3.00096i 0.105184i
\(815\) −2.08487 + 0.319798i −0.0730299 + 0.0112020i
\(816\) −0.147976 −0.00518019
\(817\) 36.0869 1.26252
\(818\) 18.6071i 0.650583i
\(819\) 0 0
\(820\) −2.30148 15.0042i −0.0803712 0.523968i
\(821\) 13.3822i 0.467043i 0.972352 + 0.233521i \(0.0750249\pi\)
−0.972352 + 0.233521i \(0.924975\pi\)
\(822\) 15.0860i 0.526184i
\(823\) 21.6095i 0.753259i 0.926364 + 0.376629i \(0.122917\pi\)
−0.926364 + 0.376629i \(0.877083\pi\)
\(824\) 9.38847i 0.327063i
\(825\) 14.4771 4.54827i 0.504026 0.158350i
\(826\) 10.1130i 0.351876i
\(827\) 5.85827 0.203712 0.101856 0.994799i \(-0.467522\pi\)
0.101856 + 0.994799i \(0.467522\pi\)
\(828\) 2.22397i 0.0772882i
\(829\) −21.2783 −0.739026 −0.369513 0.929225i \(-0.620476\pi\)
−0.369513 + 0.929225i \(0.620476\pi\)
\(830\) −27.4707 + 4.21371i −0.953521 + 0.146260i
\(831\) 21.8758 0.758864
\(832\) 0 0
\(833\) 1.28962i 0.0446826i
\(834\) 9.40459i 0.325654i
\(835\) 9.50531 1.45801i 0.328945 0.0504567i
\(836\) 7.01529 0.242629
\(837\) −19.5778 −0.676709
\(838\) 22.9495 0.792778
\(839\) 19.5222i 0.673981i 0.941508 + 0.336990i \(0.109409\pi\)
−0.941508 + 0.336990i \(0.890591\pi\)
\(840\) 2.98885 + 19.4853i 0.103125 + 0.672308i
\(841\) −9.45975 −0.326198
\(842\) 34.8196i 1.19996i
\(843\) 20.9448 0.721376
\(844\) −4.79064 −0.164901
\(845\) 0 0
\(846\) −0.169116 −0.00581433
\(847\) 39.6865 1.36364
\(848\) 11.5770i 0.397556i
\(849\) 37.5109 1.28737
\(850\) 0.120676 + 0.384110i 0.00413916 + 0.0131749i
\(851\) 10.7195i 0.367459i
\(852\) 13.5080 0.462775
\(853\) −33.3923 −1.14333 −0.571665 0.820487i \(-0.693702\pi\)
−0.571665 + 0.820487i \(0.693702\pi\)
\(854\) 15.0079 0.513559
\(855\) 0.542899 + 3.53935i 0.0185668 + 0.121043i
\(856\) 18.5066i 0.632542i
\(857\) 22.7514i 0.777172i 0.921412 + 0.388586i \(0.127036\pi\)
−0.921412 + 0.388586i \(0.872964\pi\)
\(858\) 0 0
\(859\) −7.99391 −0.272749 −0.136374 0.990657i \(-0.543545\pi\)
−0.136374 + 0.990657i \(0.543545\pi\)
\(860\) 2.88019 + 18.7769i 0.0982135 + 0.640288i
\(861\) −59.8480 −2.03962
\(862\) 20.4986i 0.698186i
\(863\) 11.7205 0.398971 0.199486 0.979901i \(-0.436073\pi\)
0.199486 + 0.979901i \(0.436073\pi\)
\(864\) 4.82020i 0.163986i
\(865\) −0.337286 2.19888i −0.0114681 0.0747643i
\(866\) 2.14503i 0.0728909i
\(867\) 31.2283i 1.06057i
\(868\) 19.4853i 0.661376i
\(869\) 24.1896i 0.820575i
\(870\) −2.75398 17.9542i −0.0933686 0.608703i
\(871\) 0 0
\(872\) 9.08638i 0.307704i
\(873\) 2.18877 0.0740787
\(874\) −25.0587 −0.847624
\(875\) 48.1419 23.6489i 1.62749 0.799478i
\(876\) 19.4336i 0.656600i
\(877\) −1.72808 −0.0583530 −0.0291765 0.999574i \(-0.509288\pi\)
−0.0291765 + 0.999574i \(0.509288\pi\)
\(878\) −1.05195 −0.0355016
\(879\) 7.69553i 0.259564i
\(880\) 0.559907 + 3.65023i 0.0188745 + 0.123049i
\(881\) 33.5662 1.13087 0.565436 0.824792i \(-0.308708\pi\)
0.565436 + 0.824792i \(0.308708\pi\)
\(882\) 6.03759 0.203296
\(883\) 18.2526i 0.614249i −0.951669 0.307124i \(-0.900633\pi\)
0.951669 0.307124i \(-0.0993667\pi\)
\(884\) 0 0
\(885\) −8.56193 + 1.31331i −0.287806 + 0.0441464i
\(886\) 18.3043i 0.614946i
\(887\) 23.4791i 0.788351i 0.919035 + 0.394176i \(0.128970\pi\)
−0.919035 + 0.394176i \(0.871030\pi\)
\(888\) 3.33918i 0.112055i
\(889\) 4.28388i 0.143677i
\(890\) −2.83409 18.4764i −0.0949989 0.619331i
\(891\) 16.4968i 0.552665i
\(892\) 14.0434 0.470209
\(893\) 1.90553i 0.0637661i
\(894\) 7.61186 0.254579
\(895\) −45.1674 + 6.92820i −1.50978 + 0.231584i
\(896\) −4.79742 −0.160271
\(897\) 0 0
\(898\) 13.9524i 0.465596i
\(899\) 17.9542i 0.598805i
\(900\) −1.79829 + 0.564969i −0.0599429 + 0.0188323i
\(901\) 0.932228 0.0310570
\(902\) −11.2115 −0.373301
\(903\) 74.8967 2.49241
\(904\) 15.9407i 0.530180i
\(905\) −44.0987 + 6.76427i −1.46589 + 0.224852i
\(906\) 8.14798 0.270698
\(907\) 26.6800i 0.885895i 0.896547 + 0.442948i \(0.146067\pi\)
−0.896547 + 0.442948i \(0.853933\pi\)
\(908\) 2.88019 0.0955823
\(909\) −0.466531 −0.0154739
\(910\) 0 0
\(911\) −33.1591 −1.09861 −0.549305 0.835622i \(-0.685108\pi\)
−0.549305 + 0.835622i \(0.685108\pi\)
\(912\) −7.80593 −0.258480
\(913\) 20.5267i 0.679335i
\(914\) −29.4331 −0.973559
\(915\) 1.94898 + 12.7061i 0.0644312 + 0.420049i
\(916\) 6.70802i 0.221639i
\(917\) −5.36209 −0.177072
\(918\) 0.388142 0.0128106
\(919\) 38.5789 1.27260 0.636301 0.771441i \(-0.280464\pi\)
0.636301 + 0.771441i \(0.280464\pi\)
\(920\) −2.00000 13.0387i −0.0659380 0.429873i
\(921\) 33.1091i 1.09098i
\(922\) 9.09372i 0.299486i
\(923\) 0 0
\(924\) 14.5599 0.478986
\(925\) 8.66771 2.72314i 0.284992 0.0895363i
\(926\) 41.6642 1.36917
\(927\) 3.53935i 0.116248i
\(928\) 4.42044 0.145108
\(929\) 24.5973i 0.807011i −0.914977 0.403505i \(-0.867792\pi\)
0.914977 0.403505i \(-0.132208\pi\)
\(930\) 16.4968 2.53044i 0.540952 0.0829763i
\(931\) 68.0291i 2.22956i
\(932\) 17.5959i 0.576374i
\(933\) 9.51568i 0.311530i
\(934\) 38.1079i 1.24693i
\(935\) 0.293932 0.0450861i 0.00961260 0.00147447i
\(936\) 0 0
\(937\) 25.6787i 0.838886i 0.907782 + 0.419443i \(0.137775\pi\)
−0.907782 + 0.419443i \(0.862225\pi\)
\(938\) 19.1897 0.626566
\(939\) 59.9690 1.95701
\(940\) −0.991496 + 0.152085i −0.0323390 + 0.00496047i
\(941\) 27.7630i 0.905047i 0.891752 + 0.452524i \(0.149476\pi\)
−0.891752 + 0.452524i \(0.850524\pi\)
\(942\) 15.2969 0.498399
\(943\) 40.0476 1.30413
\(944\) 2.10800i 0.0686097i
\(945\) −7.83978 51.1103i −0.255028 1.66262i
\(946\) 14.0306 0.456173
\(947\) −10.0291 −0.325902 −0.162951 0.986634i \(-0.552101\pi\)
−0.162951 + 0.986634i \(0.552101\pi\)
\(948\) 26.9158i 0.874185i
\(949\) 0 0
\(950\) 6.36584 + 20.2623i 0.206535 + 0.657397i
\(951\) 43.6232i 1.41458i
\(952\) 0.386309i 0.0125203i
\(953\) 34.9592i 1.13244i 0.824254 + 0.566220i \(0.191595\pi\)
−0.824254 + 0.566220i \(0.808405\pi\)
\(954\) 4.36440i 0.141303i
\(955\) −16.9739 + 2.60361i −0.549261 + 0.0842509i
\(956\) 11.3119i 0.365854i
\(957\) −13.4158 −0.433670
\(958\) 15.0374i 0.485837i
\(959\) −39.3838 −1.27177
\(960\) −0.623011 4.06163i −0.0201076 0.131088i
\(961\) 14.5032 0.467845
\(962\) 0 0
\(963\) 6.97679i 0.224824i
\(964\) 5.08019i 0.163622i
\(965\) −33.5764 + 5.15026i −1.08086 + 0.165793i
\(966\) −52.0083 −1.67334
\(967\) 8.61013 0.276883 0.138442 0.990371i \(-0.455791\pi\)
0.138442 + 0.990371i \(0.455791\pi\)
\(968\) −8.27246 −0.265887
\(969\) 0.628566i 0.0201924i
\(970\) 12.8324 1.96835i 0.412022 0.0631999i
\(971\) −28.4894 −0.914268 −0.457134 0.889398i \(-0.651124\pi\)
−0.457134 + 0.889398i \(0.651124\pi\)
\(972\) 3.89550i 0.124948i
\(973\) −24.5518 −0.787094
\(974\) 4.56256 0.146194
\(975\) 0 0
\(976\) −3.12832 −0.100135
\(977\) 23.1128 0.739444 0.369722 0.929142i \(-0.379453\pi\)
0.369722 + 0.929142i \(0.379453\pi\)
\(978\) 1.73344i 0.0554294i
\(979\) −13.8060 −0.441242
\(980\) 35.3973 5.42957i 1.13072 0.173441i
\(981\) 3.42547i 0.109367i
\(982\) 8.41606 0.268567
\(983\) −28.0211 −0.893736 −0.446868 0.894600i \(-0.647461\pi\)
−0.446868 + 0.894600i \(0.647461\pi\)
\(984\) 12.4750 0.397690
\(985\) 6.65997 1.02157i 0.212204 0.0325499i
\(986\) 0.355952i 0.0113358i
\(987\) 3.95484i 0.125884i
\(988\) 0 0
\(989\) −50.1175 −1.59364
\(990\) 0.211079 + 1.37610i 0.00670853 + 0.0437353i
\(991\) 24.8714 0.790067 0.395034 0.918667i \(-0.370733\pi\)
0.395034 + 0.918667i \(0.370733\pi\)
\(992\) 4.06163i 0.128957i
\(993\) −56.0030 −1.77720
\(994\) 35.2641i 1.11851i
\(995\) −21.4857 + 3.29567i −0.681141 + 0.104480i
\(996\) 22.8401i 0.723718i
\(997\) 26.6892i 0.845254i −0.906304 0.422627i \(-0.861108\pi\)
0.906304 0.422627i \(-0.138892\pi\)
\(998\) 12.5587i 0.397539i
\(999\) 8.75869i 0.277113i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.e.1689.3 8
5.4 even 2 1690.2.c.f.1689.6 8
13.5 odd 4 1690.2.b.e.339.11 16
13.8 odd 4 1690.2.b.e.339.3 16
13.9 even 3 130.2.m.b.49.2 yes 8
13.10 even 6 130.2.m.a.69.3 yes 8
13.12 even 2 1690.2.c.f.1689.3 8
39.23 odd 6 1170.2.bj.b.199.4 8
39.35 odd 6 1170.2.bj.a.829.1 8
52.23 odd 6 1040.2.df.c.849.2 8
52.35 odd 6 1040.2.df.a.49.3 8
65.8 even 4 8450.2.a.cr.1.6 8
65.9 even 6 130.2.m.a.49.3 8
65.18 even 4 8450.2.a.cs.1.6 8
65.22 odd 12 650.2.m.e.101.3 16
65.23 odd 12 650.2.m.e.251.6 16
65.34 odd 4 1690.2.b.e.339.14 16
65.44 odd 4 1690.2.b.e.339.6 16
65.47 even 4 8450.2.a.cs.1.3 8
65.48 odd 12 650.2.m.e.101.6 16
65.49 even 6 130.2.m.b.69.2 yes 8
65.57 even 4 8450.2.a.cr.1.3 8
65.62 odd 12 650.2.m.e.251.3 16
65.64 even 2 inner 1690.2.c.e.1689.6 8
195.74 odd 6 1170.2.bj.b.829.4 8
195.179 odd 6 1170.2.bj.a.199.1 8
260.139 odd 6 1040.2.df.c.49.2 8
260.179 odd 6 1040.2.df.a.849.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.3 8 65.9 even 6
130.2.m.a.69.3 yes 8 13.10 even 6
130.2.m.b.49.2 yes 8 13.9 even 3
130.2.m.b.69.2 yes 8 65.49 even 6
650.2.m.e.101.3 16 65.22 odd 12
650.2.m.e.101.6 16 65.48 odd 12
650.2.m.e.251.3 16 65.62 odd 12
650.2.m.e.251.6 16 65.23 odd 12
1040.2.df.a.49.3 8 52.35 odd 6
1040.2.df.a.849.3 8 260.179 odd 6
1040.2.df.c.49.2 8 260.139 odd 6
1040.2.df.c.849.2 8 52.23 odd 6
1170.2.bj.a.199.1 8 195.179 odd 6
1170.2.bj.a.829.1 8 39.35 odd 6
1170.2.bj.b.199.4 8 39.23 odd 6
1170.2.bj.b.829.4 8 195.74 odd 6
1690.2.b.e.339.3 16 13.8 odd 4
1690.2.b.e.339.6 16 65.44 odd 4
1690.2.b.e.339.11 16 13.5 odd 4
1690.2.b.e.339.14 16 65.34 odd 4
1690.2.c.e.1689.3 8 1.1 even 1 trivial
1690.2.c.e.1689.6 8 65.64 even 2 inner
1690.2.c.f.1689.3 8 13.12 even 2
1690.2.c.f.1689.6 8 5.4 even 2
8450.2.a.cr.1.3 8 65.57 even 4
8450.2.a.cr.1.6 8 65.8 even 4
8450.2.a.cs.1.3 8 65.47 even 4
8450.2.a.cs.1.6 8 65.18 even 4