Properties

Label 1170.2.bj.b.829.4
Level $1170$
Weight $2$
Character 1170.829
Analytic conductor $9.342$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(199,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.50027374224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.4
Root \(-1.83766i\) of defining polynomial
Character \(\chi\) \(=\) 1170.829
Dual form 1170.2.bj.b.199.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(2.21022 + 0.339024i) q^{5} +(2.39871 - 4.15469i) q^{7} -1.00000 q^{8} +(0.811505 + 2.08362i) q^{10} +(-1.43026 + 0.825763i) q^{11} +(-1.09146 + 3.43638i) q^{13} +4.79742 q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.0697360 + 0.0402621i) q^{17} +(3.67867 + 2.12388i) q^{19} +(-1.39871 + 1.74459i) q^{20} +(-1.43026 - 0.825763i) q^{22} +(5.10893 - 2.94964i) q^{23} +(4.77013 + 1.49863i) q^{25} +(-3.52172 + 0.772959i) q^{26} +(2.39871 + 4.15469i) q^{28} +(-2.21022 - 3.82821i) q^{29} -4.06163i q^{31} +(0.500000 - 0.866025i) q^{32} +0.0805241i q^{34} +(6.71022 - 8.36955i) q^{35} +(0.908541 + 1.57364i) q^{37} +4.24776i q^{38} +(-2.21022 - 0.339024i) q^{40} +(5.87906 - 3.39427i) q^{41} +(7.35733 + 4.24776i) q^{43} -1.65153i q^{44} +(5.10893 + 2.94964i) q^{46} -0.448597 q^{47} +(-8.00764 - 13.8696i) q^{49} +(1.08721 + 4.88037i) q^{50} +(-2.43026 - 2.66342i) q^{52} +11.5770i q^{53} +(-3.44115 + 1.34022i) q^{55} +(-2.39871 + 4.15469i) q^{56} +(2.21022 - 3.82821i) q^{58} +(-1.82559 - 1.05400i) q^{59} +(1.56416 - 2.70920i) q^{61} +(3.51747 - 2.03081i) q^{62} +1.00000 q^{64} +(-3.57738 + 7.22512i) q^{65} +(-2.00000 - 3.46410i) q^{67} +(-0.0697360 + 0.0402621i) q^{68} +(10.6034 + 1.62644i) q^{70} +(6.36584 + 3.67532i) q^{71} -10.5752 q^{73} +(-0.908541 + 1.57364i) q^{74} +(-3.67867 + 2.12388i) q^{76} +7.92308i q^{77} -14.6468 q^{79} +(-0.811505 - 2.08362i) q^{80} +(5.87906 + 3.39427i) q^{82} +12.4289 q^{83} +(0.140482 + 0.112630i) q^{85} +8.49552i q^{86} +(1.43026 - 0.825763i) q^{88} +(-7.23958 + 4.17978i) q^{89} +(11.6590 + 12.7776i) q^{91} +5.89928i q^{92} +(-0.224298 - 0.388496i) q^{94} +(7.41061 + 5.94139i) q^{95} +(-2.90296 + 5.02808i) q^{97} +(8.00764 - 13.8696i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} - 3 q^{5} + 5 q^{7} - 8 q^{8} + 3 q^{11} + 4 q^{13} + 10 q^{14} - 4 q^{16} + 15 q^{17} + 9 q^{19} + 3 q^{20} + 3 q^{22} + 6 q^{23} + 5 q^{25} - q^{26} + 5 q^{28} + 3 q^{29} + 4 q^{32}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.21022 + 0.339024i 0.988439 + 0.151616i
\(6\) 0 0
\(7\) 2.39871 4.15469i 0.906628 1.57033i 0.0879113 0.996128i \(-0.471981\pi\)
0.818717 0.574198i \(-0.194686\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.811505 + 2.08362i 0.256621 + 0.658897i
\(11\) −1.43026 + 0.825763i −0.431241 + 0.248977i −0.699875 0.714265i \(-0.746761\pi\)
0.268634 + 0.963242i \(0.413428\pi\)
\(12\) 0 0
\(13\) −1.09146 + 3.43638i −0.302716 + 0.953081i
\(14\) 4.79742 1.28217
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.0697360 + 0.0402621i 0.0169135 + 0.00976499i 0.508433 0.861102i \(-0.330225\pi\)
−0.491519 + 0.870867i \(0.663558\pi\)
\(18\) 0 0
\(19\) 3.67867 + 2.12388i 0.843944 + 0.487251i 0.858603 0.512641i \(-0.171333\pi\)
−0.0146590 + 0.999893i \(0.504666\pi\)
\(20\) −1.39871 + 1.74459i −0.312762 + 0.390103i
\(21\) 0 0
\(22\) −1.43026 0.825763i −0.304933 0.176053i
\(23\) 5.10893 2.94964i 1.06529 0.615043i 0.138396 0.990377i \(-0.455805\pi\)
0.926890 + 0.375334i \(0.122472\pi\)
\(24\) 0 0
\(25\) 4.77013 + 1.49863i 0.954025 + 0.299727i
\(26\) −3.52172 + 0.772959i −0.690667 + 0.151590i
\(27\) 0 0
\(28\) 2.39871 + 4.15469i 0.453314 + 0.785163i
\(29\) −2.21022 3.82821i −0.410427 0.710881i 0.584509 0.811387i \(-0.301287\pi\)
−0.994936 + 0.100506i \(0.967954\pi\)
\(30\) 0 0
\(31\) 4.06163i 0.729490i −0.931108 0.364745i \(-0.881156\pi\)
0.931108 0.364745i \(-0.118844\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 0.0805241i 0.0138098i
\(35\) 6.71022 8.36955i 1.13423 1.41471i
\(36\) 0 0
\(37\) 0.908541 + 1.57364i 0.149363 + 0.258705i 0.930992 0.365039i \(-0.118944\pi\)
−0.781629 + 0.623744i \(0.785611\pi\)
\(38\) 4.24776i 0.689077i
\(39\) 0 0
\(40\) −2.21022 0.339024i −0.349466 0.0536044i
\(41\) 5.87906 3.39427i 0.918154 0.530097i 0.0351085 0.999384i \(-0.488822\pi\)
0.883046 + 0.469287i \(0.155489\pi\)
\(42\) 0 0
\(43\) 7.35733 + 4.24776i 1.12198 + 0.647777i 0.941906 0.335876i \(-0.109032\pi\)
0.180076 + 0.983653i \(0.442366\pi\)
\(44\) 1.65153i 0.248977i
\(45\) 0 0
\(46\) 5.10893 + 2.94964i 0.753271 + 0.434901i
\(47\) −0.448597 −0.0654345 −0.0327173 0.999465i \(-0.510416\pi\)
−0.0327173 + 0.999465i \(0.510416\pi\)
\(48\) 0 0
\(49\) −8.00764 13.8696i −1.14395 1.98138i
\(50\) 1.08721 + 4.88037i 0.153754 + 0.690188i
\(51\) 0 0
\(52\) −2.43026 2.66342i −0.337017 0.369350i
\(53\) 11.5770i 1.59022i 0.606463 + 0.795112i \(0.292588\pi\)
−0.606463 + 0.795112i \(0.707412\pi\)
\(54\) 0 0
\(55\) −3.44115 + 1.34022i −0.464004 + 0.180716i
\(56\) −2.39871 + 4.15469i −0.320541 + 0.555194i
\(57\) 0 0
\(58\) 2.21022 3.82821i 0.290216 0.502669i
\(59\) −1.82559 1.05400i −0.237671 0.137219i 0.376435 0.926443i \(-0.377150\pi\)
−0.614106 + 0.789224i \(0.710483\pi\)
\(60\) 0 0
\(61\) 1.56416 2.70920i 0.200270 0.346878i −0.748345 0.663309i \(-0.769151\pi\)
0.948615 + 0.316431i \(0.102485\pi\)
\(62\) 3.51747 2.03081i 0.446719 0.257913i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.57738 + 7.22512i −0.443719 + 0.896166i
\(66\) 0 0
\(67\) −2.00000 3.46410i −0.244339 0.423207i 0.717607 0.696449i \(-0.245238\pi\)
−0.961946 + 0.273241i \(0.911904\pi\)
\(68\) −0.0697360 + 0.0402621i −0.00845673 + 0.00488249i
\(69\) 0 0
\(70\) 10.6034 + 1.62644i 1.26734 + 0.194397i
\(71\) 6.36584 + 3.67532i 0.755486 + 0.436180i 0.827673 0.561211i \(-0.189664\pi\)
−0.0721869 + 0.997391i \(0.522998\pi\)
\(72\) 0 0
\(73\) −10.5752 −1.23773 −0.618866 0.785496i \(-0.712408\pi\)
−0.618866 + 0.785496i \(0.712408\pi\)
\(74\) −0.908541 + 1.57364i −0.105616 + 0.182932i
\(75\) 0 0
\(76\) −3.67867 + 2.12388i −0.421972 + 0.243626i
\(77\) 7.92308i 0.902918i
\(78\) 0 0
\(79\) −14.6468 −1.64789 −0.823947 0.566667i \(-0.808233\pi\)
−0.823947 + 0.566667i \(0.808233\pi\)
\(80\) −0.811505 2.08362i −0.0907291 0.232955i
\(81\) 0 0
\(82\) 5.87906 + 3.39427i 0.649233 + 0.374835i
\(83\) 12.4289 1.36425 0.682127 0.731234i \(-0.261055\pi\)
0.682127 + 0.731234i \(0.261055\pi\)
\(84\) 0 0
\(85\) 0.140482 + 0.112630i 0.0152374 + 0.0122165i
\(86\) 8.49552i 0.916095i
\(87\) 0 0
\(88\) 1.43026 0.825763i 0.152467 0.0880267i
\(89\) −7.23958 + 4.17978i −0.767394 + 0.443055i −0.831944 0.554859i \(-0.812772\pi\)
0.0645500 + 0.997914i \(0.479439\pi\)
\(90\) 0 0
\(91\) 11.6590 + 12.7776i 1.22220 + 1.33945i
\(92\) 5.89928i 0.615043i
\(93\) 0 0
\(94\) −0.224298 0.388496i −0.0231346 0.0400703i
\(95\) 7.41061 + 5.94139i 0.760312 + 0.609574i
\(96\) 0 0
\(97\) −2.90296 + 5.02808i −0.294751 + 0.510524i −0.974927 0.222525i \(-0.928570\pi\)
0.680176 + 0.733049i \(0.261903\pi\)
\(98\) 8.00764 13.8696i 0.808894 1.40105i
\(99\) 0 0
\(100\) −3.68292 + 3.38173i −0.368292 + 0.338173i
\(101\) 0.618759 + 1.07172i 0.0615688 + 0.106640i 0.895167 0.445731i \(-0.147056\pi\)
−0.833598 + 0.552372i \(0.813723\pi\)
\(102\) 0 0
\(103\) 9.38847i 0.925073i 0.886600 + 0.462537i \(0.153061\pi\)
−0.886600 + 0.462537i \(0.846939\pi\)
\(104\) 1.09146 3.43638i 0.107026 0.336965i
\(105\) 0 0
\(106\) −10.0260 + 5.78850i −0.973809 + 0.562229i
\(107\) −16.0272 + 9.25330i −1.54941 + 0.894550i −0.551219 + 0.834361i \(0.685837\pi\)
−0.998187 + 0.0601893i \(0.980830\pi\)
\(108\) 0 0
\(109\) 9.08638i 0.870317i −0.900354 0.435158i \(-0.856692\pi\)
0.900354 0.435158i \(-0.143308\pi\)
\(110\) −2.88124 2.31001i −0.274716 0.220251i
\(111\) 0 0
\(112\) −4.79742 −0.453314
\(113\) −13.8051 7.97036i −1.29867 0.749788i −0.318497 0.947924i \(-0.603178\pi\)
−0.980175 + 0.198136i \(0.936511\pi\)
\(114\) 0 0
\(115\) 12.2918 4.78730i 1.14622 0.446418i
\(116\) 4.42044 0.410427
\(117\) 0 0
\(118\) 2.10800i 0.194058i
\(119\) 0.334553 0.193154i 0.0306684 0.0177064i
\(120\) 0 0
\(121\) −4.13623 + 7.16416i −0.376021 + 0.651287i
\(122\) 3.12832 0.283225
\(123\) 0 0
\(124\) 3.51747 + 2.03081i 0.315878 + 0.182372i
\(125\) 10.0349 + 4.92950i 0.897553 + 0.440908i
\(126\) 0 0
\(127\) 0.773321 0.446477i 0.0686211 0.0396184i −0.465297 0.885155i \(-0.654052\pi\)
0.533918 + 0.845536i \(0.320719\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −8.04583 + 0.514459i −0.705666 + 0.0451211i
\(131\) 1.11770 0.0976541 0.0488271 0.998807i \(-0.484452\pi\)
0.0488271 + 0.998807i \(0.484452\pi\)
\(132\) 0 0
\(133\) 17.6481 10.1891i 1.53029 0.883511i
\(134\) 2.00000 3.46410i 0.172774 0.299253i
\(135\) 0 0
\(136\) −0.0697360 0.0402621i −0.00597981 0.00345244i
\(137\) 4.10468 7.10951i 0.350686 0.607407i −0.635684 0.771950i \(-0.719282\pi\)
0.986370 + 0.164543i \(0.0526150\pi\)
\(138\) 0 0
\(139\) 2.55885 4.43206i 0.217039 0.375922i −0.736862 0.676043i \(-0.763693\pi\)
0.953901 + 0.300120i \(0.0970268\pi\)
\(140\) 3.89314 + 9.99600i 0.329030 + 0.844816i
\(141\) 0 0
\(142\) 7.35063i 0.616852i
\(143\) −1.27656 5.81622i −0.106752 0.486377i
\(144\) 0 0
\(145\) −3.58721 9.21049i −0.297901 0.764890i
\(146\) −5.28760 9.15839i −0.437605 0.757953i
\(147\) 0 0
\(148\) −1.81708 −0.149363
\(149\) −3.58721 2.07107i −0.293875 0.169669i 0.345813 0.938304i \(-0.387603\pi\)
−0.639688 + 0.768634i \(0.720937\pi\)
\(150\) 0 0
\(151\) 4.43389i 0.360825i −0.983591 0.180412i \(-0.942257\pi\)
0.983591 0.180412i \(-0.0577432\pi\)
\(152\) −3.67867 2.12388i −0.298379 0.172269i
\(153\) 0 0
\(154\) −6.86158 + 3.96154i −0.552922 + 0.319230i
\(155\) 1.37699 8.97708i 0.110602 0.721056i
\(156\) 0 0
\(157\) 8.32411i 0.664337i 0.943220 + 0.332168i \(0.107780\pi\)
−0.943220 + 0.332168i \(0.892220\pi\)
\(158\) −7.32340 12.6845i −0.582618 1.00912i
\(159\) 0 0
\(160\) 1.39871 1.74459i 0.110578 0.137922i
\(161\) 28.3014i 2.23046i
\(162\) 0 0
\(163\) −0.471644 + 0.816912i −0.0369420 + 0.0639855i −0.883905 0.467666i \(-0.845095\pi\)
0.846963 + 0.531651i \(0.178428\pi\)
\(164\) 6.78855i 0.530097i
\(165\) 0 0
\(166\) 6.21447 + 10.7638i 0.482336 + 0.835431i
\(167\) −2.15031 3.72445i −0.166396 0.288206i 0.770754 0.637133i \(-0.219880\pi\)
−0.937150 + 0.348926i \(0.886546\pi\)
\(168\) 0 0
\(169\) −10.6174 7.50134i −0.816726 0.577026i
\(170\) −0.0272996 + 0.177976i −0.00209379 + 0.0136501i
\(171\) 0 0
\(172\) −7.35733 + 4.24776i −0.560991 + 0.323888i
\(173\) 0.861584 + 0.497436i 0.0655050 + 0.0378194i 0.532395 0.846496i \(-0.321292\pi\)
−0.466890 + 0.884316i \(0.654626\pi\)
\(174\) 0 0
\(175\) 17.6685 16.2236i 1.33561 1.22639i
\(176\) 1.43026 + 0.825763i 0.107810 + 0.0622443i
\(177\) 0 0
\(178\) −7.23958 4.17978i −0.542630 0.313287i
\(179\) −10.2179 17.6979i −0.763719 1.32280i −0.940921 0.338625i \(-0.890038\pi\)
0.177203 0.984174i \(-0.443295\pi\)
\(180\) 0 0
\(181\) −19.9522 −1.48303 −0.741517 0.670934i \(-0.765893\pi\)
−0.741517 + 0.670934i \(0.765893\pi\)
\(182\) −5.23619 + 16.4858i −0.388132 + 1.22201i
\(183\) 0 0
\(184\) −5.10893 + 2.94964i −0.376635 + 0.217451i
\(185\) 1.47457 + 3.78610i 0.108413 + 0.278360i
\(186\) 0 0
\(187\) −0.132988 −0.00972503
\(188\) 0.224298 0.388496i 0.0163586 0.0283340i
\(189\) 0 0
\(190\) −1.44009 + 9.38847i −0.104475 + 0.681111i
\(191\) −3.83986 + 6.65083i −0.277843 + 0.481238i −0.970848 0.239695i \(-0.922953\pi\)
0.693006 + 0.720932i \(0.256286\pi\)
\(192\) 0 0
\(193\) −7.59571 13.1562i −0.546751 0.947001i −0.998494 0.0548529i \(-0.982531\pi\)
0.451743 0.892148i \(-0.350802\pi\)
\(194\) −5.80593 −0.416841
\(195\) 0 0
\(196\) 16.0153 1.14395
\(197\) −1.50663 2.60956i −0.107343 0.185924i 0.807350 0.590073i \(-0.200901\pi\)
−0.914693 + 0.404149i \(0.867568\pi\)
\(198\) 0 0
\(199\) 4.86053 8.41868i 0.344554 0.596785i −0.640719 0.767776i \(-0.721364\pi\)
0.985273 + 0.170991i \(0.0546969\pi\)
\(200\) −4.77013 1.49863i −0.337299 0.105969i
\(201\) 0 0
\(202\) −0.618759 + 1.07172i −0.0435357 + 0.0754061i
\(203\) −21.2067 −1.48842
\(204\) 0 0
\(205\) 14.1447 5.50894i 0.987911 0.384761i
\(206\) −8.13065 + 4.69423i −0.566489 + 0.327063i
\(207\) 0 0
\(208\) 3.52172 0.772959i 0.244188 0.0535951i
\(209\) −7.01529 −0.485257
\(210\) 0 0
\(211\) 2.39532 + 4.14882i 0.164901 + 0.285616i 0.936620 0.350347i \(-0.113936\pi\)
−0.771719 + 0.635963i \(0.780603\pi\)
\(212\) −10.0260 5.78850i −0.688587 0.397556i
\(213\) 0 0
\(214\) −16.0272 9.25330i −1.09560 0.632542i
\(215\) 14.8212 + 11.8828i 1.01080 + 0.810399i
\(216\) 0 0
\(217\) −16.8748 9.74267i −1.14554 0.661376i
\(218\) 7.86903 4.54319i 0.532958 0.307704i
\(219\) 0 0
\(220\) 0.559907 3.65023i 0.0377490 0.246099i
\(221\) −0.214470 + 0.195695i −0.0144268 + 0.0131639i
\(222\) 0 0
\(223\) 7.02172 + 12.1620i 0.470209 + 0.814426i 0.999420 0.0340642i \(-0.0108451\pi\)
−0.529210 + 0.848491i \(0.677512\pi\)
\(224\) −2.39871 4.15469i −0.160271 0.277597i
\(225\) 0 0
\(226\) 15.9407i 1.06036i
\(227\) −1.44009 + 2.49431i −0.0955823 + 0.165553i −0.909851 0.414934i \(-0.863805\pi\)
0.814269 + 0.580487i \(0.197138\pi\)
\(228\) 0 0
\(229\) 6.70802i 0.443279i 0.975129 + 0.221639i \(0.0711408\pi\)
−0.975129 + 0.221639i \(0.928859\pi\)
\(230\) 10.2918 + 8.25140i 0.678624 + 0.544081i
\(231\) 0 0
\(232\) 2.21022 + 3.82821i 0.145108 + 0.251334i
\(233\) 17.5959i 1.15275i 0.817186 + 0.576374i \(0.195533\pi\)
−0.817186 + 0.576374i \(0.804467\pi\)
\(234\) 0 0
\(235\) −0.991496 0.152085i −0.0646781 0.00992094i
\(236\) 1.82559 1.05400i 0.118836 0.0686097i
\(237\) 0 0
\(238\) 0.334553 + 0.193154i 0.0216858 + 0.0125203i
\(239\) 11.3119i 0.731708i 0.930672 + 0.365854i \(0.119223\pi\)
−0.930672 + 0.365854i \(0.880777\pi\)
\(240\) 0 0
\(241\) −4.39957 2.54010i −0.283401 0.163622i 0.351561 0.936165i \(-0.385651\pi\)
−0.634962 + 0.772543i \(0.718984\pi\)
\(242\) −8.27246 −0.531774
\(243\) 0 0
\(244\) 1.56416 + 2.70920i 0.100135 + 0.173439i
\(245\) −12.9965 33.3697i −0.830315 2.13191i
\(246\) 0 0
\(247\) −11.3136 + 10.3232i −0.719865 + 0.656848i
\(248\) 4.06163i 0.257913i
\(249\) 0 0
\(250\) 0.748402 + 11.1553i 0.0473331 + 0.705521i
\(251\) −9.78522 + 16.9485i −0.617637 + 1.06978i 0.372278 + 0.928121i \(0.378577\pi\)
−0.989916 + 0.141658i \(0.954757\pi\)
\(252\) 0 0
\(253\) −4.87141 + 8.43753i −0.306263 + 0.530463i
\(254\) 0.773321 + 0.446477i 0.0485225 + 0.0280145i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.71818 + 0.991989i −0.107177 + 0.0618786i −0.552630 0.833427i \(-0.686376\pi\)
0.445453 + 0.895305i \(0.353042\pi\)
\(258\) 0 0
\(259\) 8.71731 0.541668
\(260\) −4.46845 6.71066i −0.277121 0.416178i
\(261\) 0 0
\(262\) 0.558851 + 0.967959i 0.0345259 + 0.0598007i
\(263\) 0.527031 0.304282i 0.0324981 0.0187628i −0.483663 0.875254i \(-0.660694\pi\)
0.516161 + 0.856492i \(0.327361\pi\)
\(264\) 0 0
\(265\) −3.92488 + 25.5877i −0.241104 + 1.57184i
\(266\) 17.6481 + 10.1891i 1.08208 + 0.624737i
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 8.87242 15.3675i 0.540961 0.936972i −0.457888 0.889010i \(-0.651394\pi\)
0.998849 0.0479623i \(-0.0152727\pi\)
\(270\) 0 0
\(271\) −13.8806 + 8.01395i −0.843185 + 0.486813i −0.858346 0.513072i \(-0.828507\pi\)
0.0151607 + 0.999885i \(0.495174\pi\)
\(272\) 0.0805241i 0.00488249i
\(273\) 0 0
\(274\) 8.20936 0.495945
\(275\) −8.06006 + 1.79555i −0.486040 + 0.108276i
\(276\) 0 0
\(277\) 10.3093 + 5.95209i 0.619427 + 0.357626i 0.776646 0.629937i \(-0.216919\pi\)
−0.157219 + 0.987564i \(0.550253\pi\)
\(278\) 5.11770 0.306939
\(279\) 0 0
\(280\) −6.71022 + 8.36955i −0.401012 + 0.500176i
\(281\) 11.3975i 0.679920i −0.940440 0.339960i \(-0.889587\pi\)
0.940440 0.339960i \(-0.110413\pi\)
\(282\) 0 0
\(283\) −17.6776 + 10.2062i −1.05082 + 0.606694i −0.922880 0.385087i \(-0.874171\pi\)
−0.127945 + 0.991781i \(0.540838\pi\)
\(284\) −6.36584 + 3.67532i −0.377743 + 0.218090i
\(285\) 0 0
\(286\) 4.39871 4.01365i 0.260101 0.237332i
\(287\) 32.5676i 1.92240i
\(288\) 0 0
\(289\) −8.49676 14.7168i −0.499809 0.865695i
\(290\) 6.18292 7.71186i 0.363073 0.452856i
\(291\) 0 0
\(292\) 5.28760 9.15839i 0.309433 0.535954i
\(293\) 2.09384 3.62664i 0.122323 0.211870i −0.798360 0.602180i \(-0.794299\pi\)
0.920684 + 0.390310i \(0.127632\pi\)
\(294\) 0 0
\(295\) −3.67761 2.94849i −0.214119 0.171668i
\(296\) −0.908541 1.57364i −0.0528079 0.0914659i
\(297\) 0 0
\(298\) 4.14215i 0.239948i
\(299\) 4.55991 + 20.7756i 0.263706 + 1.20149i
\(300\) 0 0
\(301\) 35.2962 20.3783i 2.03444 1.17459i
\(302\) 3.83986 2.21694i 0.220959 0.127571i
\(303\) 0 0
\(304\) 4.24776i 0.243626i
\(305\) 4.37562 5.45764i 0.250547 0.312504i
\(306\) 0 0
\(307\) −18.0170 −1.02828 −0.514142 0.857705i \(-0.671890\pi\)
−0.514142 + 0.857705i \(0.671890\pi\)
\(308\) −6.86158 3.96154i −0.390975 0.225730i
\(309\) 0 0
\(310\) 8.46287 3.29603i 0.480659 0.187202i
\(311\) 5.17816 0.293626 0.146813 0.989164i \(-0.453098\pi\)
0.146813 + 0.989164i \(0.453098\pi\)
\(312\) 0 0
\(313\) 32.6333i 1.84455i −0.386539 0.922273i \(-0.626330\pi\)
0.386539 0.922273i \(-0.373670\pi\)
\(314\) −7.20889 + 4.16206i −0.406821 + 0.234878i
\(315\) 0 0
\(316\) 7.32340 12.6845i 0.411973 0.713559i
\(317\) −23.7385 −1.33328 −0.666642 0.745378i \(-0.732269\pi\)
−0.666642 + 0.745378i \(0.732269\pi\)
\(318\) 0 0
\(319\) 6.32239 + 3.65023i 0.353986 + 0.204374i
\(320\) 2.21022 + 0.339024i 0.123555 + 0.0189520i
\(321\) 0 0
\(322\) 24.5097 14.1507i 1.36587 0.788587i
\(323\) 0.171024 + 0.296221i 0.00951600 + 0.0164822i
\(324\) 0 0
\(325\) −10.3563 + 14.7563i −0.574463 + 0.818531i
\(326\) −0.943288 −0.0522439
\(327\) 0 0
\(328\) −5.87906 + 3.39427i −0.324617 + 0.187417i
\(329\) −1.07605 + 1.86378i −0.0593248 + 0.102754i
\(330\) 0 0
\(331\) 26.3923 + 15.2376i 1.45065 + 0.837534i 0.998518 0.0544174i \(-0.0173301\pi\)
0.452132 + 0.891951i \(0.350663\pi\)
\(332\) −6.21447 + 10.7638i −0.341063 + 0.590739i
\(333\) 0 0
\(334\) 2.15031 3.72445i 0.117660 0.203793i
\(335\) −3.24602 8.33447i −0.177349 0.455361i
\(336\) 0 0
\(337\) 19.2799i 1.05024i −0.851027 0.525121i \(-0.824020\pi\)
0.851027 0.525121i \(-0.175980\pi\)
\(338\) 1.18763 12.9456i 0.0645987 0.704150i
\(339\) 0 0
\(340\) −0.167781 + 0.0653458i −0.00909923 + 0.00354387i
\(341\) 3.35394 + 5.80920i 0.181626 + 0.314586i
\(342\) 0 0
\(343\) −43.2502 −2.33529
\(344\) −7.35733 4.24776i −0.396681 0.229024i
\(345\) 0 0
\(346\) 0.994872i 0.0534846i
\(347\) 13.3125 + 7.68598i 0.714653 + 0.412605i 0.812782 0.582569i \(-0.197952\pi\)
−0.0981283 + 0.995174i \(0.531286\pi\)
\(348\) 0 0
\(349\) −13.1667 + 7.60177i −0.704795 + 0.406913i −0.809131 0.587629i \(-0.800062\pi\)
0.104336 + 0.994542i \(0.466728\pi\)
\(350\) 22.8843 + 7.18959i 1.22322 + 0.384300i
\(351\) 0 0
\(352\) 1.65153i 0.0880267i
\(353\) 13.4509 + 23.2976i 0.715917 + 1.24000i 0.962605 + 0.270909i \(0.0873244\pi\)
−0.246688 + 0.969095i \(0.579342\pi\)
\(354\) 0 0
\(355\) 12.8239 + 10.2814i 0.680620 + 0.545681i
\(356\) 8.35955i 0.443055i
\(357\) 0 0
\(358\) 10.2179 17.6979i 0.540031 0.935361i
\(359\) 20.8348i 1.09962i −0.835291 0.549809i \(-0.814701\pi\)
0.835291 0.549809i \(-0.185299\pi\)
\(360\) 0 0
\(361\) −0.478277 0.828400i −0.0251725 0.0436000i
\(362\) −9.97609 17.2791i −0.524332 0.908169i
\(363\) 0 0
\(364\) −16.8952 + 3.70821i −0.885549 + 0.194363i
\(365\) −23.3735 3.58525i −1.22342 0.187660i
\(366\) 0 0
\(367\) 29.9410 17.2865i 1.56291 0.902346i 0.565948 0.824441i \(-0.308510\pi\)
0.996961 0.0779051i \(-0.0248231\pi\)
\(368\) −5.10893 2.94964i −0.266321 0.153761i
\(369\) 0 0
\(370\) −2.54157 + 3.17007i −0.132130 + 0.164804i
\(371\) 48.0989 + 27.7699i 2.49717 + 1.44174i
\(372\) 0 0
\(373\) 21.6562 + 12.5032i 1.12131 + 0.647391i 0.941736 0.336353i \(-0.109194\pi\)
0.179578 + 0.983744i \(0.442527\pi\)
\(374\) −0.0664939 0.115171i −0.00343832 0.00595534i
\(375\) 0 0
\(376\) 0.448597 0.0231346
\(377\) 15.5676 3.41682i 0.801770 0.175975i
\(378\) 0 0
\(379\) −3.25585 + 1.87977i −0.167242 + 0.0965571i −0.581285 0.813700i \(-0.697450\pi\)
0.414043 + 0.910257i \(0.364116\pi\)
\(380\) −8.85070 + 3.44708i −0.454031 + 0.176831i
\(381\) 0 0
\(382\) −7.67972 −0.392929
\(383\) −1.96946 + 3.41120i −0.100635 + 0.174304i −0.911946 0.410310i \(-0.865421\pi\)
0.811312 + 0.584614i \(0.198754\pi\)
\(384\) 0 0
\(385\) −2.68611 + 17.5117i −0.136897 + 0.892480i
\(386\) 7.59571 13.1562i 0.386612 0.669631i
\(387\) 0 0
\(388\) −2.90296 5.02808i −0.147376 0.255262i
\(389\) 19.1589 0.971394 0.485697 0.874127i \(-0.338566\pi\)
0.485697 + 0.874127i \(0.338566\pi\)
\(390\) 0 0
\(391\) 0.475035 0.0240235
\(392\) 8.00764 + 13.8696i 0.404447 + 0.700523i
\(393\) 0 0
\(394\) 1.50663 2.60956i 0.0759031 0.131468i
\(395\) −32.3726 4.96562i −1.62884 0.249847i
\(396\) 0 0
\(397\) −3.22769 + 5.59052i −0.161993 + 0.280580i −0.935583 0.353106i \(-0.885126\pi\)
0.773590 + 0.633686i \(0.218459\pi\)
\(398\) 9.72106 0.487273
\(399\) 0 0
\(400\) −1.08721 4.88037i −0.0543604 0.244018i
\(401\) −30.0012 + 17.3212i −1.49819 + 0.864980i −0.999998 0.00208777i \(-0.999335\pi\)
−0.498191 + 0.867067i \(0.666002\pi\)
\(402\) 0 0
\(403\) 13.9573 + 4.43310i 0.695262 + 0.220828i
\(404\) −1.23752 −0.0615688
\(405\) 0 0
\(406\) −10.6034 18.3655i −0.526236 0.911467i
\(407\) −2.59891 1.50048i −0.128823 0.0743760i
\(408\) 0 0
\(409\) −16.1142 9.30356i −0.796798 0.460031i 0.0455524 0.998962i \(-0.485495\pi\)
−0.842350 + 0.538931i \(0.818829\pi\)
\(410\) 11.8433 + 9.49523i 0.584897 + 0.468936i
\(411\) 0 0
\(412\) −8.13065 4.69423i −0.400569 0.231268i
\(413\) −8.75811 + 5.05650i −0.430958 + 0.248814i
\(414\) 0 0
\(415\) 27.4707 + 4.21371i 1.34848 + 0.206843i
\(416\) 2.43026 + 2.66342i 0.119153 + 0.130585i
\(417\) 0 0
\(418\) −3.50764 6.07542i −0.171564 0.297158i
\(419\) −11.4748 19.8749i −0.560579 0.970951i −0.997446 0.0714252i \(-0.977245\pi\)
0.436867 0.899526i \(-0.356088\pi\)
\(420\) 0 0
\(421\) 34.8196i 1.69700i −0.529194 0.848501i \(-0.677505\pi\)
0.529194 0.848501i \(-0.322495\pi\)
\(422\) −2.39532 + 4.14882i −0.116602 + 0.201961i
\(423\) 0 0
\(424\) 11.5770i 0.562229i
\(425\) 0.272311 + 0.296564i 0.0132090 + 0.0143855i
\(426\) 0 0
\(427\) −7.50394 12.9972i −0.363141 0.628979i
\(428\) 18.5066i 0.894550i
\(429\) 0 0
\(430\) −2.88019 + 18.7769i −0.138895 + 0.905504i
\(431\) −17.7523 + 10.2493i −0.855100 + 0.493692i −0.862368 0.506281i \(-0.831020\pi\)
0.00726828 + 0.999974i \(0.497686\pi\)
\(432\) 0 0
\(433\) −1.85765 1.07251i −0.0892728 0.0515417i 0.454699 0.890645i \(-0.349747\pi\)
−0.543972 + 0.839103i \(0.683080\pi\)
\(434\) 19.4853i 0.935326i
\(435\) 0 0
\(436\) 7.86903 + 4.54319i 0.376858 + 0.217579i
\(437\) 25.0587 1.19872
\(438\) 0 0
\(439\) −0.525975 0.911016i −0.0251034 0.0434804i 0.853201 0.521583i \(-0.174658\pi\)
−0.878304 + 0.478102i \(0.841325\pi\)
\(440\) 3.44115 1.34022i 0.164050 0.0638926i
\(441\) 0 0
\(442\) −0.276712 0.0878888i −0.0131618 0.00418044i
\(443\) 18.3043i 0.869665i 0.900511 + 0.434833i \(0.143193\pi\)
−0.900511 + 0.434833i \(0.856807\pi\)
\(444\) 0 0
\(445\) −17.4181 + 6.78382i −0.825697 + 0.321584i
\(446\) −7.02172 + 12.1620i −0.332488 + 0.575887i
\(447\) 0 0
\(448\) 2.39871 4.15469i 0.113329 0.196291i
\(449\) 12.0831 + 6.97618i 0.570237 + 0.329226i 0.757244 0.653132i \(-0.226545\pi\)
−0.187007 + 0.982359i \(0.559879\pi\)
\(450\) 0 0
\(451\) −5.60573 + 9.70942i −0.263964 + 0.457199i
\(452\) 13.8051 7.97036i 0.649336 0.374894i
\(453\) 0 0
\(454\) −2.88019 −0.135174
\(455\) 21.4370 + 32.1939i 1.00498 + 1.50927i
\(456\) 0 0
\(457\) 14.7165 + 25.4898i 0.688411 + 1.19236i 0.972352 + 0.233520i \(0.0750245\pi\)
−0.283941 + 0.958842i \(0.591642\pi\)
\(458\) −5.80932 + 3.35401i −0.271452 + 0.156723i
\(459\) 0 0
\(460\) −2.00000 + 13.0387i −0.0932505 + 0.607933i
\(461\) −7.87540 4.54686i −0.366794 0.211768i 0.305263 0.952268i \(-0.401256\pi\)
−0.672057 + 0.740500i \(0.734589\pi\)
\(462\) 0 0
\(463\) 41.6642 1.93630 0.968150 0.250372i \(-0.0805529\pi\)
0.968150 + 0.250372i \(0.0805529\pi\)
\(464\) −2.21022 + 3.82821i −0.102607 + 0.177720i
\(465\) 0 0
\(466\) −15.2385 + 8.79797i −0.705911 + 0.407558i
\(467\) 38.1079i 1.76342i −0.471789 0.881712i \(-0.656391\pi\)
0.471789 0.881712i \(-0.343609\pi\)
\(468\) 0 0
\(469\) −19.1897 −0.886098
\(470\) −0.364038 0.934703i −0.0167918 0.0431146i
\(471\) 0 0
\(472\) 1.82559 + 1.05400i 0.0840294 + 0.0485144i
\(473\) −14.0306 −0.645126
\(474\) 0 0
\(475\) 14.3648 + 15.6441i 0.659101 + 0.717803i
\(476\) 0.386309i 0.0177064i
\(477\) 0 0
\(478\) −9.79641 + 5.65596i −0.448078 + 0.258698i
\(479\) 13.0228 7.51871i 0.595026 0.343538i −0.172056 0.985087i \(-0.555041\pi\)
0.767082 + 0.641549i \(0.221708\pi\)
\(480\) 0 0
\(481\) −6.39926 + 1.40453i −0.291781 + 0.0640411i
\(482\) 5.08019i 0.231396i
\(483\) 0 0
\(484\) −4.13623 7.16416i −0.188010 0.325644i
\(485\) −8.12082 + 10.1290i −0.368748 + 0.459933i
\(486\) 0 0
\(487\) −2.28128 + 3.95129i −0.103375 + 0.179050i −0.913073 0.407796i \(-0.866297\pi\)
0.809698 + 0.586846i \(0.199631\pi\)
\(488\) −1.56416 + 2.70920i −0.0708062 + 0.122640i
\(489\) 0 0
\(490\) 22.4008 27.9401i 1.01196 1.26221i
\(491\) −4.20803 7.28853i −0.189906 0.328927i 0.755313 0.655364i \(-0.227485\pi\)
−0.945219 + 0.326438i \(0.894152\pi\)
\(492\) 0 0
\(493\) 0.355952i 0.0160313i
\(494\) −14.5969 4.63625i −0.656746 0.208595i
\(495\) 0 0
\(496\) −3.51747 + 2.03081i −0.157939 + 0.0911862i
\(497\) 30.5396 17.6321i 1.36989 0.790906i
\(498\) 0 0
\(499\) 12.5587i 0.562206i 0.959678 + 0.281103i \(0.0907002\pi\)
−0.959678 + 0.281103i \(0.909300\pi\)
\(500\) −9.28654 + 6.22577i −0.415307 + 0.278425i
\(501\) 0 0
\(502\) −19.5704 −0.873471
\(503\) 6.79244 + 3.92162i 0.302860 + 0.174856i 0.643727 0.765255i \(-0.277387\pi\)
−0.340867 + 0.940112i \(0.610721\pi\)
\(504\) 0 0
\(505\) 1.00425 + 2.57851i 0.0446886 + 0.114742i
\(506\) −9.74283 −0.433121
\(507\) 0 0
\(508\) 0.892954i 0.0396184i
\(509\) −31.4237 + 18.1425i −1.39283 + 0.804152i −0.993628 0.112711i \(-0.964047\pi\)
−0.399203 + 0.916862i \(0.630713\pi\)
\(510\) 0 0
\(511\) −25.3668 + 43.9367i −1.12216 + 1.94364i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −1.71818 0.991989i −0.0757855 0.0437548i
\(515\) −3.18292 + 20.7506i −0.140256 + 0.914379i
\(516\) 0 0
\(517\) 0.641611 0.370435i 0.0282180 0.0162917i
\(518\) 4.35866 + 7.54942i 0.191508 + 0.331702i
\(519\) 0 0
\(520\) 3.57738 7.22512i 0.156878 0.316842i
\(521\) −1.95007 −0.0854341 −0.0427171 0.999087i \(-0.513601\pi\)
−0.0427171 + 0.999087i \(0.513601\pi\)
\(522\) 0 0
\(523\) 7.86903 4.54319i 0.344089 0.198660i −0.317990 0.948094i \(-0.603008\pi\)
0.662079 + 0.749434i \(0.269674\pi\)
\(524\) −0.558851 + 0.967959i −0.0244135 + 0.0422855i
\(525\) 0 0
\(526\) 0.527031 + 0.304282i 0.0229797 + 0.0132673i
\(527\) 0.163529 0.283241i 0.00712346 0.0123382i
\(528\) 0 0
\(529\) 5.90078 10.2204i 0.256556 0.444367i
\(530\) −24.1220 + 9.39480i −1.04779 + 0.408084i
\(531\) 0 0
\(532\) 20.3783i 0.883511i
\(533\) 5.24727 + 23.9074i 0.227285 + 1.03554i
\(534\) 0 0
\(535\) −38.5606 + 15.0182i −1.66712 + 0.649293i
\(536\) 2.00000 + 3.46410i 0.0863868 + 0.149626i
\(537\) 0 0
\(538\) 17.7448 0.765035
\(539\) 22.9061 + 13.2248i 0.986635 + 0.569634i
\(540\) 0 0
\(541\) 35.7827i 1.53842i 0.638997 + 0.769209i \(0.279350\pi\)
−0.638997 + 0.769209i \(0.720650\pi\)
\(542\) −13.8806 8.01395i −0.596222 0.344229i
\(543\) 0 0
\(544\) 0.0697360 0.0402621i 0.00298990 0.00172622i
\(545\) 3.08050 20.0829i 0.131954 0.860256i
\(546\) 0 0
\(547\) 29.0584i 1.24245i −0.783634 0.621223i \(-0.786636\pi\)
0.783634 0.621223i \(-0.213364\pi\)
\(548\) 4.10468 + 7.10951i 0.175343 + 0.303703i
\(549\) 0 0
\(550\) −5.58502 6.08244i −0.238146 0.259356i
\(551\) 18.7769i 0.799925i
\(552\) 0 0
\(553\) −35.1335 + 60.8529i −1.49403 + 2.58773i
\(554\) 11.9042i 0.505760i
\(555\) 0 0
\(556\) 2.55885 + 4.43206i 0.108519 + 0.187961i
\(557\) 16.5492 + 28.6641i 0.701213 + 1.21454i 0.968041 + 0.250792i \(0.0806911\pi\)
−0.266828 + 0.963744i \(0.585976\pi\)
\(558\) 0 0
\(559\) −22.6271 + 20.6463i −0.957026 + 0.873247i
\(560\) −10.6034 1.62644i −0.448073 0.0687298i
\(561\) 0 0
\(562\) 9.87055 5.69877i 0.416364 0.240388i
\(563\) 9.06138 + 5.23159i 0.381892 + 0.220485i 0.678641 0.734470i \(-0.262569\pi\)
−0.296749 + 0.954955i \(0.595903\pi\)
\(564\) 0 0
\(565\) −27.8101 22.2965i −1.16998 0.938020i
\(566\) −17.6776 10.2062i −0.743045 0.428997i
\(567\) 0 0
\(568\) −6.36584 3.67532i −0.267105 0.154213i
\(569\) 4.31622 + 7.47591i 0.180945 + 0.313407i 0.942203 0.335043i \(-0.108751\pi\)
−0.761257 + 0.648450i \(0.775418\pi\)
\(570\) 0 0
\(571\) 14.3069 0.598724 0.299362 0.954140i \(-0.403226\pi\)
0.299362 + 0.954140i \(0.403226\pi\)
\(572\) 5.67528 + 1.80257i 0.237295 + 0.0753694i
\(573\) 0 0
\(574\) 28.2043 16.2838i 1.17723 0.679672i
\(575\) 28.7907 6.41374i 1.20065 0.267472i
\(576\) 0 0
\(577\) 11.9697 0.498306 0.249153 0.968464i \(-0.419848\pi\)
0.249153 + 0.968464i \(0.419848\pi\)
\(578\) 8.49676 14.7168i 0.353419 0.612139i
\(579\) 0 0
\(580\) 9.77013 + 1.49863i 0.405682 + 0.0622274i
\(581\) 29.8135 51.6384i 1.23687 2.14232i
\(582\) 0 0
\(583\) −9.55986 16.5582i −0.395929 0.685769i
\(584\) 10.5752 0.437605
\(585\) 0 0
\(586\) 4.18768 0.172991
\(587\) 2.75398 + 4.77003i 0.113669 + 0.196880i 0.917247 0.398319i \(-0.130406\pi\)
−0.803578 + 0.595199i \(0.797073\pi\)
\(588\) 0 0
\(589\) 8.62640 14.9414i 0.355445 0.615648i
\(590\) 0.714665 4.65915i 0.0294223 0.191814i
\(591\) 0 0
\(592\) 0.908541 1.57364i 0.0373408 0.0646762i
\(593\) 24.6037 1.01035 0.505177 0.863016i \(-0.331427\pi\)
0.505177 + 0.863016i \(0.331427\pi\)
\(594\) 0 0
\(595\) 0.804919 0.313491i 0.0329985 0.0128519i
\(596\) 3.58721 2.07107i 0.146938 0.0848345i
\(597\) 0 0
\(598\) −15.7123 + 14.3368i −0.642523 + 0.586276i
\(599\) −35.3159 −1.44297 −0.721484 0.692431i \(-0.756540\pi\)
−0.721484 + 0.692431i \(0.756540\pi\)
\(600\) 0 0
\(601\) −17.4607 30.2428i −0.712236 1.23363i −0.964016 0.265845i \(-0.914349\pi\)
0.251780 0.967785i \(-0.418984\pi\)
\(602\) 35.2962 + 20.3783i 1.43857 + 0.830557i
\(603\) 0 0
\(604\) 3.83986 + 2.21694i 0.156242 + 0.0902062i
\(605\) −11.5708 + 14.4321i −0.470420 + 0.586747i
\(606\) 0 0
\(607\) 21.6183 + 12.4813i 0.877461 + 0.506602i 0.869820 0.493369i \(-0.164235\pi\)
0.00764039 + 0.999971i \(0.497568\pi\)
\(608\) 3.67867 2.12388i 0.149190 0.0861347i
\(609\) 0 0
\(610\) 6.91427 + 1.06058i 0.279950 + 0.0429415i
\(611\) 0.489625 1.54155i 0.0198081 0.0623644i
\(612\) 0 0
\(613\) 8.06330 + 13.9660i 0.325674 + 0.564083i 0.981648 0.190700i \(-0.0610756\pi\)
−0.655975 + 0.754783i \(0.727742\pi\)
\(614\) −9.00850 15.6032i −0.363554 0.629693i
\(615\) 0 0
\(616\) 7.92308i 0.319230i
\(617\) −14.2537 + 24.6881i −0.573831 + 0.993904i 0.422337 + 0.906439i \(0.361210\pi\)
−0.996168 + 0.0874652i \(0.972123\pi\)
\(618\) 0 0
\(619\) 0.338217i 0.0135941i −0.999977 0.00679705i \(-0.997836\pi\)
0.999977 0.00679705i \(-0.00216358\pi\)
\(620\) 7.08588 + 5.68105i 0.284576 + 0.228156i
\(621\) 0 0
\(622\) 2.58908 + 4.48442i 0.103813 + 0.179809i
\(623\) 40.1043i 1.60675i
\(624\) 0 0
\(625\) 20.5082 + 14.2973i 0.820328 + 0.571894i
\(626\) 28.2613 16.3167i 1.12955 0.652145i
\(627\) 0 0
\(628\) −7.20889 4.16206i −0.287666 0.166084i
\(629\) 0.146319i 0.00583412i
\(630\) 0 0
\(631\) 27.8799 + 16.0965i 1.10988 + 0.640791i 0.938799 0.344465i \(-0.111940\pi\)
0.171084 + 0.985256i \(0.445273\pi\)
\(632\) 14.6468 0.582618
\(633\) 0 0
\(634\) −11.8692 20.5581i −0.471387 0.816467i
\(635\) 1.86057 0.724637i 0.0738346 0.0287563i
\(636\) 0 0
\(637\) 56.4014 12.3792i 2.23470 0.490480i
\(638\) 7.30047i 0.289028i
\(639\) 0 0
\(640\) 0.811505 + 2.08362i 0.0320776 + 0.0823622i
\(641\) −6.29981 + 10.9116i −0.248827 + 0.430982i −0.963201 0.268783i \(-0.913379\pi\)
0.714373 + 0.699765i \(0.246712\pi\)
\(642\) 0 0
\(643\) 9.70277 16.8057i 0.382640 0.662752i −0.608799 0.793325i \(-0.708348\pi\)
0.991439 + 0.130573i \(0.0416817\pi\)
\(644\) 24.5097 + 14.1507i 0.965818 + 0.557615i
\(645\) 0 0
\(646\) −0.171024 + 0.296221i −0.00672883 + 0.0116547i
\(647\) −16.1897 + 9.34715i −0.636485 + 0.367475i −0.783259 0.621695i \(-0.786444\pi\)
0.146774 + 0.989170i \(0.453111\pi\)
\(648\) 0 0
\(649\) 3.48143 0.136658
\(650\) −17.9574 1.59066i −0.704349 0.0623909i
\(651\) 0 0
\(652\) −0.471644 0.816912i −0.0184710 0.0319927i
\(653\) −15.4758 + 8.93497i −0.605616 + 0.349652i −0.771248 0.636535i \(-0.780367\pi\)
0.165632 + 0.986188i \(0.447034\pi\)
\(654\) 0 0
\(655\) 2.47037 + 0.378928i 0.0965252 + 0.0148059i
\(656\) −5.87906 3.39427i −0.229539 0.132524i
\(657\) 0 0
\(658\) −2.15211 −0.0838979
\(659\) 19.5447 33.8523i 0.761352 1.31870i −0.180803 0.983519i \(-0.557870\pi\)
0.942154 0.335180i \(-0.108797\pi\)
\(660\) 0 0
\(661\) −34.9611 + 20.1848i −1.35983 + 0.785098i −0.989601 0.143843i \(-0.954054\pi\)
−0.370229 + 0.928941i \(0.620721\pi\)
\(662\) 30.4752i 1.18445i
\(663\) 0 0
\(664\) −12.4289 −0.482336
\(665\) 42.4606 16.5371i 1.64655 0.641281i
\(666\) 0 0
\(667\) −22.5837 13.0387i −0.874444 0.504861i
\(668\) 4.30062 0.166396
\(669\) 0 0
\(670\) 5.59485 6.97837i 0.216148 0.269598i
\(671\) 5.16650i 0.199451i
\(672\) 0 0
\(673\) 18.3453 10.5917i 0.707160 0.408279i −0.102849 0.994697i \(-0.532796\pi\)
0.810009 + 0.586418i \(0.199462\pi\)
\(674\) 16.6969 9.63995i 0.643140 0.371317i
\(675\) 0 0
\(676\) 11.8051 5.44430i 0.454041 0.209396i
\(677\) 2.48027i 0.0953245i −0.998864 0.0476622i \(-0.984823\pi\)
0.998864 0.0476622i \(-0.0151771\pi\)
\(678\) 0 0
\(679\) 13.9268 + 24.1218i 0.534460 + 0.925711i
\(680\) −0.140482 0.112630i −0.00538723 0.00431917i
\(681\) 0 0
\(682\) −3.35394 + 5.80920i −0.128429 + 0.222446i
\(683\) −6.42894 + 11.1352i −0.245997 + 0.426078i −0.962411 0.271596i \(-0.912449\pi\)
0.716415 + 0.697675i \(0.245782\pi\)
\(684\) 0 0
\(685\) 11.4825 14.3220i 0.438725 0.547215i
\(686\) −21.6251 37.4557i −0.825649 1.43007i
\(687\) 0 0
\(688\) 8.49552i 0.323888i
\(689\) −39.7830 12.6358i −1.51561 0.481386i
\(690\) 0 0
\(691\) 0.975544 0.563231i 0.0371115 0.0214263i −0.481329 0.876540i \(-0.659846\pi\)
0.518441 + 0.855113i \(0.326513\pi\)
\(692\) −0.861584 + 0.497436i −0.0327525 + 0.0189097i
\(693\) 0 0
\(694\) 15.3720i 0.583512i
\(695\) 7.15819 8.92831i 0.271526 0.338670i
\(696\) 0 0
\(697\) 0.546642 0.0207055
\(698\) −13.1667 7.60177i −0.498365 0.287731i
\(699\) 0 0
\(700\) 5.21579 + 23.4132i 0.197138 + 0.884936i
\(701\) −9.39602 −0.354883 −0.177441 0.984131i \(-0.556782\pi\)
−0.177441 + 0.984131i \(0.556782\pi\)
\(702\) 0 0
\(703\) 7.71852i 0.291110i
\(704\) −1.43026 + 0.825763i −0.0539051 + 0.0311221i
\(705\) 0 0
\(706\) −13.4509 + 23.2976i −0.506230 + 0.876816i
\(707\) 5.93690 0.223280
\(708\) 0 0
\(709\) 15.4770 + 8.93567i 0.581252 + 0.335586i 0.761631 0.648011i \(-0.224399\pi\)
−0.180379 + 0.983597i \(0.557732\pi\)
\(710\) −2.49204 + 16.2465i −0.0935247 + 0.609720i
\(711\) 0 0
\(712\) 7.23958 4.17978i 0.271315 0.156644i
\(713\) −11.9803 20.7506i −0.448667 0.777115i
\(714\) 0 0
\(715\) −0.849643 13.2879i −0.0317749 0.496939i
\(716\) 20.4357 0.763719
\(717\) 0 0
\(718\) 18.0434 10.4174i 0.673375 0.388773i
\(719\) −1.15648 + 2.00308i −0.0431294 + 0.0747023i −0.886784 0.462184i \(-0.847066\pi\)
0.843655 + 0.536886i \(0.180399\pi\)
\(720\) 0 0
\(721\) 39.0062 + 22.5202i 1.45267 + 0.838698i
\(722\) 0.478277 0.828400i 0.0177996 0.0308299i
\(723\) 0 0
\(724\) 9.97609 17.2791i 0.370759 0.642173i
\(725\) −4.80593 21.5733i −0.178488 0.801214i
\(726\) 0 0
\(727\) 17.9866i 0.667087i 0.942735 + 0.333543i \(0.108244\pi\)
−0.942735 + 0.333543i \(0.891756\pi\)
\(728\) −11.6590 12.7776i −0.432112 0.473568i
\(729\) 0 0
\(730\) −8.58183 22.0346i −0.317628 0.815539i
\(731\) 0.342047 + 0.592443i 0.0126511 + 0.0219123i
\(732\) 0 0
\(733\) −45.2898 −1.67282 −0.836408 0.548108i \(-0.815348\pi\)
−0.836408 + 0.548108i \(0.815348\pi\)
\(734\) 29.9410 + 17.2865i 1.10514 + 0.638055i
\(735\) 0 0
\(736\) 5.89928i 0.217451i
\(737\) 5.72106 + 3.30305i 0.210738 + 0.121670i
\(738\) 0 0
\(739\) 38.9749 22.5022i 1.43372 0.827756i 0.436314 0.899795i \(-0.356284\pi\)
0.997402 + 0.0720387i \(0.0229505\pi\)
\(740\) −4.01615 0.616035i −0.147636 0.0226459i
\(741\) 0 0
\(742\) 55.5398i 2.03893i
\(743\) −3.28334 5.68692i −0.120454 0.208633i 0.799493 0.600676i \(-0.205102\pi\)
−0.919947 + 0.392043i \(0.871768\pi\)
\(744\) 0 0
\(745\) −7.22636 5.79368i −0.264754 0.212264i
\(746\) 25.0064i 0.915549i
\(747\) 0 0
\(748\) 0.0664939 0.115171i 0.00243126 0.00421106i
\(749\) 88.7840i 3.24410i
\(750\) 0 0
\(751\) −13.6750 23.6857i −0.499006 0.864304i 0.500993 0.865451i \(-0.332968\pi\)
−0.999999 + 0.00114692i \(0.999635\pi\)
\(752\) 0.224298 + 0.388496i 0.00817932 + 0.0141670i
\(753\) 0 0
\(754\) 10.7428 + 11.7735i 0.391231 + 0.428765i
\(755\) 1.50320 9.79986i 0.0547069 0.356653i
\(756\) 0 0
\(757\) −33.8205 + 19.5263i −1.22923 + 0.709696i −0.966869 0.255275i \(-0.917834\pi\)
−0.262360 + 0.964970i \(0.584501\pi\)
\(758\) −3.25585 1.87977i −0.118258 0.0682762i
\(759\) 0 0
\(760\) −7.41061 5.94139i −0.268811 0.215517i
\(761\) 24.6247 + 14.2171i 0.892645 + 0.515369i 0.874807 0.484472i \(-0.160988\pi\)
0.0178384 + 0.999841i \(0.494322\pi\)
\(762\) 0 0
\(763\) −37.7511 21.7956i −1.36668 0.789054i
\(764\) −3.83986 6.65083i −0.138921 0.240619i
\(765\) 0 0
\(766\) −3.93892 −0.142319
\(767\) 5.61451 5.12301i 0.202728 0.184981i
\(768\) 0 0
\(769\) −25.3247 + 14.6212i −0.913231 + 0.527254i −0.881469 0.472241i \(-0.843445\pi\)
−0.0317619 + 0.999495i \(0.510112\pi\)
\(770\) −16.5087 + 6.42962i −0.594931 + 0.231707i
\(771\) 0 0
\(772\) 15.1914 0.546751
\(773\) 10.4106 18.0317i 0.374444 0.648555i −0.615800 0.787902i \(-0.711167\pi\)
0.990244 + 0.139347i \(0.0445004\pi\)
\(774\) 0 0
\(775\) 6.08689 19.3745i 0.218648 0.695951i
\(776\) 2.90296 5.02808i 0.104210 0.180498i
\(777\) 0 0
\(778\) 9.57944 + 16.5921i 0.343440 + 0.594855i
\(779\) 28.8361 1.03316
\(780\) 0 0
\(781\) −12.1398 −0.434395
\(782\) 0.237517 + 0.411392i 0.00849361 + 0.0147114i
\(783\) 0 0
\(784\) −8.00764 + 13.8696i −0.285987 + 0.495344i
\(785\) −2.82208 + 18.3981i −0.100724 + 0.656656i
\(786\) 0 0
\(787\) 10.4784 18.1492i 0.373516 0.646948i −0.616588 0.787286i \(-0.711486\pi\)
0.990104 + 0.140338i \(0.0448189\pi\)
\(788\) 3.01327 0.107343
\(789\) 0 0
\(790\) −11.8860 30.5183i −0.422883 1.08579i
\(791\) −66.2288 + 38.2372i −2.35482 + 1.35956i
\(792\) 0 0
\(793\) 7.60264 + 8.33203i 0.269978 + 0.295879i
\(794\) −6.45538 −0.229093
\(795\) 0 0
\(796\) 4.86053 + 8.41868i 0.172277 + 0.298392i
\(797\) −16.0855 9.28699i −0.569779 0.328962i 0.187282 0.982306i \(-0.440032\pi\)
−0.757061 + 0.653344i \(0.773365\pi\)
\(798\) 0 0
\(799\) −0.0312833 0.0180614i −0.00110672 0.000638967i
\(800\) 3.68292 3.38173i 0.130211 0.119562i
\(801\) 0 0
\(802\) −30.0012 17.3212i −1.05938 0.611633i
\(803\) 15.1253 8.73261i 0.533761 0.308167i
\(804\) 0 0
\(805\) 9.59485 62.5522i 0.338174 2.20468i
\(806\) 3.13947 + 14.3039i 0.110583 + 0.503834i
\(807\) 0 0
\(808\) −0.618759 1.07172i −0.0217679 0.0377030i
\(809\) −14.0705 24.3708i −0.494692 0.856831i 0.505290 0.862950i \(-0.331386\pi\)
−0.999981 + 0.00611875i \(0.998052\pi\)
\(810\) 0 0
\(811\) 17.1410i 0.601903i −0.953639 0.300952i \(-0.902696\pi\)
0.953639 0.300952i \(-0.0973043\pi\)
\(812\) 10.6034 18.3655i 0.372105 0.644504i
\(813\) 0 0
\(814\) 3.00096i 0.105184i
\(815\) −1.31939 + 1.64565i −0.0462162 + 0.0576447i
\(816\) 0 0
\(817\) 18.0434 + 31.2522i 0.631260 + 1.09337i
\(818\) 18.6071i 0.650583i
\(819\) 0 0
\(820\) −2.30148 + 15.0042i −0.0803712 + 0.523968i
\(821\) −11.5893 + 6.69111i −0.404471 + 0.233521i −0.688411 0.725321i \(-0.741692\pi\)
0.283940 + 0.958842i \(0.408358\pi\)
\(822\) 0 0
\(823\) 18.7144 + 10.8047i 0.652341 + 0.376629i 0.789353 0.613940i \(-0.210416\pi\)
−0.137011 + 0.990569i \(0.543750\pi\)
\(824\) 9.38847i 0.327063i
\(825\) 0 0
\(826\) −8.75811 5.05650i −0.304734 0.175938i
\(827\) 5.85827 0.203712 0.101856 0.994799i \(-0.467522\pi\)
0.101856 + 0.994799i \(0.467522\pi\)
\(828\) 0 0
\(829\) 10.6392 + 18.4276i 0.369513 + 0.640016i 0.989489 0.144605i \(-0.0461911\pi\)
−0.619976 + 0.784621i \(0.712858\pi\)
\(830\) 10.0862 + 25.8971i 0.350095 + 0.898903i
\(831\) 0 0
\(832\) −1.09146 + 3.43638i −0.0378395 + 0.119135i
\(833\) 1.28962i 0.0446826i
\(834\) 0 0
\(835\) −3.48998 8.96085i −0.120776 0.310103i
\(836\) 3.50764 6.07542i 0.121314 0.210123i
\(837\) 0 0
\(838\) 11.4748 19.8749i 0.396389 0.686566i
\(839\) 16.9067 + 9.76109i 0.583684 + 0.336990i 0.762596 0.646875i \(-0.223924\pi\)
−0.178912 + 0.983865i \(0.557258\pi\)
\(840\) 0 0
\(841\) 4.72987 8.19238i 0.163099 0.282496i
\(842\) 30.1546 17.4098i 1.03920 0.599981i
\(843\) 0 0
\(844\) −4.79064 −0.164901
\(845\) −20.9237 20.1792i −0.719797 0.694184i
\(846\) 0 0
\(847\) 19.8433 + 34.3695i 0.681822 + 1.18095i
\(848\) 10.0260 5.78850i 0.344293 0.198778i
\(849\) 0 0
\(850\) −0.120676 + 0.384110i −0.00413916 + 0.0131749i
\(851\) 9.28334 + 5.35974i 0.318229 + 0.183730i
\(852\) 0 0
\(853\) 33.3923 1.14333 0.571665 0.820487i \(-0.306298\pi\)
0.571665 + 0.820487i \(0.306298\pi\)
\(854\) 7.50394 12.9972i 0.256779 0.444755i
\(855\) 0 0
\(856\) 16.0272 9.25330i 0.547798 0.316271i
\(857\) 22.7514i 0.777172i 0.921412 + 0.388586i \(0.127036\pi\)
−0.921412 + 0.388586i \(0.872964\pi\)
\(858\) 0 0
\(859\) −7.99391 −0.272749 −0.136374 0.990657i \(-0.543545\pi\)
−0.136374 + 0.990657i \(0.543545\pi\)
\(860\) −17.7014 + 6.89416i −0.603613 + 0.235089i
\(861\) 0 0
\(862\) −17.7523 10.2493i −0.604647 0.349093i
\(863\) 11.7205 0.398971 0.199486 0.979901i \(-0.436073\pi\)
0.199486 + 0.979901i \(0.436073\pi\)
\(864\) 0 0
\(865\) 1.73565 + 1.39154i 0.0590137 + 0.0473138i
\(866\) 2.14503i 0.0728909i
\(867\) 0 0
\(868\) 16.8748 9.74267i 0.572768 0.330688i
\(869\) 20.9488 12.0948i 0.710639 0.410288i
\(870\) 0 0
\(871\) 14.0869 3.09184i 0.477316 0.104763i
\(872\) 9.08638i 0.307704i
\(873\) 0 0
\(874\) 12.5294 + 21.7015i 0.423812 + 0.734064i
\(875\) 44.5515 29.8676i 1.50611 1.00971i
\(876\) 0 0
\(877\) −0.864038 + 1.49656i −0.0291765 + 0.0505352i −0.880245 0.474520i \(-0.842622\pi\)
0.851068 + 0.525055i \(0.175955\pi\)
\(878\) 0.525975 0.911016i 0.0177508 0.0307453i
\(879\) 0 0
\(880\) 2.88124 + 2.31001i 0.0971266 + 0.0778705i
\(881\) 16.7831 + 29.0691i 0.565436 + 0.979364i 0.997009 + 0.0772861i \(0.0246255\pi\)
−0.431573 + 0.902078i \(0.642041\pi\)
\(882\) 0 0
\(883\) 18.2526i 0.614249i 0.951669 + 0.307124i \(0.0993667\pi\)
−0.951669 + 0.307124i \(0.900633\pi\)
\(884\) −0.0622419 0.283584i −0.00209342 0.00953795i
\(885\) 0 0
\(886\) −15.8520 + 9.15217i −0.532559 + 0.307473i
\(887\) 20.3335 11.7395i 0.682732 0.394176i −0.118152 0.992996i \(-0.537697\pi\)
0.800884 + 0.598820i \(0.204364\pi\)
\(888\) 0 0
\(889\) 4.28388i 0.143677i
\(890\) −14.5840 11.6926i −0.488857 0.391937i
\(891\) 0 0
\(892\) −14.0434 −0.470209
\(893\) −1.65024 0.952765i −0.0552231 0.0318831i
\(894\) 0 0
\(895\) −16.5837 42.5802i −0.554332 1.42330i
\(896\) 4.79742 0.160271
\(897\) 0 0
\(898\) 13.9524i 0.465596i
\(899\) −15.5488 + 8.97708i −0.518580 + 0.299402i
\(900\) 0 0
\(901\) −0.466114 + 0.807333i −0.0155285 + 0.0268962i
\(902\) −11.2115 −0.373301
\(903\) 0 0
\(904\) 13.8051 + 7.97036i 0.459150 + 0.265090i
\(905\) −44.0987 6.76427i −1.46589 0.224852i
\(906\) 0 0
\(907\) −23.1056 + 13.3400i −0.767208 + 0.442948i −0.831878 0.554959i \(-0.812734\pi\)
0.0646698 + 0.997907i \(0.479401\pi\)
\(908\) −1.44009 2.49431i −0.0477911 0.0827767i
\(909\) 0 0
\(910\) −17.1622 + 34.6620i −0.568922 + 1.14903i
\(911\) 33.1591 1.09861 0.549305 0.835622i \(-0.314892\pi\)
0.549305 + 0.835622i \(0.314892\pi\)
\(912\) 0 0
\(913\) −17.7767 + 10.2634i −0.588322 + 0.339668i
\(914\) −14.7165 + 25.4898i −0.486780 + 0.843127i
\(915\) 0 0
\(916\) −5.80932 3.35401i −0.191945 0.110820i
\(917\) 2.68105 4.64371i 0.0885360 0.153349i
\(918\) 0 0
\(919\) −19.2895 + 33.4103i −0.636301 + 1.10211i 0.349937 + 0.936773i \(0.386203\pi\)
−0.986238 + 0.165332i \(0.947130\pi\)
\(920\) −12.2918 + 4.78730i −0.405250 + 0.157833i
\(921\) 0 0
\(922\) 9.09372i 0.299486i
\(923\) −19.5778 + 17.8640i −0.644413 + 0.588000i
\(924\) 0 0
\(925\) 1.97554 + 8.86803i 0.0649555 + 0.291579i
\(926\) 20.8321 + 36.0823i 0.684585 + 1.18574i
\(927\) 0 0
\(928\) −4.42044 −0.145108
\(929\) −21.3019 12.2986i −0.698892 0.403505i 0.108043 0.994146i \(-0.465542\pi\)
−0.806935 + 0.590641i \(0.798875\pi\)
\(930\) 0 0
\(931\) 68.0291i 2.22956i
\(932\) −15.2385 8.79797i −0.499155 0.288187i
\(933\) 0 0
\(934\) 33.0024 19.0540i 1.07987 0.623464i
\(935\) −0.293932 0.0450861i −0.00961260 0.00147447i
\(936\) 0 0
\(937\) 25.6787i 0.838886i −0.907782 0.419443i \(-0.862225\pi\)
0.907782 0.419443i \(-0.137775\pi\)
\(938\) −9.59485 16.6188i −0.313283 0.542622i
\(939\) 0 0
\(940\) 0.627458 0.782618i 0.0204654 0.0255262i
\(941\) 27.7630i 0.905047i −0.891752 0.452524i \(-0.850524\pi\)
0.891752 0.452524i \(-0.149476\pi\)
\(942\) 0 0
\(943\) 20.0238 34.6822i 0.652064 1.12941i
\(944\) 2.10800i 0.0686097i
\(945\) 0 0
\(946\) −7.01529 12.1508i −0.228087 0.395058i
\(947\) 5.01454 + 8.68544i 0.162951 + 0.282239i 0.935926 0.352198i \(-0.114565\pi\)
−0.772975 + 0.634437i \(0.781232\pi\)
\(948\) 0 0
\(949\) 11.5424 36.3404i 0.374682 1.17966i
\(950\) −6.36584 + 20.2623i −0.206535 + 0.657397i
\(951\) 0 0
\(952\) −0.334553 + 0.193154i −0.0108429 + 0.00626017i
\(953\) −30.2756 17.4796i −0.980722 0.566220i −0.0782342 0.996935i \(-0.524928\pi\)
−0.902488 + 0.430715i \(0.858262\pi\)
\(954\) 0 0
\(955\) −10.7417 + 13.3980i −0.347594 + 0.433549i
\(956\) −9.79641 5.65596i −0.316839 0.182927i
\(957\) 0 0
\(958\) 13.0228 + 7.51871i 0.420747 + 0.242918i
\(959\) −19.6919 34.1073i −0.635884 1.10138i
\(960\) 0 0
\(961\) 14.5032 0.467845
\(962\) −4.41599 4.83966i −0.142377 0.156037i
\(963\) 0 0
\(964\) 4.39957 2.54010i 0.141701 0.0818110i
\(965\) −12.3279 31.6531i −0.396850 1.01895i
\(966\) 0 0
\(967\) −8.61013 −0.276883 −0.138442 0.990371i \(-0.544209\pi\)
−0.138442 + 0.990371i \(0.544209\pi\)
\(968\) 4.13623 7.16416i 0.132943 0.230265i
\(969\) 0 0
\(970\) −12.8324 1.96835i −0.412022 0.0631999i
\(971\) −14.2447 + 24.6725i −0.457134 + 0.791779i −0.998808 0.0488092i \(-0.984457\pi\)
0.541674 + 0.840589i \(0.317791\pi\)
\(972\) 0 0
\(973\) −12.2759 21.2625i −0.393547 0.681644i
\(974\) −4.56256 −0.146194
\(975\) 0 0
\(976\) −3.12832 −0.100135
\(977\) −11.5564 20.0163i −0.369722 0.640377i 0.619800 0.784760i \(-0.287214\pi\)
−0.989522 + 0.144383i \(0.953880\pi\)
\(978\) 0 0
\(979\) 6.90301 11.9564i 0.220621 0.382127i
\(980\) 35.3973 + 5.42957i 1.13072 + 0.173441i
\(981\) 0 0
\(982\) 4.20803 7.28853i 0.134284 0.232586i
\(983\) −28.0211 −0.893736 −0.446868 0.894600i \(-0.647461\pi\)
−0.446868 + 0.894600i \(0.647461\pi\)
\(984\) 0 0
\(985\) −2.44528 6.27849i −0.0779131 0.200049i
\(986\) 0.308263 0.177976i 0.00981710 0.00566791i
\(987\) 0 0
\(988\) −3.28334 14.9594i −0.104457 0.475923i
\(989\) 50.1175 1.59364
\(990\) 0 0
\(991\) −12.4357 21.5393i −0.395034 0.684218i 0.598072 0.801443i \(-0.295934\pi\)
−0.993105 + 0.117224i \(0.962600\pi\)
\(992\) −3.51747 2.03081i −0.111680 0.0644784i
\(993\) 0 0
\(994\) 30.5396 + 17.6321i 0.968658 + 0.559255i
\(995\) 13.5970 16.9593i 0.431053 0.537645i
\(996\) 0 0
\(997\) −23.1135 13.3446i −0.732012 0.422627i 0.0871459 0.996196i \(-0.472225\pi\)
−0.819158 + 0.573568i \(0.805559\pi\)
\(998\) −10.8762 + 6.27936i −0.344279 + 0.198770i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bj.b.829.4 8
3.2 odd 2 130.2.m.a.49.3 8
5.4 even 2 1170.2.bj.a.829.1 8
12.11 even 2 1040.2.df.c.49.2 8
13.4 even 6 1170.2.bj.a.199.1 8
15.2 even 4 650.2.m.e.101.6 16
15.8 even 4 650.2.m.e.101.3 16
15.14 odd 2 130.2.m.b.49.2 yes 8
39.2 even 12 1690.2.b.e.339.6 16
39.11 even 12 1690.2.b.e.339.14 16
39.17 odd 6 130.2.m.b.69.2 yes 8
39.23 odd 6 1690.2.c.e.1689.6 8
39.29 odd 6 1690.2.c.f.1689.6 8
60.59 even 2 1040.2.df.a.49.3 8
65.4 even 6 inner 1170.2.bj.b.199.4 8
156.95 even 6 1040.2.df.a.849.3 8
195.2 odd 12 8450.2.a.cs.1.6 8
195.17 even 12 650.2.m.e.251.6 16
195.29 odd 6 1690.2.c.e.1689.3 8
195.89 even 12 1690.2.b.e.339.3 16
195.119 even 12 1690.2.b.e.339.11 16
195.128 odd 12 8450.2.a.cs.1.3 8
195.134 odd 6 130.2.m.a.69.3 yes 8
195.158 odd 12 8450.2.a.cr.1.3 8
195.167 odd 12 8450.2.a.cr.1.6 8
195.173 even 12 650.2.m.e.251.3 16
195.179 odd 6 1690.2.c.f.1689.3 8
780.719 even 6 1040.2.df.c.849.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.3 8 3.2 odd 2
130.2.m.a.69.3 yes 8 195.134 odd 6
130.2.m.b.49.2 yes 8 15.14 odd 2
130.2.m.b.69.2 yes 8 39.17 odd 6
650.2.m.e.101.3 16 15.8 even 4
650.2.m.e.101.6 16 15.2 even 4
650.2.m.e.251.3 16 195.173 even 12
650.2.m.e.251.6 16 195.17 even 12
1040.2.df.a.49.3 8 60.59 even 2
1040.2.df.a.849.3 8 156.95 even 6
1040.2.df.c.49.2 8 12.11 even 2
1040.2.df.c.849.2 8 780.719 even 6
1170.2.bj.a.199.1 8 13.4 even 6
1170.2.bj.a.829.1 8 5.4 even 2
1170.2.bj.b.199.4 8 65.4 even 6 inner
1170.2.bj.b.829.4 8 1.1 even 1 trivial
1690.2.b.e.339.3 16 195.89 even 12
1690.2.b.e.339.6 16 39.2 even 12
1690.2.b.e.339.11 16 195.119 even 12
1690.2.b.e.339.14 16 39.11 even 12
1690.2.c.e.1689.3 8 195.29 odd 6
1690.2.c.e.1689.6 8 39.23 odd 6
1690.2.c.f.1689.3 8 195.179 odd 6
1690.2.c.f.1689.6 8 39.29 odd 6
8450.2.a.cr.1.3 8 195.158 odd 12
8450.2.a.cr.1.6 8 195.167 odd 12
8450.2.a.cs.1.3 8 195.128 odd 12
8450.2.a.cs.1.6 8 195.2 odd 12