Properties

Label 840.2.u.e.629.3
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $160$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [160,0,0,-24,0,0,0,0,-32,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(160\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 629.3
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.e.629.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37073 - 0.347977i) q^{2} +(0.973146 - 1.43282i) q^{3} +(1.75782 + 0.953969i) q^{4} +(-1.31834 + 1.80610i) q^{5} +(-1.83252 + 1.62539i) q^{6} +(2.61441 - 0.406058i) q^{7} +(-2.07755 - 1.91932i) q^{8} +(-1.10597 - 2.78870i) q^{9} +(2.43557 - 2.01693i) q^{10} -2.00814 q^{11} +(3.07749 - 1.59030i) q^{12} -1.33017i q^{13} +(-3.72495 - 0.353156i) q^{14} +(1.30489 + 3.64654i) q^{15} +(2.17989 + 3.35382i) q^{16} -4.12882i q^{17} +(0.545590 + 4.20741i) q^{18} -2.33202 q^{19} +(-4.04036 + 1.91715i) q^{20} +(1.96239 - 4.14114i) q^{21} +(2.75262 + 0.698786i) q^{22} -0.0975649 q^{23} +(-4.77181 + 1.10898i) q^{24} +(-1.52398 - 4.76209i) q^{25} +(-0.462871 + 1.82332i) q^{26} +(-5.07198 - 1.12915i) q^{27} +(4.98303 + 1.78028i) q^{28} +7.56166 q^{29} +(-0.519740 - 5.45251i) q^{30} -9.48706i q^{31} +(-1.82099 - 5.35574i) q^{32} +(-1.95421 + 2.87731i) q^{33} +(-1.43674 + 5.65952i) q^{34} +(-2.71328 + 5.25719i) q^{35} +(0.716226 - 5.95710i) q^{36} +6.19728 q^{37} +(3.19658 + 0.811490i) q^{38} +(-1.90591 - 1.29445i) q^{39} +(6.20539 - 1.22195i) q^{40} +5.88262 q^{41} +(-4.13094 + 4.99353i) q^{42} +3.65928 q^{43} +(-3.52995 - 1.91570i) q^{44} +(6.49470 + 1.67894i) q^{45} +(0.133736 + 0.0339504i) q^{46} -7.79115i q^{47} +(6.92678 + 0.140362i) q^{48} +(6.67023 - 2.12320i) q^{49} +(0.431874 + 7.05787i) q^{50} +(-5.91588 - 4.01795i) q^{51} +(1.26895 - 2.33821i) q^{52} -2.49399i q^{53} +(6.55942 + 3.31270i) q^{54} +(2.64740 - 3.62689i) q^{55} +(-6.21091 - 4.17428i) q^{56} +(-2.26939 + 3.34137i) q^{57} +(-10.3650 - 2.63129i) q^{58} -1.86318i q^{59} +(-1.18493 + 7.65480i) q^{60} -11.3191 q^{61} +(-3.30128 + 13.0042i) q^{62} +(-4.02383 - 6.84169i) q^{63} +(0.632417 + 7.97496i) q^{64} +(2.40243 + 1.75362i) q^{65} +(3.67994 - 3.26400i) q^{66} -7.33230 q^{67} +(3.93877 - 7.25774i) q^{68} +(-0.0949450 + 0.139793i) q^{69} +(5.54857 - 6.26205i) q^{70} +8.88677i q^{71} +(-3.05469 + 7.91637i) q^{72} -6.85080 q^{73} +(-8.49482 - 2.15651i) q^{74} +(-8.30629 - 2.45061i) q^{75} +(-4.09928 - 2.22467i) q^{76} +(-5.25008 + 0.815421i) q^{77} +(2.16205 + 2.43757i) q^{78} +10.9789 q^{79} +(-8.93115 - 0.484370i) q^{80} +(-6.55365 + 6.16844i) q^{81} +(-8.06351 - 2.04702i) q^{82} -10.1647 q^{83} +(7.40005 - 5.40733i) q^{84} +(7.45706 + 5.44318i) q^{85} +(-5.01590 - 1.27335i) q^{86} +(7.35861 - 10.8345i) q^{87} +(4.17200 + 3.85426i) q^{88} +13.4335 q^{89} +(-8.31827 - 4.56140i) q^{90} +(-0.540128 - 3.47762i) q^{91} +(-0.171502 - 0.0930739i) q^{92} +(-13.5933 - 9.23230i) q^{93} +(-2.71114 + 10.6796i) q^{94} +(3.07438 - 4.21185i) q^{95} +(-9.44593 - 2.60276i) q^{96} -9.65918 q^{97} +(-9.88194 + 0.589255i) q^{98} +(2.22094 + 5.60008i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q - 24 q^{4} - 32 q^{9} - 48 q^{15} - 104 q^{16} - 16 q^{25} - 32 q^{30} + 48 q^{36} - 64 q^{39} - 64 q^{46} + 144 q^{49} + 16 q^{60} - 72 q^{64} + 8 q^{70} - 96 q^{79} + 16 q^{81} - 72 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37073 0.347977i −0.969255 0.246057i
\(3\) 0.973146 1.43282i 0.561846 0.827242i
\(4\) 1.75782 + 0.953969i 0.878912 + 0.476984i
\(5\) −1.31834 + 1.80610i −0.589578 + 0.807712i
\(6\) −1.83252 + 1.62539i −0.748121 + 0.663562i
\(7\) 2.61441 0.406058i 0.988152 0.153476i
\(8\) −2.07755 1.91932i −0.734524 0.678582i
\(9\) −1.10597 2.78870i −0.368657 0.929565i
\(10\) 2.43557 2.01693i 0.770195 0.637809i
\(11\) −2.00814 −0.605476 −0.302738 0.953074i \(-0.597901\pi\)
−0.302738 + 0.953074i \(0.597901\pi\)
\(12\) 3.07749 1.59030i 0.888395 0.459080i
\(13\) 1.33017i 0.368924i −0.982840 0.184462i \(-0.940946\pi\)
0.982840 0.184462i \(-0.0590543\pi\)
\(14\) −3.72495 0.353156i −0.995536 0.0943849i
\(15\) 1.30489 + 3.64654i 0.336921 + 0.941533i
\(16\) 2.17989 + 3.35382i 0.544972 + 0.838455i
\(17\) 4.12882i 1.00139i −0.865625 0.500693i \(-0.833078\pi\)
0.865625 0.500693i \(-0.166922\pi\)
\(18\) 0.545590 + 4.20741i 0.128597 + 0.991697i
\(19\) −2.33202 −0.535002 −0.267501 0.963558i \(-0.586198\pi\)
−0.267501 + 0.963558i \(0.586198\pi\)
\(20\) −4.04036 + 1.91715i −0.903453 + 0.428688i
\(21\) 1.96239 4.14114i 0.428228 0.903671i
\(22\) 2.75262 + 0.698786i 0.586861 + 0.148982i
\(23\) −0.0975649 −0.0203437 −0.0101718 0.999948i \(-0.503238\pi\)
−0.0101718 + 0.999948i \(0.503238\pi\)
\(24\) −4.77181 + 1.10898i −0.974041 + 0.226370i
\(25\) −1.52398 4.76209i −0.304796 0.952418i
\(26\) −0.462871 + 1.82332i −0.0907764 + 0.357582i
\(27\) −5.07198 1.12915i −0.976104 0.217304i
\(28\) 4.98303 + 1.78028i 0.941704 + 0.336442i
\(29\) 7.56166 1.40417 0.702083 0.712095i \(-0.252254\pi\)
0.702083 + 0.712095i \(0.252254\pi\)
\(30\) −0.519740 5.45251i −0.0948911 0.995488i
\(31\) 9.48706i 1.70393i −0.523602 0.851963i \(-0.675412\pi\)
0.523602 0.851963i \(-0.324588\pi\)
\(32\) −1.82099 5.35574i −0.321909 0.946771i
\(33\) −1.95421 + 2.87731i −0.340184 + 0.500875i
\(34\) −1.43674 + 5.65952i −0.246398 + 0.970600i
\(35\) −2.71328 + 5.25719i −0.458629 + 0.888628i
\(36\) 0.716226 5.95710i 0.119371 0.992850i
\(37\) 6.19728 1.01883 0.509413 0.860522i \(-0.329863\pi\)
0.509413 + 0.860522i \(0.329863\pi\)
\(38\) 3.19658 + 0.811490i 0.518553 + 0.131641i
\(39\) −1.90591 1.29445i −0.305189 0.207279i
\(40\) 6.20539 1.22195i 0.981158 0.193207i
\(41\) 5.88262 0.918711 0.459355 0.888253i \(-0.348080\pi\)
0.459355 + 0.888253i \(0.348080\pi\)
\(42\) −4.13094 + 4.99353i −0.637417 + 0.770519i
\(43\) 3.65928 0.558035 0.279017 0.960286i \(-0.409991\pi\)
0.279017 + 0.960286i \(0.409991\pi\)
\(44\) −3.52995 1.91570i −0.532160 0.288803i
\(45\) 6.49470 + 1.67894i 0.968173 + 0.250282i
\(46\) 0.133736 + 0.0339504i 0.0197182 + 0.00500571i
\(47\) 7.79115i 1.13646i −0.822871 0.568228i \(-0.807629\pi\)
0.822871 0.568228i \(-0.192371\pi\)
\(48\) 6.92678 + 0.140362i 0.999795 + 0.0202595i
\(49\) 6.67023 2.12320i 0.952890 0.303315i
\(50\) 0.431874 + 7.05787i 0.0610762 + 0.998133i
\(51\) −5.91588 4.01795i −0.828389 0.562626i
\(52\) 1.26895 2.33821i 0.175971 0.324252i
\(53\) 2.49399i 0.342576i −0.985221 0.171288i \(-0.945207\pi\)
0.985221 0.171288i \(-0.0547928\pi\)
\(54\) 6.55942 + 3.31270i 0.892625 + 0.450801i
\(55\) 2.64740 3.62689i 0.356975 0.489050i
\(56\) −6.21091 4.17428i −0.829968 0.557811i
\(57\) −2.26939 + 3.34137i −0.300589 + 0.442576i
\(58\) −10.3650 2.63129i −1.36100 0.345505i
\(59\) 1.86318i 0.242565i −0.992618 0.121282i \(-0.961299\pi\)
0.992618 0.121282i \(-0.0387007\pi\)
\(60\) −1.18493 + 7.65480i −0.152973 + 0.988230i
\(61\) −11.3191 −1.44926 −0.724632 0.689136i \(-0.757990\pi\)
−0.724632 + 0.689136i \(0.757990\pi\)
\(62\) −3.30128 + 13.0042i −0.419263 + 1.65154i
\(63\) −4.02383 6.84169i −0.506955 0.861972i
\(64\) 0.632417 + 7.97496i 0.0790521 + 0.996870i
\(65\) 2.40243 + 1.75362i 0.297984 + 0.217509i
\(66\) 3.67994 3.26400i 0.452969 0.401771i
\(67\) −7.33230 −0.895783 −0.447892 0.894088i \(-0.647825\pi\)
−0.447892 + 0.894088i \(0.647825\pi\)
\(68\) 3.93877 7.25774i 0.477646 0.880131i
\(69\) −0.0949450 + 0.139793i −0.0114300 + 0.0168291i
\(70\) 5.54857 6.26205i 0.663182 0.748459i
\(71\) 8.88677i 1.05467i 0.849659 + 0.527333i \(0.176808\pi\)
−0.849659 + 0.527333i \(0.823192\pi\)
\(72\) −3.05469 + 7.91637i −0.359999 + 0.932953i
\(73\) −6.85080 −0.801825 −0.400913 0.916116i \(-0.631307\pi\)
−0.400913 + 0.916116i \(0.631307\pi\)
\(74\) −8.49482 2.15651i −0.987503 0.250690i
\(75\) −8.30629 2.45061i −0.959128 0.282972i
\(76\) −4.09928 2.22467i −0.470219 0.255187i
\(77\) −5.25008 + 0.815421i −0.598303 + 0.0929258i
\(78\) 2.16205 + 2.43757i 0.244804 + 0.276000i
\(79\) 10.9789 1.23522 0.617612 0.786483i \(-0.288100\pi\)
0.617612 + 0.786483i \(0.288100\pi\)
\(80\) −8.93115 0.484370i −0.998533 0.0541542i
\(81\) −6.55365 + 6.16844i −0.728184 + 0.685382i
\(82\) −8.06351 2.04702i −0.890465 0.226055i
\(83\) −10.1647 −1.11572 −0.557858 0.829936i \(-0.688377\pi\)
−0.557858 + 0.829936i \(0.688377\pi\)
\(84\) 7.40005 5.40733i 0.807412 0.589988i
\(85\) 7.45706 + 5.44318i 0.808832 + 0.590395i
\(86\) −5.01590 1.27335i −0.540878 0.137308i
\(87\) 7.35861 10.8345i 0.788925 1.16158i
\(88\) 4.17200 + 3.85426i 0.444737 + 0.410865i
\(89\) 13.4335 1.42395 0.711974 0.702206i \(-0.247802\pi\)
0.711974 + 0.702206i \(0.247802\pi\)
\(90\) −8.31827 4.56140i −0.876823 0.480813i
\(91\) −0.540128 3.47762i −0.0566209 0.364553i
\(92\) −0.171502 0.0930739i −0.0178803 0.00970363i
\(93\) −13.5933 9.23230i −1.40956 0.957345i
\(94\) −2.71114 + 10.6796i −0.279633 + 1.10152i
\(95\) 3.07438 4.21185i 0.315425 0.432127i
\(96\) −9.44593 2.60276i −0.964071 0.265643i
\(97\) −9.65918 −0.980742 −0.490371 0.871514i \(-0.663139\pi\)
−0.490371 + 0.871514i \(0.663139\pi\)
\(98\) −9.88194 + 0.589255i −0.998227 + 0.0595238i
\(99\) 2.22094 + 5.60008i 0.223213 + 0.562829i
\(100\) 1.86399 9.82474i 0.186399 0.982474i
\(101\) 15.6655i 1.55878i −0.626539 0.779390i \(-0.715529\pi\)
0.626539 0.779390i \(-0.284471\pi\)
\(102\) 6.71094 + 7.56613i 0.664482 + 0.749159i
\(103\) 8.59402 0.846794 0.423397 0.905944i \(-0.360838\pi\)
0.423397 + 0.905944i \(0.360838\pi\)
\(104\) −2.55303 + 2.76350i −0.250345 + 0.270984i
\(105\) 4.89221 + 9.00368i 0.477431 + 0.878669i
\(106\) −0.867851 + 3.41859i −0.0842932 + 0.332043i
\(107\) 2.50519i 0.242186i −0.992641 0.121093i \(-0.961360\pi\)
0.992641 0.121093i \(-0.0386399\pi\)
\(108\) −7.83848 6.82336i −0.754258 0.656578i
\(109\) 14.4916i 1.38804i 0.719954 + 0.694022i \(0.244163\pi\)
−0.719954 + 0.694022i \(0.755837\pi\)
\(110\) −4.89096 + 4.05027i −0.466334 + 0.386178i
\(111\) 6.03086 8.87961i 0.572424 0.842815i
\(112\) 7.06095 + 7.88308i 0.667197 + 0.744881i
\(113\) −14.2102 −1.33678 −0.668390 0.743811i \(-0.733016\pi\)
−0.668390 + 0.743811i \(0.733016\pi\)
\(114\) 4.27346 3.79043i 0.400246 0.355007i
\(115\) 0.128623 0.176212i 0.0119942 0.0164318i
\(116\) 13.2921 + 7.21359i 1.23414 + 0.669765i
\(117\) −3.70945 + 1.47114i −0.342939 + 0.136007i
\(118\) −0.648343 + 2.55392i −0.0596848 + 0.235107i
\(119\) −1.67654 10.7944i −0.153689 0.989523i
\(120\) 4.28792 10.0804i 0.391431 0.920207i
\(121\) −6.96739 −0.633399
\(122\) 15.5155 + 3.93880i 1.40471 + 0.356602i
\(123\) 5.72465 8.42876i 0.516174 0.759996i
\(124\) 9.05036 16.6766i 0.812747 1.49760i
\(125\) 10.6099 + 3.52557i 0.948980 + 0.315337i
\(126\) 3.13485 + 10.7783i 0.279275 + 0.960211i
\(127\) 1.45342i 0.128970i 0.997919 + 0.0644849i \(0.0205404\pi\)
−0.997919 + 0.0644849i \(0.979460\pi\)
\(128\) 1.90823 11.1516i 0.168665 0.985673i
\(129\) 3.56101 5.24310i 0.313530 0.461629i
\(130\) −2.68287 3.23973i −0.235303 0.284143i
\(131\) 1.87492i 0.163813i −0.996640 0.0819064i \(-0.973899\pi\)
0.996640 0.0819064i \(-0.0261009\pi\)
\(132\) −6.18002 + 3.19354i −0.537902 + 0.277962i
\(133\) −6.09684 + 0.946935i −0.528663 + 0.0821097i
\(134\) 10.0506 + 2.55148i 0.868243 + 0.220414i
\(135\) 8.72593 7.67191i 0.751008 0.660293i
\(136\) −7.92454 + 8.57783i −0.679523 + 0.735543i
\(137\) 18.4986 1.58044 0.790222 0.612821i \(-0.209965\pi\)
0.790222 + 0.612821i \(0.209965\pi\)
\(138\) 0.178789 0.158581i 0.0152196 0.0134993i
\(139\) −0.685361 −0.0581315 −0.0290658 0.999578i \(-0.509253\pi\)
−0.0290658 + 0.999578i \(0.509253\pi\)
\(140\) −9.78467 + 6.65283i −0.826956 + 0.562267i
\(141\) −11.1633 7.58193i −0.940124 0.638514i
\(142\) 3.09240 12.1814i 0.259508 1.02224i
\(143\) 2.67117i 0.223375i
\(144\) 6.94189 9.78827i 0.578491 0.815689i
\(145\) −9.96881 + 13.6571i −0.827865 + 1.13416i
\(146\) 9.39062 + 2.38392i 0.777174 + 0.197295i
\(147\) 3.44894 11.6235i 0.284464 0.958687i
\(148\) 10.8937 + 5.91201i 0.895458 + 0.485964i
\(149\) −2.34916 −0.192450 −0.0962252 0.995360i \(-0.530677\pi\)
−0.0962252 + 0.995360i \(0.530677\pi\)
\(150\) 10.5330 + 6.24954i 0.860013 + 0.510273i
\(151\) −8.32682 −0.677627 −0.338814 0.940853i \(-0.610026\pi\)
−0.338814 + 0.940853i \(0.610026\pi\)
\(152\) 4.84488 + 4.47589i 0.392972 + 0.363043i
\(153\) −11.5140 + 4.56636i −0.930855 + 0.369169i
\(154\) 7.48022 + 0.709186i 0.602773 + 0.0571478i
\(155\) 17.1346 + 12.5071i 1.37628 + 1.00460i
\(156\) −2.11538 4.09360i −0.169366 0.327750i
\(157\) 14.0657i 1.12256i 0.827625 + 0.561281i \(0.189691\pi\)
−0.827625 + 0.561281i \(0.810309\pi\)
\(158\) −15.0492 3.82041i −1.19725 0.303936i
\(159\) −3.57345 2.42702i −0.283393 0.192475i
\(160\) 12.0737 + 3.77178i 0.954508 + 0.298185i
\(161\) −0.255074 + 0.0396171i −0.0201027 + 0.00312226i
\(162\) 11.1298 6.17477i 0.874439 0.485135i
\(163\) −10.6143 −0.831372 −0.415686 0.909508i \(-0.636459\pi\)
−0.415686 + 0.909508i \(0.636459\pi\)
\(164\) 10.3406 + 5.61184i 0.807466 + 0.438211i
\(165\) −2.62039 7.32275i −0.203997 0.570076i
\(166\) 13.9330 + 3.53707i 1.08141 + 0.274530i
\(167\) 0.462349i 0.0357776i −0.999840 0.0178888i \(-0.994306\pi\)
0.999840 0.0178888i \(-0.00569449\pi\)
\(168\) −12.0251 + 4.83696i −0.927759 + 0.373180i
\(169\) 11.2306 0.863895
\(170\) −8.32755 10.0560i −0.638694 0.771263i
\(171\) 2.57915 + 6.50329i 0.197232 + 0.497319i
\(172\) 6.43236 + 3.49084i 0.490463 + 0.266174i
\(173\) −3.85404 −0.293017 −0.146508 0.989209i \(-0.546804\pi\)
−0.146508 + 0.989209i \(0.546804\pi\)
\(174\) −13.8569 + 12.2906i −1.05049 + 0.931751i
\(175\) −5.91799 11.8312i −0.447358 0.894355i
\(176\) −4.37751 6.73492i −0.329967 0.507664i
\(177\) −2.66960 1.81314i −0.200660 0.136284i
\(178\) −18.4137 4.67455i −1.38017 0.350372i
\(179\) 13.7858 1.03040 0.515199 0.857070i \(-0.327718\pi\)
0.515199 + 0.857070i \(0.327718\pi\)
\(180\) 9.81488 + 9.14703i 0.731558 + 0.681779i
\(181\) 23.4970 1.74652 0.873260 0.487254i \(-0.162001\pi\)
0.873260 + 0.487254i \(0.162001\pi\)
\(182\) −0.469759 + 4.95484i −0.0348209 + 0.367277i
\(183\) −11.0152 + 16.2183i −0.814264 + 1.19889i
\(184\) 0.202696 + 0.187258i 0.0149429 + 0.0138049i
\(185\) −8.17009 + 11.1929i −0.600677 + 0.822918i
\(186\) 15.4202 + 17.3852i 1.13066 + 1.27474i
\(187\) 8.29124i 0.606316i
\(188\) 7.43251 13.6955i 0.542072 0.998844i
\(189\) −13.7187 0.892524i −0.997890 0.0649216i
\(190\) −5.67979 + 4.70351i −0.412055 + 0.341229i
\(191\) 13.7417i 0.994314i −0.867661 0.497157i \(-0.834377\pi\)
0.867661 0.497157i \(-0.165623\pi\)
\(192\) 12.0422 + 6.85467i 0.869068 + 0.494693i
\(193\) 12.8635i 0.925933i 0.886376 + 0.462967i \(0.153215\pi\)
−0.886376 + 0.462967i \(0.846785\pi\)
\(194\) 13.2402 + 3.36118i 0.950589 + 0.241319i
\(195\) 4.85054 1.73573i 0.347354 0.124298i
\(196\) 13.7506 + 2.63098i 0.982183 + 0.187927i
\(197\) 25.5732i 1.82201i 0.412392 + 0.911006i \(0.364693\pi\)
−0.412392 + 0.911006i \(0.635307\pi\)
\(198\) −1.09562 8.44906i −0.0778623 0.600449i
\(199\) 17.1175i 1.21342i 0.794921 + 0.606712i \(0.207512\pi\)
−0.794921 + 0.606712i \(0.792488\pi\)
\(200\) −5.97383 + 12.8185i −0.422413 + 0.906403i
\(201\) −7.13540 + 10.5059i −0.503293 + 0.741029i
\(202\) −5.45126 + 21.4733i −0.383549 + 1.51086i
\(203\) 19.7693 3.07048i 1.38753 0.215505i
\(204\) −6.56607 12.7064i −0.459717 0.889627i
\(205\) −7.75527 + 10.6246i −0.541651 + 0.742053i
\(206\) −11.7801 2.99053i −0.820760 0.208360i
\(207\) 0.107904 + 0.272079i 0.00749985 + 0.0189108i
\(208\) 4.46116 2.89963i 0.309326 0.201053i
\(209\) 4.68301 0.323931
\(210\) −3.57285 14.0440i −0.246550 0.969130i
\(211\) 17.3613i 1.19520i −0.801795 0.597599i \(-0.796121\pi\)
0.801795 0.597599i \(-0.203879\pi\)
\(212\) 2.37919 4.38399i 0.163403 0.301094i
\(213\) 12.7332 + 8.64813i 0.872463 + 0.592560i
\(214\) −0.871749 + 3.43395i −0.0595915 + 0.234740i
\(215\) −4.82416 + 6.60901i −0.329005 + 0.450731i
\(216\) 8.37010 + 12.0806i 0.569513 + 0.821982i
\(217\) −3.85230 24.8030i −0.261511 1.68374i
\(218\) 5.04275 19.8641i 0.341538 1.34537i
\(219\) −6.66683 + 9.81599i −0.450503 + 0.663303i
\(220\) 8.11360 3.84990i 0.547019 0.259560i
\(221\) −5.49206 −0.369436
\(222\) −11.3566 + 10.0730i −0.762206 + 0.676054i
\(223\) 6.52959 0.437253 0.218627 0.975809i \(-0.429842\pi\)
0.218627 + 0.975809i \(0.429842\pi\)
\(224\) −6.93555 13.2627i −0.463401 0.886149i
\(225\) −11.5945 + 9.51666i −0.772969 + 0.634444i
\(226\) 19.4784 + 4.94482i 1.29568 + 0.328924i
\(227\) −12.4592 −0.826949 −0.413474 0.910516i \(-0.635685\pi\)
−0.413474 + 0.910516i \(0.635685\pi\)
\(228\) −7.17676 + 3.70861i −0.475293 + 0.245609i
\(229\) −3.65759 −0.241701 −0.120850 0.992671i \(-0.538562\pi\)
−0.120850 + 0.992671i \(0.538562\pi\)
\(230\) −0.237626 + 0.196782i −0.0156686 + 0.0129754i
\(231\) −3.94075 + 8.31597i −0.259282 + 0.547151i
\(232\) −15.7097 14.5133i −1.03139 0.952842i
\(233\) −1.23863 −0.0811454 −0.0405727 0.999177i \(-0.512918\pi\)
−0.0405727 + 0.999177i \(0.512918\pi\)
\(234\) 5.59659 0.725730i 0.365861 0.0474424i
\(235\) 14.0716 + 10.2714i 0.917929 + 0.670029i
\(236\) 1.77741 3.27513i 0.115700 0.213193i
\(237\) 10.6841 15.7309i 0.694006 1.02183i
\(238\) −1.45812 + 15.3797i −0.0945159 + 0.996917i
\(239\) 19.6091i 1.26841i 0.773165 + 0.634205i \(0.218672\pi\)
−0.773165 + 0.634205i \(0.781328\pi\)
\(240\) −9.38533 + 12.3254i −0.605821 + 0.795601i
\(241\) 24.2251i 1.56048i 0.625482 + 0.780239i \(0.284902\pi\)
−0.625482 + 0.780239i \(0.715098\pi\)
\(242\) 9.55043 + 2.42449i 0.613925 + 0.155852i
\(243\) 2.46063 + 15.3930i 0.157849 + 0.987463i
\(244\) −19.8970 10.7981i −1.27378 0.691277i
\(245\) −4.95890 + 14.8462i −0.316812 + 0.948488i
\(246\) −10.7800 + 9.56154i −0.687307 + 0.609621i
\(247\) 3.10199i 0.197375i
\(248\) −18.2087 + 19.7098i −1.15625 + 1.25158i
\(249\) −9.89171 + 14.5642i −0.626861 + 0.922967i
\(250\) −13.3166 8.52463i −0.842213 0.539145i
\(251\) 14.6425i 0.924229i 0.886820 + 0.462115i \(0.152909\pi\)
−0.886820 + 0.462115i \(0.847091\pi\)
\(252\) −0.546424 15.8651i −0.0344215 0.999407i
\(253\) 0.195924 0.0123176
\(254\) 0.505756 1.99225i 0.0317339 0.125005i
\(255\) 15.0559 5.38765i 0.942839 0.337388i
\(256\) −6.49619 + 14.6219i −0.406012 + 0.913868i
\(257\) 15.8068i 0.986002i 0.870029 + 0.493001i \(0.164100\pi\)
−0.870029 + 0.493001i \(0.835900\pi\)
\(258\) −6.70568 + 5.94775i −0.417478 + 0.370291i
\(259\) 16.2022 2.51646i 1.00676 0.156365i
\(260\) 2.55014 + 5.37439i 0.158153 + 0.333305i
\(261\) −8.36299 21.0872i −0.517656 1.30526i
\(262\) −0.652431 + 2.57002i −0.0403073 + 0.158777i
\(263\) 14.2549 0.878997 0.439499 0.898243i \(-0.355156\pi\)
0.439499 + 0.898243i \(0.355156\pi\)
\(264\) 9.58244 2.22699i 0.589759 0.137062i
\(265\) 4.50439 + 3.28791i 0.276702 + 0.201975i
\(266\) 8.68666 + 0.823566i 0.532613 + 0.0504961i
\(267\) 13.0728 19.2478i 0.800040 1.17795i
\(268\) −12.8889 6.99479i −0.787314 0.427275i
\(269\) 9.33525i 0.569180i −0.958649 0.284590i \(-0.908142\pi\)
0.958649 0.284590i \(-0.0918575\pi\)
\(270\) −14.6306 + 7.47972i −0.890389 + 0.455201i
\(271\) 0.207201i 0.0125865i 0.999980 + 0.00629327i \(0.00200322\pi\)
−0.999980 + 0.00629327i \(0.997997\pi\)
\(272\) 13.8473 9.00037i 0.839617 0.545727i
\(273\) −5.50844 2.61032i −0.333386 0.157984i
\(274\) −25.3567 6.43710i −1.53185 0.388880i
\(275\) 3.06036 + 9.56292i 0.184547 + 0.576666i
\(276\) −0.300255 + 0.155158i −0.0180732 + 0.00933939i
\(277\) 28.6571 1.72184 0.860918 0.508744i \(-0.169890\pi\)
0.860918 + 0.508744i \(0.169890\pi\)
\(278\) 0.939447 + 0.238490i 0.0563443 + 0.0143037i
\(279\) −26.4565 + 10.4924i −1.58391 + 0.628165i
\(280\) 15.7272 5.71442i 0.939881 0.341502i
\(281\) 3.11015i 0.185536i −0.995688 0.0927681i \(-0.970428\pi\)
0.995688 0.0927681i \(-0.0295715\pi\)
\(282\) 12.6636 + 14.2774i 0.754109 + 0.850207i
\(283\) 20.5801i 1.22336i −0.791106 0.611679i \(-0.790495\pi\)
0.791106 0.611679i \(-0.209505\pi\)
\(284\) −8.47770 + 15.6214i −0.503059 + 0.926958i
\(285\) −3.04302 8.50380i −0.180253 0.503722i
\(286\) 0.929508 3.66147i 0.0549629 0.216507i
\(287\) 15.3796 2.38869i 0.907826 0.141000i
\(288\) −12.9216 + 11.0015i −0.761411 + 0.648269i
\(289\) −0.0471902 −0.00277589
\(290\) 18.4170 15.2513i 1.08148 0.895589i
\(291\) −9.39980 + 13.8399i −0.551026 + 0.811310i
\(292\) −12.0425 6.53545i −0.704734 0.382458i
\(293\) 11.9389 0.697476 0.348738 0.937220i \(-0.386610\pi\)
0.348738 + 0.937220i \(0.386610\pi\)
\(294\) −8.77228 + 14.7325i −0.511610 + 0.859218i
\(295\) 3.36508 + 2.45629i 0.195922 + 0.143011i
\(296\) −12.8751 11.8946i −0.748353 0.691357i
\(297\) 10.1852 + 2.26748i 0.591007 + 0.131573i
\(298\) 3.22007 + 0.817453i 0.186534 + 0.0473538i
\(299\) 0.129778i 0.00750528i
\(300\) −12.2632 12.2317i −0.708016 0.706197i
\(301\) 9.56684 1.48588i 0.551423 0.0856447i
\(302\) 11.4139 + 2.89755i 0.656794 + 0.166735i
\(303\) −22.4460 15.2449i −1.28949 0.875795i
\(304\) −5.08353 7.82116i −0.291561 0.448574i
\(305\) 14.9224 20.4434i 0.854454 1.17059i
\(306\) 17.3717 2.25265i 0.993072 0.128775i
\(307\) 7.70581i 0.439794i −0.975523 0.219897i \(-0.929428\pi\)
0.975523 0.219897i \(-0.0705721\pi\)
\(308\) −10.0066 3.57505i −0.570179 0.203707i
\(309\) 8.36324 12.3137i 0.475768 0.700503i
\(310\) −19.1347 23.1064i −1.08678 1.31236i
\(311\) −26.8427 −1.52211 −0.761054 0.648688i \(-0.775318\pi\)
−0.761054 + 0.648688i \(0.775318\pi\)
\(312\) 1.47514 + 6.34734i 0.0835134 + 0.359347i
\(313\) 8.20422 0.463730 0.231865 0.972748i \(-0.425517\pi\)
0.231865 + 0.972748i \(0.425517\pi\)
\(314\) 4.89454 19.2803i 0.276215 1.08805i
\(315\) 17.6615 + 1.75221i 0.995115 + 0.0987260i
\(316\) 19.2990 + 10.4735i 1.08565 + 0.589183i
\(317\) 30.7315i 1.72605i 0.505159 + 0.863026i \(0.331434\pi\)
−0.505159 + 0.863026i \(0.668566\pi\)
\(318\) 4.05370 + 4.57027i 0.227320 + 0.256288i
\(319\) −15.1849 −0.850189
\(320\) −15.2373 9.37147i −0.851791 0.523881i
\(321\) −3.58949 2.43791i −0.200346 0.136071i
\(322\) 0.363425 + 0.0344556i 0.0202529 + 0.00192014i
\(323\) 9.62849i 0.535744i
\(324\) −17.4047 + 4.59105i −0.966926 + 0.255058i
\(325\) −6.33441 + 2.02716i −0.351370 + 0.112447i
\(326\) 14.5493 + 3.69352i 0.805812 + 0.204565i
\(327\) 20.7639 + 14.1025i 1.14825 + 0.779867i
\(328\) −12.2214 11.2906i −0.674815 0.623421i
\(329\) −3.16366 20.3692i −0.174418 1.12299i
\(330\) 1.04371 + 10.9494i 0.0574543 + 0.602744i
\(331\) 20.3258i 1.11721i −0.829434 0.558604i \(-0.811337\pi\)
0.829434 0.558604i \(-0.188663\pi\)
\(332\) −17.8677 9.69677i −0.980617 0.532180i
\(333\) −6.85402 17.2823i −0.375598 0.947066i
\(334\) −0.160887 + 0.633758i −0.00880335 + 0.0346777i
\(335\) 9.66644 13.2429i 0.528134 0.723535i
\(336\) 18.1664 2.44572i 0.991059 0.133425i
\(337\) 8.04781i 0.438392i −0.975681 0.219196i \(-0.929657\pi\)
0.975681 0.219196i \(-0.0703434\pi\)
\(338\) −15.3942 3.90801i −0.837335 0.212568i
\(339\) −13.8286 + 20.3607i −0.751065 + 1.10584i
\(340\) 7.91558 + 16.6819i 0.429282 + 0.904706i
\(341\) 19.0513i 1.03169i
\(342\) −1.27233 9.81176i −0.0687995 0.530559i
\(343\) 16.5766 8.25942i 0.895050 0.445967i
\(344\) −7.60233 7.02333i −0.409890 0.378672i
\(345\) −0.127311 0.355775i −0.00685421 0.0191543i
\(346\) 5.28286 + 1.34112i 0.284008 + 0.0720989i
\(347\) 20.1082i 1.07946i −0.841837 0.539732i \(-0.818525\pi\)
0.841837 0.539732i \(-0.181475\pi\)
\(348\) 23.2709 12.0253i 1.24745 0.644625i
\(349\) −2.29568 −0.122885 −0.0614423 0.998111i \(-0.519570\pi\)
−0.0614423 + 0.998111i \(0.519570\pi\)
\(350\) 3.99500 + 18.2768i 0.213542 + 0.976934i
\(351\) −1.50196 + 6.74662i −0.0801688 + 0.360108i
\(352\) 3.65680 + 10.7551i 0.194908 + 0.573247i
\(353\) 15.2039i 0.809221i 0.914489 + 0.404610i \(0.132593\pi\)
−0.914489 + 0.404610i \(0.867407\pi\)
\(354\) 3.02838 + 3.41430i 0.160957 + 0.181468i
\(355\) −16.0504 11.7157i −0.851866 0.621807i
\(356\) 23.6137 + 12.8151i 1.25152 + 0.679201i
\(357\) −17.0980 8.10236i −0.904924 0.428822i
\(358\) −18.8967 4.79715i −0.998719 0.253537i
\(359\) 29.0532i 1.53337i −0.642023 0.766685i \(-0.721905\pi\)
0.642023 0.766685i \(-0.278095\pi\)
\(360\) −10.2706 15.9535i −0.541310 0.840823i
\(361\) −13.5617 −0.713773
\(362\) −32.2082 8.17644i −1.69282 0.429744i
\(363\) −6.78029 + 9.98304i −0.355873 + 0.523974i
\(364\) 2.36809 6.62830i 0.124121 0.347417i
\(365\) 9.03165 12.3732i 0.472738 0.647644i
\(366\) 20.7425 18.3980i 1.08423 0.961677i
\(367\) −7.34446 −0.383378 −0.191689 0.981456i \(-0.561396\pi\)
−0.191689 + 0.981456i \(0.561396\pi\)
\(368\) −0.212680 0.327215i −0.0110867 0.0170573i
\(369\) −6.50601 16.4048i −0.338689 0.854002i
\(370\) 15.0939 12.4995i 0.784694 0.649817i
\(371\) −1.01270 6.52030i −0.0525770 0.338517i
\(372\) −15.0873 29.1963i −0.782239 1.51376i
\(373\) 19.5085 1.01011 0.505056 0.863086i \(-0.331472\pi\)
0.505056 + 0.863086i \(0.331472\pi\)
\(374\) 2.88517 11.3651i 0.149188 0.587675i
\(375\) 15.3765 11.7713i 0.794041 0.607865i
\(376\) −14.9537 + 16.1865i −0.771179 + 0.834755i
\(377\) 10.0583i 0.518030i
\(378\) 18.4941 + 5.99722i 0.951236 + 0.308464i
\(379\) 3.57410i 0.183589i 0.995778 + 0.0917945i \(0.0292603\pi\)
−0.995778 + 0.0917945i \(0.970740\pi\)
\(380\) 9.42220 4.47083i 0.483349 0.229349i
\(381\) 2.08249 + 1.41439i 0.106689 + 0.0724612i
\(382\) −4.78180 + 18.8362i −0.244658 + 0.963744i
\(383\) 14.6339i 0.747757i −0.927478 0.373878i \(-0.878028\pi\)
0.927478 0.373878i \(-0.121972\pi\)
\(384\) −14.1213 13.5863i −0.720626 0.693324i
\(385\) 5.44864 10.5572i 0.277689 0.538043i
\(386\) 4.47620 17.6324i 0.227833 0.897466i
\(387\) −4.04706 10.2046i −0.205724 0.518730i
\(388\) −16.9791 9.21456i −0.861985 0.467798i
\(389\) 13.4414 0.681507 0.340754 0.940153i \(-0.389318\pi\)
0.340754 + 0.940153i \(0.389318\pi\)
\(390\) −7.25279 + 0.691345i −0.367259 + 0.0350076i
\(391\) 0.402828i 0.0203719i
\(392\) −17.9328 8.39126i −0.905745 0.423823i
\(393\) −2.68644 1.82458i −0.135513 0.0920377i
\(394\) 8.89888 35.0540i 0.448319 1.76600i
\(395\) −14.4739 + 19.8290i −0.728260 + 0.997705i
\(396\) −1.43828 + 11.9627i −0.0722763 + 0.601147i
\(397\) 7.47449i 0.375134i 0.982252 + 0.187567i \(0.0600601\pi\)
−0.982252 + 0.187567i \(0.939940\pi\)
\(398\) 5.95649 23.4635i 0.298572 1.17612i
\(399\) −4.57633 + 9.65721i −0.229103 + 0.483465i
\(400\) 12.6491 15.4920i 0.632454 0.774598i
\(401\) 30.4076i 1.51848i 0.650808 + 0.759242i \(0.274430\pi\)
−0.650808 + 0.759242i \(0.725570\pi\)
\(402\) 13.4366 11.9178i 0.670155 0.594408i
\(403\) −12.6194 −0.628619
\(404\) 14.9444 27.5373i 0.743514 1.37003i
\(405\) −2.50089 19.9686i −0.124270 0.992248i
\(406\) −28.1668 2.67045i −1.39790 0.132532i
\(407\) −12.4450 −0.616875
\(408\) 4.57879 + 19.7020i 0.226684 + 0.975392i
\(409\) 24.7533i 1.22397i −0.790868 0.611986i \(-0.790371\pi\)
0.790868 0.611986i \(-0.209629\pi\)
\(410\) 14.3275 11.8648i 0.707586 0.585962i
\(411\) 18.0019 26.5053i 0.887967 1.30741i
\(412\) 15.1068 + 8.19843i 0.744257 + 0.403908i
\(413\) −0.756558 4.87110i −0.0372278 0.239691i
\(414\) −0.0532304 0.410496i −0.00261613 0.0201748i
\(415\) 13.4004 18.3584i 0.657802 0.901177i
\(416\) −7.12407 + 2.42224i −0.349286 + 0.118760i
\(417\) −0.666956 + 0.982002i −0.0326610 + 0.0480888i
\(418\) −6.41916 1.62958i −0.313971 0.0797055i
\(419\) 11.5934i 0.566374i −0.959065 0.283187i \(-0.908608\pi\)
0.959065 0.283187i \(-0.0913918\pi\)
\(420\) 0.0104195 + 20.4939i 0.000508419 + 1.00000i
\(421\) 12.7176i 0.619816i −0.950767 0.309908i \(-0.899702\pi\)
0.950767 0.309908i \(-0.100298\pi\)
\(422\) −6.04133 + 23.7977i −0.294087 + 1.15845i
\(423\) −21.7271 + 8.61679i −1.05641 + 0.418963i
\(424\) −4.78676 + 5.18138i −0.232466 + 0.251630i
\(425\) −19.6618 + 6.29225i −0.953739 + 0.305219i
\(426\) −14.4445 16.2851i −0.699836 0.789018i
\(427\) −29.5928 + 4.59622i −1.43209 + 0.222427i
\(428\) 2.38987 4.40368i 0.115519 0.212860i
\(429\) 3.82732 + 2.59944i 0.184785 + 0.125502i
\(430\) 8.91242 7.38050i 0.429795 0.355919i
\(431\) 2.50836i 0.120823i 0.998174 + 0.0604117i \(0.0192414\pi\)
−0.998174 + 0.0604117i \(0.980759\pi\)
\(432\) −7.26940 19.4719i −0.349749 0.936843i
\(433\) 24.6527 1.18473 0.592366 0.805669i \(-0.298194\pi\)
0.592366 + 0.805669i \(0.298194\pi\)
\(434\) −3.35041 + 35.3389i −0.160825 + 1.69632i
\(435\) 9.86712 + 27.5739i 0.473092 + 1.32207i
\(436\) −13.8245 + 25.4737i −0.662075 + 1.21997i
\(437\) 0.227523 0.0108839
\(438\) 12.5542 11.1352i 0.599863 0.532061i
\(439\) 5.50924i 0.262942i 0.991320 + 0.131471i \(0.0419700\pi\)
−0.991320 + 0.131471i \(0.958030\pi\)
\(440\) −12.4613 + 2.45384i −0.594068 + 0.116982i
\(441\) −13.2981 16.2531i −0.633241 0.773955i
\(442\) 7.52815 + 1.91111i 0.358078 + 0.0909023i
\(443\) 13.1356i 0.624093i 0.950067 + 0.312047i \(0.101014\pi\)
−0.950067 + 0.312047i \(0.898986\pi\)
\(444\) 19.0721 9.85554i 0.905120 0.467723i
\(445\) −17.7099 + 24.2622i −0.839527 + 1.15014i
\(446\) −8.95033 2.27215i −0.423810 0.107589i
\(447\) −2.28607 + 3.36593i −0.108128 + 0.159203i
\(448\) 4.89170 + 20.5930i 0.231111 + 0.972927i
\(449\) 10.4000i 0.490806i 0.969421 + 0.245403i \(0.0789203\pi\)
−0.969421 + 0.245403i \(0.921080\pi\)
\(450\) 19.2046 9.01017i 0.905314 0.424743i
\(451\) −11.8131 −0.556257
\(452\) −24.9790 13.5561i −1.17491 0.637624i
\(453\) −8.10322 + 11.9309i −0.380722 + 0.560562i
\(454\) 17.0783 + 4.33553i 0.801524 + 0.203477i
\(455\) 6.99299 + 3.60914i 0.327836 + 0.169199i
\(456\) 11.1279 2.58617i 0.521114 0.121108i
\(457\) 40.4322i 1.89134i 0.325129 + 0.945670i \(0.394592\pi\)
−0.325129 + 0.945670i \(0.605408\pi\)
\(458\) 5.01359 + 1.27276i 0.234270 + 0.0594722i
\(459\) −4.66205 + 20.9413i −0.217606 + 0.977458i
\(460\) 0.394198 0.187047i 0.0183796 0.00872109i
\(461\) 18.2567i 0.850301i 0.905123 + 0.425151i \(0.139779\pi\)
−0.905123 + 0.425151i \(0.860221\pi\)
\(462\) 8.29548 10.0277i 0.385941 0.466531i
\(463\) 42.1208i 1.95752i 0.205016 + 0.978759i \(0.434275\pi\)
−0.205016 + 0.978759i \(0.565725\pi\)
\(464\) 16.4836 + 25.3604i 0.765230 + 1.17733i
\(465\) 34.5950 12.3796i 1.60430 0.574088i
\(466\) 1.69783 + 0.431015i 0.0786506 + 0.0199664i
\(467\) 32.5243 1.50504 0.752521 0.658568i \(-0.228837\pi\)
0.752521 + 0.658568i \(0.228837\pi\)
\(468\) −7.92398 0.952706i −0.366286 0.0440388i
\(469\) −19.1696 + 2.97734i −0.885170 + 0.137481i
\(470\) −15.7142 18.9759i −0.724842 0.875292i
\(471\) 20.1536 + 13.6880i 0.928631 + 0.630708i
\(472\) −3.57603 + 3.87084i −0.164600 + 0.178170i
\(473\) −7.34833 −0.337877
\(474\) −20.1190 + 17.8450i −0.924097 + 0.819648i
\(475\) 3.55395 + 11.1053i 0.163066 + 0.509545i
\(476\) 7.35048 20.5741i 0.336908 0.943010i
\(477\) −6.95497 + 2.75828i −0.318446 + 0.126293i
\(478\) 6.82354 26.8789i 0.312101 1.22941i
\(479\) 15.9517 0.728852 0.364426 0.931232i \(-0.381265\pi\)
0.364426 + 0.931232i \(0.381265\pi\)
\(480\) 17.1538 13.6290i 0.782958 0.622074i
\(481\) 8.24346i 0.375869i
\(482\) 8.42980 33.2062i 0.383967 1.51250i
\(483\) −0.191460 + 0.404030i −0.00871175 + 0.0183840i
\(484\) −12.2474 6.64667i −0.556702 0.302121i
\(485\) 12.7340 17.4454i 0.578223 0.792156i
\(486\) 1.98356 21.9560i 0.0899762 0.995944i
\(487\) 8.42432i 0.381742i 0.981615 + 0.190871i \(0.0611313\pi\)
−0.981615 + 0.190871i \(0.938869\pi\)
\(488\) 23.5160 + 21.7250i 1.06452 + 0.983445i
\(489\) −10.3292 + 15.2084i −0.467104 + 0.687746i
\(490\) 11.9635 18.6246i 0.540454 0.841373i
\(491\) −16.9685 −0.765777 −0.382888 0.923795i \(-0.625071\pi\)
−0.382888 + 0.923795i \(0.625071\pi\)
\(492\) 18.1037 9.35513i 0.816178 0.421762i
\(493\) 31.2208i 1.40611i
\(494\) 1.07942 4.25200i 0.0485655 0.191307i
\(495\) −13.0422 3.37155i −0.586205 0.151540i
\(496\) 31.8179 20.6807i 1.42866 0.928592i
\(497\) 3.60855 + 23.2336i 0.161865 + 1.04217i
\(498\) 18.6269 16.5215i 0.834692 0.740347i
\(499\) 34.6615i 1.55166i −0.630940 0.775831i \(-0.717331\pi\)
0.630940 0.775831i \(-0.282669\pi\)
\(500\) 15.2871 + 16.3189i 0.683659 + 0.729802i
\(501\) −0.662465 0.449933i −0.0295968 0.0201015i
\(502\) 5.09528 20.0710i 0.227413 0.895814i
\(503\) 20.2162i 0.901396i 0.892676 + 0.450698i \(0.148825\pi\)
−0.892676 + 0.450698i \(0.851175\pi\)
\(504\) −4.77170 + 21.9370i −0.212548 + 0.977151i
\(505\) 28.2935 + 20.6524i 1.25904 + 0.919022i
\(506\) −0.268559 0.0681770i −0.0119389 0.00303084i
\(507\) 10.9291 16.0915i 0.485376 0.714650i
\(508\) −1.38651 + 2.55485i −0.0615166 + 0.113353i
\(509\) 2.33728i 0.103598i 0.998658 + 0.0517992i \(0.0164956\pi\)
−0.998658 + 0.0517992i \(0.983504\pi\)
\(510\) −22.5125 + 2.14591i −0.996868 + 0.0950227i
\(511\) −17.9108 + 2.78182i −0.792326 + 0.123061i
\(512\) 13.9926 17.7822i 0.618393 0.785869i
\(513\) 11.8280 + 2.63319i 0.522217 + 0.116258i
\(514\) 5.50041 21.6669i 0.242613 0.955687i
\(515\) −11.3298 + 15.5216i −0.499251 + 0.683966i
\(516\) 11.2614 5.81935i 0.495755 0.256183i
\(517\) 15.6457i 0.688097i
\(518\) −23.0846 2.18861i −1.01428 0.0961619i
\(519\) −3.75054 + 5.52216i −0.164631 + 0.242396i
\(520\) −1.62540 8.25425i −0.0712787 0.361973i
\(521\) −18.0595 −0.791203 −0.395601 0.918422i \(-0.629464\pi\)
−0.395601 + 0.918422i \(0.629464\pi\)
\(522\) 4.12557 + 31.8150i 0.180571 + 1.39251i
\(523\) 15.6316i 0.683522i −0.939787 0.341761i \(-0.888977\pi\)
0.939787 0.341761i \(-0.111023\pi\)
\(524\) 1.78862 3.29579i 0.0781362 0.143977i
\(525\) −22.7111 3.03405i −0.991194 0.132417i
\(526\) −19.5397 4.96040i −0.851973 0.216284i
\(527\) −39.1704 −1.70629
\(528\) −13.9099 0.281865i −0.605352 0.0122666i
\(529\) −22.9905 −0.999586
\(530\) −5.03020 6.07428i −0.218498 0.263850i
\(531\) −5.19583 + 2.06062i −0.225480 + 0.0894233i
\(532\) −11.6205 4.15165i −0.503813 0.179997i
\(533\) 7.82491i 0.338934i
\(534\) −24.6171 + 21.8346i −1.06529 + 0.944877i
\(535\) 4.52462 + 3.30268i 0.195616 + 0.142787i
\(536\) 15.2332 + 14.0730i 0.657975 + 0.607863i
\(537\) 13.4156 19.7526i 0.578926 0.852389i
\(538\) −3.24846 + 12.7961i −0.140051 + 0.551681i
\(539\) −13.3947 + 4.26368i −0.576952 + 0.183650i
\(540\) 22.6574 5.16160i 0.975019 0.222120i
\(541\) 14.7905i 0.635895i 0.948108 + 0.317948i \(0.102994\pi\)
−0.948108 + 0.317948i \(0.897006\pi\)
\(542\) 0.0721011 0.284017i 0.00309701 0.0121996i
\(543\) 22.8661 33.6671i 0.981276 1.44479i
\(544\) −22.1129 + 7.51855i −0.948084 + 0.322355i
\(545\) −26.1733 19.1048i −1.12114 0.818360i
\(546\) 6.64227 + 5.49487i 0.284263 + 0.235159i
\(547\) −35.5600 −1.52043 −0.760217 0.649669i \(-0.774908\pi\)
−0.760217 + 0.649669i \(0.774908\pi\)
\(548\) 32.5173 + 17.6471i 1.38907 + 0.753847i
\(549\) 12.5186 + 31.5656i 0.534282 + 1.34719i
\(550\) −0.867262 14.1732i −0.0369802 0.604346i
\(551\) −17.6339 −0.751231
\(552\) 0.465561 0.108198i 0.0198156 0.00460520i
\(553\) 28.7033 4.45808i 1.22059 0.189577i
\(554\) −39.2812 9.97201i −1.66890 0.423670i
\(555\) 8.08675 + 22.5986i 0.343264 + 0.959259i
\(556\) −1.20474 0.653813i −0.0510925 0.0277278i
\(557\) 1.35270i 0.0573158i −0.999589 0.0286579i \(-0.990877\pi\)
0.999589 0.0286579i \(-0.00912334\pi\)
\(558\) 39.9160 5.17605i 1.68978 0.219119i
\(559\) 4.86748i 0.205872i
\(560\) −23.5463 + 2.36023i −0.995014 + 0.0997378i
\(561\) 11.8799 + 8.06859i 0.501570 + 0.340656i
\(562\) −1.08226 + 4.26319i −0.0456525 + 0.179832i
\(563\) −30.5252 −1.28649 −0.643243 0.765662i \(-0.722411\pi\)
−0.643243 + 0.765662i \(0.722411\pi\)
\(564\) −12.3903 23.9772i −0.521725 1.00962i
\(565\) 18.7338 25.6650i 0.788136 1.07973i
\(566\) −7.16140 + 28.2098i −0.301016 + 1.18575i
\(567\) −14.6292 + 18.7880i −0.614367 + 0.789020i
\(568\) 17.0566 18.4627i 0.715677 0.774678i
\(569\) 15.3875i 0.645079i 0.946556 + 0.322539i \(0.104536\pi\)
−0.946556 + 0.322539i \(0.895464\pi\)
\(570\) 1.21204 + 12.7154i 0.0507669 + 0.532587i
\(571\) 42.4541i 1.77665i −0.459217 0.888324i \(-0.651870\pi\)
0.459217 0.888324i \(-0.348130\pi\)
\(572\) −2.54822 + 4.69545i −0.106546 + 0.196327i
\(573\) −19.6894 13.3727i −0.822538 0.558652i
\(574\) −21.9125 2.07748i −0.914609 0.0867125i
\(575\) 0.148687 + 0.464613i 0.00620068 + 0.0193757i
\(576\) 21.5403 10.5837i 0.897513 0.440988i
\(577\) −0.806615 −0.0335798 −0.0167899 0.999859i \(-0.505345\pi\)
−0.0167899 + 0.999859i \(0.505345\pi\)
\(578\) 0.0646852 + 0.0164211i 0.00269055 + 0.000683028i
\(579\) 18.4311 + 12.5180i 0.765971 + 0.520232i
\(580\) −30.5519 + 14.4968i −1.26860 + 0.601949i
\(581\) −26.5746 + 4.12745i −1.10250 + 0.171235i
\(582\) 17.7006 15.6999i 0.733714 0.650783i
\(583\) 5.00827i 0.207421i
\(584\) 14.2329 + 13.1489i 0.588960 + 0.544105i
\(585\) 2.23329 8.63909i 0.0923351 0.357182i
\(586\) −16.3650 4.15446i −0.676033 0.171619i
\(587\) 2.83907 0.117181 0.0585905 0.998282i \(-0.481339\pi\)
0.0585905 + 0.998282i \(0.481339\pi\)
\(588\) 17.1510 17.1418i 0.707297 0.706916i
\(589\) 22.1240i 0.911603i
\(590\) −3.75789 4.53789i −0.154710 0.186822i
\(591\) 36.6419 + 24.8864i 1.50724 + 1.02369i
\(592\) 13.5094 + 20.7845i 0.555231 + 0.854239i
\(593\) 32.6365i 1.34022i −0.742262 0.670110i \(-0.766247\pi\)
0.742262 0.670110i \(-0.233753\pi\)
\(594\) −13.1722 6.65234i −0.540463 0.272949i
\(595\) 21.7060 + 11.2027i 0.889861 + 0.459265i
\(596\) −4.12940 2.24102i −0.169147 0.0917958i
\(597\) 24.5263 + 16.6578i 1.00380 + 0.681758i
\(598\) 0.0451599 0.177892i 0.00184673 0.00727453i
\(599\) 38.2058i 1.56105i 0.625128 + 0.780523i \(0.285047\pi\)
−0.625128 + 0.780523i \(0.714953\pi\)
\(600\) 12.5532 + 21.0337i 0.512483 + 0.858697i
\(601\) 36.9925i 1.50896i −0.656325 0.754479i \(-0.727890\pi\)
0.656325 0.754479i \(-0.272110\pi\)
\(602\) −13.6306 1.29230i −0.555543 0.0526701i
\(603\) 8.10932 + 20.4476i 0.330237 + 0.832689i
\(604\) −14.6371 7.94353i −0.595575 0.323218i
\(605\) 9.18536 12.5838i 0.373438 0.511604i
\(606\) 25.4626 + 28.7074i 1.03435 + 1.16616i
\(607\) −29.2308 −1.18644 −0.593220 0.805041i \(-0.702143\pi\)
−0.593220 + 0.805041i \(0.702143\pi\)
\(608\) 4.24658 + 12.4897i 0.172222 + 0.506524i
\(609\) 14.8389 31.3139i 0.601304 1.26890i
\(610\) −27.5685 + 22.8299i −1.11622 + 0.924354i
\(611\) −10.3636 −0.419266
\(612\) −24.5958 2.95717i −0.994227 0.119537i
\(613\) −1.66640 −0.0673052 −0.0336526 0.999434i \(-0.510714\pi\)
−0.0336526 + 0.999434i \(0.510714\pi\)
\(614\) −2.68145 + 10.5626i −0.108214 + 0.426273i
\(615\) 7.67616 + 21.4512i 0.309533 + 0.864997i
\(616\) 12.4724 + 8.38252i 0.502526 + 0.337741i
\(617\) −21.0418 −0.847111 −0.423556 0.905870i \(-0.639218\pi\)
−0.423556 + 0.905870i \(0.639218\pi\)
\(618\) −15.7487 + 13.9686i −0.633505 + 0.561900i
\(619\) 8.07998 0.324762 0.162381 0.986728i \(-0.448083\pi\)
0.162381 + 0.986728i \(0.448083\pi\)
\(620\) 18.1881 + 38.3312i 0.730453 + 1.53942i
\(621\) 0.494848 + 0.110165i 0.0198576 + 0.00442077i
\(622\) 36.7942 + 9.34065i 1.47531 + 0.374526i
\(623\) 35.1206 5.45478i 1.40708 0.218541i
\(624\) 0.186706 9.21383i 0.00747420 0.368848i
\(625\) −20.3550 + 14.5147i −0.814198 + 0.580587i
\(626\) −11.2458 2.85488i −0.449473 0.114104i
\(627\) 4.55725 6.70993i 0.181999 0.267969i
\(628\) −13.4182 + 24.7250i −0.535445 + 0.986634i
\(629\) 25.5875i 1.02024i
\(630\) −23.5995 8.54763i −0.940228 0.340546i
\(631\) −27.5940 −1.09850 −0.549250 0.835658i \(-0.685087\pi\)
−0.549250 + 0.835658i \(0.685087\pi\)
\(632\) −22.8092 21.0720i −0.907302 0.838201i
\(633\) −24.8756 16.8951i −0.988718 0.671518i
\(634\) 10.6939 42.1247i 0.424708 1.67299i
\(635\) −2.62501 1.91609i −0.104170 0.0760377i
\(636\) −3.96619 7.67522i −0.157270 0.304342i
\(637\) −2.82423 8.87257i −0.111900 0.351544i
\(638\) 20.8144 + 5.28399i 0.824050 + 0.209195i
\(639\) 24.7825 9.82852i 0.980381 0.388810i
\(640\) 17.6252 + 18.1480i 0.696698 + 0.717364i
\(641\) 26.2441i 1.03658i −0.855205 0.518290i \(-0.826569\pi\)
0.855205 0.518290i \(-0.173431\pi\)
\(642\) 4.07190 + 4.59080i 0.160705 + 0.181184i
\(643\) 10.0020i 0.394440i −0.980359 0.197220i \(-0.936809\pi\)
0.980359 0.197220i \(-0.0631913\pi\)
\(644\) −0.486169 0.173693i −0.0191577 0.00684447i
\(645\) 4.77495 + 13.3437i 0.188013 + 0.525408i
\(646\) 3.35050 13.1981i 0.131824 0.519272i
\(647\) 39.2518i 1.54315i 0.636140 + 0.771573i \(0.280530\pi\)
−0.636140 + 0.771573i \(0.719470\pi\)
\(648\) 25.4547 0.236673i 0.999957 0.00929738i
\(649\) 3.74151i 0.146867i
\(650\) 9.38819 0.574468i 0.368235 0.0225325i
\(651\) −39.2872 18.6173i −1.53979 0.729670i
\(652\) −18.6580 10.1257i −0.730703 0.396552i
\(653\) 14.4218i 0.564370i −0.959360 0.282185i \(-0.908941\pi\)
0.959360 0.282185i \(-0.0910592\pi\)
\(654\) −23.5545 26.5561i −0.921053 1.03843i
\(655\) 3.38630 + 2.47178i 0.132314 + 0.0965804i
\(656\) 12.8234 + 19.7292i 0.500671 + 0.770297i
\(657\) 7.57679 + 19.1048i 0.295599 + 0.745349i
\(658\) −2.75149 + 29.0217i −0.107264 + 1.13138i
\(659\) 28.6527 1.11615 0.558075 0.829790i \(-0.311540\pi\)
0.558075 + 0.829790i \(0.311540\pi\)
\(660\) 2.37949 15.3719i 0.0926216 0.598350i
\(661\) −30.3370 −1.17997 −0.589987 0.807413i \(-0.700867\pi\)
−0.589987 + 0.807413i \(0.700867\pi\)
\(662\) −7.07293 + 27.8613i −0.274897 + 1.08286i
\(663\) −5.34458 + 7.86915i −0.207566 + 0.305613i
\(664\) 21.1176 + 19.5092i 0.819521 + 0.757106i
\(665\) 6.32742 12.2599i 0.245367 0.475417i
\(666\) 3.38117 + 26.0745i 0.131018 + 1.01037i
\(667\) −0.737753 −0.0285659
\(668\) 0.441067 0.812728i 0.0170654 0.0314454i
\(669\) 6.35424 9.35575i 0.245669 0.361714i
\(670\) −17.8583 + 14.7887i −0.689927 + 0.571339i
\(671\) 22.7303 0.877495
\(672\) −25.7524 2.96908i −0.993419 0.114535i
\(673\) 35.2784i 1.35988i −0.733267 0.679940i \(-0.762006\pi\)
0.733267 0.679940i \(-0.237994\pi\)
\(674\) −2.80046 + 11.0314i −0.107870 + 0.424914i
\(675\) 2.35252 + 25.8740i 0.0905484 + 0.995892i
\(676\) 19.7415 + 10.7137i 0.759287 + 0.412065i
\(677\) 19.1645 0.736552 0.368276 0.929717i \(-0.379948\pi\)
0.368276 + 0.929717i \(0.379948\pi\)
\(678\) 26.0404 23.0970i 1.00007 0.887037i
\(679\) −25.2530 + 3.92219i −0.969122 + 0.150520i
\(680\) −5.04521 25.6210i −0.193475 0.982519i
\(681\) −12.1247 + 17.8519i −0.464618 + 0.684086i
\(682\) 6.62943 26.1143i 0.253854 0.999968i
\(683\) 13.2192i 0.505820i 0.967490 + 0.252910i \(0.0813877\pi\)
−0.967490 + 0.252910i \(0.918612\pi\)
\(684\) −1.67025 + 13.8921i −0.0638637 + 0.531176i
\(685\) −24.3874 + 33.4103i −0.931795 + 1.27654i
\(686\) −25.5961 + 5.55320i −0.977265 + 0.212022i
\(687\) −3.55938 + 5.24069i −0.135799 + 0.199945i
\(688\) 7.97681 + 12.2726i 0.304113 + 0.467887i
\(689\) −3.31744 −0.126384
\(690\) 0.0507084 + 0.531974i 0.00193043 + 0.0202519i
\(691\) 36.7836 1.39931 0.699657 0.714479i \(-0.253336\pi\)
0.699657 + 0.714479i \(0.253336\pi\)
\(692\) −6.77472 3.67663i −0.257536 0.139765i
\(693\) 8.08041 + 13.7391i 0.306949 + 0.521904i
\(694\) −6.99720 + 27.5630i −0.265610 + 1.04628i
\(695\) 0.903535 1.23783i 0.0342731 0.0469535i
\(696\) −36.0828 + 8.38575i −1.36772 + 0.317861i
\(697\) 24.2883i 0.919985i
\(698\) 3.14676 + 0.798843i 0.119107 + 0.0302367i
\(699\) −1.20537 + 1.77474i −0.0455912 + 0.0671268i
\(700\) 0.883818 26.4427i 0.0334052 0.999442i
\(701\) −4.86743 −0.183840 −0.0919201 0.995766i \(-0.529300\pi\)
−0.0919201 + 0.995766i \(0.529300\pi\)
\(702\) 4.40646 8.72518i 0.166311 0.329311i
\(703\) −14.4522 −0.545074
\(704\) −1.26998 16.0148i −0.0478642 0.603581i
\(705\) 28.4108 10.1666i 1.07001 0.382895i
\(706\) 5.29061 20.8405i 0.199115 0.784342i
\(707\) −6.36113 40.9561i −0.239235 1.54031i
\(708\) −2.96301 5.73391i −0.111357 0.215493i
\(709\) 0.768670i 0.0288680i 0.999896 + 0.0144340i \(0.00459465\pi\)
−0.999896 + 0.0144340i \(0.995405\pi\)
\(710\) 17.9240 + 21.6443i 0.672675 + 0.812298i
\(711\) −12.1424 30.6168i −0.455374 1.14822i
\(712\) −27.9087 25.7832i −1.04592 0.966265i
\(713\) 0.925604i 0.0346642i
\(714\) 20.6174 + 17.0559i 0.771587 + 0.638301i
\(715\) −4.82440 3.52150i −0.180422 0.131697i
\(716\) 24.2330 + 13.1512i 0.905629 + 0.491484i
\(717\) 28.0965 + 19.0826i 1.04928 + 0.712651i
\(718\) −10.1099 + 39.8242i −0.377297 + 1.48623i
\(719\) 45.3201 1.69015 0.845077 0.534644i \(-0.179554\pi\)
0.845077 + 0.534644i \(0.179554\pi\)
\(720\) 8.52684 + 25.4420i 0.317776 + 0.948166i
\(721\) 22.4683 3.48968i 0.836762 0.129962i
\(722\) 18.5895 + 4.71916i 0.691829 + 0.175629i
\(723\) 34.7104 + 23.5746i 1.29089 + 0.876749i
\(724\) 41.3036 + 22.4154i 1.53504 + 0.833063i
\(725\) −11.5238 36.0093i −0.427984 1.33735i
\(726\) 12.7678 11.3247i 0.473859 0.420299i
\(727\) −19.4319 −0.720688 −0.360344 0.932819i \(-0.617341\pi\)
−0.360344 + 0.932819i \(0.617341\pi\)
\(728\) −5.55252 + 8.26160i −0.205790 + 0.306195i
\(729\) 24.4501 + 11.4540i 0.905558 + 0.424223i
\(730\) −16.6856 + 13.8176i −0.617562 + 0.511411i
\(731\) 15.1085i 0.558809i
\(732\) −34.8345 + 18.0008i −1.28752 + 0.665329i
\(733\) 33.0895i 1.22219i −0.791558 0.611094i \(-0.790730\pi\)
0.791558 0.611094i \(-0.209270\pi\)
\(734\) 10.0673 + 2.55571i 0.371591 + 0.0943329i
\(735\) 16.4463 + 21.5527i 0.606629 + 0.794985i
\(736\) 0.177665 + 0.522533i 0.00654881 + 0.0192608i
\(737\) 14.7243 0.542375
\(738\) 3.20950 + 24.7506i 0.118143 + 0.911083i
\(739\) 12.9023i 0.474619i 0.971434 + 0.237310i \(0.0762656\pi\)
−0.971434 + 0.237310i \(0.923734\pi\)
\(740\) −25.0393 + 11.8811i −0.920461 + 0.436758i
\(741\) 4.44461 + 3.01869i 0.163277 + 0.110894i
\(742\) −0.880767 + 9.28999i −0.0323340 + 0.341046i
\(743\) −20.1716 −0.740025 −0.370012 0.929027i \(-0.620647\pi\)
−0.370012 + 0.929027i \(0.620647\pi\)
\(744\) 10.5210 + 45.2704i 0.385718 + 1.65969i
\(745\) 3.09698 4.24281i 0.113464 0.155444i
\(746\) −26.7410 6.78852i −0.979057 0.248545i
\(747\) 11.2418 + 28.3462i 0.411317 + 1.03713i
\(748\) −7.90959 + 14.5745i −0.289203 + 0.532898i
\(749\) −1.01725 6.54958i −0.0371696 0.239316i
\(750\) −25.1733 + 10.7846i −0.919197 + 0.393797i
\(751\) 15.5652 0.567982 0.283991 0.958827i \(-0.408341\pi\)
0.283991 + 0.958827i \(0.408341\pi\)
\(752\) 26.1301 16.9838i 0.952867 0.619336i
\(753\) 20.9802 + 14.2493i 0.764561 + 0.519275i
\(754\) −3.50007 + 13.7873i −0.127465 + 0.502104i
\(755\) 10.9776 15.0391i 0.399514 0.547327i
\(756\) −23.2637 14.6561i −0.846091 0.533039i
\(757\) 29.6612 1.07806 0.539028 0.842288i \(-0.318792\pi\)
0.539028 + 0.842288i \(0.318792\pi\)
\(758\) 1.24370 4.89914i 0.0451734 0.177945i
\(759\) 0.190662 0.280724i 0.00692061 0.0101896i
\(760\) −14.4711 + 2.84960i −0.524921 + 0.103366i
\(761\) 41.8111 1.51565 0.757825 0.652457i \(-0.226262\pi\)
0.757825 + 0.652457i \(0.226262\pi\)
\(762\) −2.36236 2.66341i −0.0855795 0.0964851i
\(763\) 5.88444 + 37.8869i 0.213031 + 1.37160i
\(764\) 13.1091 24.1555i 0.474272 0.873914i
\(765\) 6.93207 26.8155i 0.250629 0.969516i
\(766\) −5.09226 + 20.0592i −0.183991 + 0.724767i
\(767\) −2.47835 −0.0894880
\(768\) 14.6288 + 23.5371i 0.527873 + 0.849323i
\(769\) 9.12224i 0.328956i 0.986381 + 0.164478i \(0.0525940\pi\)
−0.986381 + 0.164478i \(0.947406\pi\)
\(770\) −11.1423 + 12.5751i −0.401540 + 0.453174i
\(771\) 22.6484 + 15.3823i 0.815662 + 0.553982i
\(772\) −12.2714 + 22.6117i −0.441656 + 0.813814i
\(773\) −17.9114 −0.644228 −0.322114 0.946701i \(-0.604394\pi\)
−0.322114 + 0.946701i \(0.604394\pi\)
\(774\) 1.99647 + 15.3961i 0.0717615 + 0.553401i
\(775\) −45.1782 + 14.4581i −1.62285 + 0.519350i
\(776\) 20.0674 + 18.5391i 0.720379 + 0.665514i
\(777\) 12.1615 25.6638i 0.436290 0.920683i
\(778\) −18.4246 4.67731i −0.660555 0.167690i
\(779\) −13.7184 −0.491512
\(780\) 10.1822 + 1.57616i 0.364582 + 0.0564355i
\(781\) 17.8458i 0.638575i
\(782\) 0.140175 0.552171i 0.00501265 0.0197456i
\(783\) −38.3526 8.53822i −1.37061 0.305131i
\(784\) 21.6612 + 17.7424i 0.773614 + 0.633657i
\(785\) −25.4040 18.5433i −0.906707 0.661838i
\(786\) 3.04748 + 3.43583i 0.108700 + 0.122552i
\(787\) 36.9161i 1.31592i 0.753055 + 0.657958i \(0.228579\pi\)
−0.753055 + 0.657958i \(0.771421\pi\)
\(788\) −24.3960 + 44.9531i −0.869072 + 1.60139i
\(789\) 13.8721 20.4248i 0.493861 0.727143i
\(790\) 26.7399 22.1437i 0.951363 0.787837i
\(791\) −37.1512 + 5.77016i −1.32094 + 0.205163i
\(792\) 6.13424 15.8971i 0.217971 0.564880i
\(793\) 15.0564i 0.534668i
\(794\) 2.60095 10.2455i 0.0923044 0.363600i
\(795\) 9.09443 3.25437i 0.322546 0.115421i
\(796\) −16.3295 + 30.0895i −0.578785 + 1.06649i
\(797\) −29.7782 −1.05480 −0.527399 0.849618i \(-0.676833\pi\)
−0.527399 + 0.849618i \(0.676833\pi\)
\(798\) 9.63342 11.6450i 0.341019 0.412229i
\(799\) −32.1683 −1.13803
\(800\) −22.7294 + 16.8338i −0.803604 + 0.595164i
\(801\) −14.8571 37.4619i −0.524948 1.32365i
\(802\) 10.5812 41.6808i 0.373634 1.47180i
\(803\) 13.7573 0.485486
\(804\) −22.5651 + 11.6606i −0.795809 + 0.411236i
\(805\) 0.264721 0.512918i 0.00933020 0.0180780i
\(806\) 17.2979 + 4.39128i 0.609293 + 0.154676i
\(807\) −13.3758 9.08457i −0.470850 0.319792i
\(808\) −30.0672 + 32.5459i −1.05776 + 1.14496i
\(809\) 8.02026i 0.281977i 0.990011 + 0.140989i \(0.0450281\pi\)
−0.990011 + 0.140989i \(0.954972\pi\)
\(810\) −3.52057 + 28.2419i −0.123700 + 0.992320i
\(811\) −2.93155 −0.102941 −0.0514703 0.998675i \(-0.516391\pi\)
−0.0514703 + 0.998675i \(0.516391\pi\)
\(812\) 37.6800 + 13.4619i 1.32231 + 0.472420i
\(813\) 0.296882 + 0.201636i 0.0104121 + 0.00707170i
\(814\) 17.0588 + 4.33057i 0.597909 + 0.151786i
\(815\) 13.9931 19.1704i 0.490159 0.671509i
\(816\) 0.579529 28.5995i 0.0202876 1.00118i
\(817\) −8.53350 −0.298549
\(818\) −8.61360 + 33.9302i −0.301167 + 1.18634i
\(819\) −9.10065 + 5.35240i −0.318002 + 0.187028i
\(820\) −23.7679 + 11.2779i −0.830012 + 0.393840i
\(821\) 28.8608 1.00725 0.503624 0.863923i \(-0.332000\pi\)
0.503624 + 0.863923i \(0.332000\pi\)
\(822\) −33.8990 + 30.0674i −1.18236 + 1.04872i
\(823\) 55.7417i 1.94303i −0.236970 0.971517i \(-0.576154\pi\)
0.236970 0.971517i \(-0.423846\pi\)
\(824\) −17.8545 16.4947i −0.621991 0.574620i
\(825\) 16.6802 + 4.92116i 0.580729 + 0.171333i
\(826\) −0.657992 + 6.94025i −0.0228945 + 0.241482i
\(827\) 30.4567i 1.05908i −0.848284 0.529541i \(-0.822364\pi\)
0.848284 0.529541i \(-0.177636\pi\)
\(828\) −0.0698786 + 0.581204i −0.00242845 + 0.0201982i
\(829\) 25.9657 0.901827 0.450913 0.892568i \(-0.351098\pi\)
0.450913 + 0.892568i \(0.351098\pi\)
\(830\) −24.7567 + 20.5014i −0.859319 + 0.711614i
\(831\) 27.8875 41.0605i 0.967407 1.42437i
\(832\) 10.6081 0.841225i 0.367769 0.0291642i
\(833\) −8.76633 27.5402i −0.303735 0.954212i
\(834\) 1.25593 1.11398i 0.0434894 0.0385739i
\(835\) 0.835048 + 0.609531i 0.0288980 + 0.0210937i
\(836\) 8.23190 + 4.46745i 0.284706 + 0.154510i
\(837\) −10.7123 + 48.1182i −0.370271 + 1.66321i
\(838\) −4.03424 + 15.8915i −0.139361 + 0.548961i
\(839\) 2.14123 0.0739234 0.0369617 0.999317i \(-0.488232\pi\)
0.0369617 + 0.999317i \(0.488232\pi\)
\(840\) 7.11713 28.0953i 0.245564 0.969380i
\(841\) 28.1788 0.971681
\(842\) −4.42542 + 17.4324i −0.152510 + 0.600760i
\(843\) −4.45631 3.02664i −0.153483 0.104243i
\(844\) 16.5621 30.5180i 0.570091 1.05047i
\(845\) −14.8057 + 20.2836i −0.509333 + 0.697778i
\(846\) 32.7806 4.25077i 1.12702 0.146145i
\(847\) −18.2156 + 2.82917i −0.625895 + 0.0972113i
\(848\) 8.36438 5.43661i 0.287234 0.186694i
\(849\) −29.4876 20.0274i −1.01201 0.687339i
\(850\) 29.1407 1.78313i 0.999518 0.0611609i
\(851\) −0.604637 −0.0207267
\(852\) 14.1326 + 27.3489i 0.484176 + 0.936959i
\(853\) 44.6580i 1.52906i 0.644587 + 0.764531i \(0.277029\pi\)
−0.644587 + 0.764531i \(0.722971\pi\)
\(854\) 42.1632 + 3.99741i 1.44279 + 0.136789i
\(855\) −15.1458 3.91533i −0.517974 0.133901i
\(856\) −4.80826 + 5.20465i −0.164343 + 0.177891i
\(857\) 23.0490i 0.787338i −0.919252 0.393669i \(-0.871206\pi\)
0.919252 0.393669i \(-0.128794\pi\)
\(858\) −4.34169 4.89496i −0.148223 0.167111i
\(859\) −14.2677 −0.486806 −0.243403 0.969925i \(-0.578264\pi\)
−0.243403 + 0.969925i \(0.578264\pi\)
\(860\) −14.7848 + 7.01539i −0.504158 + 0.239223i
\(861\) 11.5440 24.3607i 0.393418 0.830212i
\(862\) 0.872852 3.43829i 0.0297295 0.117109i
\(863\) −0.233651 −0.00795357 −0.00397679 0.999992i \(-0.501266\pi\)
−0.00397679 + 0.999992i \(0.501266\pi\)
\(864\) 3.18862 + 29.2204i 0.108479 + 0.994099i
\(865\) 5.08091 6.96077i 0.172756 0.236673i
\(866\) −33.7922 8.57857i −1.14831 0.291512i
\(867\) −0.0459230 + 0.0676152i −0.00155963 + 0.00229633i
\(868\) 16.8897 47.2743i 0.573272 1.60459i
\(869\) −22.0471 −0.747898
\(870\) −3.93010 41.2300i −0.133243 1.39783i
\(871\) 9.75324i 0.330476i
\(872\) 27.8140 30.1070i 0.941902 1.01955i
\(873\) 10.6828 + 26.9365i 0.361558 + 0.911663i
\(874\) −0.311874 0.0791729i −0.0105493 0.00267806i
\(875\) 29.1702 + 4.90903i 0.986133 + 0.165955i
\(876\) −21.0833 + 10.8948i −0.712338 + 0.368102i
\(877\) 40.6170 1.37154 0.685770 0.727819i \(-0.259466\pi\)
0.685770 + 0.727819i \(0.259466\pi\)
\(878\) 1.91709 7.55170i 0.0646987 0.254858i
\(879\) 11.6183 17.1063i 0.391874 0.576981i
\(880\) 17.9350 + 0.972681i 0.604587 + 0.0327891i
\(881\) 40.1040 1.35114 0.675569 0.737297i \(-0.263898\pi\)
0.675569 + 0.737297i \(0.263898\pi\)
\(882\) 12.5724 + 26.9060i 0.423335 + 0.905973i
\(883\) 57.5009 1.93506 0.967530 0.252757i \(-0.0813374\pi\)
0.967530 + 0.252757i \(0.0813374\pi\)
\(884\) −9.65407 5.23925i −0.324701 0.176215i
\(885\) 6.79415 2.43124i 0.228383 0.0817251i
\(886\) 4.57091 18.0055i 0.153563 0.604905i
\(887\) 13.7551i 0.461850i −0.972972 0.230925i \(-0.925825\pi\)
0.972972 0.230925i \(-0.0741752\pi\)
\(888\) −29.5722 + 6.87267i −0.992379 + 0.230632i
\(889\) 0.590172 + 3.79982i 0.0197937 + 0.127442i
\(890\) 32.7182 27.0944i 1.09672 0.908206i
\(891\) 13.1606 12.3871i 0.440898 0.414982i
\(892\) 11.4779 + 6.22902i 0.384307 + 0.208563i
\(893\) 18.1691i 0.608006i
\(894\) 4.30486 3.81829i 0.143976 0.127703i
\(895\) −18.1743 + 24.8985i −0.607500 + 0.832265i
\(896\) 0.460684 29.9297i 0.0153904 0.999882i
\(897\) 0.185950 + 0.126293i 0.00620868 + 0.00421681i
\(898\) 3.61896 14.2556i 0.120766 0.475716i
\(899\) 71.7380i 2.39260i
\(900\) −29.4597 + 5.66777i −0.981991 + 0.188926i
\(901\) −10.2972 −0.343051
\(902\) 16.1926 + 4.11069i 0.539155 + 0.136871i
\(903\) 7.18093 15.1536i 0.238966 0.504279i
\(904\) 29.5223 + 27.2739i 0.981898 + 0.907116i
\(905\) −30.9770 + 42.4379i −1.02971 + 1.41069i
\(906\) 15.2590 13.5343i 0.506947 0.449648i
\(907\) −53.8251 −1.78723 −0.893617 0.448830i \(-0.851841\pi\)
−0.893617 + 0.448830i \(0.851841\pi\)
\(908\) −21.9011 11.8857i −0.726815 0.394442i
\(909\) −43.6864 + 17.3257i −1.44899 + 0.574656i
\(910\) −8.32962 7.38057i −0.276124 0.244664i
\(911\) 34.4197i 1.14038i 0.821514 + 0.570188i \(0.193130\pi\)
−0.821514 + 0.570188i \(0.806870\pi\)
\(912\) −16.1534 0.327326i −0.534892 0.0108388i
\(913\) 20.4120 0.675540
\(914\) 14.0695 55.4218i 0.465378 1.83319i
\(915\) −14.7702 41.2756i −0.488287 1.36453i
\(916\) −6.42941 3.48923i −0.212434 0.115287i
\(917\) −0.761329 4.90181i −0.0251413 0.161872i
\(918\) 13.6775 27.0827i 0.451426 0.893863i
\(919\) 56.8106 1.87401 0.937005 0.349316i \(-0.113586\pi\)
0.937005 + 0.349316i \(0.113586\pi\)
\(920\) −0.605428 + 0.119219i −0.0199604 + 0.00393054i
\(921\) −11.0411 7.49888i −0.363816 0.247097i
\(922\) 6.35293 25.0251i 0.209223 0.824159i
\(923\) 11.8210 0.389092
\(924\) −14.8603 + 10.8587i −0.488868 + 0.357224i
\(925\) −9.44454 29.5120i −0.310534 0.970348i
\(926\) 14.6571 57.7363i 0.481661 1.89733i
\(927\) −9.50475 23.9661i −0.312177 0.787151i
\(928\) −13.7697 40.4983i −0.452013 1.32942i
\(929\) −8.90906 −0.292297 −0.146148 0.989263i \(-0.546688\pi\)
−0.146148 + 0.989263i \(0.546688\pi\)
\(930\) −51.7283 + 4.93080i −1.69624 + 0.161687i
\(931\) −15.5551 + 4.95135i −0.509798 + 0.162274i
\(932\) −2.17729 1.18161i −0.0713196 0.0387051i
\(933\) −26.1219 + 38.4608i −0.855191 + 1.25915i
\(934\) −44.5821 11.3177i −1.45877 0.370327i
\(935\) −14.9748 10.9306i −0.489728 0.357470i
\(936\) 10.5301 + 4.06327i 0.344189 + 0.132812i
\(937\) 29.8344 0.974647 0.487323 0.873222i \(-0.337973\pi\)
0.487323 + 0.873222i \(0.337973\pi\)
\(938\) 27.3125 + 2.58945i 0.891784 + 0.0845485i
\(939\) 7.98391 11.7552i 0.260545 0.383617i
\(940\) 14.9368 + 31.4791i 0.487185 + 1.02673i
\(941\) 51.4975i 1.67877i −0.543537 0.839385i \(-0.682915\pi\)
0.543537 0.839385i \(-0.317085\pi\)
\(942\) −22.8622 25.7756i −0.744890 0.839813i
\(943\) −0.573937 −0.0186900
\(944\) 6.24875 4.06151i 0.203380 0.132191i
\(945\) 19.6979 23.6007i 0.640772 0.767731i
\(946\) 10.0726 + 2.55705i 0.327489 + 0.0831370i
\(947\) 8.19688i 0.266363i −0.991092 0.133181i \(-0.957481\pi\)
0.991092 0.133181i \(-0.0425193\pi\)
\(948\) 33.7875 17.4598i 1.09737 0.567067i
\(949\) 9.11276i 0.295813i
\(950\) −1.00714 16.4591i −0.0326759 0.534003i
\(951\) 44.0328 + 29.9062i 1.42786 + 0.969777i
\(952\) −17.2349 + 25.6438i −0.558585 + 0.831119i
\(953\) 16.6673 0.539906 0.269953 0.962873i \(-0.412992\pi\)
0.269953 + 0.962873i \(0.412992\pi\)
\(954\) 10.4932 1.36069i 0.339731 0.0440541i
\(955\) 24.8188 + 18.1162i 0.803119 + 0.586225i
\(956\) −18.7065 + 34.4694i −0.605012 + 1.11482i
\(957\) −14.7771 + 21.7572i −0.477675 + 0.703311i
\(958\) −21.8656 5.55084i −0.706444 0.179339i
\(959\) 48.3629 7.51152i 1.56172 0.242560i
\(960\) −28.2558 + 12.7126i −0.911952 + 0.410296i
\(961\) −59.0043 −1.90337
\(962\) −2.86854 + 11.2996i −0.0924854 + 0.364313i
\(963\) −6.98621 + 2.77067i −0.225127 + 0.0892835i
\(964\) −23.1100 + 42.5835i −0.744324 + 1.37152i
\(965\) −23.2327 16.9584i −0.747887 0.545910i
\(966\) 0.403034 0.487194i 0.0129674 0.0156752i
\(967\) 13.9782i 0.449509i 0.974415 + 0.224754i \(0.0721580\pi\)
−0.974415 + 0.224754i \(0.927842\pi\)
\(968\) 14.4751 + 13.3727i 0.465247 + 0.429813i
\(969\) 13.7959 + 9.36993i 0.443189 + 0.301006i
\(970\) −23.5256 + 19.4819i −0.755362 + 0.625526i
\(971\) 34.0060i 1.09130i 0.838012 + 0.545652i \(0.183718\pi\)
−0.838012 + 0.545652i \(0.816282\pi\)
\(972\) −10.3591 + 29.4056i −0.332269 + 0.943185i
\(973\) −1.79181 + 0.278296i −0.0574428 + 0.00892177i
\(974\) 2.93147 11.5475i 0.0939305 0.370006i
\(975\) −3.25974 + 11.0488i −0.104395 + 0.353845i
\(976\) −24.6744 37.9623i −0.789808 1.21514i
\(977\) 24.4774 0.783101 0.391550 0.920157i \(-0.371939\pi\)
0.391550 + 0.920157i \(0.371939\pi\)
\(978\) 19.4508 17.2523i 0.621967 0.551667i
\(979\) −26.9763 −0.862166
\(980\) −22.8797 + 21.3663i −0.730864 + 0.682523i
\(981\) 40.4127 16.0273i 1.29028 0.511712i
\(982\) 23.2593 + 5.90465i 0.742233 + 0.188425i
\(983\) 27.1165i 0.864881i 0.901663 + 0.432440i \(0.142347\pi\)
−0.901663 + 0.432440i \(0.857653\pi\)
\(984\) −28.0707 + 6.52372i −0.894862 + 0.207969i
\(985\) −46.1876 33.7140i −1.47166 1.07422i
\(986\) −10.8641 + 42.7954i −0.345984 + 1.36288i
\(987\) −32.2642 15.2893i −1.02698 0.486663i
\(988\) −2.95920 + 5.45275i −0.0941448 + 0.173475i
\(989\) −0.357017 −0.0113525
\(990\) 16.7042 + 9.15990i 0.530895 + 0.291121i
\(991\) 37.8179 1.20133 0.600663 0.799502i \(-0.294903\pi\)
0.600663 + 0.799502i \(0.294903\pi\)
\(992\) −50.8103 + 17.2759i −1.61323 + 0.548509i
\(993\) −29.1233 19.7800i −0.924202 0.627700i
\(994\) 3.13842 33.1028i 0.0995446 1.04996i
\(995\) −30.9158 22.5666i −0.980097 0.715408i
\(996\) −31.2816 + 16.1649i −0.991197 + 0.512204i
\(997\) 28.4532i 0.901122i −0.892746 0.450561i \(-0.851224\pi\)
0.892746 0.450561i \(-0.148776\pi\)
\(998\) −12.0614 + 47.5117i −0.381798 + 1.50396i
\(999\) −31.4325 6.99763i −0.994480 0.221395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.e.629.3 yes 160
3.2 odd 2 inner 840.2.u.e.629.157 yes 160
5.4 even 2 inner 840.2.u.e.629.158 yes 160
7.6 odd 2 inner 840.2.u.e.629.2 yes 160
8.5 even 2 inner 840.2.u.e.629.6 yes 160
15.14 odd 2 inner 840.2.u.e.629.4 yes 160
21.20 even 2 inner 840.2.u.e.629.160 yes 160
24.5 odd 2 inner 840.2.u.e.629.156 yes 160
35.34 odd 2 inner 840.2.u.e.629.159 yes 160
40.29 even 2 inner 840.2.u.e.629.155 yes 160
56.13 odd 2 inner 840.2.u.e.629.7 yes 160
105.104 even 2 inner 840.2.u.e.629.1 160
120.29 odd 2 inner 840.2.u.e.629.5 yes 160
168.125 even 2 inner 840.2.u.e.629.153 yes 160
280.69 odd 2 inner 840.2.u.e.629.154 yes 160
840.629 even 2 inner 840.2.u.e.629.8 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.e.629.1 160 105.104 even 2 inner
840.2.u.e.629.2 yes 160 7.6 odd 2 inner
840.2.u.e.629.3 yes 160 1.1 even 1 trivial
840.2.u.e.629.4 yes 160 15.14 odd 2 inner
840.2.u.e.629.5 yes 160 120.29 odd 2 inner
840.2.u.e.629.6 yes 160 8.5 even 2 inner
840.2.u.e.629.7 yes 160 56.13 odd 2 inner
840.2.u.e.629.8 yes 160 840.629 even 2 inner
840.2.u.e.629.153 yes 160 168.125 even 2 inner
840.2.u.e.629.154 yes 160 280.69 odd 2 inner
840.2.u.e.629.155 yes 160 40.29 even 2 inner
840.2.u.e.629.156 yes 160 24.5 odd 2 inner
840.2.u.e.629.157 yes 160 3.2 odd 2 inner
840.2.u.e.629.158 yes 160 5.4 even 2 inner
840.2.u.e.629.159 yes 160 35.34 odd 2 inner
840.2.u.e.629.160 yes 160 21.20 even 2 inner