Properties

Label 840.2.u.e.629.158
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $160$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [160,0,0,-24,0,0,0,0,-32,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(160\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 629.158
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.e.629.153

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37073 + 0.347977i) q^{2} +(-0.973146 + 1.43282i) q^{3} +(1.75782 + 0.953969i) q^{4} +(1.31834 + 1.80610i) q^{5} +(-1.83252 + 1.62539i) q^{6} +(-2.61441 + 0.406058i) q^{7} +(2.07755 + 1.91932i) q^{8} +(-1.10597 - 2.78870i) q^{9} +(1.17861 + 2.93443i) q^{10} -2.00814 q^{11} +(-3.07749 + 1.59030i) q^{12} +1.33017i q^{13} +(-3.72495 - 0.353156i) q^{14} +(-3.87076 + 0.131346i) q^{15} +(2.17989 + 3.35382i) q^{16} +4.12882i q^{17} +(-0.545590 - 4.20741i) q^{18} -2.33202 q^{19} +(0.594440 + 4.43245i) q^{20} +(1.96239 - 4.14114i) q^{21} +(-2.75262 - 0.698786i) q^{22} +0.0975649 q^{23} +(-4.77181 + 1.10898i) q^{24} +(-1.52398 + 4.76209i) q^{25} +(-0.462871 + 1.82332i) q^{26} +(5.07198 + 1.12915i) q^{27} +(-4.98303 - 1.78028i) q^{28} +7.56166 q^{29} +(-5.35148 - 1.16690i) q^{30} -9.48706i q^{31} +(1.82099 + 5.35574i) q^{32} +(1.95421 - 2.87731i) q^{33} +(-1.43674 + 5.65952i) q^{34} +(-4.18005 - 4.18655i) q^{35} +(0.716226 - 5.95710i) q^{36} -6.19728 q^{37} +(-3.19658 - 0.811490i) q^{38} +(-1.90591 - 1.29445i) q^{39} +(-0.727575 + 6.28257i) q^{40} +5.88262 q^{41} +(4.13094 - 4.99353i) q^{42} -3.65928 q^{43} +(-3.52995 - 1.91570i) q^{44} +(3.57862 - 5.67393i) q^{45} +(0.133736 + 0.0339504i) q^{46} +7.79115i q^{47} +(-6.92678 - 0.140362i) q^{48} +(6.67023 - 2.12320i) q^{49} +(-3.74607 + 5.99724i) q^{50} +(-5.91588 - 4.01795i) q^{51} +(-1.26895 + 2.33821i) q^{52} +2.49399i q^{53} +(6.55942 + 3.31270i) q^{54} +(-2.64740 - 3.62689i) q^{55} +(-6.21091 - 4.17428i) q^{56} +(2.26939 - 3.34137i) q^{57} +(10.3650 + 2.63129i) q^{58} -1.86318i q^{59} +(-6.92940 - 3.46170i) q^{60} -11.3191 q^{61} +(3.30128 - 13.0042i) q^{62} +(4.02383 + 6.84169i) q^{63} +(0.632417 + 7.97496i) q^{64} +(-2.40243 + 1.75362i) q^{65} +(3.67994 - 3.26400i) q^{66} +7.33230 q^{67} +(-3.93877 + 7.25774i) q^{68} +(-0.0949450 + 0.139793i) q^{69} +(-4.27291 - 7.19321i) q^{70} +8.88677i q^{71} +(3.05469 - 7.91637i) q^{72} +6.85080 q^{73} +(-8.49482 - 2.15651i) q^{74} +(-5.34018 - 6.81781i) q^{75} +(-4.09928 - 2.22467i) q^{76} +(5.25008 - 0.815421i) q^{77} +(-2.16205 - 2.43757i) q^{78} +10.9789 q^{79} +(-3.18350 + 8.35855i) q^{80} +(-6.55365 + 6.16844i) q^{81} +(8.06351 + 2.04702i) q^{82} +10.1647 q^{83} +(7.40005 - 5.40733i) q^{84} +(-7.45706 + 5.44318i) q^{85} +(-5.01590 - 1.27335i) q^{86} +(-7.35861 + 10.8345i) q^{87} +(-4.17200 - 3.85426i) q^{88} +13.4335 q^{89} +(6.87973 - 6.53217i) q^{90} +(-0.540128 - 3.47762i) q^{91} +(0.171502 + 0.0930739i) q^{92} +(13.5933 + 9.23230i) q^{93} +(-2.71114 + 10.6796i) q^{94} +(-3.07438 - 4.21185i) q^{95} +(-9.44593 - 2.60276i) q^{96} +9.65918 q^{97} +(9.88194 - 0.589255i) q^{98} +(2.22094 + 5.60008i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q - 24 q^{4} - 32 q^{9} - 48 q^{15} - 104 q^{16} - 16 q^{25} - 32 q^{30} + 48 q^{36} - 64 q^{39} - 64 q^{46} + 144 q^{49} + 16 q^{60} - 72 q^{64} + 8 q^{70} - 96 q^{79} + 16 q^{81} - 72 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37073 + 0.347977i 0.969255 + 0.246057i
\(3\) −0.973146 + 1.43282i −0.561846 + 0.827242i
\(4\) 1.75782 + 0.953969i 0.878912 + 0.476984i
\(5\) 1.31834 + 1.80610i 0.589578 + 0.807712i
\(6\) −1.83252 + 1.62539i −0.748121 + 0.663562i
\(7\) −2.61441 + 0.406058i −0.988152 + 0.153476i
\(8\) 2.07755 + 1.91932i 0.734524 + 0.678582i
\(9\) −1.10597 2.78870i −0.368657 0.929565i
\(10\) 1.17861 + 2.93443i 0.372708 + 0.927949i
\(11\) −2.00814 −0.605476 −0.302738 0.953074i \(-0.597901\pi\)
−0.302738 + 0.953074i \(0.597901\pi\)
\(12\) −3.07749 + 1.59030i −0.888395 + 0.459080i
\(13\) 1.33017i 0.368924i 0.982840 + 0.184462i \(0.0590543\pi\)
−0.982840 + 0.184462i \(0.940946\pi\)
\(14\) −3.72495 0.353156i −0.995536 0.0943849i
\(15\) −3.87076 + 0.131346i −0.999425 + 0.0339133i
\(16\) 2.17989 + 3.35382i 0.544972 + 0.838455i
\(17\) 4.12882i 1.00139i 0.865625 + 0.500693i \(0.166922\pi\)
−0.865625 + 0.500693i \(0.833078\pi\)
\(18\) −0.545590 4.20741i −0.128597 0.991697i
\(19\) −2.33202 −0.535002 −0.267501 0.963558i \(-0.586198\pi\)
−0.267501 + 0.963558i \(0.586198\pi\)
\(20\) 0.594440 + 4.43245i 0.132921 + 0.991127i
\(21\) 1.96239 4.14114i 0.428228 0.903671i
\(22\) −2.75262 0.698786i −0.586861 0.148982i
\(23\) 0.0975649 0.0203437 0.0101718 0.999948i \(-0.496762\pi\)
0.0101718 + 0.999948i \(0.496762\pi\)
\(24\) −4.77181 + 1.10898i −0.974041 + 0.226370i
\(25\) −1.52398 + 4.76209i −0.304796 + 0.952418i
\(26\) −0.462871 + 1.82332i −0.0907764 + 0.357582i
\(27\) 5.07198 + 1.12915i 0.976104 + 0.217304i
\(28\) −4.98303 1.78028i −0.941704 0.336442i
\(29\) 7.56166 1.40417 0.702083 0.712095i \(-0.252254\pi\)
0.702083 + 0.712095i \(0.252254\pi\)
\(30\) −5.35148 1.16690i −0.977042 0.213045i
\(31\) 9.48706i 1.70393i −0.523602 0.851963i \(-0.675412\pi\)
0.523602 0.851963i \(-0.324588\pi\)
\(32\) 1.82099 + 5.35574i 0.321909 + 0.946771i
\(33\) 1.95421 2.87731i 0.340184 0.500875i
\(34\) −1.43674 + 5.65952i −0.246398 + 0.970600i
\(35\) −4.18005 4.18655i −0.706557 0.707656i
\(36\) 0.716226 5.95710i 0.119371 0.992850i
\(37\) −6.19728 −1.01883 −0.509413 0.860522i \(-0.670137\pi\)
−0.509413 + 0.860522i \(0.670137\pi\)
\(38\) −3.19658 0.811490i −0.518553 0.131641i
\(39\) −1.90591 1.29445i −0.305189 0.207279i
\(40\) −0.727575 + 6.28257i −0.115040 + 0.993361i
\(41\) 5.88262 0.918711 0.459355 0.888253i \(-0.348080\pi\)
0.459355 + 0.888253i \(0.348080\pi\)
\(42\) 4.13094 4.99353i 0.637417 0.770519i
\(43\) −3.65928 −0.558035 −0.279017 0.960286i \(-0.590009\pi\)
−0.279017 + 0.960286i \(0.590009\pi\)
\(44\) −3.52995 1.91570i −0.532160 0.288803i
\(45\) 3.57862 5.67393i 0.533469 0.845820i
\(46\) 0.133736 + 0.0339504i 0.0197182 + 0.00500571i
\(47\) 7.79115i 1.13646i 0.822871 + 0.568228i \(0.192371\pi\)
−0.822871 + 0.568228i \(0.807629\pi\)
\(48\) −6.92678 0.140362i −0.999795 0.0202595i
\(49\) 6.67023 2.12320i 0.952890 0.303315i
\(50\) −3.74607 + 5.99724i −0.529775 + 0.848138i
\(51\) −5.91588 4.01795i −0.828389 0.562626i
\(52\) −1.26895 + 2.33821i −0.175971 + 0.324252i
\(53\) 2.49399i 0.342576i 0.985221 + 0.171288i \(0.0547928\pi\)
−0.985221 + 0.171288i \(0.945207\pi\)
\(54\) 6.55942 + 3.31270i 0.892625 + 0.450801i
\(55\) −2.64740 3.62689i −0.356975 0.489050i
\(56\) −6.21091 4.17428i −0.829968 0.557811i
\(57\) 2.26939 3.34137i 0.300589 0.442576i
\(58\) 10.3650 + 2.63129i 1.36100 + 0.345505i
\(59\) 1.86318i 0.242565i −0.992618 0.121282i \(-0.961299\pi\)
0.992618 0.121282i \(-0.0387007\pi\)
\(60\) −6.92940 3.46170i −0.894582 0.446903i
\(61\) −11.3191 −1.44926 −0.724632 0.689136i \(-0.757990\pi\)
−0.724632 + 0.689136i \(0.757990\pi\)
\(62\) 3.30128 13.0042i 0.419263 1.65154i
\(63\) 4.02383 + 6.84169i 0.506955 + 0.861972i
\(64\) 0.632417 + 7.97496i 0.0790521 + 0.996870i
\(65\) −2.40243 + 1.75362i −0.297984 + 0.217509i
\(66\) 3.67994 3.26400i 0.452969 0.401771i
\(67\) 7.33230 0.895783 0.447892 0.894088i \(-0.352175\pi\)
0.447892 + 0.894088i \(0.352175\pi\)
\(68\) −3.93877 + 7.25774i −0.477646 + 0.880131i
\(69\) −0.0949450 + 0.139793i −0.0114300 + 0.0168291i
\(70\) −4.27291 7.19321i −0.510710 0.859753i
\(71\) 8.88677i 1.05467i 0.849659 + 0.527333i \(0.176808\pi\)
−0.849659 + 0.527333i \(0.823192\pi\)
\(72\) 3.05469 7.91637i 0.359999 0.932953i
\(73\) 6.85080 0.801825 0.400913 0.916116i \(-0.368693\pi\)
0.400913 + 0.916116i \(0.368693\pi\)
\(74\) −8.49482 2.15651i −0.987503 0.250690i
\(75\) −5.34018 6.81781i −0.616631 0.787253i
\(76\) −4.09928 2.22467i −0.470219 0.255187i
\(77\) 5.25008 0.815421i 0.598303 0.0929258i
\(78\) −2.16205 2.43757i −0.244804 0.276000i
\(79\) 10.9789 1.23522 0.617612 0.786483i \(-0.288100\pi\)
0.617612 + 0.786483i \(0.288100\pi\)
\(80\) −3.18350 + 8.35855i −0.355926 + 0.934514i
\(81\) −6.55365 + 6.16844i −0.728184 + 0.685382i
\(82\) 8.06351 + 2.04702i 0.890465 + 0.226055i
\(83\) 10.1647 1.11572 0.557858 0.829936i \(-0.311623\pi\)
0.557858 + 0.829936i \(0.311623\pi\)
\(84\) 7.40005 5.40733i 0.807412 0.589988i
\(85\) −7.45706 + 5.44318i −0.808832 + 0.590395i
\(86\) −5.01590 1.27335i −0.540878 0.137308i
\(87\) −7.35861 + 10.8345i −0.788925 + 1.16158i
\(88\) −4.17200 3.85426i −0.444737 0.410865i
\(89\) 13.4335 1.42395 0.711974 0.702206i \(-0.247802\pi\)
0.711974 + 0.702206i \(0.247802\pi\)
\(90\) 6.87973 6.53217i 0.725187 0.688552i
\(91\) −0.540128 3.47762i −0.0566209 0.364553i
\(92\) 0.171502 + 0.0930739i 0.0178803 + 0.00970363i
\(93\) 13.5933 + 9.23230i 1.40956 + 0.957345i
\(94\) −2.71114 + 10.6796i −0.279633 + 1.10152i
\(95\) −3.07438 4.21185i −0.315425 0.432127i
\(96\) −9.44593 2.60276i −0.964071 0.265643i
\(97\) 9.65918 0.980742 0.490371 0.871514i \(-0.336861\pi\)
0.490371 + 0.871514i \(0.336861\pi\)
\(98\) 9.88194 0.589255i 0.998227 0.0595238i
\(99\) 2.22094 + 5.60008i 0.223213 + 0.562829i
\(100\) −7.22177 + 6.91708i −0.722177 + 0.691708i
\(101\) 15.6655i 1.55878i −0.626539 0.779390i \(-0.715529\pi\)
0.626539 0.779390i \(-0.284471\pi\)
\(102\) −6.71094 7.56613i −0.664482 0.749159i
\(103\) −8.59402 −0.846794 −0.423397 0.905944i \(-0.639162\pi\)
−0.423397 + 0.905944i \(0.639162\pi\)
\(104\) −2.55303 + 2.76350i −0.250345 + 0.270984i
\(105\) 10.0664 1.91514i 0.982379 0.186899i
\(106\) −0.867851 + 3.41859i −0.0842932 + 0.332043i
\(107\) 2.50519i 0.242186i 0.992641 + 0.121093i \(0.0386399\pi\)
−0.992641 + 0.121093i \(0.961360\pi\)
\(108\) 7.83848 + 6.82336i 0.754258 + 0.656578i
\(109\) 14.4916i 1.38804i 0.719954 + 0.694022i \(0.244163\pi\)
−0.719954 + 0.694022i \(0.755837\pi\)
\(110\) −2.36680 5.89274i −0.225666 0.561851i
\(111\) 6.03086 8.87961i 0.572424 0.842815i
\(112\) −7.06095 7.88308i −0.667197 0.744881i
\(113\) 14.2102 1.33678 0.668390 0.743811i \(-0.266984\pi\)
0.668390 + 0.743811i \(0.266984\pi\)
\(114\) 4.27346 3.79043i 0.400246 0.355007i
\(115\) 0.128623 + 0.176212i 0.0119942 + 0.0164318i
\(116\) 13.2921 + 7.21359i 1.23414 + 0.669765i
\(117\) 3.70945 1.47114i 0.342939 0.136007i
\(118\) 0.648343 2.55392i 0.0596848 0.235107i
\(119\) −1.67654 10.7944i −0.153689 0.989523i
\(120\) −8.29378 7.15634i −0.757115 0.653282i
\(121\) −6.96739 −0.633399
\(122\) −15.5155 3.93880i −1.40471 0.356602i
\(123\) −5.72465 + 8.42876i −0.516174 + 0.759996i
\(124\) 9.05036 16.6766i 0.812747 1.49760i
\(125\) −10.6099 + 3.52557i −0.948980 + 0.315337i
\(126\) 3.13485 + 10.7783i 0.279275 + 0.960211i
\(127\) 1.45342i 0.128970i −0.997919 0.0644849i \(-0.979460\pi\)
0.997919 0.0644849i \(-0.0205404\pi\)
\(128\) −1.90823 + 11.1516i −0.168665 + 0.985673i
\(129\) 3.56101 5.24310i 0.313530 0.461629i
\(130\) −3.90331 + 1.56775i −0.342343 + 0.137501i
\(131\) 1.87492i 0.163813i −0.996640 0.0819064i \(-0.973899\pi\)
0.996640 0.0819064i \(-0.0261009\pi\)
\(132\) 6.18002 3.19354i 0.537902 0.277962i
\(133\) 6.09684 0.946935i 0.528663 0.0821097i
\(134\) 10.0506 + 2.55148i 0.868243 + 0.220414i
\(135\) 4.64723 + 10.6491i 0.399970 + 0.916528i
\(136\) −7.92454 + 8.57783i −0.679523 + 0.735543i
\(137\) −18.4986 −1.58044 −0.790222 0.612821i \(-0.790035\pi\)
−0.790222 + 0.612821i \(0.790035\pi\)
\(138\) −0.178789 + 0.158581i −0.0152196 + 0.0134993i
\(139\) −0.685361 −0.0581315 −0.0290658 0.999578i \(-0.509253\pi\)
−0.0290658 + 0.999578i \(0.509253\pi\)
\(140\) −3.35394 11.3469i −0.283460 0.958984i
\(141\) −11.1633 7.58193i −0.940124 0.638514i
\(142\) −3.09240 + 12.1814i −0.259508 + 1.02224i
\(143\) 2.67117i 0.223375i
\(144\) 6.94189 9.78827i 0.578491 0.815689i
\(145\) 9.96881 + 13.6571i 0.827865 + 1.13416i
\(146\) 9.39062 + 2.38392i 0.777174 + 0.197295i
\(147\) −3.44894 + 11.6235i −0.284464 + 0.958687i
\(148\) −10.8937 5.91201i −0.895458 0.485964i
\(149\) −2.34916 −0.192450 −0.0962252 0.995360i \(-0.530677\pi\)
−0.0962252 + 0.995360i \(0.530677\pi\)
\(150\) −4.94752 11.2037i −0.403963 0.914775i
\(151\) −8.32682 −0.677627 −0.338814 0.940853i \(-0.610026\pi\)
−0.338814 + 0.940853i \(0.610026\pi\)
\(152\) −4.84488 4.47589i −0.392972 0.363043i
\(153\) 11.5140 4.56636i 0.930855 0.369169i
\(154\) 7.48022 + 0.709186i 0.602773 + 0.0571478i
\(155\) 17.1346 12.5071i 1.37628 1.00460i
\(156\) −2.11538 4.09360i −0.169366 0.327750i
\(157\) 14.0657i 1.12256i −0.827625 0.561281i \(-0.810309\pi\)
0.827625 0.561281i \(-0.189691\pi\)
\(158\) 15.0492 + 3.82041i 1.19725 + 0.303936i
\(159\) −3.57345 2.42702i −0.283393 0.192475i
\(160\) −7.27232 + 10.3496i −0.574927 + 0.818204i
\(161\) −0.255074 + 0.0396171i −0.0201027 + 0.00312226i
\(162\) −11.1298 + 6.17477i −0.874439 + 0.485135i
\(163\) 10.6143 0.831372 0.415686 0.909508i \(-0.363541\pi\)
0.415686 + 0.909508i \(0.363541\pi\)
\(164\) 10.3406 + 5.61184i 0.807466 + 0.438211i
\(165\) 7.77301 0.263760i 0.605128 0.0205337i
\(166\) 13.9330 + 3.53707i 1.08141 + 0.274530i
\(167\) 0.462349i 0.0357776i 0.999840 + 0.0178888i \(0.00569449\pi\)
−0.999840 + 0.0178888i \(0.994306\pi\)
\(168\) 12.0251 4.83696i 0.927759 0.373180i
\(169\) 11.2306 0.863895
\(170\) −12.1158 + 4.86626i −0.929236 + 0.373225i
\(171\) 2.57915 + 6.50329i 0.197232 + 0.497319i
\(172\) −6.43236 3.49084i −0.490463 0.266174i
\(173\) 3.85404 0.293017 0.146508 0.989209i \(-0.453196\pi\)
0.146508 + 0.989209i \(0.453196\pi\)
\(174\) −13.8569 + 12.2906i −1.05049 + 0.931751i
\(175\) 2.05062 13.0689i 0.155012 0.987913i
\(176\) −4.37751 6.73492i −0.329967 0.507664i
\(177\) 2.66960 + 1.81314i 0.200660 + 0.136284i
\(178\) 18.4137 + 4.67455i 1.38017 + 0.350372i
\(179\) 13.7858 1.03040 0.515199 0.857070i \(-0.327718\pi\)
0.515199 + 0.857070i \(0.327718\pi\)
\(180\) 11.7033 6.55988i 0.872315 0.488945i
\(181\) 23.4970 1.74652 0.873260 0.487254i \(-0.162001\pi\)
0.873260 + 0.487254i \(0.162001\pi\)
\(182\) 0.469759 4.95484i 0.0348209 0.367277i
\(183\) 11.0152 16.2183i 0.814264 1.19889i
\(184\) 0.202696 + 0.187258i 0.0149429 + 0.0138049i
\(185\) −8.17009 11.1929i −0.600677 0.822918i
\(186\) 15.4202 + 17.3852i 1.13066 + 1.27474i
\(187\) 8.29124i 0.606316i
\(188\) −7.43251 + 13.6955i −0.542072 + 0.998844i
\(189\) −13.7187 0.892524i −0.997890 0.0649216i
\(190\) −2.74853 6.84315i −0.199399 0.496454i
\(191\) 13.7417i 0.994314i −0.867661 0.497157i \(-0.834377\pi\)
0.867661 0.497157i \(-0.165623\pi\)
\(192\) −12.0422 6.85467i −0.869068 0.494693i
\(193\) 12.8635i 0.925933i −0.886376 0.462967i \(-0.846785\pi\)
0.886376 0.462967i \(-0.153215\pi\)
\(194\) 13.2402 + 3.36118i 0.950589 + 0.241319i
\(195\) −0.174713 5.14878i −0.0125114 0.368712i
\(196\) 13.7506 + 2.63098i 0.982183 + 0.187927i
\(197\) 25.5732i 1.82201i −0.412392 0.911006i \(-0.635307\pi\)
0.412392 0.911006i \(-0.364693\pi\)
\(198\) 1.09562 + 8.44906i 0.0778623 + 0.600449i
\(199\) 17.1175i 1.21342i 0.794921 + 0.606712i \(0.207512\pi\)
−0.794921 + 0.606712i \(0.792488\pi\)
\(200\) −12.3061 + 6.96846i −0.870174 + 0.492745i
\(201\) −7.13540 + 10.5059i −0.503293 + 0.741029i
\(202\) 5.45126 21.4733i 0.383549 1.51086i
\(203\) −19.7693 + 3.07048i −1.38753 + 0.215505i
\(204\) −6.56607 12.7064i −0.459717 0.889627i
\(205\) 7.75527 + 10.6246i 0.541651 + 0.742053i
\(206\) −11.7801 2.99053i −0.820760 0.208360i
\(207\) −0.107904 0.272079i −0.00749985 0.0189108i
\(208\) −4.46116 + 2.89963i −0.309326 + 0.201053i
\(209\) 4.68301 0.323931
\(210\) 14.4648 + 0.877724i 0.998164 + 0.0605687i
\(211\) 17.3613i 1.19520i −0.801795 0.597599i \(-0.796121\pi\)
0.801795 0.597599i \(-0.203879\pi\)
\(212\) −2.37919 + 4.38399i −0.163403 + 0.301094i
\(213\) −12.7332 8.64813i −0.872463 0.592560i
\(214\) −0.871749 + 3.43395i −0.0595915 + 0.234740i
\(215\) −4.82416 6.60901i −0.329005 0.450731i
\(216\) 8.37010 + 12.0806i 0.569513 + 0.821982i
\(217\) 3.85230 + 24.8030i 0.261511 + 1.68374i
\(218\) −5.04275 + 19.8641i −0.341538 + 1.34537i
\(219\) −6.66683 + 9.81599i −0.450503 + 0.663303i
\(220\) −1.19372 8.90097i −0.0804804 0.600103i
\(221\) −5.49206 −0.369436
\(222\) 11.3566 10.0730i 0.762206 0.676054i
\(223\) −6.52959 −0.437253 −0.218627 0.975809i \(-0.570158\pi\)
−0.218627 + 0.975809i \(0.570158\pi\)
\(224\) −6.93555 13.2627i −0.463401 0.886149i
\(225\) 14.9655 1.01681i 0.997700 0.0677876i
\(226\) 19.4784 + 4.94482i 1.29568 + 0.328924i
\(227\) 12.4592 0.826949 0.413474 0.910516i \(-0.364315\pi\)
0.413474 + 0.910516i \(0.364315\pi\)
\(228\) 7.17676 3.70861i 0.475293 0.245609i
\(229\) −3.65759 −0.241701 −0.120850 0.992671i \(-0.538562\pi\)
−0.120850 + 0.992671i \(0.538562\pi\)
\(230\) 0.114991 + 0.286298i 0.00758226 + 0.0188779i
\(231\) −3.94075 + 8.31597i −0.259282 + 0.547151i
\(232\) 15.7097 + 14.5133i 1.03139 + 0.952842i
\(233\) 1.23863 0.0811454 0.0405727 0.999177i \(-0.487082\pi\)
0.0405727 + 0.999177i \(0.487082\pi\)
\(234\) 5.59659 0.725730i 0.365861 0.0474424i
\(235\) −14.0716 + 10.2714i −0.917929 + 0.670029i
\(236\) 1.77741 3.27513i 0.115700 0.213193i
\(237\) −10.6841 + 15.7309i −0.694006 + 1.02183i
\(238\) 1.45812 15.3797i 0.0945159 0.996917i
\(239\) 19.6091i 1.26841i 0.773165 + 0.634205i \(0.218672\pi\)
−0.773165 + 0.634205i \(0.781328\pi\)
\(240\) −8.87832 12.6955i −0.573093 0.819490i
\(241\) 24.2251i 1.56048i 0.625482 + 0.780239i \(0.284902\pi\)
−0.625482 + 0.780239i \(0.715098\pi\)
\(242\) −9.55043 2.42449i −0.613925 0.155852i
\(243\) −2.46063 15.3930i −0.157849 0.987463i
\(244\) −19.8970 10.7981i −1.27378 0.691277i
\(245\) 12.6283 + 9.24800i 0.806794 + 0.590833i
\(246\) −10.7800 + 9.56154i −0.687307 + 0.609621i
\(247\) 3.10199i 0.197375i
\(248\) 18.2087 19.7098i 1.15625 1.25158i
\(249\) −9.89171 + 14.5642i −0.626861 + 0.922967i
\(250\) −15.7702 + 1.14061i −0.997395 + 0.0721384i
\(251\) 14.6425i 0.924229i 0.886820 + 0.462115i \(0.152909\pi\)
−0.886820 + 0.462115i \(0.847091\pi\)
\(252\) 0.546424 + 15.8651i 0.0344215 + 0.999407i
\(253\) −0.195924 −0.0123176
\(254\) 0.505756 1.99225i 0.0317339 0.125005i
\(255\) −0.542304 15.9817i −0.0339604 1.00081i
\(256\) −6.49619 + 14.6219i −0.406012 + 0.913868i
\(257\) 15.8068i 0.986002i −0.870029 0.493001i \(-0.835900\pi\)
0.870029 0.493001i \(-0.164100\pi\)
\(258\) 6.70568 5.94775i 0.417478 0.370291i
\(259\) 16.2022 2.51646i 1.00676 0.156365i
\(260\) −5.89594 + 0.790709i −0.365650 + 0.0490377i
\(261\) −8.36299 21.0872i −0.517656 1.30526i
\(262\) 0.652431 2.57002i 0.0403073 0.158777i
\(263\) −14.2549 −0.878997 −0.439499 0.898243i \(-0.644844\pi\)
−0.439499 + 0.898243i \(0.644844\pi\)
\(264\) 9.58244 2.22699i 0.589759 0.137062i
\(265\) −4.50439 + 3.28791i −0.276702 + 0.201975i
\(266\) 8.68666 + 0.823566i 0.532613 + 0.0504961i
\(267\) −13.0728 + 19.2478i −0.800040 + 1.17795i
\(268\) 12.8889 + 6.99479i 0.787314 + 0.427275i
\(269\) 9.33525i 0.569180i −0.958649 0.284590i \(-0.908142\pi\)
0.958649 0.284590i \(-0.0918575\pi\)
\(270\) 2.66447 + 16.2142i 0.162155 + 0.986765i
\(271\) 0.207201i 0.0125865i 0.999980 + 0.00629327i \(0.00200322\pi\)
−0.999980 + 0.00629327i \(0.997997\pi\)
\(272\) −13.8473 + 9.00037i −0.839617 + 0.545727i
\(273\) 5.50844 + 2.61032i 0.333386 + 0.157984i
\(274\) −25.3567 6.43710i −1.53185 0.388880i
\(275\) 3.06036 9.56292i 0.184547 0.576666i
\(276\) −0.300255 + 0.155158i −0.0180732 + 0.00933939i
\(277\) −28.6571 −1.72184 −0.860918 0.508744i \(-0.830110\pi\)
−0.860918 + 0.508744i \(0.830110\pi\)
\(278\) −0.939447 0.238490i −0.0563443 0.0143037i
\(279\) −26.4565 + 10.4924i −1.58391 + 0.628165i
\(280\) −0.648913 16.7206i −0.0387800 0.999248i
\(281\) 3.11015i 0.185536i −0.995688 0.0927681i \(-0.970428\pi\)
0.995688 0.0927681i \(-0.0295715\pi\)
\(282\) −12.6636 14.2774i −0.754109 0.850207i
\(283\) 20.5801i 1.22336i 0.791106 + 0.611679i \(0.209505\pi\)
−0.791106 + 0.611679i \(0.790495\pi\)
\(284\) −8.47770 + 15.6214i −0.503059 + 0.926958i
\(285\) 9.02667 0.306301i 0.534694 0.0181437i
\(286\) 0.929508 3.66147i 0.0549629 0.216507i
\(287\) −15.3796 + 2.38869i −0.907826 + 0.141000i
\(288\) 12.9216 11.0015i 0.761411 0.648269i
\(289\) −0.0471902 −0.00277589
\(290\) 8.91222 + 22.1892i 0.523344 + 1.30299i
\(291\) −9.39980 + 13.8399i −0.551026 + 0.811310i
\(292\) 12.0425 + 6.53545i 0.704734 + 0.382458i
\(293\) −11.9389 −0.697476 −0.348738 0.937220i \(-0.613390\pi\)
−0.348738 + 0.937220i \(0.613390\pi\)
\(294\) −8.77228 + 14.7325i −0.511610 + 0.859218i
\(295\) 3.36508 2.45629i 0.195922 0.143011i
\(296\) −12.8751 11.8946i −0.748353 0.691357i
\(297\) −10.1852 2.26748i −0.591007 0.131573i
\(298\) −3.22007 0.817453i −0.186534 0.0473538i
\(299\) 0.129778i 0.00750528i
\(300\) −2.88312 17.0789i −0.166457 0.986049i
\(301\) 9.56684 1.48588i 0.551423 0.0856447i
\(302\) −11.4139 2.89755i −0.656794 0.166735i
\(303\) 22.4460 + 15.2449i 1.28949 + 0.875795i
\(304\) −5.08353 7.82116i −0.291561 0.448574i
\(305\) −14.9224 20.4434i −0.854454 1.17059i
\(306\) 17.3717 2.25265i 0.993072 0.128775i
\(307\) 7.70581i 0.439794i 0.975523 + 0.219897i \(0.0705721\pi\)
−0.975523 + 0.219897i \(0.929428\pi\)
\(308\) 10.0066 + 3.57505i 0.570179 + 0.203707i
\(309\) 8.36324 12.3137i 0.475768 0.700503i
\(310\) 27.8391 11.1815i 1.58116 0.635067i
\(311\) −26.8427 −1.52211 −0.761054 0.648688i \(-0.775318\pi\)
−0.761054 + 0.648688i \(0.775318\pi\)
\(312\) −1.47514 6.34734i −0.0835134 0.359347i
\(313\) −8.20422 −0.463730 −0.231865 0.972748i \(-0.574483\pi\)
−0.231865 + 0.972748i \(0.574483\pi\)
\(314\) 4.89454 19.2803i 0.276215 1.08805i
\(315\) −7.05201 + 16.2871i −0.397336 + 0.917673i
\(316\) 19.2990 + 10.4735i 1.08565 + 0.589183i
\(317\) 30.7315i 1.72605i −0.505159 0.863026i \(-0.668566\pi\)
0.505159 0.863026i \(-0.331434\pi\)
\(318\) −4.05370 4.57027i −0.227320 0.256288i
\(319\) −15.1849 −0.850189
\(320\) −13.5698 + 11.6559i −0.758577 + 0.651584i
\(321\) −3.58949 2.43791i −0.200346 0.136071i
\(322\) −0.363425 0.0344556i −0.0202529 0.00192014i
\(323\) 9.62849i 0.535744i
\(324\) −17.4047 + 4.59105i −0.966926 + 0.255058i
\(325\) −6.33441 2.02716i −0.351370 0.112447i
\(326\) 14.5493 + 3.69352i 0.805812 + 0.204565i
\(327\) −20.7639 14.1025i −1.14825 0.779867i
\(328\) 12.2214 + 11.2906i 0.674815 + 0.623421i
\(329\) −3.16366 20.3692i −0.174418 1.12299i
\(330\) 10.7465 + 2.34329i 0.591576 + 0.128994i
\(331\) 20.3258i 1.11721i −0.829434 0.558604i \(-0.811337\pi\)
0.829434 0.558604i \(-0.188663\pi\)
\(332\) 17.8677 + 9.69677i 0.980617 + 0.532180i
\(333\) 6.85402 + 17.2823i 0.375598 + 0.947066i
\(334\) −0.160887 + 0.633758i −0.00880335 + 0.0346777i
\(335\) 9.66644 + 13.2429i 0.528134 + 0.723535i
\(336\) 18.1664 2.44572i 0.991059 0.133425i
\(337\) 8.04781i 0.438392i 0.975681 + 0.219196i \(0.0703434\pi\)
−0.975681 + 0.219196i \(0.929657\pi\)
\(338\) 15.3942 + 3.90801i 0.837335 + 0.212568i
\(339\) −13.8286 + 20.3607i −0.751065 + 1.10584i
\(340\) −18.3008 + 2.45434i −0.992501 + 0.133105i
\(341\) 19.0513i 1.03169i
\(342\) 1.27233 + 9.81176i 0.0687995 + 0.530559i
\(343\) −16.5766 + 8.25942i −0.895050 + 0.445967i
\(344\) −7.60233 7.02333i −0.409890 0.378672i
\(345\) −0.377650 + 0.0128147i −0.0203320 + 0.000689922i
\(346\) 5.28286 + 1.34112i 0.284008 + 0.0720989i
\(347\) 20.1082i 1.07946i 0.841837 + 0.539732i \(0.181475\pi\)
−0.841837 + 0.539732i \(0.818525\pi\)
\(348\) −23.2709 + 12.0253i −1.24745 + 0.644625i
\(349\) −2.29568 −0.122885 −0.0614423 0.998111i \(-0.519570\pi\)
−0.0614423 + 0.998111i \(0.519570\pi\)
\(350\) 7.35852 17.2004i 0.393329 0.919398i
\(351\) −1.50196 + 6.74662i −0.0801688 + 0.360108i
\(352\) −3.65680 10.7551i −0.194908 0.573247i
\(353\) 15.2039i 0.809221i −0.914489 0.404610i \(-0.867407\pi\)
0.914489 0.404610i \(-0.132593\pi\)
\(354\) 3.02838 + 3.41430i 0.160957 + 0.181468i
\(355\) −16.0504 + 11.7157i −0.851866 + 0.621807i
\(356\) 23.6137 + 12.8151i 1.25152 + 0.679201i
\(357\) 17.0980 + 8.10236i 0.904924 + 0.428822i
\(358\) 18.8967 + 4.79715i 0.998719 + 0.253537i
\(359\) 29.0532i 1.53337i −0.642023 0.766685i \(-0.721905\pi\)
0.642023 0.766685i \(-0.278095\pi\)
\(360\) 18.3248 4.91936i 0.965804 0.259273i
\(361\) −13.5617 −0.713773
\(362\) 32.2082 + 8.17644i 1.69282 + 0.429744i
\(363\) 6.78029 9.98304i 0.355873 0.523974i
\(364\) 2.36809 6.62830i 0.124121 0.347417i
\(365\) 9.03165 + 12.3732i 0.472738 + 0.647644i
\(366\) 20.7425 18.3980i 1.08423 0.961677i
\(367\) 7.34446 0.383378 0.191689 0.981456i \(-0.438604\pi\)
0.191689 + 0.981456i \(0.438604\pi\)
\(368\) 0.212680 + 0.327215i 0.0110867 + 0.0170573i
\(369\) −6.50601 16.4048i −0.338689 0.854002i
\(370\) −7.30415 18.1855i −0.379725 0.945418i
\(371\) −1.01270 6.52030i −0.0525770 0.338517i
\(372\) 15.0873 + 29.1963i 0.782239 + 1.51376i
\(373\) −19.5085 −1.01011 −0.505056 0.863086i \(-0.668528\pi\)
−0.505056 + 0.863086i \(0.668528\pi\)
\(374\) 2.88517 11.3651i 0.149188 0.587675i
\(375\) 5.27348 18.6330i 0.272321 0.962206i
\(376\) −14.9537 + 16.1865i −0.771179 + 0.834755i
\(377\) 10.0583i 0.518030i
\(378\) −18.4941 5.99722i −0.951236 0.308464i
\(379\) 3.57410i 0.183589i 0.995778 + 0.0917945i \(0.0292603\pi\)
−0.995778 + 0.0917945i \(0.970740\pi\)
\(380\) −1.38624 10.3366i −0.0711128 0.530254i
\(381\) 2.08249 + 1.41439i 0.106689 + 0.0724612i
\(382\) 4.78180 18.8362i 0.244658 0.963744i
\(383\) 14.6339i 0.747757i 0.927478 + 0.373878i \(0.121972\pi\)
−0.927478 + 0.373878i \(0.878028\pi\)
\(384\) −14.1213 13.5863i −0.720626 0.693324i
\(385\) 8.39410 + 8.40717i 0.427803 + 0.428469i
\(386\) 4.47620 17.6324i 0.227833 0.897466i
\(387\) 4.04706 + 10.2046i 0.205724 + 0.518730i
\(388\) 16.9791 + 9.21456i 0.861985 + 0.467798i
\(389\) 13.4414 0.681507 0.340754 0.940153i \(-0.389318\pi\)
0.340754 + 0.940153i \(0.389318\pi\)
\(390\) 1.55217 7.11840i 0.0785974 0.360454i
\(391\) 0.402828i 0.0203719i
\(392\) 17.9328 + 8.39126i 0.905745 + 0.423823i
\(393\) 2.68644 + 1.82458i 0.135513 + 0.0920377i
\(394\) 8.89888 35.0540i 0.448319 1.76600i
\(395\) 14.4739 + 19.8290i 0.728260 + 0.997705i
\(396\) −1.43828 + 11.9627i −0.0722763 + 0.601147i
\(397\) 7.47449i 0.375134i −0.982252 0.187567i \(-0.939940\pi\)
0.982252 0.187567i \(-0.0600601\pi\)
\(398\) −5.95649 + 23.4635i −0.298572 + 1.17612i
\(399\) −4.57633 + 9.65721i −0.229103 + 0.483465i
\(400\) −19.2933 + 5.26965i −0.964664 + 0.263483i
\(401\) 30.4076i 1.51848i 0.650808 + 0.759242i \(0.274430\pi\)
−0.650808 + 0.759242i \(0.725570\pi\)
\(402\) −13.4366 + 11.9178i −0.670155 + 0.594408i
\(403\) 12.6194 0.628619
\(404\) 14.9444 27.5373i 0.743514 1.37003i
\(405\) −19.7807 3.70447i −0.982912 0.184076i
\(406\) −28.1668 2.67045i −1.39790 0.132532i
\(407\) 12.4450 0.616875
\(408\) −4.57879 19.7020i −0.226684 0.975392i
\(409\) 24.7533i 1.22397i −0.790868 0.611986i \(-0.790371\pi\)
0.790868 0.611986i \(-0.209629\pi\)
\(410\) 6.93329 + 17.2621i 0.342411 + 0.852516i
\(411\) 18.0019 26.5053i 0.887967 1.30741i
\(412\) −15.1068 8.19843i −0.744257 0.403908i
\(413\) 0.756558 + 4.87110i 0.0372278 + 0.239691i
\(414\) −0.0532304 0.410496i −0.00261613 0.0201748i
\(415\) 13.4004 + 18.3584i 0.657802 + 0.901177i
\(416\) −7.12407 + 2.42224i −0.349286 + 0.118760i
\(417\) 0.666956 0.982002i 0.0326610 0.0480888i
\(418\) 6.41916 + 1.62958i 0.313971 + 0.0797055i
\(419\) 11.5934i 0.566374i −0.959065 0.283187i \(-0.908608\pi\)
0.959065 0.283187i \(-0.0913918\pi\)
\(420\) 19.5219 + 6.23654i 0.952572 + 0.304312i
\(421\) 12.7176i 0.619816i −0.950767 0.309908i \(-0.899702\pi\)
0.950767 0.309908i \(-0.100298\pi\)
\(422\) 6.04133 23.7977i 0.294087 1.15845i
\(423\) 21.7271 8.61679i 1.05641 0.418963i
\(424\) −4.78676 + 5.18138i −0.232466 + 0.251630i
\(425\) −19.6618 6.29225i −0.953739 0.305219i
\(426\) −14.4445 16.2851i −0.699836 0.789018i
\(427\) 29.5928 4.59622i 1.43209 0.222427i
\(428\) −2.38987 + 4.40368i −0.115519 + 0.212860i
\(429\) 3.82732 + 2.59944i 0.184785 + 0.125502i
\(430\) −4.31285 10.7379i −0.207984 0.517827i
\(431\) 2.50836i 0.120823i 0.998174 + 0.0604117i \(0.0192414\pi\)
−0.998174 + 0.0604117i \(0.980759\pi\)
\(432\) 7.26940 + 19.4719i 0.349749 + 0.936843i
\(433\) −24.6527 −1.18473 −0.592366 0.805669i \(-0.701806\pi\)
−0.592366 + 0.805669i \(0.701806\pi\)
\(434\) −3.35041 + 35.3389i −0.160825 + 1.69632i
\(435\) −29.2694 + 0.993192i −1.40336 + 0.0476199i
\(436\) −13.8245 + 25.4737i −0.662075 + 1.21997i
\(437\) −0.227523 −0.0108839
\(438\) −12.5542 + 11.1352i −0.599863 + 0.532061i
\(439\) 5.50924i 0.262942i 0.991320 + 0.131471i \(0.0419700\pi\)
−0.991320 + 0.131471i \(0.958030\pi\)
\(440\) 1.46107 12.6163i 0.0696537 0.601456i
\(441\) −13.2981 16.2531i −0.633241 0.773955i
\(442\) −7.52815 1.91111i −0.358078 0.0909023i
\(443\) 13.1356i 0.624093i −0.950067 0.312047i \(-0.898986\pi\)
0.950067 0.312047i \(-0.101014\pi\)
\(444\) 19.0721 9.85554i 0.905120 0.467723i
\(445\) 17.7099 + 24.2622i 0.839527 + 1.15014i
\(446\) −8.95033 2.27215i −0.423810 0.107589i
\(447\) 2.28607 3.36593i 0.108128 0.159203i
\(448\) −4.89170 20.5930i −0.231111 0.972927i
\(449\) 10.4000i 0.490806i 0.969421 + 0.245403i \(0.0789203\pi\)
−0.969421 + 0.245403i \(0.921080\pi\)
\(450\) 20.8675 + 3.81387i 0.983705 + 0.179788i
\(451\) −11.8131 −0.556257
\(452\) 24.9790 + 13.5561i 1.17491 + 0.637624i
\(453\) 8.10322 11.9309i 0.380722 0.560562i
\(454\) 17.0783 + 4.33553i 0.801524 + 0.203477i
\(455\) 5.56884 5.56019i 0.261071 0.260666i
\(456\) 11.1279 2.58617i 0.521114 0.121108i
\(457\) 40.4322i 1.89134i −0.325129 0.945670i \(-0.605408\pi\)
0.325129 0.945670i \(-0.394592\pi\)
\(458\) −5.01359 1.27276i −0.234270 0.0594722i
\(459\) −4.66205 + 20.9413i −0.217606 + 0.977458i
\(460\) 0.0579965 + 0.432452i 0.00270410 + 0.0201632i
\(461\) 18.2567i 0.850301i 0.905123 + 0.425151i \(0.139779\pi\)
−0.905123 + 0.425151i \(0.860221\pi\)
\(462\) −8.29548 + 10.0277i −0.385941 + 0.466531i
\(463\) 42.1208i 1.95752i −0.205016 0.978759i \(-0.565725\pi\)
0.205016 0.978759i \(-0.434275\pi\)
\(464\) 16.4836 + 25.3604i 0.765230 + 1.17733i
\(465\) 1.24609 + 36.7221i 0.0577858 + 1.70295i
\(466\) 1.69783 + 0.431015i 0.0786506 + 0.0199664i
\(467\) −32.5243 −1.50504 −0.752521 0.658568i \(-0.771163\pi\)
−0.752521 + 0.658568i \(0.771163\pi\)
\(468\) 7.92398 + 0.952706i 0.366286 + 0.0440388i
\(469\) −19.1696 + 2.97734i −0.885170 + 0.137481i
\(470\) −22.8626 + 9.18270i −1.05457 + 0.423566i
\(471\) 20.1536 + 13.6880i 0.928631 + 0.630708i
\(472\) 3.57603 3.87084i 0.164600 0.178170i
\(473\) 7.34833 0.337877
\(474\) −20.1190 + 17.8450i −0.924097 + 0.819648i
\(475\) 3.55395 11.1053i 0.163066 0.509545i
\(476\) 7.35048 20.5741i 0.336908 0.943010i
\(477\) 6.95497 2.75828i 0.318446 0.126293i
\(478\) −6.82354 + 26.8789i −0.312101 + 1.22941i
\(479\) 15.9517 0.728852 0.364426 0.931232i \(-0.381265\pi\)
0.364426 + 0.931232i \(0.381265\pi\)
\(480\) −7.75207 20.4916i −0.353832 0.935309i
\(481\) 8.24346i 0.375869i
\(482\) −8.42980 + 33.2062i −0.383967 + 1.51250i
\(483\) 0.191460 0.404030i 0.00871175 0.0183840i
\(484\) −12.2474 6.64667i −0.556702 0.302121i
\(485\) 12.7340 + 17.4454i 0.578223 + 0.792156i
\(486\) 1.98356 21.9560i 0.0899762 0.995944i
\(487\) 8.42432i 0.381742i −0.981615 0.190871i \(-0.938869\pi\)
0.981615 0.190871i \(-0.0611313\pi\)
\(488\) −23.5160 21.7250i −1.06452 0.983445i
\(489\) −10.3292 + 15.2084i −0.467104 + 0.687746i
\(490\) 14.0920 + 17.0709i 0.636610 + 0.771186i
\(491\) −16.9685 −0.765777 −0.382888 0.923795i \(-0.625071\pi\)
−0.382888 + 0.923795i \(0.625071\pi\)
\(492\) −18.1037 + 9.35513i −0.816178 + 0.421762i
\(493\) 31.2208i 1.40611i
\(494\) 1.07942 4.25200i 0.0485655 0.191307i
\(495\) −7.18635 + 11.3940i −0.323002 + 0.512124i
\(496\) 31.8179 20.6807i 1.42866 0.928592i
\(497\) −3.60855 23.2336i −0.161865 1.04217i
\(498\) −18.6269 + 16.5215i −0.834692 + 0.740347i
\(499\) 34.6615i 1.55166i −0.630940 0.775831i \(-0.717331\pi\)
0.630940 0.775831i \(-0.282669\pi\)
\(500\) −22.0136 3.92420i −0.984480 0.175496i
\(501\) −0.662465 0.449933i −0.0295968 0.0201015i
\(502\) −5.09528 + 20.0710i −0.227413 + 0.895814i
\(503\) 20.2162i 0.901396i −0.892676 0.450698i \(-0.851175\pi\)
0.892676 0.450698i \(-0.148825\pi\)
\(504\) −4.77170 + 21.9370i −0.212548 + 0.977151i
\(505\) 28.2935 20.6524i 1.25904 0.919022i
\(506\) −0.268559 0.0681770i −0.0119389 0.00303084i
\(507\) −10.9291 + 16.0915i −0.485376 + 0.714650i
\(508\) 1.38651 2.55485i 0.0615166 0.113353i
\(509\) 2.33728i 0.103598i 0.998658 + 0.0517992i \(0.0164956\pi\)
−0.998658 + 0.0517992i \(0.983504\pi\)
\(510\) 4.81791 22.0953i 0.213340 0.978398i
\(511\) −17.9108 + 2.78182i −0.792326 + 0.123061i
\(512\) −13.9926 + 17.7822i −0.618393 + 0.785869i
\(513\) −11.8280 2.63319i −0.522217 0.116258i
\(514\) 5.50041 21.6669i 0.242613 0.955687i
\(515\) −11.3298 15.5216i −0.499251 0.683966i
\(516\) 11.2614 5.81935i 0.495755 0.256183i
\(517\) 15.6457i 0.688097i
\(518\) 23.0846 + 2.18861i 1.01428 + 0.0961619i
\(519\) −3.75054 + 5.52216i −0.164631 + 0.242396i
\(520\) −8.35691 0.967801i −0.366475 0.0424409i
\(521\) −18.0595 −0.791203 −0.395601 0.918422i \(-0.629464\pi\)
−0.395601 + 0.918422i \(0.629464\pi\)
\(522\) −4.12557 31.8150i −0.180571 1.39251i
\(523\) 15.6316i 0.683522i 0.939787 + 0.341761i \(0.111023\pi\)
−0.939787 + 0.341761i \(0.888977\pi\)
\(524\) 1.78862 3.29579i 0.0781362 0.143977i
\(525\) 16.7298 + 15.6561i 0.730149 + 0.683288i
\(526\) −19.5397 4.96040i −0.851973 0.216284i
\(527\) 39.1704 1.70629
\(528\) 13.9099 + 0.281865i 0.605352 + 0.0122666i
\(529\) −22.9905 −0.999586
\(530\) −7.31844 + 2.93943i −0.317893 + 0.127681i
\(531\) −5.19583 + 2.06062i −0.225480 + 0.0894233i
\(532\) 11.6205 + 4.15165i 0.503813 + 0.179997i
\(533\) 7.82491i 0.338934i
\(534\) −24.6171 + 21.8346i −1.06529 + 0.944877i
\(535\) −4.52462 + 3.30268i −0.195616 + 0.142787i
\(536\) 15.2332 + 14.0730i 0.657975 + 0.607863i
\(537\) −13.4156 + 19.7526i −0.578926 + 0.852389i
\(538\) 3.24846 12.7961i 0.140051 0.551681i
\(539\) −13.3947 + 4.26368i −0.576952 + 0.183650i
\(540\) −1.98990 + 23.1525i −0.0856315 + 0.996327i
\(541\) 14.7905i 0.635895i 0.948108 + 0.317948i \(0.102994\pi\)
−0.948108 + 0.317948i \(0.897006\pi\)
\(542\) −0.0721011 + 0.284017i −0.00309701 + 0.0121996i
\(543\) −22.8661 + 33.6671i −0.981276 + 1.44479i
\(544\) −22.1129 + 7.51855i −0.948084 + 0.322355i
\(545\) −26.1733 + 19.1048i −1.12114 + 0.818360i
\(546\) 6.64227 + 5.49487i 0.284263 + 0.235159i
\(547\) 35.5600 1.52043 0.760217 0.649669i \(-0.225092\pi\)
0.760217 + 0.649669i \(0.225092\pi\)
\(548\) −32.5173 17.6471i −1.38907 0.753847i
\(549\) 12.5186 + 31.5656i 0.534282 + 1.34719i
\(550\) 7.52262 12.0433i 0.320766 0.513527i
\(551\) −17.6339 −0.751231
\(552\) −0.465561 + 0.108198i −0.0198156 + 0.00460520i
\(553\) −28.7033 + 4.45808i −1.22059 + 0.189577i
\(554\) −39.2812 9.97201i −1.66890 0.423670i
\(555\) 23.9881 0.813986i 1.01824 0.0345518i
\(556\) −1.20474 0.653813i −0.0510925 0.0277278i
\(557\) 1.35270i 0.0573158i 0.999589 + 0.0286579i \(0.00912334\pi\)
−0.999589 + 0.0286579i \(0.990877\pi\)
\(558\) −39.9160 + 5.17605i −1.68978 + 0.219119i
\(559\) 4.86748i 0.205872i
\(560\) 4.92891 23.1453i 0.208284 0.978068i
\(561\) 11.8799 + 8.06859i 0.501570 + 0.340656i
\(562\) 1.08226 4.26319i 0.0456525 0.179832i
\(563\) 30.5252 1.28649 0.643243 0.765662i \(-0.277589\pi\)
0.643243 + 0.765662i \(0.277589\pi\)
\(564\) −12.3903 23.9772i −0.521725 1.00962i
\(565\) 18.7338 + 25.6650i 0.788136 + 1.07973i
\(566\) −7.16140 + 28.2098i −0.301016 + 1.18575i
\(567\) 14.6292 18.7880i 0.614367 0.789020i
\(568\) −17.0566 + 18.4627i −0.715677 + 0.774678i
\(569\) 15.3875i 0.645079i 0.946556 + 0.322539i \(0.104536\pi\)
−0.946556 + 0.322539i \(0.895464\pi\)
\(570\) 12.4797 + 2.72122i 0.522719 + 0.113979i
\(571\) 42.4541i 1.77665i −0.459217 0.888324i \(-0.651870\pi\)
0.459217 0.888324i \(-0.348130\pi\)
\(572\) 2.54822 4.69545i 0.106546 0.196327i
\(573\) 19.6894 + 13.3727i 0.822538 + 0.558652i
\(574\) −21.9125 2.07748i −0.914609 0.0867125i
\(575\) −0.148687 + 0.464613i −0.00620068 + 0.0193757i
\(576\) 21.5403 10.5837i 0.897513 0.440988i
\(577\) 0.806615 0.0335798 0.0167899 0.999859i \(-0.494655\pi\)
0.0167899 + 0.999859i \(0.494655\pi\)
\(578\) −0.0646852 0.0164211i −0.00269055 0.000683028i
\(579\) 18.4311 + 12.5180i 0.765971 + 0.520232i
\(580\) 4.49495 + 33.5167i 0.186643 + 1.39171i
\(581\) −26.5746 + 4.12745i −1.10250 + 0.171235i
\(582\) −17.7006 + 15.6999i −0.733714 + 0.650783i
\(583\) 5.00827i 0.207421i
\(584\) 14.2329 + 13.1489i 0.588960 + 0.544105i
\(585\) 7.54732 + 4.76018i 0.312043 + 0.196809i
\(586\) −16.3650 4.15446i −0.676033 0.171619i
\(587\) −2.83907 −0.117181 −0.0585905 0.998282i \(-0.518661\pi\)
−0.0585905 + 0.998282i \(0.518661\pi\)
\(588\) −17.1510 + 17.1418i −0.707297 + 0.706916i
\(589\) 22.1240i 0.911603i
\(590\) 5.46736 2.19595i 0.225088 0.0904059i
\(591\) 36.6419 + 24.8864i 1.50724 + 1.02369i
\(592\) −13.5094 20.7845i −0.555231 0.854239i
\(593\) 32.6365i 1.34022i 0.742262 + 0.670110i \(0.233753\pi\)
−0.742262 + 0.670110i \(0.766247\pi\)
\(594\) −13.1722 6.65234i −0.540463 0.272949i
\(595\) 17.2855 17.2587i 0.708638 0.707537i
\(596\) −4.12940 2.24102i −0.169147 0.0917958i
\(597\) −24.5263 16.6578i −1.00380 0.681758i
\(598\) −0.0451599 + 0.177892i −0.00184673 + 0.00727453i
\(599\) 38.2058i 1.56105i 0.625128 + 0.780523i \(0.285047\pi\)
−0.625128 + 0.780523i \(0.714953\pi\)
\(600\) 1.99108 24.4138i 0.0812853 0.996691i
\(601\) 36.9925i 1.50896i −0.656325 0.754479i \(-0.727890\pi\)
0.656325 0.754479i \(-0.272110\pi\)
\(602\) 13.6306 + 1.29230i 0.555543 + 0.0526701i
\(603\) −8.10932 20.4476i −0.330237 0.832689i
\(604\) −14.6371 7.94353i −0.595575 0.323218i
\(605\) −9.18536 12.5838i −0.373438 0.511604i
\(606\) 25.4626 + 28.7074i 1.03435 + 1.16616i
\(607\) 29.2308 1.18644 0.593220 0.805041i \(-0.297857\pi\)
0.593220 + 0.805041i \(0.297857\pi\)
\(608\) −4.24658 12.4897i −0.172222 0.506524i
\(609\) 14.8389 31.3139i 0.601304 1.26890i
\(610\) −13.3408 33.2152i −0.540152 1.34484i
\(611\) −10.3636 −0.419266
\(612\) 24.5958 + 2.95717i 0.994227 + 0.119537i
\(613\) 1.66640 0.0673052 0.0336526 0.999434i \(-0.489286\pi\)
0.0336526 + 0.999434i \(0.489286\pi\)
\(614\) −2.68145 + 10.5626i −0.108214 + 0.426273i
\(615\) −22.7702 + 0.772657i −0.918182 + 0.0311565i
\(616\) 12.4724 + 8.38252i 0.502526 + 0.337741i
\(617\) 21.0418 0.847111 0.423556 0.905870i \(-0.360782\pi\)
0.423556 + 0.905870i \(0.360782\pi\)
\(618\) 15.7487 13.9686i 0.633505 0.561900i
\(619\) 8.07998 0.324762 0.162381 0.986728i \(-0.448083\pi\)
0.162381 + 0.986728i \(0.448083\pi\)
\(620\) 42.0510 5.63949i 1.68881 0.226487i
\(621\) 0.494848 + 0.110165i 0.0198576 + 0.00442077i
\(622\) −36.7942 9.34065i −1.47531 0.374526i
\(623\) −35.1206 + 5.45478i −1.40708 + 0.218541i
\(624\) 0.186706 9.21383i 0.00747420 0.368848i
\(625\) −20.3550 14.5147i −0.814198 0.580587i
\(626\) −11.2458 2.85488i −0.449473 0.114104i
\(627\) −4.55725 + 6.70993i −0.181999 + 0.267969i
\(628\) 13.4182 24.7250i 0.535445 0.986634i
\(629\) 25.5875i 1.02024i
\(630\) −15.3340 + 19.8713i −0.610920 + 0.791692i
\(631\) −27.5940 −1.09850 −0.549250 0.835658i \(-0.685087\pi\)
−0.549250 + 0.835658i \(0.685087\pi\)
\(632\) 22.8092 + 21.0720i 0.907302 + 0.838201i
\(633\) 24.8756 + 16.8951i 0.988718 + 0.671518i
\(634\) 10.6939 42.1247i 0.424708 1.67299i
\(635\) 2.62501 1.91609i 0.104170 0.0760377i
\(636\) −3.96619 7.67522i −0.157270 0.304342i
\(637\) 2.82423 + 8.87257i 0.111900 + 0.351544i
\(638\) −20.8144 5.28399i −0.824050 0.209195i
\(639\) 24.7825 9.82852i 0.980381 0.388810i
\(640\) −22.6566 + 11.2551i −0.895581 + 0.444898i
\(641\) 26.2441i 1.03658i −0.855205 0.518290i \(-0.826569\pi\)
0.855205 0.518290i \(-0.173431\pi\)
\(642\) −4.07190 4.59080i −0.160705 0.181184i
\(643\) 10.0020i 0.394440i 0.980359 + 0.197220i \(0.0631913\pi\)
−0.980359 + 0.197220i \(0.936809\pi\)
\(644\) −0.486169 0.173693i −0.0191577 0.00684447i
\(645\) 14.1642 0.480631i 0.557714 0.0189248i
\(646\) 3.35050 13.1981i 0.131824 0.519272i
\(647\) 39.2518i 1.54315i −0.636140 0.771573i \(-0.719470\pi\)
0.636140 0.771573i \(-0.280530\pi\)
\(648\) −25.4547 + 0.236673i −0.999957 + 0.00929738i
\(649\) 3.74151i 0.146867i
\(650\) −7.97738 4.98293i −0.312899 0.195447i
\(651\) −39.2872 18.6173i −1.53979 0.729670i
\(652\) 18.6580 + 10.1257i 0.730703 + 0.396552i
\(653\) 14.4218i 0.564370i 0.959360 + 0.282185i \(0.0910592\pi\)
−0.959360 + 0.282185i \(0.908941\pi\)
\(654\) −23.5545 26.5561i −0.921053 1.03843i
\(655\) 3.38630 2.47178i 0.132314 0.0965804i
\(656\) 12.8234 + 19.7292i 0.500671 + 0.770297i
\(657\) −7.57679 19.1048i −0.295599 0.745349i
\(658\) 2.75149 29.0217i 0.107264 1.13138i
\(659\) 28.6527 1.11615 0.558075 0.829790i \(-0.311540\pi\)
0.558075 + 0.829790i \(0.311540\pi\)
\(660\) 13.9152 + 6.95156i 0.541648 + 0.270589i
\(661\) −30.3370 −1.17997 −0.589987 0.807413i \(-0.700867\pi\)
−0.589987 + 0.807413i \(0.700867\pi\)
\(662\) 7.07293 27.8613i 0.274897 1.08286i
\(663\) 5.34458 7.86915i 0.207566 0.305613i
\(664\) 21.1176 + 19.5092i 0.819521 + 0.757106i
\(665\) 9.74794 + 9.76311i 0.378009 + 0.378597i
\(666\) 3.38117 + 26.0745i 0.131018 + 1.01037i
\(667\) 0.737753 0.0285659
\(668\) −0.441067 + 0.812728i −0.0170654 + 0.0314454i
\(669\) 6.35424 9.35575i 0.245669 0.361714i
\(670\) 8.64190 + 21.5161i 0.333866 + 0.831241i
\(671\) 22.7303 0.877495
\(672\) 25.7524 + 2.96908i 0.993419 + 0.114535i
\(673\) 35.2784i 1.35988i 0.733267 + 0.679940i \(0.237994\pi\)
−0.733267 + 0.679940i \(0.762006\pi\)
\(674\) −2.80046 + 11.0314i −0.107870 + 0.424914i
\(675\) −13.1067 + 22.4324i −0.504477 + 0.863425i
\(676\) 19.7415 + 10.7137i 0.759287 + 0.412065i
\(677\) −19.1645 −0.736552 −0.368276 0.929717i \(-0.620052\pi\)
−0.368276 + 0.929717i \(0.620052\pi\)
\(678\) −26.0404 + 23.0970i −1.00007 + 0.887037i
\(679\) −25.2530 + 3.92219i −0.969122 + 0.150520i
\(680\) −25.9396 3.00403i −0.994739 0.115199i
\(681\) −12.1247 + 17.8519i −0.464618 + 0.684086i
\(682\) −6.62943 + 26.1143i −0.253854 + 0.999968i
\(683\) 13.2192i 0.505820i −0.967490 0.252910i \(-0.918612\pi\)
0.967490 0.252910i \(-0.0813877\pi\)
\(684\) −1.67025 + 13.8921i −0.0638637 + 0.531176i
\(685\) −24.3874 33.4103i −0.931795 1.27654i
\(686\) −25.5961 + 5.55320i −0.977265 + 0.212022i
\(687\) 3.55938 5.24069i 0.135799 0.199945i
\(688\) −7.97681 12.2726i −0.304113 0.467887i
\(689\) −3.31744 −0.126384
\(690\) −0.522117 0.113848i −0.0198767 0.00433412i
\(691\) 36.7836 1.39931 0.699657 0.714479i \(-0.253336\pi\)
0.699657 + 0.714479i \(0.253336\pi\)
\(692\) 6.77472 + 3.67663i 0.257536 + 0.139765i
\(693\) −8.08041 13.7391i −0.306949 0.521904i
\(694\) −6.99720 + 27.5630i −0.265610 + 1.04628i
\(695\) −0.903535 1.23783i −0.0342731 0.0469535i
\(696\) −36.0828 + 8.38575i −1.36772 + 0.317861i
\(697\) 24.2883i 0.919985i
\(698\) −3.14676 0.798843i −0.119107 0.0302367i
\(699\) −1.20537 + 1.77474i −0.0455912 + 0.0671268i
\(700\) 16.0719 21.0165i 0.607461 0.794349i
\(701\) −4.86743 −0.183840 −0.0919201 0.995766i \(-0.529300\pi\)
−0.0919201 + 0.995766i \(0.529300\pi\)
\(702\) −4.40646 + 8.72518i −0.166311 + 0.329311i
\(703\) 14.4522 0.545074
\(704\) −1.26998 16.0148i −0.0478642 0.603581i
\(705\) −1.02333 30.1576i −0.0385410 1.13580i
\(706\) 5.29061 20.8405i 0.199115 0.784342i
\(707\) 6.36113 + 40.9561i 0.239235 + 1.54031i
\(708\) 2.96301 + 5.73391i 0.111357 + 0.215493i
\(709\) 0.768670i 0.0288680i 0.999896 + 0.0144340i \(0.00459465\pi\)
−0.999896 + 0.0144340i \(0.995405\pi\)
\(710\) −26.0776 + 10.4740i −0.978676 + 0.393082i
\(711\) −12.1424 30.6168i −0.455374 1.14822i
\(712\) 27.9087 + 25.7832i 1.04592 + 0.966265i
\(713\) 0.925604i 0.0346642i
\(714\) 20.6174 + 17.0559i 0.771587 + 0.638301i
\(715\) 4.82440 3.52150i 0.180422 0.131697i
\(716\) 24.2330 + 13.1512i 0.905629 + 0.491484i
\(717\) −28.0965 19.0826i −1.04928 0.712651i
\(718\) 10.1099 39.8242i 0.377297 1.48623i
\(719\) 45.3201 1.69015 0.845077 0.534644i \(-0.179554\pi\)
0.845077 + 0.534644i \(0.179554\pi\)
\(720\) 26.8303 0.366498i 0.999907 0.0136586i
\(721\) 22.4683 3.48968i 0.836762 0.129962i
\(722\) −18.5895 4.71916i −0.691829 0.175629i
\(723\) −34.7104 23.5746i −1.29089 0.876749i
\(724\) 41.3036 + 22.4154i 1.53504 + 0.833063i
\(725\) −11.5238 + 36.0093i −0.427984 + 1.33735i
\(726\) 12.7678 11.3247i 0.473859 0.420299i
\(727\) 19.4319 0.720688 0.360344 0.932819i \(-0.382659\pi\)
0.360344 + 0.932819i \(0.382659\pi\)
\(728\) 5.55252 8.26160i 0.205790 0.306195i
\(729\) 24.4501 + 11.4540i 0.905558 + 0.424223i
\(730\) 8.07440 + 20.1032i 0.298847 + 0.744053i
\(731\) 15.1085i 0.558809i
\(732\) 34.8345 18.0008i 1.28752 0.665329i
\(733\) 33.0895i 1.22219i 0.791558 + 0.611094i \(0.209270\pi\)
−0.791558 + 0.611094i \(0.790730\pi\)
\(734\) 10.0673 + 2.55571i 0.371591 + 0.0943329i
\(735\) −25.5400 + 9.09450i −0.942056 + 0.335456i
\(736\) 0.177665 + 0.522533i 0.00654881 + 0.0192608i
\(737\) −14.7243 −0.542375
\(738\) −3.20950 24.7506i −0.118143 0.911083i
\(739\) 12.9023i 0.474619i 0.971434 + 0.237310i \(0.0762656\pi\)
−0.971434 + 0.237310i \(0.923734\pi\)
\(740\) −3.68391 27.4691i −0.135423 1.00979i
\(741\) 4.44461 + 3.01869i 0.163277 + 0.110894i
\(742\) 0.880767 9.28999i 0.0323340 0.341046i
\(743\) 20.1716 0.740025 0.370012 0.929027i \(-0.379353\pi\)
0.370012 + 0.929027i \(0.379353\pi\)
\(744\) 10.5210 + 45.2704i 0.385718 + 1.65969i
\(745\) −3.09698 4.24281i −0.113464 0.155444i
\(746\) −26.7410 6.78852i −0.979057 0.248545i
\(747\) −11.2418 28.3462i −0.411317 1.03713i
\(748\) 7.90959 14.5745i 0.289203 0.532898i
\(749\) −1.01725 6.54958i −0.0371696 0.239316i
\(750\) 13.7124 23.7059i 0.500707 0.865617i
\(751\) 15.5652 0.567982 0.283991 0.958827i \(-0.408341\pi\)
0.283991 + 0.958827i \(0.408341\pi\)
\(752\) −26.1301 + 16.9838i −0.952867 + 0.619336i
\(753\) −20.9802 14.2493i −0.764561 0.519275i
\(754\) −3.50007 + 13.7873i −0.127465 + 0.502104i
\(755\) −10.9776 15.0391i −0.399514 0.547327i
\(756\) −23.2637 14.6561i −0.846091 0.533039i
\(757\) −29.6612 −1.07806 −0.539028 0.842288i \(-0.681208\pi\)
−0.539028 + 0.842288i \(0.681208\pi\)
\(758\) −1.24370 + 4.89914i −0.0451734 + 0.177945i
\(759\) 0.190662 0.280724i 0.00692061 0.0101896i
\(760\) 1.69672 14.6511i 0.0615464 0.531450i
\(761\) 41.8111 1.51565 0.757825 0.652457i \(-0.226262\pi\)
0.757825 + 0.652457i \(0.226262\pi\)
\(762\) 2.36236 + 2.66341i 0.0855795 + 0.0964851i
\(763\) −5.88444 37.8869i −0.213031 1.37160i
\(764\) 13.1091 24.1555i 0.474272 0.873914i
\(765\) 23.4267 + 14.7755i 0.846993 + 0.534209i
\(766\) −5.09226 + 20.0592i −0.183991 + 0.724767i
\(767\) 2.47835 0.0894880
\(768\) −14.6288 23.5371i −0.527873 0.849323i
\(769\) 9.12224i 0.328956i 0.986381 + 0.164478i \(0.0525940\pi\)
−0.986381 + 0.164478i \(0.947406\pi\)
\(770\) 8.58058 + 14.4449i 0.309223 + 0.520560i
\(771\) 22.6484 + 15.3823i 0.815662 + 0.553982i
\(772\) 12.2714 22.6117i 0.441656 0.813814i
\(773\) 17.9114 0.644228 0.322114 0.946701i \(-0.395606\pi\)
0.322114 + 0.946701i \(0.395606\pi\)
\(774\) 1.99647 + 15.3961i 0.0717615 + 0.553401i
\(775\) 45.1782 + 14.4581i 1.62285 + 0.519350i
\(776\) 20.0674 + 18.5391i 0.720379 + 0.665514i
\(777\) −12.1615 + 25.6638i −0.436290 + 0.920683i
\(778\) 18.4246 + 4.67731i 0.660555 + 0.167690i
\(779\) −13.7184 −0.491512
\(780\) 4.60466 9.21732i 0.164873 0.330033i
\(781\) 17.8458i 0.638575i
\(782\) −0.140175 + 0.552171i −0.00501265 + 0.0197456i
\(783\) 38.3526 + 8.53822i 1.37061 + 0.305131i
\(784\) 21.6612 + 17.7424i 0.773614 + 0.633657i
\(785\) 25.4040 18.5433i 0.906707 0.661838i
\(786\) 3.04748 + 3.43583i 0.108700 + 0.122552i
\(787\) 36.9161i 1.31592i −0.753055 0.657958i \(-0.771421\pi\)
0.753055 0.657958i \(-0.228579\pi\)
\(788\) 24.3960 44.9531i 0.869072 1.60139i
\(789\) 13.8721 20.4248i 0.493861 0.727143i
\(790\) 12.9398 + 32.2169i 0.460378 + 1.14622i
\(791\) −37.1512 + 5.77016i −1.32094 + 0.205163i
\(792\) −6.13424 + 15.8971i −0.217971 + 0.564880i
\(793\) 15.0564i 0.534668i
\(794\) 2.60095 10.2455i 0.0923044 0.363600i
\(795\) −0.327575 9.65362i −0.0116179 0.342379i
\(796\) −16.3295 + 30.0895i −0.578785 + 1.06649i
\(797\) 29.7782 1.05480 0.527399 0.849618i \(-0.323167\pi\)
0.527399 + 0.849618i \(0.323167\pi\)
\(798\) −9.63342 + 11.6450i −0.341019 + 0.412229i
\(799\) −32.1683 −1.13803
\(800\) −28.2797 + 0.509668i −0.999838 + 0.0180195i
\(801\) −14.8571 37.4619i −0.524948 1.32365i
\(802\) −10.5812 + 41.6808i −0.373634 + 1.47180i
\(803\) −13.7573 −0.485486
\(804\) −22.5651 + 11.6606i −0.795809 + 0.411236i
\(805\) −0.407826 0.408461i −0.0143740 0.0143963i
\(806\) 17.2979 + 4.39128i 0.609293 + 0.154676i
\(807\) 13.3758 + 9.08457i 0.470850 + 0.319792i
\(808\) 30.0672 32.5459i 1.05776 1.14496i
\(809\) 8.02026i 0.281977i 0.990011 + 0.140989i \(0.0450281\pi\)
−0.990011 + 0.140989i \(0.954972\pi\)
\(810\) −25.8250 11.9611i −0.907399 0.420270i
\(811\) −2.93155 −0.102941 −0.0514703 0.998675i \(-0.516391\pi\)
−0.0514703 + 0.998675i \(0.516391\pi\)
\(812\) −37.6800 13.4619i −1.32231 0.472420i
\(813\) −0.296882 0.201636i −0.0104121 0.00707170i
\(814\) 17.0588 + 4.33057i 0.597909 + 0.151786i
\(815\) 13.9931 + 19.1704i 0.490159 + 0.671509i
\(816\) 0.579529 28.5995i 0.0202876 1.00118i
\(817\) 8.53350 0.298549
\(818\) 8.61360 33.9302i 0.301167 1.18634i
\(819\) −9.10065 + 5.35240i −0.318002 + 0.187028i
\(820\) 3.49686 + 26.0744i 0.122116 + 0.910559i
\(821\) 28.8608 1.00725 0.503624 0.863923i \(-0.332000\pi\)
0.503624 + 0.863923i \(0.332000\pi\)
\(822\) 33.8990 30.0674i 1.18236 1.04872i
\(823\) 55.7417i 1.94303i 0.236970 + 0.971517i \(0.423846\pi\)
−0.236970 + 0.971517i \(0.576154\pi\)
\(824\) −17.8545 16.4947i −0.621991 0.574620i
\(825\) 10.7238 + 13.6911i 0.373355 + 0.476662i
\(826\) −0.657992 + 6.94025i −0.0228945 + 0.241482i
\(827\) 30.4567i 1.05908i 0.848284 + 0.529541i \(0.177636\pi\)
−0.848284 + 0.529541i \(0.822364\pi\)
\(828\) 0.0698786 0.581204i 0.00242845 0.0201982i
\(829\) 25.9657 0.901827 0.450913 0.892568i \(-0.351098\pi\)
0.450913 + 0.892568i \(0.351098\pi\)
\(830\) 11.9801 + 29.8275i 0.415837 + 1.03533i
\(831\) 27.8875 41.0605i 0.967407 1.42437i
\(832\) −10.6081 + 0.841225i −0.367769 + 0.0291642i
\(833\) 8.76633 + 27.5402i 0.303735 + 0.954212i
\(834\) 1.25593 1.11398i 0.0434894 0.0385739i
\(835\) −0.835048 + 0.609531i −0.0288980 + 0.0210937i
\(836\) 8.23190 + 4.46745i 0.284706 + 0.154510i
\(837\) 10.7123 48.1182i 0.370271 1.66321i
\(838\) 4.03424 15.8915i 0.139361 0.548961i
\(839\) 2.14123 0.0739234 0.0369617 0.999317i \(-0.488232\pi\)
0.0369617 + 0.999317i \(0.488232\pi\)
\(840\) 24.5892 + 15.3418i 0.848408 + 0.529343i
\(841\) 28.1788 0.971681
\(842\) 4.42542 17.4324i 0.152510 0.600760i
\(843\) 4.45631 + 3.02664i 0.153483 + 0.104243i
\(844\) 16.5621 30.5180i 0.570091 1.05047i
\(845\) 14.8057 + 20.2836i 0.509333 + 0.697778i
\(846\) 32.7806 4.25077i 1.12702 0.146145i
\(847\) 18.2156 2.82917i 0.625895 0.0972113i
\(848\) −8.36438 + 5.43661i −0.287234 + 0.186694i
\(849\) −29.4876 20.0274i −1.01201 0.687339i
\(850\) −24.7616 15.4669i −0.849315 0.530509i
\(851\) −0.604637 −0.0207267
\(852\) −14.1326 27.3489i −0.484176 0.936959i
\(853\) 44.6580i 1.52906i −0.644587 0.764531i \(-0.722971\pi\)
0.644587 0.764531i \(-0.277029\pi\)
\(854\) 42.1632 + 3.99741i 1.44279 + 0.136789i
\(855\) −8.34540 + 13.2317i −0.285407 + 0.452515i
\(856\) −4.80826 + 5.20465i −0.164343 + 0.177891i
\(857\) 23.0490i 0.787338i 0.919252 + 0.393669i \(0.128794\pi\)
−0.919252 + 0.393669i \(0.871206\pi\)
\(858\) 4.34169 + 4.89496i 0.148223 + 0.167111i
\(859\) −14.2677 −0.486806 −0.243403 0.969925i \(-0.578264\pi\)
−0.243403 + 0.969925i \(0.578264\pi\)
\(860\) −2.17522 16.2196i −0.0741744 0.553083i
\(861\) 11.5440 24.3607i 0.393418 0.830212i
\(862\) −0.872852 + 3.43829i −0.0297295 + 0.117109i
\(863\) 0.233651 0.00795357 0.00397679 0.999992i \(-0.498734\pi\)
0.00397679 + 0.999992i \(0.498734\pi\)
\(864\) 3.18862 + 29.2204i 0.108479 + 0.994099i
\(865\) 5.08091 + 6.96077i 0.172756 + 0.236673i
\(866\) −33.7922 8.57857i −1.14831 0.291512i
\(867\) 0.0459230 0.0676152i 0.00155963 0.00229633i
\(868\) −16.8897 + 47.2743i −0.573272 + 1.60459i
\(869\) −22.0471 −0.747898
\(870\) −40.4661 8.82367i −1.37193 0.299150i
\(871\) 9.75324i 0.330476i
\(872\) −27.8140 + 30.1070i −0.941902 + 1.01955i
\(873\) −10.6828 26.9365i −0.361558 0.911663i
\(874\) −0.311874 0.0791729i −0.0105493 0.00267806i
\(875\) 26.3070 13.5255i 0.889340 0.457246i
\(876\) −21.0833 + 10.8948i −0.712338 + 0.368102i
\(877\) −40.6170 −1.37154 −0.685770 0.727819i \(-0.740534\pi\)
−0.685770 + 0.727819i \(0.740534\pi\)
\(878\) −1.91709 + 7.55170i −0.0646987 + 0.254858i
\(879\) 11.6183 17.1063i 0.391874 0.576981i
\(880\) 6.39291 16.7851i 0.215505 0.565826i
\(881\) 40.1040 1.35114 0.675569 0.737297i \(-0.263898\pi\)
0.675569 + 0.737297i \(0.263898\pi\)
\(882\) −12.5724 26.9060i −0.423335 0.905973i
\(883\) −57.5009 −1.93506 −0.967530 0.252757i \(-0.918663\pi\)
−0.967530 + 0.252757i \(0.918663\pi\)
\(884\) −9.65407 5.23925i −0.324701 0.176215i
\(885\) 0.244720 + 7.21190i 0.00822618 + 0.242425i
\(886\) 4.57091 18.0055i 0.153563 0.604905i
\(887\) 13.7551i 0.461850i 0.972972 + 0.230925i \(0.0741752\pi\)
−0.972972 + 0.230925i \(0.925825\pi\)
\(888\) 29.5722 6.87267i 0.992379 0.230632i
\(889\) 0.590172 + 3.79982i 0.0197937 + 0.127442i
\(890\) 15.8328 + 39.4197i 0.530717 + 1.32135i
\(891\) 13.1606 12.3871i 0.440898 0.414982i
\(892\) −11.4779 6.22902i −0.384307 0.208563i
\(893\) 18.1691i 0.608006i
\(894\) 4.30486 3.81829i 0.143976 0.127703i
\(895\) 18.1743 + 24.8985i 0.607500 + 0.832265i
\(896\) 0.460684 29.9297i 0.0153904 0.999882i
\(897\) −0.185950 0.126293i −0.00620868 0.00421681i
\(898\) −3.61896 + 14.2556i −0.120766 + 0.475716i
\(899\) 71.7380i 2.39260i
\(900\) 27.2767 + 12.4892i 0.909224 + 0.416308i
\(901\) −10.2972 −0.343051
\(902\) −16.1926 4.11069i −0.539155 0.136871i
\(903\) −7.18093 + 15.1536i −0.238966 + 0.504279i
\(904\) 29.5223 + 27.2739i 0.981898 + 0.907116i
\(905\) 30.9770 + 42.4379i 1.02971 + 1.41069i
\(906\) 15.2590 13.5343i 0.506947 0.449648i
\(907\) 53.8251 1.78723 0.893617 0.448830i \(-0.148159\pi\)
0.893617 + 0.448830i \(0.148159\pi\)
\(908\) 21.9011 + 11.8857i 0.726815 + 0.394442i
\(909\) −43.6864 + 17.3257i −1.44899 + 0.574656i
\(910\) 9.56823 5.68371i 0.317184 0.188413i
\(911\) 34.4197i 1.14038i 0.821514 + 0.570188i \(0.193130\pi\)
−0.821514 + 0.570188i \(0.806870\pi\)
\(912\) 16.1534 + 0.327326i 0.534892 + 0.0108388i
\(913\) −20.4120 −0.675540
\(914\) 14.0695 55.4218i 0.465378 1.83319i
\(915\) 43.8135 1.48672i 1.44843 0.0491494i
\(916\) −6.42941 3.48923i −0.212434 0.115287i
\(917\) 0.761329 + 4.90181i 0.0251413 + 0.161872i
\(918\) −13.6775 + 27.0827i −0.451426 + 0.893863i
\(919\) 56.8106 1.87401 0.937005 0.349316i \(-0.113586\pi\)
0.937005 + 0.349316i \(0.113586\pi\)
\(920\) −0.0709858 + 0.612958i −0.00234033 + 0.0202086i
\(921\) −11.0411 7.49888i −0.363816 0.247097i
\(922\) −6.35293 + 25.0251i −0.209223 + 0.824159i
\(923\) −11.8210 −0.389092
\(924\) −14.8603 + 10.8587i −0.488868 + 0.357224i
\(925\) 9.44454 29.5120i 0.310534 0.970348i
\(926\) 14.6571 57.7363i 0.481661 1.89733i
\(927\) 9.50475 + 23.9661i 0.312177 + 0.787151i
\(928\) 13.7697 + 40.4983i 0.452013 + 1.32942i
\(929\) −8.90906 −0.292297 −0.146148 0.989263i \(-0.546688\pi\)
−0.146148 + 0.989263i \(0.546688\pi\)
\(930\) −11.0704 + 50.7698i −0.363013 + 1.66481i
\(931\) −15.5551 + 4.95135i −0.509798 + 0.162274i
\(932\) 2.17729 + 1.18161i 0.0713196 + 0.0387051i
\(933\) 26.1219 38.4608i 0.855191 1.25915i
\(934\) −44.5821 11.3177i −1.45877 0.370327i
\(935\) 14.9748 10.9306i 0.489728 0.357470i
\(936\) 10.5301 + 4.06327i 0.344189 + 0.132812i
\(937\) −29.8344 −0.974647 −0.487323 0.873222i \(-0.662027\pi\)
−0.487323 + 0.873222i \(0.662027\pi\)
\(938\) −27.3125 2.58945i −0.891784 0.0845485i
\(939\) 7.98391 11.7552i 0.260545 0.383617i
\(940\) −34.5339 + 4.63137i −1.12637 + 0.151059i
\(941\) 51.4975i 1.67877i −0.543537 0.839385i \(-0.682915\pi\)
0.543537 0.839385i \(-0.317085\pi\)
\(942\) 22.8622 + 25.7756i 0.744890 + 0.839813i
\(943\) 0.573937 0.0186900
\(944\) 6.24875 4.06151i 0.203380 0.132191i
\(945\) −16.4739 25.9540i −0.535896 0.844284i
\(946\) 10.0726 + 2.55705i 0.327489 + 0.0831370i
\(947\) 8.19688i 0.266363i 0.991092 + 0.133181i \(0.0425193\pi\)
−0.991092 + 0.133181i \(0.957481\pi\)
\(948\) −33.7875 + 17.4598i −1.09737 + 0.567067i
\(949\) 9.11276i 0.295813i
\(950\) 8.73591 13.9857i 0.283430 0.453755i
\(951\) 44.0328 + 29.9062i 1.42786 + 0.969777i
\(952\) 17.2349 25.6438i 0.558585 0.831119i
\(953\) −16.6673 −0.539906 −0.269953 0.962873i \(-0.587008\pi\)
−0.269953 + 0.962873i \(0.587008\pi\)
\(954\) 10.4932 1.36069i 0.339731 0.0440541i
\(955\) 24.8188 18.1162i 0.803119 0.586225i
\(956\) −18.7065 + 34.4694i −0.605012 + 1.11482i
\(957\) 14.7771 21.7572i 0.477675 0.703311i
\(958\) 21.8656 + 5.55084i 0.706444 + 0.179339i
\(959\) 48.3629 7.51152i 1.56172 0.242560i
\(960\) −3.49541 30.7861i −0.112814 0.993616i
\(961\) −59.0043 −1.90337
\(962\) 2.86854 11.2996i 0.0924854 0.364313i
\(963\) 6.98621 2.77067i 0.225127 0.0892835i
\(964\) −23.1100 + 42.5835i −0.744324 + 1.37152i
\(965\) 23.2327 16.9584i 0.747887 0.545910i
\(966\) 0.403034 0.487194i 0.0129674 0.0156752i
\(967\) 13.9782i 0.449509i −0.974415 0.224754i \(-0.927842\pi\)
0.974415 0.224754i \(-0.0721580\pi\)
\(968\) −14.4751 13.3727i −0.465247 0.429813i
\(969\) 13.7959 + 9.36993i 0.443189 + 0.301006i
\(970\) 11.3844 + 28.3442i 0.365530 + 0.910078i
\(971\) 34.0060i 1.09130i 0.838012 + 0.545652i \(0.183718\pi\)
−0.838012 + 0.545652i \(0.816282\pi\)
\(972\) 10.3591 29.4056i 0.332269 0.943185i
\(973\) 1.79181 0.278296i 0.0574428 0.00892177i
\(974\) 2.93147 11.5475i 0.0939305 0.370006i
\(975\) 9.06887 7.10337i 0.290436 0.227490i
\(976\) −24.6744 37.9623i −0.789808 1.21514i
\(977\) −24.4774 −0.783101 −0.391550 0.920157i \(-0.628061\pi\)
−0.391550 + 0.920157i \(0.628061\pi\)
\(978\) −19.4508 + 17.2523i −0.621967 + 0.551667i
\(979\) −26.9763 −0.862166
\(980\) 13.3760 + 28.3034i 0.427282 + 0.904118i
\(981\) 40.4127 16.0273i 1.29028 0.511712i
\(982\) −23.2593 5.90465i −0.742233 0.188425i
\(983\) 27.1165i 0.864881i −0.901663 0.432440i \(-0.857653\pi\)
0.901663 0.432440i \(-0.142347\pi\)
\(984\) −28.0707 + 6.52372i −0.894862 + 0.207969i
\(985\) 46.1876 33.7140i 1.47166 1.07422i
\(986\) −10.8641 + 42.7954i −0.345984 + 1.36288i
\(987\) 32.2642 + 15.2893i 1.02698 + 0.486663i
\(988\) 2.95920 5.45275i 0.0941448 0.173475i
\(989\) −0.357017 −0.0113525
\(990\) −13.8154 + 13.1175i −0.439084 + 0.416901i
\(991\) 37.8179 1.20133 0.600663 0.799502i \(-0.294903\pi\)
0.600663 + 0.799502i \(0.294903\pi\)
\(992\) 50.8103 17.2759i 1.61323 0.548509i
\(993\) 29.1233 + 19.7800i 0.924202 + 0.627700i
\(994\) 3.13842 33.1028i 0.0995446 1.04996i
\(995\) −30.9158 + 22.5666i −0.980097 + 0.715408i
\(996\) −31.2816 + 16.1649i −0.991197 + 0.512204i
\(997\) 28.4532i 0.901122i 0.892746 + 0.450561i \(0.148776\pi\)
−0.892746 + 0.450561i \(0.851224\pi\)
\(998\) 12.0614 47.5117i 0.381798 1.50396i
\(999\) −31.4325 6.99763i −0.994480 0.221395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.e.629.158 yes 160
3.2 odd 2 inner 840.2.u.e.629.4 yes 160
5.4 even 2 inner 840.2.u.e.629.3 yes 160
7.6 odd 2 inner 840.2.u.e.629.159 yes 160
8.5 even 2 inner 840.2.u.e.629.155 yes 160
15.14 odd 2 inner 840.2.u.e.629.157 yes 160
21.20 even 2 inner 840.2.u.e.629.1 160
24.5 odd 2 inner 840.2.u.e.629.5 yes 160
35.34 odd 2 inner 840.2.u.e.629.2 yes 160
40.29 even 2 inner 840.2.u.e.629.6 yes 160
56.13 odd 2 inner 840.2.u.e.629.154 yes 160
105.104 even 2 inner 840.2.u.e.629.160 yes 160
120.29 odd 2 inner 840.2.u.e.629.156 yes 160
168.125 even 2 inner 840.2.u.e.629.8 yes 160
280.69 odd 2 inner 840.2.u.e.629.7 yes 160
840.629 even 2 inner 840.2.u.e.629.153 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.e.629.1 160 21.20 even 2 inner
840.2.u.e.629.2 yes 160 35.34 odd 2 inner
840.2.u.e.629.3 yes 160 5.4 even 2 inner
840.2.u.e.629.4 yes 160 3.2 odd 2 inner
840.2.u.e.629.5 yes 160 24.5 odd 2 inner
840.2.u.e.629.6 yes 160 40.29 even 2 inner
840.2.u.e.629.7 yes 160 280.69 odd 2 inner
840.2.u.e.629.8 yes 160 168.125 even 2 inner
840.2.u.e.629.153 yes 160 840.629 even 2 inner
840.2.u.e.629.154 yes 160 56.13 odd 2 inner
840.2.u.e.629.155 yes 160 8.5 even 2 inner
840.2.u.e.629.156 yes 160 120.29 odd 2 inner
840.2.u.e.629.157 yes 160 15.14 odd 2 inner
840.2.u.e.629.158 yes 160 1.1 even 1 trivial
840.2.u.e.629.159 yes 160 7.6 odd 2 inner
840.2.u.e.629.160 yes 160 105.104 even 2 inner