Newspace parameters
| Level: | \( N \) | \(=\) | \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 840.u (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.70743376979\) |
| Analytic rank: | \(0\) |
| Dimension: | \(160\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 629.1 | −1.37073 | − | 0.347977i | −0.973146 | − | 1.43282i | 1.75782 | + | 0.953969i | 1.31834 | + | 1.80610i | 0.835334 | + | 2.30265i | 2.61441 | + | 0.406058i | −2.07755 | − | 1.91932i | −1.10597 | + | 2.78870i | −1.17861 | − | 2.93443i |
| 629.2 | −1.37073 | − | 0.347977i | −0.973146 | + | 1.43282i | 1.75782 | + | 0.953969i | 1.31834 | − | 1.80610i | 1.83252 | − | 1.62539i | −2.61441 | − | 0.406058i | −2.07755 | − | 1.91932i | −1.10597 | − | 2.78870i | −2.43557 | + | 2.01693i |
| 629.3 | −1.37073 | − | 0.347977i | 0.973146 | − | 1.43282i | 1.75782 | + | 0.953969i | −1.31834 | + | 1.80610i | −1.83252 | + | 1.62539i | 2.61441 | − | 0.406058i | −2.07755 | − | 1.91932i | −1.10597 | − | 2.78870i | 2.43557 | − | 2.01693i |
| 629.4 | −1.37073 | − | 0.347977i | 0.973146 | + | 1.43282i | 1.75782 | + | 0.953969i | −1.31834 | − | 1.80610i | −0.835334 | − | 2.30265i | −2.61441 | + | 0.406058i | −2.07755 | − | 1.91932i | −1.10597 | + | 2.78870i | 1.17861 | + | 2.93443i |
| 629.5 | −1.37073 | + | 0.347977i | −0.973146 | − | 1.43282i | 1.75782 | − | 0.953969i | 1.31834 | + | 1.80610i | 1.83252 | + | 1.62539i | −2.61441 | + | 0.406058i | −2.07755 | + | 1.91932i | −1.10597 | + | 2.78870i | −2.43557 | − | 2.01693i |
| 629.6 | −1.37073 | + | 0.347977i | −0.973146 | + | 1.43282i | 1.75782 | − | 0.953969i | 1.31834 | − | 1.80610i | 0.835334 | − | 2.30265i | 2.61441 | − | 0.406058i | −2.07755 | + | 1.91932i | −1.10597 | − | 2.78870i | −1.17861 | + | 2.93443i |
| 629.7 | −1.37073 | + | 0.347977i | 0.973146 | − | 1.43282i | 1.75782 | − | 0.953969i | −1.31834 | + | 1.80610i | −0.835334 | + | 2.30265i | −2.61441 | − | 0.406058i | −2.07755 | + | 1.91932i | −1.10597 | − | 2.78870i | 1.17861 | − | 2.93443i |
| 629.8 | −1.37073 | + | 0.347977i | 0.973146 | + | 1.43282i | 1.75782 | − | 0.953969i | −1.31834 | − | 1.80610i | −1.83252 | − | 1.62539i | 2.61441 | + | 0.406058i | −2.07755 | + | 1.91932i | −1.10597 | + | 2.78870i | 2.43557 | + | 2.01693i |
| 629.9 | −1.29842 | − | 0.560458i | −0.135991 | − | 1.72670i | 1.37177 | + | 1.45542i | −1.93600 | − | 1.11889i | −0.791172 | + | 2.31820i | −2.16054 | + | 1.52711i | −0.965432 | − | 2.65856i | −2.96301 | + | 0.469633i | 1.88664 | + | 2.53783i |
| 629.10 | −1.29842 | − | 0.560458i | −0.135991 | + | 1.72670i | 1.37177 | + | 1.45542i | −1.93600 | + | 1.11889i | 1.14432 | − | 2.16576i | 2.16054 | − | 1.52711i | −0.965432 | − | 2.65856i | −2.96301 | − | 0.469633i | 3.14082 | − | 0.367741i |
| 629.11 | −1.29842 | − | 0.560458i | 0.135991 | − | 1.72670i | 1.37177 | + | 1.45542i | 1.93600 | − | 1.11889i | −1.14432 | + | 2.16576i | −2.16054 | − | 1.52711i | −0.965432 | − | 2.65856i | −2.96301 | − | 0.469633i | −3.14082 | + | 0.367741i |
| 629.12 | −1.29842 | − | 0.560458i | 0.135991 | + | 1.72670i | 1.37177 | + | 1.45542i | 1.93600 | + | 1.11889i | 0.791172 | − | 2.31820i | 2.16054 | + | 1.52711i | −0.965432 | − | 2.65856i | −2.96301 | + | 0.469633i | −1.88664 | − | 2.53783i |
| 629.13 | −1.29842 | + | 0.560458i | −0.135991 | − | 1.72670i | 1.37177 | − | 1.45542i | −1.93600 | − | 1.11889i | 1.14432 | + | 2.16576i | 2.16054 | + | 1.52711i | −0.965432 | + | 2.65856i | −2.96301 | + | 0.469633i | 3.14082 | + | 0.367741i |
| 629.14 | −1.29842 | + | 0.560458i | −0.135991 | + | 1.72670i | 1.37177 | − | 1.45542i | −1.93600 | + | 1.11889i | −0.791172 | − | 2.31820i | −2.16054 | − | 1.52711i | −0.965432 | + | 2.65856i | −2.96301 | − | 0.469633i | 1.88664 | − | 2.53783i |
| 629.15 | −1.29842 | + | 0.560458i | 0.135991 | − | 1.72670i | 1.37177 | − | 1.45542i | 1.93600 | − | 1.11889i | 0.791172 | + | 2.31820i | 2.16054 | − | 1.52711i | −0.965432 | + | 2.65856i | −2.96301 | − | 0.469633i | −1.88664 | + | 2.53783i |
| 629.16 | −1.29842 | + | 0.560458i | 0.135991 | + | 1.72670i | 1.37177 | − | 1.45542i | 1.93600 | + | 1.11889i | −1.14432 | − | 2.16576i | −2.16054 | + | 1.52711i | −0.965432 | + | 2.65856i | −2.96301 | + | 0.469633i | −3.14082 | − | 0.367741i |
| 629.17 | −1.25943 | − | 0.643305i | −1.72207 | − | 0.185637i | 1.17232 | + | 1.62039i | −0.799234 | + | 2.08835i | 2.04941 | + | 1.34162i | −2.00372 | + | 1.72775i | −0.434041 | − | 2.79493i | 2.93108 | + | 0.639360i | 2.35003 | − | 2.11598i |
| 629.18 | −1.25943 | − | 0.643305i | −1.72207 | + | 0.185637i | 1.17232 | + | 1.62039i | −0.799234 | − | 2.08835i | 2.28825 | + | 0.874023i | 2.00372 | − | 1.72775i | −0.434041 | − | 2.79493i | 2.93108 | − | 0.639360i | −0.336872 | + | 3.14428i |
| 629.19 | −1.25943 | − | 0.643305i | 1.72207 | − | 0.185637i | 1.17232 | + | 1.62039i | 0.799234 | + | 2.08835i | −2.28825 | − | 0.874023i | −2.00372 | − | 1.72775i | −0.434041 | − | 2.79493i | 2.93108 | − | 0.639360i | 0.336872 | − | 3.14428i |
| 629.20 | −1.25943 | − | 0.643305i | 1.72207 | + | 0.185637i | 1.17232 | + | 1.62039i | 0.799234 | − | 2.08835i | −2.04941 | − | 1.34162i | 2.00372 | + | 1.72775i | −0.434041 | − | 2.79493i | 2.93108 | + | 0.639360i | −2.35003 | + | 2.11598i |
| See next 80 embeddings (of 160 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 5.b | even | 2 | 1 | inner |
| 7.b | odd | 2 | 1 | inner |
| 8.b | even | 2 | 1 | inner |
| 15.d | odd | 2 | 1 | inner |
| 21.c | even | 2 | 1 | inner |
| 24.h | odd | 2 | 1 | inner |
| 35.c | odd | 2 | 1 | inner |
| 40.f | even | 2 | 1 | inner |
| 56.h | odd | 2 | 1 | inner |
| 105.g | even | 2 | 1 | inner |
| 120.i | odd | 2 | 1 | inner |
| 168.i | even | 2 | 1 | inner |
| 280.c | odd | 2 | 1 | inner |
| 840.u | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 840.2.u.e | ✓ | 160 |
| 3.b | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 5.b | even | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 7.b | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 8.b | even | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 15.d | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 21.c | even | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 24.h | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 35.c | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 40.f | even | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 56.h | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 105.g | even | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 120.i | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 168.i | even | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 280.c | odd | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| 840.u | even | 2 | 1 | inner | 840.2.u.e | ✓ | 160 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 840.2.u.e | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
| 840.2.u.e | ✓ | 160 | 3.b | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 5.b | even | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 7.b | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 8.b | even | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 15.d | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 21.c | even | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 24.h | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 35.c | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 40.f | even | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 56.h | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 105.g | even | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 120.i | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 168.i | even | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 280.c | odd | 2 | 1 | inner |
| 840.2.u.e | ✓ | 160 | 840.u | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(840, [\chi])\):
|
\( T_{11}^{20} - 128 T_{11}^{18} + 6741 T_{11}^{16} - 189322 T_{11}^{14} + 3078064 T_{11}^{12} + \cdots + 7585792 \)
|
|
\( T_{23}^{20} - 228 T_{23}^{18} + 20468 T_{23}^{16} - 939472 T_{23}^{14} + 24073184 T_{23}^{12} + \cdots + 79691776 \)
|
|
\( T_{73}^{20} - 740 T_{73}^{18} + 210448 T_{73}^{16} - 29178848 T_{73}^{14} + 2085671680 T_{73}^{12} + \cdots + 15535702016 \)
|