Properties

Label 840.2.u.e.629.159
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $160$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [160,0,0,-24,0,0,0,0,-32,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(160\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 629.159
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.e.629.156

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37073 + 0.347977i) q^{2} +(0.973146 - 1.43282i) q^{3} +(1.75782 + 0.953969i) q^{4} +(-1.31834 - 1.80610i) q^{5} +(1.83252 - 1.62539i) q^{6} +(2.61441 + 0.406058i) q^{7} +(2.07755 + 1.91932i) q^{8} +(-1.10597 - 2.78870i) q^{9} +(-1.17861 - 2.93443i) q^{10} -2.00814 q^{11} +(3.07749 - 1.59030i) q^{12} -1.33017i q^{13} +(3.44236 + 1.46635i) q^{14} +(-3.87076 + 0.131346i) q^{15} +(2.17989 + 3.35382i) q^{16} -4.12882i q^{17} +(-0.545590 - 4.20741i) q^{18} +2.33202 q^{19} +(-0.594440 - 4.43245i) q^{20} +(3.12601 - 3.35083i) q^{21} +(-2.75262 - 0.698786i) q^{22} +0.0975649 q^{23} +(4.77181 - 1.10898i) q^{24} +(-1.52398 + 4.76209i) q^{25} +(0.462871 - 1.82332i) q^{26} +(-5.07198 - 1.12915i) q^{27} +(4.20830 + 3.20784i) q^{28} +7.56166 q^{29} +(-5.35148 - 1.16690i) q^{30} +9.48706i q^{31} +(1.82099 + 5.35574i) q^{32} +(-1.95421 + 2.87731i) q^{33} +(1.43674 - 5.65952i) q^{34} +(-2.71328 - 5.25719i) q^{35} +(0.716226 - 5.95710i) q^{36} -6.19728 q^{37} +(3.19658 + 0.811490i) q^{38} +(-1.90591 - 1.29445i) q^{39} +(0.727575 - 6.28257i) q^{40} -5.88262 q^{41} +(5.45094 - 3.50532i) q^{42} -3.65928 q^{43} +(-3.52995 - 1.91570i) q^{44} +(-3.57862 + 5.67393i) q^{45} +(0.133736 + 0.0339504i) q^{46} -7.79115i q^{47} +(6.92678 + 0.140362i) q^{48} +(6.67023 + 2.12320i) q^{49} +(-3.74607 + 5.99724i) q^{50} +(-5.91588 - 4.01795i) q^{51} +(1.26895 - 2.33821i) q^{52} +2.49399i q^{53} +(-6.55942 - 3.31270i) q^{54} +(2.64740 + 3.62689i) q^{55} +(4.65220 + 5.86149i) q^{56} +(2.26939 - 3.34137i) q^{57} +(10.3650 + 2.63129i) q^{58} +1.86318i q^{59} +(-6.92940 - 3.46170i) q^{60} +11.3191 q^{61} +(-3.30128 + 13.0042i) q^{62} +(-1.75909 - 7.73987i) q^{63} +(0.632417 + 7.97496i) q^{64} +(-2.40243 + 1.75362i) q^{65} +(-3.67994 + 3.26400i) q^{66} +7.33230 q^{67} +(3.93877 - 7.25774i) q^{68} +(0.0949450 - 0.139793i) q^{69} +(-1.88980 - 8.15038i) q^{70} +8.88677i q^{71} +(3.05469 - 7.91637i) q^{72} -6.85080 q^{73} +(-8.49482 - 2.15651i) q^{74} +(5.34018 + 6.81781i) q^{75} +(4.09928 + 2.22467i) q^{76} +(-5.25008 - 0.815421i) q^{77} +(-2.16205 - 2.43757i) q^{78} +10.9789 q^{79} +(3.18350 - 8.35855i) q^{80} +(-6.55365 + 6.16844i) q^{81} +(-8.06351 - 2.04702i) q^{82} -10.1647 q^{83} +(8.69156 - 2.90805i) q^{84} +(-7.45706 + 5.44318i) q^{85} +(-5.01590 - 1.27335i) q^{86} +(7.35861 - 10.8345i) q^{87} +(-4.17200 - 3.85426i) q^{88} -13.4335 q^{89} +(-6.87973 + 6.53217i) q^{90} +(0.540128 - 3.47762i) q^{91} +(0.171502 + 0.0930739i) q^{92} +(13.5933 + 9.23230i) q^{93} +(2.71114 - 10.6796i) q^{94} +(-3.07438 - 4.21185i) q^{95} +(9.44593 + 2.60276i) q^{96} -9.65918 q^{97} +(8.40429 + 5.23144i) q^{98} +(2.22094 + 5.60008i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q - 24 q^{4} - 32 q^{9} - 48 q^{15} - 104 q^{16} - 16 q^{25} - 32 q^{30} + 48 q^{36} - 64 q^{39} - 64 q^{46} + 144 q^{49} + 16 q^{60} - 72 q^{64} + 8 q^{70} - 96 q^{79} + 16 q^{81} - 72 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37073 + 0.347977i 0.969255 + 0.246057i
\(3\) 0.973146 1.43282i 0.561846 0.827242i
\(4\) 1.75782 + 0.953969i 0.878912 + 0.476984i
\(5\) −1.31834 1.80610i −0.589578 0.807712i
\(6\) 1.83252 1.62539i 0.748121 0.663562i
\(7\) 2.61441 + 0.406058i 0.988152 + 0.153476i
\(8\) 2.07755 + 1.91932i 0.734524 + 0.678582i
\(9\) −1.10597 2.78870i −0.368657 0.929565i
\(10\) −1.17861 2.93443i −0.372708 0.927949i
\(11\) −2.00814 −0.605476 −0.302738 0.953074i \(-0.597901\pi\)
−0.302738 + 0.953074i \(0.597901\pi\)
\(12\) 3.07749 1.59030i 0.888395 0.459080i
\(13\) 1.33017i 0.368924i −0.982840 0.184462i \(-0.940946\pi\)
0.982840 0.184462i \(-0.0590543\pi\)
\(14\) 3.44236 + 1.46635i 0.920008 + 0.391899i
\(15\) −3.87076 + 0.131346i −0.999425 + 0.0339133i
\(16\) 2.17989 + 3.35382i 0.544972 + 0.838455i
\(17\) 4.12882i 1.00139i −0.865625 0.500693i \(-0.833078\pi\)
0.865625 0.500693i \(-0.166922\pi\)
\(18\) −0.545590 4.20741i −0.128597 0.991697i
\(19\) 2.33202 0.535002 0.267501 0.963558i \(-0.413802\pi\)
0.267501 + 0.963558i \(0.413802\pi\)
\(20\) −0.594440 4.43245i −0.132921 0.991127i
\(21\) 3.12601 3.35083i 0.682151 0.731211i
\(22\) −2.75262 0.698786i −0.586861 0.148982i
\(23\) 0.0975649 0.0203437 0.0101718 0.999948i \(-0.496762\pi\)
0.0101718 + 0.999948i \(0.496762\pi\)
\(24\) 4.77181 1.10898i 0.974041 0.226370i
\(25\) −1.52398 + 4.76209i −0.304796 + 0.952418i
\(26\) 0.462871 1.82332i 0.0907764 0.357582i
\(27\) −5.07198 1.12915i −0.976104 0.217304i
\(28\) 4.20830 + 3.20784i 0.795293 + 0.606225i
\(29\) 7.56166 1.40417 0.702083 0.712095i \(-0.252254\pi\)
0.702083 + 0.712095i \(0.252254\pi\)
\(30\) −5.35148 1.16690i −0.977042 0.213045i
\(31\) 9.48706i 1.70393i 0.523602 + 0.851963i \(0.324588\pi\)
−0.523602 + 0.851963i \(0.675412\pi\)
\(32\) 1.82099 + 5.35574i 0.321909 + 0.946771i
\(33\) −1.95421 + 2.87731i −0.340184 + 0.500875i
\(34\) 1.43674 5.65952i 0.246398 0.970600i
\(35\) −2.71328 5.25719i −0.458629 0.888628i
\(36\) 0.716226 5.95710i 0.119371 0.992850i
\(37\) −6.19728 −1.01883 −0.509413 0.860522i \(-0.670137\pi\)
−0.509413 + 0.860522i \(0.670137\pi\)
\(38\) 3.19658 + 0.811490i 0.518553 + 0.131641i
\(39\) −1.90591 1.29445i −0.305189 0.207279i
\(40\) 0.727575 6.28257i 0.115040 0.993361i
\(41\) −5.88262 −0.918711 −0.459355 0.888253i \(-0.651920\pi\)
−0.459355 + 0.888253i \(0.651920\pi\)
\(42\) 5.45094 3.50532i 0.841099 0.540882i
\(43\) −3.65928 −0.558035 −0.279017 0.960286i \(-0.590009\pi\)
−0.279017 + 0.960286i \(0.590009\pi\)
\(44\) −3.52995 1.91570i −0.532160 0.288803i
\(45\) −3.57862 + 5.67393i −0.533469 + 0.845820i
\(46\) 0.133736 + 0.0339504i 0.0197182 + 0.00500571i
\(47\) 7.79115i 1.13646i −0.822871 0.568228i \(-0.807629\pi\)
0.822871 0.568228i \(-0.192371\pi\)
\(48\) 6.92678 + 0.140362i 0.999795 + 0.0202595i
\(49\) 6.67023 + 2.12320i 0.952890 + 0.303315i
\(50\) −3.74607 + 5.99724i −0.529775 + 0.848138i
\(51\) −5.91588 4.01795i −0.828389 0.562626i
\(52\) 1.26895 2.33821i 0.175971 0.324252i
\(53\) 2.49399i 0.342576i 0.985221 + 0.171288i \(0.0547928\pi\)
−0.985221 + 0.171288i \(0.945207\pi\)
\(54\) −6.55942 3.31270i −0.892625 0.450801i
\(55\) 2.64740 + 3.62689i 0.356975 + 0.489050i
\(56\) 4.65220 + 5.86149i 0.621676 + 0.783274i
\(57\) 2.26939 3.34137i 0.300589 0.442576i
\(58\) 10.3650 + 2.63129i 1.36100 + 0.345505i
\(59\) 1.86318i 0.242565i 0.992618 + 0.121282i \(0.0387007\pi\)
−0.992618 + 0.121282i \(0.961299\pi\)
\(60\) −6.92940 3.46170i −0.894582 0.446903i
\(61\) 11.3191 1.44926 0.724632 0.689136i \(-0.242010\pi\)
0.724632 + 0.689136i \(0.242010\pi\)
\(62\) −3.30128 + 13.0042i −0.419263 + 1.65154i
\(63\) −1.75909 7.73987i −0.221624 0.975132i
\(64\) 0.632417 + 7.97496i 0.0790521 + 0.996870i
\(65\) −2.40243 + 1.75362i −0.297984 + 0.217509i
\(66\) −3.67994 + 3.26400i −0.452969 + 0.401771i
\(67\) 7.33230 0.895783 0.447892 0.894088i \(-0.352175\pi\)
0.447892 + 0.894088i \(0.352175\pi\)
\(68\) 3.93877 7.25774i 0.477646 0.880131i
\(69\) 0.0949450 0.139793i 0.0114300 0.0168291i
\(70\) −1.88980 8.15038i −0.225875 0.974156i
\(71\) 8.88677i 1.05467i 0.849659 + 0.527333i \(0.176808\pi\)
−0.849659 + 0.527333i \(0.823192\pi\)
\(72\) 3.05469 7.91637i 0.359999 0.932953i
\(73\) −6.85080 −0.801825 −0.400913 0.916116i \(-0.631307\pi\)
−0.400913 + 0.916116i \(0.631307\pi\)
\(74\) −8.49482 2.15651i −0.987503 0.250690i
\(75\) 5.34018 + 6.81781i 0.616631 + 0.787253i
\(76\) 4.09928 + 2.22467i 0.470219 + 0.255187i
\(77\) −5.25008 0.815421i −0.598303 0.0929258i
\(78\) −2.16205 2.43757i −0.244804 0.276000i
\(79\) 10.9789 1.23522 0.617612 0.786483i \(-0.288100\pi\)
0.617612 + 0.786483i \(0.288100\pi\)
\(80\) 3.18350 8.35855i 0.355926 0.934514i
\(81\) −6.55365 + 6.16844i −0.728184 + 0.685382i
\(82\) −8.06351 2.04702i −0.890465 0.226055i
\(83\) −10.1647 −1.11572 −0.557858 0.829936i \(-0.688377\pi\)
−0.557858 + 0.829936i \(0.688377\pi\)
\(84\) 8.69156 2.90805i 0.948327 0.317294i
\(85\) −7.45706 + 5.44318i −0.808832 + 0.590395i
\(86\) −5.01590 1.27335i −0.540878 0.137308i
\(87\) 7.35861 10.8345i 0.788925 1.16158i
\(88\) −4.17200 3.85426i −0.444737 0.410865i
\(89\) −13.4335 −1.42395 −0.711974 0.702206i \(-0.752198\pi\)
−0.711974 + 0.702206i \(0.752198\pi\)
\(90\) −6.87973 + 6.53217i −0.725187 + 0.688552i
\(91\) 0.540128 3.47762i 0.0566209 0.364553i
\(92\) 0.171502 + 0.0930739i 0.0178803 + 0.00970363i
\(93\) 13.5933 + 9.23230i 1.40956 + 0.957345i
\(94\) 2.71114 10.6796i 0.279633 1.10152i
\(95\) −3.07438 4.21185i −0.315425 0.432127i
\(96\) 9.44593 + 2.60276i 0.964071 + 0.265643i
\(97\) −9.65918 −0.980742 −0.490371 0.871514i \(-0.663139\pi\)
−0.490371 + 0.871514i \(0.663139\pi\)
\(98\) 8.40429 + 5.23144i 0.848961 + 0.528455i
\(99\) 2.22094 + 5.60008i 0.223213 + 0.562829i
\(100\) −7.22177 + 6.91708i −0.722177 + 0.691708i
\(101\) 15.6655i 1.55878i 0.626539 + 0.779390i \(0.284471\pi\)
−0.626539 + 0.779390i \(0.715529\pi\)
\(102\) −6.71094 7.56613i −0.664482 0.749159i
\(103\) 8.59402 0.846794 0.423397 0.905944i \(-0.360838\pi\)
0.423397 + 0.905944i \(0.360838\pi\)
\(104\) 2.55303 2.76350i 0.250345 0.270984i
\(105\) −10.1731 1.22836i −0.992789 0.119876i
\(106\) −0.867851 + 3.41859i −0.0842932 + 0.332043i
\(107\) 2.50519i 0.242186i 0.992641 + 0.121093i \(0.0386399\pi\)
−0.992641 + 0.121093i \(0.961360\pi\)
\(108\) −7.83848 6.82336i −0.754258 0.656578i
\(109\) 14.4916i 1.38804i 0.719954 + 0.694022i \(0.244163\pi\)
−0.719954 + 0.694022i \(0.755837\pi\)
\(110\) 2.36680 + 5.89274i 0.225666 + 0.561851i
\(111\) −6.03086 + 8.87961i −0.572424 + 0.842815i
\(112\) 4.33726 + 9.65340i 0.409833 + 0.912161i
\(113\) 14.2102 1.33678 0.668390 0.743811i \(-0.266984\pi\)
0.668390 + 0.743811i \(0.266984\pi\)
\(114\) 4.27346 3.79043i 0.400246 0.355007i
\(115\) −0.128623 0.176212i −0.0119942 0.0164318i
\(116\) 13.2921 + 7.21359i 1.23414 + 0.669765i
\(117\) −3.70945 + 1.47114i −0.342939 + 0.136007i
\(118\) −0.648343 + 2.55392i −0.0596848 + 0.235107i
\(119\) 1.67654 10.7944i 0.153689 0.989523i
\(120\) −8.29378 7.15634i −0.757115 0.653282i
\(121\) −6.96739 −0.633399
\(122\) 15.5155 + 3.93880i 1.40471 + 0.356602i
\(123\) −5.72465 + 8.42876i −0.516174 + 0.759996i
\(124\) −9.05036 + 16.6766i −0.812747 + 1.49760i
\(125\) 10.6099 3.52557i 0.948980 0.315337i
\(126\) 0.282062 11.2214i 0.0251281 0.999684i
\(127\) 1.45342i 0.128970i −0.997919 0.0644849i \(-0.979460\pi\)
0.997919 0.0644849i \(-0.0205404\pi\)
\(128\) −1.90823 + 11.1516i −0.168665 + 0.985673i
\(129\) −3.56101 + 5.24310i −0.313530 + 0.461629i
\(130\) −3.90331 + 1.56775i −0.342343 + 0.137501i
\(131\) 1.87492i 0.163813i 0.996640 + 0.0819064i \(0.0261009\pi\)
−0.996640 + 0.0819064i \(0.973899\pi\)
\(132\) −6.18002 + 3.19354i −0.537902 + 0.277962i
\(133\) 6.09684 + 0.946935i 0.528663 + 0.0821097i
\(134\) 10.0506 + 2.55148i 0.868243 + 0.220414i
\(135\) 4.64723 + 10.6491i 0.399970 + 0.916528i
\(136\) 7.92454 8.57783i 0.679523 0.735543i
\(137\) −18.4986 −1.58044 −0.790222 0.612821i \(-0.790035\pi\)
−0.790222 + 0.612821i \(0.790035\pi\)
\(138\) 0.178789 0.158581i 0.0152196 0.0134993i
\(139\) 0.685361 0.0581315 0.0290658 0.999578i \(-0.490747\pi\)
0.0290658 + 0.999578i \(0.490747\pi\)
\(140\) 0.245728 11.8296i 0.0207678 0.999784i
\(141\) −11.1633 7.58193i −0.940124 0.638514i
\(142\) −3.09240 + 12.1814i −0.259508 + 1.02224i
\(143\) 2.67117i 0.223375i
\(144\) 6.94189 9.78827i 0.578491 0.815689i
\(145\) −9.96881 13.6571i −0.827865 1.13416i
\(146\) −9.39062 2.38392i −0.777174 0.197295i
\(147\) 9.53329 7.49109i 0.786293 0.617854i
\(148\) −10.8937 5.91201i −0.895458 0.485964i
\(149\) −2.34916 −0.192450 −0.0962252 0.995360i \(-0.530677\pi\)
−0.0962252 + 0.995360i \(0.530677\pi\)
\(150\) 4.94752 + 11.2037i 0.403963 + 0.914775i
\(151\) −8.32682 −0.677627 −0.338814 0.940853i \(-0.610026\pi\)
−0.338814 + 0.940853i \(0.610026\pi\)
\(152\) 4.84488 + 4.47589i 0.392972 + 0.363043i
\(153\) −11.5140 + 4.56636i −0.930855 + 0.369169i
\(154\) −6.91272 2.94464i −0.557043 0.237285i
\(155\) 17.1346 12.5071i 1.37628 1.00460i
\(156\) −2.11538 4.09360i −0.169366 0.327750i
\(157\) 14.0657i 1.12256i 0.827625 + 0.561281i \(0.189691\pi\)
−0.827625 + 0.561281i \(0.810309\pi\)
\(158\) 15.0492 + 3.82041i 1.19725 + 0.303936i
\(159\) 3.57345 + 2.42702i 0.283393 + 0.192475i
\(160\) 7.27232 10.3496i 0.574927 0.818204i
\(161\) 0.255074 + 0.0396171i 0.0201027 + 0.00312226i
\(162\) −11.1298 + 6.17477i −0.874439 + 0.485135i
\(163\) 10.6143 0.831372 0.415686 0.909508i \(-0.363541\pi\)
0.415686 + 0.909508i \(0.363541\pi\)
\(164\) −10.3406 5.61184i −0.807466 0.438211i
\(165\) 7.77301 0.263760i 0.605128 0.0205337i
\(166\) −13.9330 3.53707i −1.08141 0.274530i
\(167\) 0.462349i 0.0357776i −0.999840 0.0178888i \(-0.994306\pi\)
0.999840 0.0178888i \(-0.00569449\pi\)
\(168\) 12.9258 0.961697i 0.997244 0.0741965i
\(169\) 11.2306 0.863895
\(170\) −12.1158 + 4.86626i −0.929236 + 0.373225i
\(171\) −2.57915 6.50329i −0.197232 0.497319i
\(172\) −6.43236 3.49084i −0.490463 0.266174i
\(173\) −3.85404 −0.293017 −0.146508 0.989209i \(-0.546804\pi\)
−0.146508 + 0.989209i \(0.546804\pi\)
\(174\) 13.8569 12.2906i 1.05049 0.931751i
\(175\) −5.91799 + 11.8312i −0.447358 + 0.894355i
\(176\) −4.37751 6.73492i −0.329967 0.507664i
\(177\) 2.66960 + 1.81314i 0.200660 + 0.136284i
\(178\) −18.4137 4.67455i −1.38017 0.350372i
\(179\) 13.7858 1.03040 0.515199 0.857070i \(-0.327718\pi\)
0.515199 + 0.857070i \(0.327718\pi\)
\(180\) −11.7033 + 6.55988i −0.872315 + 0.488945i
\(181\) −23.4970 −1.74652 −0.873260 0.487254i \(-0.837999\pi\)
−0.873260 + 0.487254i \(0.837999\pi\)
\(182\) 1.95050 4.57893i 0.144581 0.339413i
\(183\) 11.0152 16.2183i 0.814264 1.19889i
\(184\) 0.202696 + 0.187258i 0.0149429 + 0.0138049i
\(185\) 8.17009 + 11.1929i 0.600677 + 0.822918i
\(186\) 15.4202 + 17.3852i 1.13066 + 1.27474i
\(187\) 8.29124i 0.606316i
\(188\) 7.43251 13.6955i 0.542072 0.998844i
\(189\) −12.8017 5.01157i −0.931189 0.364538i
\(190\) −2.74853 6.84315i −0.199399 0.496454i
\(191\) 13.7417i 0.994314i −0.867661 0.497157i \(-0.834377\pi\)
0.867661 0.497157i \(-0.165623\pi\)
\(192\) 12.0422 + 6.85467i 0.869068 + 0.494693i
\(193\) 12.8635i 0.925933i −0.886376 0.462967i \(-0.846785\pi\)
0.886376 0.462967i \(-0.153215\pi\)
\(194\) −13.2402 3.36118i −0.950589 0.241319i
\(195\) 0.174713 + 5.14878i 0.0125114 + 0.368712i
\(196\) 9.69962 + 10.0954i 0.692830 + 0.721101i
\(197\) 25.5732i 1.82201i −0.412392 0.911006i \(-0.635307\pi\)
0.412392 0.911006i \(-0.364693\pi\)
\(198\) 1.09562 + 8.44906i 0.0778623 + 0.600449i
\(199\) 17.1175i 1.21342i −0.794921 0.606712i \(-0.792488\pi\)
0.794921 0.606712i \(-0.207512\pi\)
\(200\) −12.3061 + 6.96846i −0.870174 + 0.492745i
\(201\) 7.13540 10.5059i 0.503293 0.741029i
\(202\) −5.45126 + 21.4733i −0.383549 + 1.51086i
\(203\) 19.7693 + 3.07048i 1.38753 + 0.215505i
\(204\) −6.56607 12.7064i −0.459717 0.889627i
\(205\) 7.75527 + 10.6246i 0.541651 + 0.742053i
\(206\) 11.7801 + 2.99053i 0.820760 + 0.208360i
\(207\) −0.107904 0.272079i −0.00749985 0.0189108i
\(208\) 4.46116 2.89963i 0.309326 0.201053i
\(209\) −4.68301 −0.323931
\(210\) −13.5171 5.22375i −0.932770 0.360473i
\(211\) 17.3613i 1.19520i −0.801795 0.597599i \(-0.796121\pi\)
0.801795 0.597599i \(-0.203879\pi\)
\(212\) −2.37919 + 4.38399i −0.163403 + 0.301094i
\(213\) 12.7332 + 8.64813i 0.872463 + 0.592560i
\(214\) −0.871749 + 3.43395i −0.0595915 + 0.234740i
\(215\) 4.82416 + 6.60901i 0.329005 + 0.450731i
\(216\) −8.37010 12.0806i −0.569513 0.821982i
\(217\) −3.85230 + 24.8030i −0.261511 + 1.68374i
\(218\) −5.04275 + 19.8641i −0.341538 + 1.34537i
\(219\) −6.66683 + 9.81599i −0.450503 + 0.663303i
\(220\) 1.19372 + 8.90097i 0.0804804 + 0.600103i
\(221\) −5.49206 −0.369436
\(222\) −11.3566 + 10.0730i −0.762206 + 0.676054i
\(223\) 6.52959 0.437253 0.218627 0.975809i \(-0.429842\pi\)
0.218627 + 0.975809i \(0.429842\pi\)
\(224\) 2.58607 + 14.7415i 0.172789 + 0.984959i
\(225\) 14.9655 1.01681i 0.997700 0.0677876i
\(226\) 19.4784 + 4.94482i 1.29568 + 0.328924i
\(227\) −12.4592 −0.826949 −0.413474 0.910516i \(-0.635685\pi\)
−0.413474 + 0.910516i \(0.635685\pi\)
\(228\) 7.17676 3.70861i 0.475293 0.245609i
\(229\) 3.65759 0.241701 0.120850 0.992671i \(-0.461438\pi\)
0.120850 + 0.992671i \(0.461438\pi\)
\(230\) −0.114991 0.286298i −0.00758226 0.0188779i
\(231\) −6.27745 + 6.72892i −0.413026 + 0.442731i
\(232\) 15.7097 + 14.5133i 1.03139 + 0.952842i
\(233\) 1.23863 0.0811454 0.0405727 0.999177i \(-0.487082\pi\)
0.0405727 + 0.999177i \(0.487082\pi\)
\(234\) −5.59659 + 0.725730i −0.365861 + 0.0474424i
\(235\) −14.0716 + 10.2714i −0.917929 + 0.670029i
\(236\) −1.77741 + 3.27513i −0.115700 + 0.213193i
\(237\) 10.6841 15.7309i 0.694006 1.02183i
\(238\) 6.05431 14.2129i 0.392443 0.921284i
\(239\) 19.6091i 1.26841i 0.773165 + 0.634205i \(0.218672\pi\)
−0.773165 + 0.634205i \(0.781328\pi\)
\(240\) −8.87832 12.6955i −0.573093 0.819490i
\(241\) 24.2251i 1.56048i −0.625482 0.780239i \(-0.715098\pi\)
0.625482 0.780239i \(-0.284902\pi\)
\(242\) −9.55043 2.42449i −0.613925 0.155852i
\(243\) 2.46063 + 15.3930i 0.157849 + 0.987463i
\(244\) 19.8970 + 10.7981i 1.27378 + 0.691277i
\(245\) −4.95890 14.8462i −0.316812 0.948488i
\(246\) −10.7800 + 9.56154i −0.687307 + 0.609621i
\(247\) 3.10199i 0.197375i
\(248\) −18.2087 + 19.7098i −1.15625 + 1.25158i
\(249\) −9.89171 + 14.5642i −0.626861 + 0.922967i
\(250\) 15.7702 1.14061i 0.997395 0.0721384i
\(251\) 14.6425i 0.924229i −0.886820 0.462115i \(-0.847091\pi\)
0.886820 0.462115i \(-0.152909\pi\)
\(252\) 4.29144 15.2834i 0.270335 0.962766i
\(253\) −0.195924 −0.0123176
\(254\) 0.505756 1.99225i 0.0317339 0.125005i
\(255\) 0.542304 + 15.9817i 0.0339604 + 1.00081i
\(256\) −6.49619 + 14.6219i −0.406012 + 0.913868i
\(257\) 15.8068i 0.986002i 0.870029 + 0.493001i \(0.164100\pi\)
−0.870029 + 0.493001i \(0.835900\pi\)
\(258\) −6.70568 + 5.94775i −0.417478 + 0.370291i
\(259\) −16.2022 2.51646i −1.00676 0.156365i
\(260\) −5.89594 + 0.790709i −0.365650 + 0.0490377i
\(261\) −8.36299 21.0872i −0.517656 1.30526i
\(262\) −0.652431 + 2.57002i −0.0403073 + 0.158777i
\(263\) −14.2549 −0.878997 −0.439499 0.898243i \(-0.644844\pi\)
−0.439499 + 0.898243i \(0.644844\pi\)
\(264\) −9.58244 + 2.22699i −0.589759 + 0.137062i
\(265\) 4.50439 3.28791i 0.276702 0.201975i
\(266\) 8.02763 + 3.41956i 0.492206 + 0.209667i
\(267\) −13.0728 + 19.2478i −0.800040 + 1.17795i
\(268\) 12.8889 + 6.99479i 0.787314 + 0.427275i
\(269\) 9.33525i 0.569180i 0.958649 + 0.284590i \(0.0918575\pi\)
−0.958649 + 0.284590i \(0.908142\pi\)
\(270\) 2.66447 + 16.2142i 0.162155 + 0.986765i
\(271\) 0.207201i 0.0125865i −0.999980 0.00629327i \(-0.997997\pi\)
0.999980 0.00629327i \(-0.00200322\pi\)
\(272\) 13.8473 9.00037i 0.839617 0.545727i
\(273\) −4.45719 4.15814i −0.269761 0.251662i
\(274\) −25.3567 6.43710i −1.53185 0.388880i
\(275\) 3.06036 9.56292i 0.184547 0.576666i
\(276\) 0.300255 0.155158i 0.0180732 0.00933939i
\(277\) −28.6571 −1.72184 −0.860918 0.508744i \(-0.830110\pi\)
−0.860918 + 0.508744i \(0.830110\pi\)
\(278\) 0.939447 + 0.238490i 0.0563443 + 0.0143037i
\(279\) 26.4565 10.4924i 1.58391 0.628165i
\(280\) 4.45326 16.1297i 0.266133 0.963936i
\(281\) 3.11015i 0.185536i −0.995688 0.0927681i \(-0.970428\pi\)
0.995688 0.0927681i \(-0.0295715\pi\)
\(282\) −12.6636 14.2774i −0.754109 0.850207i
\(283\) 20.5801i 1.22336i −0.791106 0.611679i \(-0.790495\pi\)
0.791106 0.611679i \(-0.209505\pi\)
\(284\) −8.47770 + 15.6214i −0.503059 + 0.926958i
\(285\) −9.02667 + 0.306301i −0.534694 + 0.0181437i
\(286\) −0.929508 + 3.66147i −0.0549629 + 0.216507i
\(287\) −15.3796 2.38869i −0.907826 0.141000i
\(288\) 12.9216 11.0015i 0.761411 0.648269i
\(289\) −0.0471902 −0.00277589
\(290\) −8.91222 22.1892i −0.523344 1.30299i
\(291\) −9.39980 + 13.8399i −0.551026 + 0.811310i
\(292\) −12.0425 6.53545i −0.704734 0.382458i
\(293\) 11.9389 0.697476 0.348738 0.937220i \(-0.386610\pi\)
0.348738 + 0.937220i \(0.386610\pi\)
\(294\) 15.6743 6.95092i 0.914146 0.405386i
\(295\) 3.36508 2.45629i 0.195922 0.143011i
\(296\) −12.8751 11.8946i −0.748353 0.691357i
\(297\) 10.1852 + 2.26748i 0.591007 + 0.131573i
\(298\) −3.22007 0.817453i −0.186534 0.0473538i
\(299\) 0.129778i 0.00750528i
\(300\) 2.88312 + 17.0789i 0.166457 + 0.986049i
\(301\) −9.56684 1.48588i −0.551423 0.0856447i
\(302\) −11.4139 2.89755i −0.656794 0.166735i
\(303\) 22.4460 + 15.2449i 1.28949 + 0.875795i
\(304\) 5.08353 + 7.82116i 0.291561 + 0.448574i
\(305\) −14.9224 20.4434i −0.854454 1.17059i
\(306\) −17.3717 + 2.25265i −0.993072 + 0.128775i
\(307\) 7.70581i 0.439794i −0.975523 0.219897i \(-0.929428\pi\)
0.975523 0.219897i \(-0.0705721\pi\)
\(308\) −8.45083 6.44178i −0.481531 0.367055i
\(309\) 8.36324 12.3137i 0.475768 0.700503i
\(310\) 27.8391 11.1815i 1.58116 0.635067i
\(311\) 26.8427 1.52211 0.761054 0.648688i \(-0.224682\pi\)
0.761054 + 0.648688i \(0.224682\pi\)
\(312\) −1.47514 6.34734i −0.0835134 0.359347i
\(313\) 8.20422 0.463730 0.231865 0.972748i \(-0.425517\pi\)
0.231865 + 0.972748i \(0.425517\pi\)
\(314\) −4.89454 + 19.2803i −0.276215 + 1.08805i
\(315\) −11.6599 + 13.3808i −0.656961 + 0.753924i
\(316\) 19.2990 + 10.4735i 1.08565 + 0.589183i
\(317\) 30.7315i 1.72605i −0.505159 0.863026i \(-0.668566\pi\)
0.505159 0.863026i \(-0.331434\pi\)
\(318\) 4.05370 + 4.57027i 0.227320 + 0.256288i
\(319\) −15.1849 −0.850189
\(320\) 13.5698 11.6559i 0.758577 0.651584i
\(321\) 3.58949 + 2.43791i 0.200346 + 0.136071i
\(322\) 0.335853 + 0.143065i 0.0187164 + 0.00797267i
\(323\) 9.62849i 0.535744i
\(324\) −17.4047 + 4.59105i −0.966926 + 0.255058i
\(325\) 6.33441 + 2.02716i 0.351370 + 0.112447i
\(326\) 14.5493 + 3.69352i 0.805812 + 0.204565i
\(327\) 20.7639 + 14.1025i 1.14825 + 0.779867i
\(328\) −12.2214 11.2906i −0.674815 0.623421i
\(329\) 3.16366 20.3692i 0.174418 1.12299i
\(330\) 10.7465 + 2.34329i 0.591576 + 0.128994i
\(331\) 20.3258i 1.11721i −0.829434 0.558604i \(-0.811337\pi\)
0.829434 0.558604i \(-0.188663\pi\)
\(332\) −17.8677 9.69677i −0.980617 0.532180i
\(333\) 6.85402 + 17.2823i 0.375598 + 0.947066i
\(334\) 0.160887 0.633758i 0.00880335 0.0346777i
\(335\) −9.66644 13.2429i −0.528134 0.723535i
\(336\) 18.0524 + 3.17964i 0.984840 + 0.173464i
\(337\) 8.04781i 0.438392i 0.975681 + 0.219196i \(0.0703434\pi\)
−0.975681 + 0.219196i \(0.929657\pi\)
\(338\) 15.3942 + 3.90801i 0.837335 + 0.212568i
\(339\) 13.8286 20.3607i 0.751065 1.10584i
\(340\) −18.3008 + 2.45434i −0.992501 + 0.133105i
\(341\) 19.0513i 1.03169i
\(342\) −1.27233 9.81176i −0.0687995 0.530559i
\(343\) 16.5766 + 8.25942i 0.895050 + 0.445967i
\(344\) −7.60233 7.02333i −0.409890 0.378672i
\(345\) −0.377650 + 0.0128147i −0.0203320 + 0.000689922i
\(346\) −5.28286 1.34112i −0.284008 0.0720989i
\(347\) 20.1082i 1.07946i 0.841837 + 0.539732i \(0.181475\pi\)
−0.841837 + 0.539732i \(0.818525\pi\)
\(348\) 23.2709 12.0253i 1.24745 0.644625i
\(349\) 2.29568 0.122885 0.0614423 0.998111i \(-0.480430\pi\)
0.0614423 + 0.998111i \(0.480430\pi\)
\(350\) −12.2290 + 14.1581i −0.653667 + 0.756783i
\(351\) −1.50196 + 6.74662i −0.0801688 + 0.360108i
\(352\) −3.65680 10.7551i −0.194908 0.573247i
\(353\) 15.2039i 0.809221i 0.914489 + 0.404610i \(0.132593\pi\)
−0.914489 + 0.404610i \(0.867407\pi\)
\(354\) 3.02838 + 3.41430i 0.160957 + 0.181468i
\(355\) 16.0504 11.7157i 0.851866 0.621807i
\(356\) −23.6137 12.8151i −1.25152 0.679201i
\(357\) −13.8350 12.9067i −0.732225 0.683097i
\(358\) 18.8967 + 4.79715i 0.998719 + 0.253537i
\(359\) 29.0532i 1.53337i −0.642023 0.766685i \(-0.721905\pi\)
0.642023 0.766685i \(-0.278095\pi\)
\(360\) −18.3248 + 4.91936i −0.965804 + 0.259273i
\(361\) −13.5617 −0.713773
\(362\) −32.2082 8.17644i −1.69282 0.429744i
\(363\) −6.78029 + 9.98304i −0.355873 + 0.523974i
\(364\) 4.26699 5.59777i 0.223651 0.293403i
\(365\) 9.03165 + 12.3732i 0.472738 + 0.647644i
\(366\) 20.7425 18.3980i 1.08423 0.961677i
\(367\) −7.34446 −0.383378 −0.191689 0.981456i \(-0.561396\pi\)
−0.191689 + 0.981456i \(0.561396\pi\)
\(368\) 0.212680 + 0.327215i 0.0110867 + 0.0170573i
\(369\) 6.50601 + 16.4048i 0.338689 + 0.854002i
\(370\) 7.30415 + 18.1855i 0.379725 + 0.945418i
\(371\) −1.01270 + 6.52030i −0.0525770 + 0.338517i
\(372\) 15.0873 + 29.1963i 0.782239 + 1.51376i
\(373\) −19.5085 −1.01011 −0.505056 0.863086i \(-0.668528\pi\)
−0.505056 + 0.863086i \(0.668528\pi\)
\(374\) −2.88517 + 11.3651i −0.149188 + 0.587675i
\(375\) 5.27348 18.6330i 0.272321 0.962206i
\(376\) 14.9537 16.1865i 0.771179 0.834755i
\(377\) 10.0583i 0.518030i
\(378\) −15.8038 11.3242i −0.812862 0.582456i
\(379\) 3.57410i 0.183589i 0.995778 + 0.0917945i \(0.0292603\pi\)
−0.995778 + 0.0917945i \(0.970740\pi\)
\(380\) −1.38624 10.3366i −0.0711128 0.530254i
\(381\) −2.08249 1.41439i −0.106689 0.0724612i
\(382\) 4.78180 18.8362i 0.244658 0.963744i
\(383\) 14.6339i 0.747757i −0.927478 0.373878i \(-0.878028\pi\)
0.927478 0.373878i \(-0.121972\pi\)
\(384\) 14.1213 + 13.5863i 0.720626 + 0.693324i
\(385\) 5.44864 + 10.5572i 0.277689 + 0.538043i
\(386\) 4.47620 17.6324i 0.227833 0.897466i
\(387\) 4.04706 + 10.2046i 0.205724 + 0.518730i
\(388\) −16.9791 9.21456i −0.861985 0.467798i
\(389\) 13.4414 0.681507 0.340754 0.940153i \(-0.389318\pi\)
0.340754 + 0.940153i \(0.389318\pi\)
\(390\) −1.55217 + 7.11840i −0.0785974 + 0.360454i
\(391\) 0.402828i 0.0203719i
\(392\) 9.78263 + 17.2134i 0.494097 + 0.869407i
\(393\) 2.68644 + 1.82458i 0.135513 + 0.0920377i
\(394\) 8.89888 35.0540i 0.448319 1.76600i
\(395\) −14.4739 19.8290i −0.728260 0.997705i
\(396\) −1.43828 + 11.9627i −0.0722763 + 0.601147i
\(397\) 7.47449i 0.375134i 0.982252 + 0.187567i \(0.0600601\pi\)
−0.982252 + 0.187567i \(0.939940\pi\)
\(398\) 5.95649 23.4635i 0.298572 1.17612i
\(399\) 7.28991 7.81419i 0.364952 0.391199i
\(400\) −19.2933 + 5.26965i −0.964664 + 0.263483i
\(401\) 30.4076i 1.51848i 0.650808 + 0.759242i \(0.274430\pi\)
−0.650808 + 0.759242i \(0.725570\pi\)
\(402\) 13.4366 11.9178i 0.670155 0.594408i
\(403\) 12.6194 0.628619
\(404\) −14.9444 + 27.5373i −0.743514 + 1.37003i
\(405\) 19.7807 + 3.70447i 0.982912 + 0.184076i
\(406\) 26.0299 + 11.0881i 1.29184 + 0.550291i
\(407\) 12.4450 0.616875
\(408\) −4.57879 19.7020i −0.226684 0.975392i
\(409\) 24.7533i 1.22397i 0.790868 + 0.611986i \(0.209629\pi\)
−0.790868 + 0.611986i \(0.790371\pi\)
\(410\) 6.93329 + 17.2621i 0.342411 + 0.852516i
\(411\) −18.0019 + 26.5053i −0.887967 + 1.30741i
\(412\) 15.1068 + 8.19843i 0.744257 + 0.403908i
\(413\) −0.756558 + 4.87110i −0.0372278 + 0.239691i
\(414\) −0.0532304 0.410496i −0.00261613 0.0201748i
\(415\) 13.4004 + 18.3584i 0.657802 + 0.901177i
\(416\) 7.12407 2.42224i 0.349286 0.118760i
\(417\) 0.666956 0.982002i 0.0326610 0.0480888i
\(418\) −6.41916 1.62958i −0.313971 0.0797055i
\(419\) 11.5934i 0.566374i 0.959065 + 0.283187i \(0.0913918\pi\)
−0.959065 + 0.283187i \(0.908608\pi\)
\(420\) −16.7106 11.8640i −0.815395 0.578905i
\(421\) 12.7176i 0.619816i −0.950767 0.309908i \(-0.899702\pi\)
0.950767 0.309908i \(-0.100298\pi\)
\(422\) 6.04133 23.7977i 0.294087 1.15845i
\(423\) −21.7271 + 8.61679i −1.05641 + 0.418963i
\(424\) −4.78676 + 5.18138i −0.232466 + 0.251630i
\(425\) 19.6618 + 6.29225i 0.953739 + 0.305219i
\(426\) 14.4445 + 16.2851i 0.699836 + 0.789018i
\(427\) 29.5928 + 4.59622i 1.43209 + 0.222427i
\(428\) −2.38987 + 4.40368i −0.115519 + 0.212860i
\(429\) 3.82732 + 2.59944i 0.184785 + 0.125502i
\(430\) 4.31285 + 10.7379i 0.207984 + 0.517827i
\(431\) 2.50836i 0.120823i 0.998174 + 0.0604117i \(0.0192414\pi\)
−0.998174 + 0.0604117i \(0.980759\pi\)
\(432\) −7.26940 19.4719i −0.349749 0.936843i
\(433\) 24.6527 1.18473 0.592366 0.805669i \(-0.298194\pi\)
0.592366 + 0.805669i \(0.298194\pi\)
\(434\) −13.9114 + 32.6578i −0.667767 + 1.56763i
\(435\) −29.2694 + 0.993192i −1.40336 + 0.0476199i
\(436\) −13.8245 + 25.4737i −0.662075 + 1.21997i
\(437\) 0.227523 0.0108839
\(438\) −12.5542 + 11.1352i −0.599863 + 0.532061i
\(439\) 5.50924i 0.262942i −0.991320 0.131471i \(-0.958030\pi\)
0.991320 0.131471i \(-0.0419700\pi\)
\(440\) −1.46107 + 12.6163i −0.0696537 + 0.601456i
\(441\) −1.45612 20.9495i −0.0693392 0.997593i
\(442\) −7.52815 1.91111i −0.358078 0.0909023i
\(443\) 13.1356i 0.624093i −0.950067 0.312047i \(-0.898986\pi\)
0.950067 0.312047i \(-0.101014\pi\)
\(444\) −19.0721 + 9.85554i −0.905120 + 0.467723i
\(445\) 17.7099 + 24.2622i 0.839527 + 1.15014i
\(446\) 8.95033 + 2.27215i 0.423810 + 0.107589i
\(447\) −2.28607 + 3.36593i −0.108128 + 0.159203i
\(448\) −1.58491 + 21.1066i −0.0748798 + 0.997193i
\(449\) 10.4000i 0.490806i 0.969421 + 0.245403i \(0.0789203\pi\)
−0.969421 + 0.245403i \(0.921080\pi\)
\(450\) 20.8675 + 3.81387i 0.983705 + 0.179788i
\(451\) 11.8131 0.556257
\(452\) 24.9790 + 13.5561i 1.17491 + 0.637624i
\(453\) −8.10322 + 11.9309i −0.380722 + 0.560562i
\(454\) −17.0783 4.33553i −0.801524 0.203477i
\(455\) −6.99299 + 3.60914i −0.327836 + 0.169199i
\(456\) 11.1279 2.58617i 0.521114 0.121108i
\(457\) 40.4322i 1.89134i −0.325129 0.945670i \(-0.605408\pi\)
0.325129 0.945670i \(-0.394592\pi\)
\(458\) 5.01359 + 1.27276i 0.234270 + 0.0594722i
\(459\) −4.66205 + 20.9413i −0.217606 + 0.977458i
\(460\) −0.0579965 0.432452i −0.00270410 0.0201632i
\(461\) 18.2567i 0.850301i −0.905123 0.425151i \(-0.860221\pi\)
0.905123 0.425151i \(-0.139779\pi\)
\(462\) −10.9462 + 7.03915i −0.509265 + 0.327491i
\(463\) 42.1208i 1.95752i −0.205016 0.978759i \(-0.565725\pi\)
0.205016 0.978759i \(-0.434275\pi\)
\(464\) 16.4836 + 25.3604i 0.765230 + 1.17733i
\(465\) −1.24609 36.7221i −0.0577858 1.70295i
\(466\) 1.69783 + 0.431015i 0.0786506 + 0.0199664i
\(467\) 32.5243 1.50504 0.752521 0.658568i \(-0.228837\pi\)
0.752521 + 0.658568i \(0.228837\pi\)
\(468\) −7.92398 0.952706i −0.366286 0.0440388i
\(469\) 19.1696 + 2.97734i 0.885170 + 0.137481i
\(470\) −22.8626 + 9.18270i −1.05457 + 0.423566i
\(471\) 20.1536 + 13.6880i 0.928631 + 0.630708i
\(472\) −3.57603 + 3.87084i −0.164600 + 0.178170i
\(473\) 7.34833 0.337877
\(474\) 20.1190 17.8450i 0.924097 0.819648i
\(475\) −3.55395 + 11.1053i −0.163066 + 0.509545i
\(476\) 13.2446 17.3753i 0.607066 0.796396i
\(477\) 6.95497 2.75828i 0.318446 0.126293i
\(478\) −6.82354 + 26.8789i −0.312101 + 1.22941i
\(479\) −15.9517 −0.728852 −0.364426 0.931232i \(-0.618735\pi\)
−0.364426 + 0.931232i \(0.618735\pi\)
\(480\) −7.75207 20.4916i −0.353832 0.935309i
\(481\) 8.24346i 0.375869i
\(482\) 8.42980 33.2062i 0.383967 1.51250i
\(483\) 0.304989 0.326923i 0.0138775 0.0148755i
\(484\) −12.2474 6.64667i −0.556702 0.302121i
\(485\) 12.7340 + 17.4454i 0.578223 + 0.792156i
\(486\) −1.98356 + 21.9560i −0.0899762 + 0.995944i
\(487\) 8.42432i 0.381742i −0.981615 0.190871i \(-0.938869\pi\)
0.981615 0.190871i \(-0.0611313\pi\)
\(488\) 23.5160 + 21.7250i 1.06452 + 0.983445i
\(489\) 10.3292 15.2084i 0.467104 0.687746i
\(490\) −1.63119 22.0758i −0.0736895 0.997281i
\(491\) −16.9685 −0.765777 −0.382888 0.923795i \(-0.625071\pi\)
−0.382888 + 0.923795i \(0.625071\pi\)
\(492\) −18.1037 + 9.35513i −0.816178 + 0.421762i
\(493\) 31.2208i 1.40611i
\(494\) 1.07942 4.25200i 0.0485655 0.191307i
\(495\) 7.18635 11.3940i 0.323002 0.512124i
\(496\) −31.8179 + 20.6807i −1.42866 + 0.928592i
\(497\) −3.60855 + 23.2336i −0.161865 + 1.04217i
\(498\) −18.6269 + 16.5215i −0.834692 + 0.740347i
\(499\) 34.6615i 1.55166i −0.630940 0.775831i \(-0.717331\pi\)
0.630940 0.775831i \(-0.282669\pi\)
\(500\) 22.0136 + 3.92420i 0.984480 + 0.175496i
\(501\) −0.662465 0.449933i −0.0295968 0.0201015i
\(502\) 5.09528 20.0710i 0.227413 0.895814i
\(503\) 20.2162i 0.901396i 0.892676 + 0.450698i \(0.148825\pi\)
−0.892676 + 0.450698i \(0.851175\pi\)
\(504\) 11.2007 19.4562i 0.498919 0.866648i
\(505\) 28.2935 20.6524i 1.25904 0.919022i
\(506\) −0.268559 0.0681770i −0.0119389 0.00303084i
\(507\) 10.9291 16.0915i 0.485376 0.714650i
\(508\) 1.38651 2.55485i 0.0615166 0.113353i
\(509\) 2.33728i 0.103598i −0.998658 0.0517992i \(-0.983504\pi\)
0.998658 0.0517992i \(-0.0164956\pi\)
\(510\) −4.81791 + 22.0953i −0.213340 + 0.978398i
\(511\) −17.9108 2.78182i −0.792326 0.123061i
\(512\) −13.9926 + 17.7822i −0.618393 + 0.785869i
\(513\) −11.8280 2.63319i −0.522217 0.116258i
\(514\) −5.50041 + 21.6669i −0.242613 + 0.955687i
\(515\) −11.3298 15.5216i −0.499251 0.683966i
\(516\) −11.2614 + 5.81935i −0.495755 + 0.256183i
\(517\) 15.6457i 0.688097i
\(518\) −21.3332 9.08739i −0.937329 0.399277i
\(519\) −3.75054 + 5.52216i −0.164631 + 0.242396i
\(520\) −8.35691 0.967801i −0.366475 0.0424409i
\(521\) 18.0595 0.791203 0.395601 0.918422i \(-0.370536\pi\)
0.395601 + 0.918422i \(0.370536\pi\)
\(522\) −4.12557 31.8150i −0.180571 1.39251i
\(523\) 15.6316i 0.683522i −0.939787 0.341761i \(-0.888977\pi\)
0.939787 0.341761i \(-0.111023\pi\)
\(524\) −1.78862 + 3.29579i −0.0781362 + 0.143977i
\(525\) 11.1930 + 19.9929i 0.488501 + 0.872563i
\(526\) −19.5397 4.96040i −0.851973 0.216284i
\(527\) 39.1704 1.70629
\(528\) −13.9099 0.281865i −0.605352 0.0122666i
\(529\) −22.9905 −0.999586
\(530\) 7.31844 2.93943i 0.317893 0.127681i
\(531\) 5.19583 2.06062i 0.225480 0.0894233i
\(532\) 9.81382 + 7.48074i 0.425483 + 0.324331i
\(533\) 7.82491i 0.338934i
\(534\) −24.6171 + 21.8346i −1.06529 + 0.944877i
\(535\) 4.52462 3.30268i 0.195616 0.142787i
\(536\) 15.2332 + 14.0730i 0.657975 + 0.607863i
\(537\) 13.4156 19.7526i 0.578926 0.852389i
\(538\) −3.24846 + 12.7961i −0.140051 + 0.551681i
\(539\) −13.3947 4.26368i −0.576952 0.183650i
\(540\) −1.98990 + 23.1525i −0.0856315 + 0.996327i
\(541\) 14.7905i 0.635895i 0.948108 + 0.317948i \(0.102994\pi\)
−0.948108 + 0.317948i \(0.897006\pi\)
\(542\) 0.0721011 0.284017i 0.00309701 0.0121996i
\(543\) −22.8661 + 33.6671i −0.981276 + 1.44479i
\(544\) 22.1129 7.51855i 0.948084 0.322355i
\(545\) 26.1733 19.1048i 1.12114 0.818360i
\(546\) −4.66268 7.25070i −0.199544 0.310301i
\(547\) 35.5600 1.52043 0.760217 0.649669i \(-0.225092\pi\)
0.760217 + 0.649669i \(0.225092\pi\)
\(548\) −32.5173 17.6471i −1.38907 0.753847i
\(549\) −12.5186 31.5656i −0.534282 1.34719i
\(550\) 7.52262 12.0433i 0.320766 0.513527i
\(551\) 17.6339 0.751231
\(552\) 0.465561 0.108198i 0.0198156 0.00460520i
\(553\) 28.7033 + 4.45808i 1.22059 + 0.189577i
\(554\) −39.2812 9.97201i −1.66890 0.423670i
\(555\) 23.9881 0.813986i 1.01824 0.0345518i
\(556\) 1.20474 + 0.653813i 0.0510925 + 0.0277278i
\(557\) 1.35270i 0.0573158i 0.999589 + 0.0286579i \(0.00912334\pi\)
−0.999589 + 0.0286579i \(0.990877\pi\)
\(558\) 39.9160 5.17605i 1.68978 0.219119i
\(559\) 4.86748i 0.205872i
\(560\) 11.7170 20.5599i 0.495135 0.868816i
\(561\) 11.8799 + 8.06859i 0.501570 + 0.340656i
\(562\) 1.08226 4.26319i 0.0456525 0.179832i
\(563\) −30.5252 −1.28649 −0.643243 0.765662i \(-0.722411\pi\)
−0.643243 + 0.765662i \(0.722411\pi\)
\(564\) −12.3903 23.9772i −0.521725 1.00962i
\(565\) −18.7338 25.6650i −0.788136 1.07973i
\(566\) 7.16140 28.2098i 0.301016 1.18575i
\(567\) −19.6387 + 13.4656i −0.824746 + 0.565504i
\(568\) −17.0566 + 18.4627i −0.715677 + 0.774678i
\(569\) 15.3875i 0.645079i 0.946556 + 0.322539i \(0.104536\pi\)
−0.946556 + 0.322539i \(0.895464\pi\)
\(570\) −12.4797 2.72122i −0.522719 0.113979i
\(571\) 42.4541i 1.77665i −0.459217 0.888324i \(-0.651870\pi\)
0.459217 0.888324i \(-0.348130\pi\)
\(572\) −2.54822 + 4.69545i −0.106546 + 0.196327i
\(573\) −19.6894 13.3727i −0.822538 0.558652i
\(574\) −20.2501 8.62599i −0.845221 0.360042i
\(575\) −0.148687 + 0.464613i −0.00620068 + 0.0193757i
\(576\) 21.5403 10.5837i 0.897513 0.440988i
\(577\) −0.806615 −0.0335798 −0.0167899 0.999859i \(-0.505345\pi\)
−0.0167899 + 0.999859i \(0.505345\pi\)
\(578\) −0.0646852 0.0164211i −0.00269055 0.000683028i
\(579\) −18.4311 12.5180i −0.765971 0.520232i
\(580\) −4.49495 33.5167i −0.186643 1.39171i
\(581\) −26.5746 4.12745i −1.10250 0.171235i
\(582\) −17.7006 + 15.6999i −0.733714 + 0.650783i
\(583\) 5.00827i 0.207421i
\(584\) −14.2329 13.1489i −0.588960 0.544105i
\(585\) 7.54732 + 4.76018i 0.312043 + 0.196809i
\(586\) 16.3650 + 4.15446i 0.676033 + 0.171619i
\(587\) 2.83907 0.117181 0.0585905 0.998282i \(-0.481339\pi\)
0.0585905 + 0.998282i \(0.481339\pi\)
\(588\) 23.9041 4.07354i 0.985789 0.167990i
\(589\) 22.1240i 0.911603i
\(590\) 5.46736 2.19595i 0.225088 0.0904059i
\(591\) −36.6419 24.8864i −1.50724 1.02369i
\(592\) −13.5094 20.7845i −0.555231 0.854239i
\(593\) 32.6365i 1.34022i −0.742262 0.670110i \(-0.766247\pi\)
0.742262 0.670110i \(-0.233753\pi\)
\(594\) 13.1722 + 6.65234i 0.540463 + 0.272949i
\(595\) −21.7060 + 11.2027i −0.889861 + 0.459265i
\(596\) −4.12940 2.24102i −0.169147 0.0917958i
\(597\) −24.5263 16.6578i −1.00380 0.681758i
\(598\) 0.0451599 0.177892i 0.00184673 0.00727453i
\(599\) 38.2058i 1.56105i 0.625128 + 0.780523i \(0.285047\pi\)
−0.625128 + 0.780523i \(0.714953\pi\)
\(600\) −1.99108 + 24.4138i −0.0812853 + 0.996691i
\(601\) 36.9925i 1.50896i 0.656325 + 0.754479i \(0.272110\pi\)
−0.656325 + 0.754479i \(0.727890\pi\)
\(602\) −12.5965 5.36579i −0.513396 0.218693i
\(603\) −8.10932 20.4476i −0.330237 0.832689i
\(604\) −14.6371 7.94353i −0.595575 0.323218i
\(605\) 9.18536 + 12.5838i 0.373438 + 0.511604i
\(606\) 25.4626 + 28.7074i 1.03435 + 1.16616i
\(607\) −29.2308 −1.18644 −0.593220 0.805041i \(-0.702143\pi\)
−0.593220 + 0.805041i \(0.702143\pi\)
\(608\) 4.24658 + 12.4897i 0.172222 + 0.506524i
\(609\) 23.6378 25.3378i 0.957853 1.02674i
\(610\) −13.3408 33.2152i −0.540152 1.34484i
\(611\) −10.3636 −0.419266
\(612\) −24.5958 2.95717i −0.994227 0.119537i
\(613\) 1.66640 0.0673052 0.0336526 0.999434i \(-0.489286\pi\)
0.0336526 + 0.999434i \(0.489286\pi\)
\(614\) 2.68145 10.5626i 0.108214 0.426273i
\(615\) 22.7702 0.772657i 0.918182 0.0311565i
\(616\) −9.34225 11.7707i −0.376410 0.474254i
\(617\) 21.0418 0.847111 0.423556 0.905870i \(-0.360782\pi\)
0.423556 + 0.905870i \(0.360782\pi\)
\(618\) 15.7487 13.9686i 0.633505 0.561900i
\(619\) −8.07998 −0.324762 −0.162381 0.986728i \(-0.551917\pi\)
−0.162381 + 0.986728i \(0.551917\pi\)
\(620\) 42.0510 5.63949i 1.68881 0.226487i
\(621\) −0.494848 0.110165i −0.0198576 0.00442077i
\(622\) 36.7942 + 9.34065i 1.47531 + 0.374526i
\(623\) −35.1206 5.45478i −1.40708 0.218541i
\(624\) 0.186706 9.21383i 0.00747420 0.368848i
\(625\) −20.3550 14.5147i −0.814198 0.580587i
\(626\) 11.2458 + 2.85488i 0.449473 + 0.114104i
\(627\) −4.55725 + 6.70993i −0.181999 + 0.267969i
\(628\) −13.4182 + 24.7250i −0.535445 + 0.986634i
\(629\) 25.5875i 1.02024i
\(630\) −20.6389 + 14.2842i −0.822272 + 0.569095i
\(631\) −27.5940 −1.09850 −0.549250 0.835658i \(-0.685087\pi\)
−0.549250 + 0.835658i \(0.685087\pi\)
\(632\) 22.8092 + 21.0720i 0.907302 + 0.838201i
\(633\) −24.8756 16.8951i −0.988718 0.671518i
\(634\) 10.6939 42.1247i 0.424708 1.67299i
\(635\) −2.62501 + 1.91609i −0.104170 + 0.0760377i
\(636\) 3.96619 + 7.67522i 0.157270 + 0.304342i
\(637\) 2.82423 8.87257i 0.111900 0.351544i
\(638\) −20.8144 5.28399i −0.824050 0.209195i
\(639\) 24.7825 9.82852i 0.980381 0.388810i
\(640\) 22.6566 11.2551i 0.895581 0.444898i
\(641\) 26.2441i 1.03658i −0.855205 0.518290i \(-0.826569\pi\)
0.855205 0.518290i \(-0.173431\pi\)
\(642\) 4.07190 + 4.59080i 0.160705 + 0.181184i
\(643\) 10.0020i 0.394440i −0.980359 0.197220i \(-0.936809\pi\)
0.980359 0.197220i \(-0.0631913\pi\)
\(644\) 0.410582 + 0.312973i 0.0161792 + 0.0123329i
\(645\) 14.1642 0.480631i 0.557714 0.0189248i
\(646\) 3.35050 13.1981i 0.131824 0.519272i
\(647\) 39.2518i 1.54315i 0.636140 + 0.771573i \(0.280530\pi\)
−0.636140 + 0.771573i \(0.719470\pi\)
\(648\) −25.4547 + 0.236673i −0.999957 + 0.00929738i
\(649\) 3.74151i 0.146867i
\(650\) 7.97738 + 4.98293i 0.312899 + 0.195447i
\(651\) 31.7895 + 29.6566i 1.24593 + 1.16234i
\(652\) 18.6580 + 10.1257i 0.730703 + 0.396552i
\(653\) 14.4218i 0.564370i 0.959360 + 0.282185i \(0.0910592\pi\)
−0.959360 + 0.282185i \(0.908941\pi\)
\(654\) 23.5545 + 26.5561i 0.921053 + 1.03843i
\(655\) 3.38630 2.47178i 0.132314 0.0965804i
\(656\) −12.8234 19.7292i −0.500671 0.770297i
\(657\) 7.57679 + 19.1048i 0.295599 + 0.745349i
\(658\) 11.4246 26.8199i 0.445376 1.04555i
\(659\) 28.6527 1.11615 0.558075 0.829790i \(-0.311540\pi\)
0.558075 + 0.829790i \(0.311540\pi\)
\(660\) 13.9152 + 6.95156i 0.541648 + 0.270589i
\(661\) 30.3370 1.17997 0.589987 0.807413i \(-0.299133\pi\)
0.589987 + 0.807413i \(0.299133\pi\)
\(662\) 7.07293 27.8613i 0.274897 1.08286i
\(663\) −5.34458 + 7.86915i −0.207566 + 0.305613i
\(664\) −21.1176 19.5092i −0.819521 0.757106i
\(665\) −6.32742 12.2599i −0.245367 0.475417i
\(666\) 3.38117 + 26.0745i 0.131018 + 1.01037i
\(667\) 0.737753 0.0285659
\(668\) 0.441067 0.812728i 0.0170654 0.0314454i
\(669\) 6.35424 9.35575i 0.245669 0.361714i
\(670\) −8.64190 21.5161i −0.333866 0.831241i
\(671\) −22.7303 −0.877495
\(672\) 23.6386 + 10.6403i 0.911880 + 0.410458i
\(673\) 35.2784i 1.35988i 0.733267 + 0.679940i \(0.237994\pi\)
−0.733267 + 0.679940i \(0.762006\pi\)
\(674\) −2.80046 + 11.0314i −0.107870 + 0.424914i
\(675\) 13.1067 22.4324i 0.504477 0.863425i
\(676\) 19.7415 + 10.7137i 0.759287 + 0.412065i
\(677\) 19.1645 0.736552 0.368276 0.929717i \(-0.379948\pi\)
0.368276 + 0.929717i \(0.379948\pi\)
\(678\) 26.0404 23.0970i 1.00007 0.887037i
\(679\) −25.2530 3.92219i −0.969122 0.150520i
\(680\) −25.9396 3.00403i −0.994739 0.115199i
\(681\) −12.1247 + 17.8519i −0.464618 + 0.684086i
\(682\) 6.62943 26.1143i 0.253854 0.999968i
\(683\) 13.2192i 0.505820i −0.967490 0.252910i \(-0.918612\pi\)
0.967490 0.252910i \(-0.0813877\pi\)
\(684\) 1.67025 13.8921i 0.0638637 0.531176i
\(685\) 24.3874 + 33.4103i 0.931795 + 1.27654i
\(686\) 19.8480 + 17.0897i 0.757798 + 0.652489i
\(687\) 3.55938 5.24069i 0.135799 0.199945i
\(688\) −7.97681 12.2726i −0.304113 0.467887i
\(689\) 3.31744 0.126384
\(690\) −0.522117 0.113848i −0.0198767 0.00433412i
\(691\) −36.7836 −1.39931 −0.699657 0.714479i \(-0.746664\pi\)
−0.699657 + 0.714479i \(0.746664\pi\)
\(692\) −6.77472 3.67663i −0.257536 0.139765i
\(693\) 3.53248 + 15.5427i 0.134188 + 0.590419i
\(694\) −6.99720 + 27.5630i −0.265610 + 1.04628i
\(695\) −0.903535 1.23783i −0.0342731 0.0469535i
\(696\) 36.0828 8.38575i 1.36772 0.317861i
\(697\) 24.2883i 0.919985i
\(698\) 3.14676 + 0.798843i 0.119107 + 0.0302367i
\(699\) 1.20537 1.77474i 0.0455912 0.0671268i
\(700\) −21.6894 + 15.1516i −0.819782 + 0.572676i
\(701\) −4.86743 −0.183840 −0.0919201 0.995766i \(-0.529300\pi\)
−0.0919201 + 0.995766i \(0.529300\pi\)
\(702\) −4.40646 + 8.72518i −0.166311 + 0.329311i
\(703\) −14.4522 −0.545074
\(704\) −1.26998 16.0148i −0.0478642 0.603581i
\(705\) 1.02333 + 30.1576i 0.0385410 + 1.13580i
\(706\) −5.29061 + 20.8405i −0.199115 + 0.784342i
\(707\) −6.36113 + 40.9561i −0.239235 + 1.54031i
\(708\) 2.96301 + 5.73391i 0.111357 + 0.215493i
\(709\) 0.768670i 0.0288680i 0.999896 + 0.0144340i \(0.00459465\pi\)
−0.999896 + 0.0144340i \(0.995405\pi\)
\(710\) 26.0776 10.4740i 0.978676 0.393082i
\(711\) −12.1424 30.6168i −0.455374 1.14822i
\(712\) −27.9087 25.7832i −1.04592 0.966265i
\(713\) 0.925604i 0.0346642i
\(714\) −14.4728 22.5060i −0.541632 0.842265i
\(715\) 4.82440 3.52150i 0.180422 0.131697i
\(716\) 24.2330 + 13.1512i 0.905629 + 0.491484i
\(717\) 28.0965 + 19.0826i 1.04928 + 0.712651i
\(718\) 10.1099 39.8242i 0.377297 1.48623i
\(719\) −45.3201 −1.69015 −0.845077 0.534644i \(-0.820446\pi\)
−0.845077 + 0.534644i \(0.820446\pi\)
\(720\) −26.8303 + 0.366498i −0.999907 + 0.0136586i
\(721\) 22.4683 + 3.48968i 0.836762 + 0.129962i
\(722\) −18.5895 4.71916i −0.691829 0.175629i
\(723\) −34.7104 23.5746i −1.29089 0.876749i
\(724\) −41.3036 22.4154i −1.53504 0.833063i
\(725\) −11.5238 + 36.0093i −0.427984 + 1.33735i
\(726\) −12.7678 + 11.3247i −0.473859 + 0.420299i
\(727\) −19.4319 −0.720688 −0.360344 0.932819i \(-0.617341\pi\)
−0.360344 + 0.932819i \(0.617341\pi\)
\(728\) 7.79680 6.18824i 0.288969 0.229351i
\(729\) 24.4501 + 11.4540i 0.905558 + 0.424223i
\(730\) 8.07440 + 20.1032i 0.298847 + 0.744053i
\(731\) 15.1085i 0.558809i
\(732\) 34.8345 18.0008i 1.28752 0.665329i
\(733\) 33.0895i 1.22219i −0.791558 0.611094i \(-0.790730\pi\)
0.791558 0.611094i \(-0.209270\pi\)
\(734\) −10.0673 2.55571i −0.371591 0.0943329i
\(735\) −26.0977 7.34229i −0.962629 0.270824i
\(736\) 0.177665 + 0.522533i 0.00654881 + 0.0192608i
\(737\) −14.7243 −0.542375
\(738\) 3.20950 + 24.7506i 0.118143 + 0.911083i
\(739\) 12.9023i 0.474619i 0.971434 + 0.237310i \(0.0762656\pi\)
−0.971434 + 0.237310i \(0.923734\pi\)
\(740\) 3.68391 + 27.4691i 0.135423 + 1.00979i
\(741\) −4.44461 3.01869i −0.163277 0.110894i
\(742\) −3.65706 + 8.58519i −0.134255 + 0.315172i
\(743\) 20.1716 0.740025 0.370012 0.929027i \(-0.379353\pi\)
0.370012 + 0.929027i \(0.379353\pi\)
\(744\) 10.5210 + 45.2704i 0.385718 + 1.65969i
\(745\) 3.09698 + 4.24281i 0.113464 + 0.155444i
\(746\) −26.7410 6.78852i −0.979057 0.248545i
\(747\) 11.2418 + 28.3462i 0.411317 + 1.03713i
\(748\) −7.90959 + 14.5745i −0.289203 + 0.532898i
\(749\) −1.01725 + 6.54958i −0.0371696 + 0.239316i
\(750\) 13.7124 23.7059i 0.500707 0.865617i
\(751\) 15.5652 0.567982 0.283991 0.958827i \(-0.408341\pi\)
0.283991 + 0.958827i \(0.408341\pi\)
\(752\) 26.1301 16.9838i 0.952867 0.619336i
\(753\) −20.9802 14.2493i −0.764561 0.519275i
\(754\) 3.50007 13.7873i 0.127465 0.502104i
\(755\) 10.9776 + 15.0391i 0.399514 + 0.547327i
\(756\) −17.7223 21.0219i −0.644554 0.764559i
\(757\) −29.6612 −1.07806 −0.539028 0.842288i \(-0.681208\pi\)
−0.539028 + 0.842288i \(0.681208\pi\)
\(758\) −1.24370 + 4.89914i −0.0451734 + 0.177945i
\(759\) −0.190662 + 0.280724i −0.00692061 + 0.0101896i
\(760\) 1.69672 14.6511i 0.0615464 0.531450i
\(761\) −41.8111 −1.51565 −0.757825 0.652457i \(-0.773738\pi\)
−0.757825 + 0.652457i \(0.773738\pi\)
\(762\) −2.36236 2.66341i −0.0855795 0.0964851i
\(763\) −5.88444 + 37.8869i −0.213031 + 1.37160i
\(764\) 13.1091 24.1555i 0.474272 0.873914i
\(765\) 23.4267 + 14.7755i 0.846993 + 0.534209i
\(766\) 5.09226 20.0592i 0.183991 0.724767i
\(767\) 2.47835 0.0894880
\(768\) 14.6288 + 23.5371i 0.527873 + 0.849323i
\(769\) 9.12224i 0.328956i −0.986381 0.164478i \(-0.947406\pi\)
0.986381 0.164478i \(-0.0525940\pi\)
\(770\) 3.79499 + 16.3671i 0.136762 + 0.589828i
\(771\) 22.6484 + 15.3823i 0.815662 + 0.553982i
\(772\) 12.2714 22.6117i 0.441656 0.813814i
\(773\) −17.9114 −0.644228 −0.322114 0.946701i \(-0.604394\pi\)
−0.322114 + 0.946701i \(0.604394\pi\)
\(774\) 1.99647 + 15.3961i 0.0717615 + 0.553401i
\(775\) −45.1782 14.4581i −1.62285 0.519350i
\(776\) −20.0674 18.5391i −0.720379 0.665514i
\(777\) −19.3728 + 20.7660i −0.694994 + 0.744977i
\(778\) 18.4246 + 4.67731i 0.660555 + 0.167690i
\(779\) −13.7184 −0.491512
\(780\) −4.60466 + 9.21732i −0.164873 + 0.330033i
\(781\) 17.8458i 0.638575i
\(782\) 0.140175 0.552171i 0.00501265 0.0197456i
\(783\) −38.3526 8.53822i −1.37061 0.305131i
\(784\) 7.41952 + 26.9991i 0.264983 + 0.964253i
\(785\) 25.4040 18.5433i 0.906707 0.661838i
\(786\) 3.04748 + 3.43583i 0.108700 + 0.122552i
\(787\) 36.9161i 1.31592i 0.753055 + 0.657958i \(0.228579\pi\)
−0.753055 + 0.657958i \(0.771421\pi\)
\(788\) 24.3960 44.9531i 0.869072 1.60139i
\(789\) −13.8721 + 20.4248i −0.493861 + 0.727143i
\(790\) −12.9398 32.2169i −0.460378 1.14622i
\(791\) 37.1512 + 5.77016i 1.32094 + 0.205163i
\(792\) −6.13424 + 15.8971i −0.217971 + 0.564880i
\(793\) 15.0564i 0.534668i
\(794\) −2.60095 + 10.2455i −0.0923044 + 0.363600i
\(795\) −0.327575 9.65362i −0.0116179 0.342379i
\(796\) 16.3295 30.0895i 0.578785 1.06649i
\(797\) −29.7782 −1.05480 −0.527399 0.849618i \(-0.676833\pi\)
−0.527399 + 0.849618i \(0.676833\pi\)
\(798\) 12.7117 8.17446i 0.449989 0.289373i
\(799\) −32.1683 −1.13803
\(800\) −28.2797 + 0.509668i −0.999838 + 0.0180195i
\(801\) 14.8571 + 37.4619i 0.524948 + 1.32365i
\(802\) −10.5812 + 41.6808i −0.373634 + 1.47180i
\(803\) 13.7573 0.485486
\(804\) 22.5651 11.6606i 0.795809 0.411236i
\(805\) −0.264721 0.512918i −0.00933020 0.0180780i
\(806\) 17.2979 + 4.39128i 0.609293 + 0.154676i
\(807\) 13.3758 + 9.08457i 0.470850 + 0.319792i
\(808\) −30.0672 + 32.5459i −1.05776 + 1.14496i
\(809\) 8.02026i 0.281977i 0.990011 + 0.140989i \(0.0450281\pi\)
−0.990011 + 0.140989i \(0.954972\pi\)
\(810\) 25.8250 + 11.9611i 0.907399 + 0.420270i
\(811\) 2.93155 0.102941 0.0514703 0.998675i \(-0.483609\pi\)
0.0514703 + 0.998675i \(0.483609\pi\)
\(812\) 31.8217 + 24.2566i 1.11672 + 0.851240i
\(813\) −0.296882 0.201636i −0.0104121 0.00707170i
\(814\) 17.0588 + 4.33057i 0.597909 + 0.151786i
\(815\) −13.9931 19.1704i −0.490159 0.671509i
\(816\) 0.579529 28.5995i 0.0202876 1.00118i
\(817\) −8.53350 −0.298549
\(818\) −8.61360 + 33.9302i −0.301167 + 1.18634i
\(819\) −10.2954 + 2.33989i −0.359750 + 0.0817624i
\(820\) 3.49686 + 26.0744i 0.122116 + 0.910559i
\(821\) 28.8608 1.00725 0.503624 0.863923i \(-0.332000\pi\)
0.503624 + 0.863923i \(0.332000\pi\)
\(822\) −33.8990 + 30.0674i −1.18236 + 1.04872i
\(823\) 55.7417i 1.94303i 0.236970 + 0.971517i \(0.423846\pi\)
−0.236970 + 0.971517i \(0.576154\pi\)
\(824\) 17.8545 + 16.4947i 0.621991 + 0.574620i
\(825\) −10.7238 13.6911i −0.373355 0.476662i
\(826\) −2.73207 + 6.41371i −0.0950610 + 0.223162i
\(827\) 30.4567i 1.05908i 0.848284 + 0.529541i \(0.177636\pi\)
−0.848284 + 0.529541i \(0.822364\pi\)
\(828\) 0.0698786 0.581204i 0.00242845 0.0201982i
\(829\) −25.9657 −0.901827 −0.450913 0.892568i \(-0.648902\pi\)
−0.450913 + 0.892568i \(0.648902\pi\)
\(830\) 11.9801 + 29.8275i 0.415837 + 1.03533i
\(831\) −27.8875 + 41.0605i −0.967407 + 1.42437i
\(832\) 10.6081 0.841225i 0.367769 0.0291642i
\(833\) 8.76633 27.5402i 0.303735 0.954212i
\(834\) 1.25593 1.11398i 0.0434894 0.0385739i
\(835\) −0.835048 + 0.609531i −0.0288980 + 0.0210937i
\(836\) −8.23190 4.46745i −0.284706 0.154510i
\(837\) 10.7123 48.1182i 0.370271 1.66321i
\(838\) −4.03424 + 15.8915i −0.139361 + 0.548961i
\(839\) −2.14123 −0.0739234 −0.0369617 0.999317i \(-0.511768\pi\)
−0.0369617 + 0.999317i \(0.511768\pi\)
\(840\) −18.7774 22.0773i −0.647882 0.761741i
\(841\) 28.1788 0.971681
\(842\) 4.42542 17.4324i 0.152510 0.600760i
\(843\) −4.45631 3.02664i −0.153483 0.104243i
\(844\) 16.5621 30.5180i 0.570091 1.05047i
\(845\) −14.8057 20.2836i −0.509333 0.697778i
\(846\) −32.7806 + 4.25077i −1.12702 + 0.146145i
\(847\) −18.2156 2.82917i −0.625895 0.0972113i
\(848\) −8.36438 + 5.43661i −0.287234 + 0.186694i
\(849\) −29.4876 20.0274i −1.01201 0.687339i
\(850\) 24.7616 + 15.4669i 0.849315 + 0.530509i
\(851\) −0.604637 −0.0207267
\(852\) 14.1326 + 27.3489i 0.484176 + 0.936959i
\(853\) 44.6580i 1.52906i 0.644587 + 0.764531i \(0.277029\pi\)
−0.644587 + 0.764531i \(0.722971\pi\)
\(854\) 38.9644 + 16.5978i 1.33333 + 0.567965i
\(855\) −8.34540 + 13.2317i −0.285407 + 0.452515i
\(856\) −4.80826 + 5.20465i −0.164343 + 0.177891i
\(857\) 23.0490i 0.787338i −0.919252 0.393669i \(-0.871206\pi\)
0.919252 0.393669i \(-0.128794\pi\)
\(858\) 4.34169 + 4.89496i 0.148223 + 0.167111i
\(859\) 14.2677 0.486806 0.243403 0.969925i \(-0.421736\pi\)
0.243403 + 0.969925i \(0.421736\pi\)
\(860\) 2.17522 + 16.2196i 0.0741744 + 0.553083i
\(861\) −18.3891 + 19.7117i −0.626700 + 0.671771i
\(862\) −0.872852 + 3.43829i −0.0297295 + 0.117109i
\(863\) 0.233651 0.00795357 0.00397679 0.999992i \(-0.498734\pi\)
0.00397679 + 0.999992i \(0.498734\pi\)
\(864\) −3.18862 29.2204i −0.108479 0.994099i
\(865\) 5.08091 + 6.96077i 0.172756 + 0.236673i
\(866\) 33.7922 + 8.57857i 1.14831 + 0.291512i
\(867\) −0.0459230 + 0.0676152i −0.00155963 + 0.00229633i
\(868\) −30.4330 + 39.9244i −1.03296 + 1.35512i
\(869\) −22.0471 −0.747898
\(870\) −40.4661 8.82367i −1.37193 0.299150i
\(871\) 9.75324i 0.330476i
\(872\) −27.8140 + 30.1070i −0.941902 + 1.01955i
\(873\) 10.6828 + 26.9365i 0.361558 + 0.911663i
\(874\) 0.311874 + 0.0791729i 0.0105493 + 0.00267806i
\(875\) 29.1702 4.90903i 0.986133 0.165955i
\(876\) −21.0833 + 10.8948i −0.712338 + 0.368102i
\(877\) −40.6170 −1.37154 −0.685770 0.727819i \(-0.740534\pi\)
−0.685770 + 0.727819i \(0.740534\pi\)
\(878\) 1.91709 7.55170i 0.0646987 0.254858i
\(879\) 11.6183 17.1063i 0.391874 0.576981i
\(880\) −6.39291 + 16.7851i −0.215505 + 0.565826i
\(881\) −40.1040 −1.35114 −0.675569 0.737297i \(-0.736102\pi\)
−0.675569 + 0.737297i \(0.736102\pi\)
\(882\) 5.29398 29.2228i 0.178258 0.983984i
\(883\) −57.5009 −1.93506 −0.967530 0.252757i \(-0.918663\pi\)
−0.967530 + 0.252757i \(0.918663\pi\)
\(884\) −9.65407 5.23925i −0.324701 0.176215i
\(885\) −0.244720 7.21190i −0.00822618 0.242425i
\(886\) 4.57091 18.0055i 0.153563 0.604905i
\(887\) 13.7551i 0.461850i −0.972972 0.230925i \(-0.925825\pi\)
0.972972 0.230925i \(-0.0741752\pi\)
\(888\) −29.5722 + 6.87267i −0.992379 + 0.230632i
\(889\) 0.590172 3.79982i 0.0197937 0.127442i
\(890\) 15.8328 + 39.4197i 0.530717 + 1.32135i
\(891\) 13.1606 12.3871i 0.440898 0.414982i
\(892\) 11.4779 + 6.22902i 0.384307 + 0.208563i
\(893\) 18.1691i 0.608006i
\(894\) −4.30486 + 3.81829i −0.143976 + 0.127703i
\(895\) −18.1743 24.8985i −0.607500 0.832265i
\(896\) −9.51710 + 28.3800i −0.317944 + 0.948109i
\(897\) −0.185950 0.126293i −0.00620868 0.00421681i
\(898\) −3.61896 + 14.2556i −0.120766 + 0.475716i
\(899\) 71.7380i 2.39260i
\(900\) 27.2767 + 12.4892i 0.909224 + 0.416308i
\(901\) 10.2972 0.343051
\(902\) 16.1926 + 4.11069i 0.539155 + 0.136871i
\(903\) −11.4389 + 12.2616i −0.380664 + 0.408041i
\(904\) 29.5223 + 27.2739i 0.981898 + 0.907116i
\(905\) 30.9770 + 42.4379i 1.02971 + 1.41069i
\(906\) −15.2590 + 13.5343i −0.506947 + 0.449648i
\(907\) 53.8251 1.78723 0.893617 0.448830i \(-0.148159\pi\)
0.893617 + 0.448830i \(0.148159\pi\)
\(908\) −21.9011 11.8857i −0.726815 0.394442i
\(909\) 43.6864 17.3257i 1.44899 0.574656i
\(910\) −10.8414 + 2.51377i −0.359390 + 0.0833307i
\(911\) 34.4197i 1.14038i 0.821514 + 0.570188i \(0.193130\pi\)
−0.821514 + 0.570188i \(0.806870\pi\)
\(912\) 16.1534 + 0.327326i 0.534892 + 0.0108388i
\(913\) 20.4120 0.675540
\(914\) 14.0695 55.4218i 0.465378 1.83319i
\(915\) −43.8135 + 1.48672i −1.44843 + 0.0491494i
\(916\) 6.42941 + 3.48923i 0.212434 + 0.115287i
\(917\) −0.761329 + 4.90181i −0.0251413 + 0.161872i
\(918\) −13.6775 + 27.0827i −0.451426 + 0.893863i
\(919\) 56.8106 1.87401 0.937005 0.349316i \(-0.113586\pi\)
0.937005 + 0.349316i \(0.113586\pi\)
\(920\) 0.0709858 0.612958i 0.00234033 0.0202086i
\(921\) −11.0411 7.49888i −0.363816 0.247097i
\(922\) 6.35293 25.0251i 0.209223 0.824159i
\(923\) 11.8210 0.389092
\(924\) −17.4538 + 5.83976i −0.574189 + 0.192114i
\(925\) 9.44454 29.5120i 0.310534 0.970348i
\(926\) 14.6571 57.7363i 0.481661 1.89733i
\(927\) −9.50475 23.9661i −0.312177 0.787151i
\(928\) 13.7697 + 40.4983i 0.452013 + 1.32942i
\(929\) 8.90906 0.292297 0.146148 0.989263i \(-0.453312\pi\)
0.146148 + 0.989263i \(0.453312\pi\)
\(930\) 11.0704 50.7698i 0.363013 1.66481i
\(931\) 15.5551 + 4.95135i 0.509798 + 0.162274i
\(932\) 2.17729 + 1.18161i 0.0713196 + 0.0387051i
\(933\) 26.1219 38.4608i 0.855191 1.25915i
\(934\) 44.5821 + 11.3177i 1.45877 + 0.370327i
\(935\) 14.9748 10.9306i 0.489728 0.357470i
\(936\) −10.5301 4.06327i −0.344189 0.132812i
\(937\) 29.8344 0.974647 0.487323 0.873222i \(-0.337973\pi\)
0.487323 + 0.873222i \(0.337973\pi\)
\(938\) 25.2404 + 10.7517i 0.824128 + 0.351057i
\(939\) 7.98391 11.7552i 0.260545 0.383617i
\(940\) −34.5339 + 4.63137i −1.12637 + 0.151059i
\(941\) 51.4975i 1.67877i 0.543537 + 0.839385i \(0.317085\pi\)
−0.543537 + 0.839385i \(0.682915\pi\)
\(942\) 22.8622 + 25.7756i 0.744890 + 0.839813i
\(943\) −0.573937 −0.0186900
\(944\) −6.24875 + 4.06151i −0.203380 + 0.132191i
\(945\) 7.82559 + 29.7281i 0.254566 + 0.967055i
\(946\) 10.0726 + 2.55705i 0.327489 + 0.0831370i
\(947\) 8.19688i 0.266363i 0.991092 + 0.133181i \(0.0425193\pi\)
−0.991092 + 0.133181i \(0.957481\pi\)
\(948\) 33.7875 17.4598i 1.09737 0.567067i
\(949\) 9.11276i 0.295813i
\(950\) −8.73591 + 13.9857i −0.283430 + 0.453755i
\(951\) −44.0328 29.9062i −1.42786 0.969777i
\(952\) 24.2011 19.2081i 0.784361 0.622538i
\(953\) −16.6673 −0.539906 −0.269953 0.962873i \(-0.587008\pi\)
−0.269953 + 0.962873i \(0.587008\pi\)
\(954\) 10.4932 1.36069i 0.339731 0.0440541i
\(955\) −24.8188 + 18.1162i −0.803119 + 0.586225i
\(956\) −18.7065 + 34.4694i −0.605012 + 1.11482i
\(957\) −14.7771 + 21.7572i −0.477675 + 0.703311i
\(958\) −21.8656 5.55084i −0.706444 0.179339i
\(959\) −48.3629 7.51152i −1.56172 0.242560i
\(960\) −3.49541 30.7861i −0.112814 0.993616i
\(961\) −59.0043 −1.90337
\(962\) −2.86854 + 11.2996i −0.0924854 + 0.364313i
\(963\) 6.98621 2.77067i 0.225127 0.0892835i
\(964\) 23.1100 42.5835i 0.744324 1.37152i
\(965\) −23.2327 + 16.9584i −0.747887 + 0.545910i
\(966\) 0.531821 0.341996i 0.0171110 0.0110035i
\(967\) 13.9782i 0.449509i −0.974415 0.224754i \(-0.927842\pi\)
0.974415 0.224754i \(-0.0721580\pi\)
\(968\) −14.4751 13.3727i −0.465247 0.429813i
\(969\) −13.7959 9.36993i −0.443189 0.301006i
\(970\) 11.3844 + 28.3442i 0.365530 + 0.910078i
\(971\) 34.0060i 1.09130i −0.838012 0.545652i \(-0.816282\pi\)
0.838012 0.545652i \(-0.183718\pi\)
\(972\) −10.3591 + 29.4056i −0.332269 + 0.943185i
\(973\) 1.79181 + 0.278296i 0.0574428 + 0.00892177i
\(974\) 2.93147 11.5475i 0.0939305 0.370006i
\(975\) 9.06887 7.10337i 0.290436 0.227490i
\(976\) 24.6744 + 37.9623i 0.789808 + 1.21514i
\(977\) −24.4774 −0.783101 −0.391550 0.920157i \(-0.628061\pi\)
−0.391550 + 0.920157i \(0.628061\pi\)
\(978\) 19.4508 17.2523i 0.621967 0.551667i
\(979\) 26.9763 0.862166
\(980\) 5.44594 30.8276i 0.173964 0.984752i
\(981\) 40.4127 16.0273i 1.29028 0.511712i
\(982\) −23.2593 5.90465i −0.742233 0.188425i
\(983\) 27.1165i 0.864881i 0.901663 + 0.432440i \(0.142347\pi\)
−0.901663 + 0.432440i \(0.857653\pi\)
\(984\) −28.0707 + 6.52372i −0.894862 + 0.207969i
\(985\) −46.1876 + 33.7140i −1.47166 + 1.07422i
\(986\) 10.8641 42.7954i 0.345984 1.36288i
\(987\) −26.1068 24.3552i −0.830989 0.775235i
\(988\) 2.95920 5.45275i 0.0941448 0.173475i
\(989\) −0.357017 −0.0113525
\(990\) 13.8154 13.1175i 0.439084 0.416901i
\(991\) 37.8179 1.20133 0.600663 0.799502i \(-0.294903\pi\)
0.600663 + 0.799502i \(0.294903\pi\)
\(992\) −50.8103 + 17.2759i −1.61323 + 0.548509i
\(993\) −29.1233 19.7800i −0.924202 0.627700i
\(994\) −13.0311 + 30.5914i −0.413323 + 0.970301i
\(995\) −30.9158 + 22.5666i −0.980097 + 0.715408i
\(996\) −31.2816 + 16.1649i −0.991197 + 0.512204i
\(997\) 28.4532i 0.901122i −0.892746 0.450561i \(-0.851224\pi\)
0.892746 0.450561i \(-0.148776\pi\)
\(998\) 12.0614 47.5117i 0.381798 1.50396i
\(999\) 31.4325 + 6.99763i 0.994480 + 0.221395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.e.629.159 yes 160
3.2 odd 2 inner 840.2.u.e.629.1 160
5.4 even 2 inner 840.2.u.e.629.2 yes 160
7.6 odd 2 inner 840.2.u.e.629.158 yes 160
8.5 even 2 inner 840.2.u.e.629.154 yes 160
15.14 odd 2 inner 840.2.u.e.629.160 yes 160
21.20 even 2 inner 840.2.u.e.629.4 yes 160
24.5 odd 2 inner 840.2.u.e.629.8 yes 160
35.34 odd 2 inner 840.2.u.e.629.3 yes 160
40.29 even 2 inner 840.2.u.e.629.7 yes 160
56.13 odd 2 inner 840.2.u.e.629.155 yes 160
105.104 even 2 inner 840.2.u.e.629.157 yes 160
120.29 odd 2 inner 840.2.u.e.629.153 yes 160
168.125 even 2 inner 840.2.u.e.629.5 yes 160
280.69 odd 2 inner 840.2.u.e.629.6 yes 160
840.629 even 2 inner 840.2.u.e.629.156 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.e.629.1 160 3.2 odd 2 inner
840.2.u.e.629.2 yes 160 5.4 even 2 inner
840.2.u.e.629.3 yes 160 35.34 odd 2 inner
840.2.u.e.629.4 yes 160 21.20 even 2 inner
840.2.u.e.629.5 yes 160 168.125 even 2 inner
840.2.u.e.629.6 yes 160 280.69 odd 2 inner
840.2.u.e.629.7 yes 160 40.29 even 2 inner
840.2.u.e.629.8 yes 160 24.5 odd 2 inner
840.2.u.e.629.153 yes 160 120.29 odd 2 inner
840.2.u.e.629.154 yes 160 8.5 even 2 inner
840.2.u.e.629.155 yes 160 56.13 odd 2 inner
840.2.u.e.629.156 yes 160 840.629 even 2 inner
840.2.u.e.629.157 yes 160 105.104 even 2 inner
840.2.u.e.629.158 yes 160 7.6 odd 2 inner
840.2.u.e.629.159 yes 160 1.1 even 1 trivial
840.2.u.e.629.160 yes 160 15.14 odd 2 inner