Properties

Label 840.2.u.e.629.157
Level $840$
Weight $2$
Character 840.629
Analytic conductor $6.707$
Analytic rank $0$
Dimension $160$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(629,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.629"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.u (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [160,0,0,-24,0,0,0,0,-32,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(160\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 629.157
Character \(\chi\) \(=\) 840.629
Dual form 840.2.u.e.629.154

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37073 + 0.347977i) q^{2} +(-0.973146 - 1.43282i) q^{3} +(1.75782 + 0.953969i) q^{4} +(1.31834 - 1.80610i) q^{5} +(-0.835334 - 2.30265i) q^{6} +(2.61441 - 0.406058i) q^{7} +(2.07755 + 1.91932i) q^{8} +(-1.10597 + 2.78870i) q^{9} +(2.43557 - 2.01693i) q^{10} +2.00814 q^{11} +(-0.343750 - 3.44700i) q^{12} -1.33017i q^{13} +(3.72495 + 0.353156i) q^{14} +(-3.87076 - 0.131346i) q^{15} +(2.17989 + 3.35382i) q^{16} +4.12882i q^{17} +(-2.48640 + 3.43771i) q^{18} -2.33202 q^{19} +(4.04036 - 1.91715i) q^{20} +(-3.12601 - 3.35083i) q^{21} +(2.75262 + 0.698786i) q^{22} +0.0975649 q^{23} +(0.728290 - 4.84454i) q^{24} +(-1.52398 - 4.76209i) q^{25} +(0.462871 - 1.82332i) q^{26} +(5.07198 - 1.12915i) q^{27} +(4.98303 + 1.78028i) q^{28} -7.56166 q^{29} +(-5.26007 - 1.52698i) q^{30} -9.48706i q^{31} +(1.82099 + 5.35574i) q^{32} +(-1.95421 - 2.87731i) q^{33} +(-1.43674 + 5.65952i) q^{34} +(2.71328 - 5.25719i) q^{35} +(-4.60443 + 3.84697i) q^{36} +6.19728 q^{37} +(-3.19658 - 0.811490i) q^{38} +(-1.90591 + 1.29445i) q^{39} +(6.20539 - 1.22195i) q^{40} -5.88262 q^{41} +(-3.11891 - 5.68088i) q^{42} +3.65928 q^{43} +(3.52995 + 1.91570i) q^{44} +(3.57862 + 5.67393i) q^{45} +(0.133736 + 0.0339504i) q^{46} +7.79115i q^{47} +(2.68408 - 6.38715i) q^{48} +(6.67023 - 2.12320i) q^{49} +(-0.431874 - 7.05787i) q^{50} +(5.91588 - 4.01795i) q^{51} +(1.26895 - 2.33821i) q^{52} +2.49399i q^{53} +(7.34526 + 0.217177i) q^{54} +(2.64740 - 3.62689i) q^{55} +(6.21091 + 4.17428i) q^{56} +(2.26939 + 3.34137i) q^{57} +(-10.3650 - 2.63129i) q^{58} +1.86318i q^{59} +(-6.67880 - 3.92346i) q^{60} -11.3191 q^{61} +(3.30128 - 13.0042i) q^{62} +(-1.75909 + 7.73987i) q^{63} +(0.632417 + 7.97496i) q^{64} +(-2.40243 - 1.75362i) q^{65} +(-1.67747 - 4.62404i) q^{66} -7.33230 q^{67} +(-3.93877 + 7.25774i) q^{68} +(-0.0949450 - 0.139793i) q^{69} +(5.54857 - 6.26205i) q^{70} -8.88677i q^{71} +(-7.65011 + 3.67094i) q^{72} -6.85080 q^{73} +(8.49482 + 2.15651i) q^{74} +(-5.34018 + 6.81781i) q^{75} +(-4.09928 - 2.22467i) q^{76} +(5.25008 - 0.815421i) q^{77} +(-3.06293 + 1.11114i) q^{78} +10.9789 q^{79} +(8.93115 + 0.484370i) q^{80} +(-6.55365 - 6.16844i) q^{81} +(-8.06351 - 2.04702i) q^{82} +10.1647 q^{83} +(-2.29839 - 8.87228i) q^{84} +(7.45706 + 5.44318i) q^{85} +(5.01590 + 1.27335i) q^{86} +(7.35861 + 10.8345i) q^{87} +(4.17200 + 3.85426i) q^{88} -13.4335 q^{89} +(2.93093 + 9.02273i) q^{90} +(-0.540128 - 3.47762i) q^{91} +(0.171502 + 0.0930739i) q^{92} +(-13.5933 + 9.23230i) q^{93} +(-2.71114 + 10.6796i) q^{94} +(-3.07438 + 4.21185i) q^{95} +(5.90175 - 7.82108i) q^{96} -9.65918 q^{97} +(9.88194 - 0.589255i) q^{98} +(-2.22094 + 5.60008i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q - 24 q^{4} - 32 q^{9} - 48 q^{15} - 104 q^{16} - 16 q^{25} - 32 q^{30} + 48 q^{36} - 64 q^{39} - 64 q^{46} + 144 q^{49} + 16 q^{60} - 72 q^{64} + 8 q^{70} - 96 q^{79} + 16 q^{81} - 72 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37073 + 0.347977i 0.969255 + 0.246057i
\(3\) −0.973146 1.43282i −0.561846 0.827242i
\(4\) 1.75782 + 0.953969i 0.878912 + 0.476984i
\(5\) 1.31834 1.80610i 0.589578 0.807712i
\(6\) −0.835334 2.30265i −0.341024 0.940055i
\(7\) 2.61441 0.406058i 0.988152 0.153476i
\(8\) 2.07755 + 1.91932i 0.734524 + 0.678582i
\(9\) −1.10597 + 2.78870i −0.368657 + 0.929565i
\(10\) 2.43557 2.01693i 0.770195 0.637809i
\(11\) 2.00814 0.605476 0.302738 0.953074i \(-0.402099\pi\)
0.302738 + 0.953074i \(0.402099\pi\)
\(12\) −0.343750 3.44700i −0.0992319 0.995064i
\(13\) 1.33017i 0.368924i −0.982840 0.184462i \(-0.940946\pi\)
0.982840 0.184462i \(-0.0590543\pi\)
\(14\) 3.72495 + 0.353156i 0.995536 + 0.0943849i
\(15\) −3.87076 0.131346i −0.999425 0.0339133i
\(16\) 2.17989 + 3.35382i 0.544972 + 0.838455i
\(17\) 4.12882i 1.00139i 0.865625 + 0.500693i \(0.166922\pi\)
−0.865625 + 0.500693i \(0.833078\pi\)
\(18\) −2.48640 + 3.43771i −0.586049 + 0.810275i
\(19\) −2.33202 −0.535002 −0.267501 0.963558i \(-0.586198\pi\)
−0.267501 + 0.963558i \(0.586198\pi\)
\(20\) 4.04036 1.91715i 0.903453 0.428688i
\(21\) −3.12601 3.35083i −0.682151 0.731211i
\(22\) 2.75262 + 0.698786i 0.586861 + 0.148982i
\(23\) 0.0975649 0.0203437 0.0101718 0.999948i \(-0.496762\pi\)
0.0101718 + 0.999948i \(0.496762\pi\)
\(24\) 0.728290 4.84454i 0.148662 0.988888i
\(25\) −1.52398 4.76209i −0.304796 0.952418i
\(26\) 0.462871 1.82332i 0.0907764 0.357582i
\(27\) 5.07198 1.12915i 0.976104 0.217304i
\(28\) 4.98303 + 1.78028i 0.941704 + 0.336442i
\(29\) −7.56166 −1.40417 −0.702083 0.712095i \(-0.747746\pi\)
−0.702083 + 0.712095i \(0.747746\pi\)
\(30\) −5.26007 1.52698i −0.960353 0.278786i
\(31\) 9.48706i 1.70393i −0.523602 0.851963i \(-0.675412\pi\)
0.523602 0.851963i \(-0.324588\pi\)
\(32\) 1.82099 + 5.35574i 0.321909 + 0.946771i
\(33\) −1.95421 2.87731i −0.340184 0.500875i
\(34\) −1.43674 + 5.65952i −0.246398 + 0.970600i
\(35\) 2.71328 5.25719i 0.458629 0.888628i
\(36\) −4.60443 + 3.84697i −0.767405 + 0.641162i
\(37\) 6.19728 1.01883 0.509413 0.860522i \(-0.329863\pi\)
0.509413 + 0.860522i \(0.329863\pi\)
\(38\) −3.19658 0.811490i −0.518553 0.131641i
\(39\) −1.90591 + 1.29445i −0.305189 + 0.207279i
\(40\) 6.20539 1.22195i 0.981158 0.193207i
\(41\) −5.88262 −0.918711 −0.459355 0.888253i \(-0.651920\pi\)
−0.459355 + 0.888253i \(0.651920\pi\)
\(42\) −3.11891 5.68088i −0.481259 0.876578i
\(43\) 3.65928 0.558035 0.279017 0.960286i \(-0.409991\pi\)
0.279017 + 0.960286i \(0.409991\pi\)
\(44\) 3.52995 + 1.91570i 0.532160 + 0.288803i
\(45\) 3.57862 + 5.67393i 0.533469 + 0.845820i
\(46\) 0.133736 + 0.0339504i 0.0197182 + 0.00500571i
\(47\) 7.79115i 1.13646i 0.822871 + 0.568228i \(0.192371\pi\)
−0.822871 + 0.568228i \(0.807629\pi\)
\(48\) 2.68408 6.38715i 0.387414 0.921906i
\(49\) 6.67023 2.12320i 0.952890 0.303315i
\(50\) −0.431874 7.05787i −0.0610762 0.998133i
\(51\) 5.91588 4.01795i 0.828389 0.562626i
\(52\) 1.26895 2.33821i 0.175971 0.324252i
\(53\) 2.49399i 0.342576i 0.985221 + 0.171288i \(0.0547928\pi\)
−0.985221 + 0.171288i \(0.945207\pi\)
\(54\) 7.34526 + 0.217177i 0.999563 + 0.0295541i
\(55\) 2.64740 3.62689i 0.356975 0.489050i
\(56\) 6.21091 + 4.17428i 0.829968 + 0.557811i
\(57\) 2.26939 + 3.34137i 0.300589 + 0.442576i
\(58\) −10.3650 2.63129i −1.36100 0.345505i
\(59\) 1.86318i 0.242565i 0.992618 + 0.121282i \(0.0387007\pi\)
−0.992618 + 0.121282i \(0.961299\pi\)
\(60\) −6.67880 3.92346i −0.862230 0.506517i
\(61\) −11.3191 −1.44926 −0.724632 0.689136i \(-0.757990\pi\)
−0.724632 + 0.689136i \(0.757990\pi\)
\(62\) 3.30128 13.0042i 0.419263 1.65154i
\(63\) −1.75909 + 7.73987i −0.221624 + 0.975132i
\(64\) 0.632417 + 7.97496i 0.0790521 + 0.996870i
\(65\) −2.40243 1.75362i −0.297984 0.217509i
\(66\) −1.67747 4.62404i −0.206482 0.569180i
\(67\) −7.33230 −0.895783 −0.447892 0.894088i \(-0.647825\pi\)
−0.447892 + 0.894088i \(0.647825\pi\)
\(68\) −3.93877 + 7.25774i −0.477646 + 0.880131i
\(69\) −0.0949450 0.139793i −0.0114300 0.0168291i
\(70\) 5.54857 6.26205i 0.663182 0.748459i
\(71\) 8.88677i 1.05467i −0.849659 0.527333i \(-0.823192\pi\)
0.849659 0.527333i \(-0.176808\pi\)
\(72\) −7.65011 + 3.67094i −0.901574 + 0.432624i
\(73\) −6.85080 −0.801825 −0.400913 0.916116i \(-0.631307\pi\)
−0.400913 + 0.916116i \(0.631307\pi\)
\(74\) 8.49482 + 2.15651i 0.987503 + 0.250690i
\(75\) −5.34018 + 6.81781i −0.616631 + 0.787253i
\(76\) −4.09928 2.22467i −0.470219 0.255187i
\(77\) 5.25008 0.815421i 0.598303 0.0929258i
\(78\) −3.06293 + 1.11114i −0.346809 + 0.125812i
\(79\) 10.9789 1.23522 0.617612 0.786483i \(-0.288100\pi\)
0.617612 + 0.786483i \(0.288100\pi\)
\(80\) 8.93115 + 0.484370i 0.998533 + 0.0541542i
\(81\) −6.55365 6.16844i −0.728184 0.685382i
\(82\) −8.06351 2.04702i −0.890465 0.226055i
\(83\) 10.1647 1.11572 0.557858 0.829936i \(-0.311623\pi\)
0.557858 + 0.829936i \(0.311623\pi\)
\(84\) −2.29839 8.87228i −0.250774 0.968046i
\(85\) 7.45706 + 5.44318i 0.808832 + 0.590395i
\(86\) 5.01590 + 1.27335i 0.540878 + 0.137308i
\(87\) 7.35861 + 10.8345i 0.788925 + 1.16158i
\(88\) 4.17200 + 3.85426i 0.444737 + 0.410865i
\(89\) −13.4335 −1.42395 −0.711974 0.702206i \(-0.752198\pi\)
−0.711974 + 0.702206i \(0.752198\pi\)
\(90\) 2.93093 + 9.02273i 0.308947 + 0.951079i
\(91\) −0.540128 3.47762i −0.0566209 0.364553i
\(92\) 0.171502 + 0.0930739i 0.0178803 + 0.00970363i
\(93\) −13.5933 + 9.23230i −1.40956 + 0.957345i
\(94\) −2.71114 + 10.6796i −0.279633 + 1.10152i
\(95\) −3.07438 + 4.21185i −0.315425 + 0.432127i
\(96\) 5.90175 7.82108i 0.602345 0.798236i
\(97\) −9.65918 −0.980742 −0.490371 0.871514i \(-0.663139\pi\)
−0.490371 + 0.871514i \(0.663139\pi\)
\(98\) 9.88194 0.589255i 0.998227 0.0595238i
\(99\) −2.22094 + 5.60008i −0.223213 + 0.562829i
\(100\) 1.86399 9.82474i 0.186399 0.982474i
\(101\) 15.6655i 1.55878i 0.626539 + 0.779390i \(0.284471\pi\)
−0.626539 + 0.779390i \(0.715529\pi\)
\(102\) 9.50725 3.44895i 0.941358 0.341497i
\(103\) 8.59402 0.846794 0.423397 0.905944i \(-0.360838\pi\)
0.423397 + 0.905944i \(0.360838\pi\)
\(104\) 2.55303 2.76350i 0.250345 0.270984i
\(105\) −10.1731 + 1.22836i −0.992789 + 0.119876i
\(106\) −0.867851 + 3.41859i −0.0842932 + 0.332043i
\(107\) 2.50519i 0.242186i 0.992641 + 0.121093i \(0.0386399\pi\)
−0.992641 + 0.121093i \(0.961360\pi\)
\(108\) 9.99282 + 2.85368i 0.961560 + 0.274595i
\(109\) 14.4916i 1.38804i 0.719954 + 0.694022i \(0.244163\pi\)
−0.719954 + 0.694022i \(0.755837\pi\)
\(110\) 4.89096 4.05027i 0.466334 0.386178i
\(111\) −6.03086 8.87961i −0.572424 0.842815i
\(112\) 7.06095 + 7.88308i 0.667197 + 0.744881i
\(113\) 14.2102 1.33678 0.668390 0.743811i \(-0.266984\pi\)
0.668390 + 0.743811i \(0.266984\pi\)
\(114\) 1.94801 + 5.36983i 0.182448 + 0.502931i
\(115\) 0.128623 0.176212i 0.0119942 0.0164318i
\(116\) −13.2921 7.21359i −1.23414 0.669765i
\(117\) 3.70945 + 1.47114i 0.342939 + 0.136007i
\(118\) −0.648343 + 2.55392i −0.0596848 + 0.235107i
\(119\) 1.67654 + 10.7944i 0.153689 + 0.989523i
\(120\) −7.78959 7.70210i −0.711089 0.703102i
\(121\) −6.96739 −0.633399
\(122\) −15.5155 3.93880i −1.40471 0.356602i
\(123\) 5.72465 + 8.42876i 0.516174 + 0.759996i
\(124\) 9.05036 16.6766i 0.812747 1.49760i
\(125\) −10.6099 3.52557i −0.948980 0.315337i
\(126\) −5.10454 + 9.99718i −0.454749 + 0.890620i
\(127\) 1.45342i 0.128970i 0.997919 + 0.0644849i \(0.0205404\pi\)
−0.997919 + 0.0644849i \(0.979460\pi\)
\(128\) −1.90823 + 11.1516i −0.168665 + 0.985673i
\(129\) −3.56101 5.24310i −0.313530 0.461629i
\(130\) −2.68287 3.23973i −0.235303 0.284143i
\(131\) 1.87492i 0.163813i 0.996640 + 0.0819064i \(0.0261009\pi\)
−0.996640 + 0.0819064i \(0.973899\pi\)
\(132\) −0.690296 6.92205i −0.0600826 0.602488i
\(133\) −6.09684 + 0.946935i −0.528663 + 0.0821097i
\(134\) −10.0506 2.55148i −0.868243 0.220414i
\(135\) 4.64723 10.6491i 0.399970 0.916528i
\(136\) −7.92454 + 8.57783i −0.679523 + 0.735543i
\(137\) −18.4986 −1.58044 −0.790222 0.612821i \(-0.790035\pi\)
−0.790222 + 0.612821i \(0.790035\pi\)
\(138\) −0.0814993 0.224658i −0.00693768 0.0191242i
\(139\) −0.685361 −0.0581315 −0.0290658 0.999578i \(-0.509253\pi\)
−0.0290658 + 0.999578i \(0.509253\pi\)
\(140\) 9.78467 6.65283i 0.826956 0.562267i
\(141\) 11.1633 7.58193i 0.940124 0.638514i
\(142\) 3.09240 12.1814i 0.259508 1.02224i
\(143\) 2.67117i 0.223375i
\(144\) −11.7637 + 2.36981i −0.980306 + 0.197484i
\(145\) −9.96881 + 13.6571i −0.827865 + 1.13416i
\(146\) −9.39062 2.38392i −0.777174 0.197295i
\(147\) −9.53329 7.49109i −0.786293 0.617854i
\(148\) 10.8937 + 5.91201i 0.895458 + 0.485964i
\(149\) 2.34916 0.192450 0.0962252 0.995360i \(-0.469323\pi\)
0.0962252 + 0.995360i \(0.469323\pi\)
\(150\) −9.69241 + 7.48714i −0.791382 + 0.611322i
\(151\) −8.32682 −0.677627 −0.338814 0.940853i \(-0.610026\pi\)
−0.338814 + 0.940853i \(0.610026\pi\)
\(152\) −4.84488 4.47589i −0.392972 0.363043i
\(153\) −11.5140 4.56636i −0.930855 0.369169i
\(154\) 7.48022 + 0.709186i 0.602773 + 0.0571478i
\(155\) −17.1346 12.5071i −1.37628 1.00460i
\(156\) −4.58512 + 0.457247i −0.367103 + 0.0366090i
\(157\) 14.0657i 1.12256i 0.827625 + 0.561281i \(0.189691\pi\)
−0.827625 + 0.561281i \(0.810309\pi\)
\(158\) 15.0492 + 3.82041i 1.19725 + 0.303936i
\(159\) 3.57345 2.42702i 0.283393 0.192475i
\(160\) 12.0737 + 3.77178i 0.954508 + 0.298185i
\(161\) 0.255074 0.0396171i 0.0201027 0.00312226i
\(162\) −6.83684 10.7358i −0.537153 0.843485i
\(163\) −10.6143 −0.831372 −0.415686 0.909508i \(-0.636459\pi\)
−0.415686 + 0.909508i \(0.636459\pi\)
\(164\) −10.3406 5.61184i −0.807466 0.438211i
\(165\) −7.77301 0.263760i −0.605128 0.0205337i
\(166\) 13.9330 + 3.53707i 1.08141 + 0.274530i
\(167\) 0.462349i 0.0357776i 0.999840 + 0.0178888i \(0.00569449\pi\)
−0.999840 + 0.0178888i \(0.994306\pi\)
\(168\) −0.0631207 12.9613i −0.00486986 0.999988i
\(169\) 11.2306 0.863895
\(170\) 8.32755 + 10.0560i 0.638694 + 0.771263i
\(171\) 2.57915 6.50329i 0.197232 0.497319i
\(172\) 6.43236 + 3.49084i 0.490463 + 0.266174i
\(173\) 3.85404 0.293017 0.146508 0.989209i \(-0.453196\pi\)
0.146508 + 0.989209i \(0.453196\pi\)
\(174\) 6.31652 + 17.4119i 0.478854 + 1.31999i
\(175\) −5.91799 11.8312i −0.447358 0.894355i
\(176\) 4.37751 + 6.73492i 0.329967 + 0.507664i
\(177\) 2.66960 1.81314i 0.200660 0.136284i
\(178\) −18.4137 4.67455i −1.38017 0.350372i
\(179\) −13.7858 −1.03040 −0.515199 0.857070i \(-0.672282\pi\)
−0.515199 + 0.857070i \(0.672282\pi\)
\(180\) 0.877821 + 13.3877i 0.0654289 + 0.997857i
\(181\) 23.4970 1.74652 0.873260 0.487254i \(-0.162001\pi\)
0.873260 + 0.487254i \(0.162001\pi\)
\(182\) 0.469759 4.95484i 0.0348209 0.367277i
\(183\) 11.0152 + 16.2183i 0.814264 + 1.19889i
\(184\) 0.202696 + 0.187258i 0.0149429 + 0.0138049i
\(185\) 8.17009 11.1929i 0.600677 0.822918i
\(186\) −21.8454 + 7.92487i −1.60178 + 0.581080i
\(187\) 8.29124i 0.606316i
\(188\) −7.43251 + 13.6955i −0.542072 + 0.998844i
\(189\) 12.8017 5.01157i 0.931189 0.364538i
\(190\) −5.67979 + 4.70351i −0.412055 + 0.341229i
\(191\) 13.7417i 0.994314i 0.867661 + 0.497157i \(0.165623\pi\)
−0.867661 + 0.497157i \(0.834377\pi\)
\(192\) 10.8113 8.66695i 0.780238 0.625483i
\(193\) 12.8635i 0.925933i 0.886376 + 0.462967i \(0.153215\pi\)
−0.886376 + 0.462967i \(0.846785\pi\)
\(194\) −13.2402 3.36118i −0.950589 0.241319i
\(195\) −0.174713 + 5.14878i −0.0125114 + 0.368712i
\(196\) 13.7506 + 2.63098i 0.982183 + 0.187927i
\(197\) 25.5732i 1.82201i −0.412392 0.911006i \(-0.635307\pi\)
0.412392 0.911006i \(-0.364693\pi\)
\(198\) −4.99302 + 6.90339i −0.354839 + 0.490602i
\(199\) 17.1175i 1.21342i 0.794921 + 0.606712i \(0.207512\pi\)
−0.794921 + 0.606712i \(0.792488\pi\)
\(200\) 5.97383 12.8185i 0.422413 0.906403i
\(201\) 7.13540 + 10.5059i 0.503293 + 0.741029i
\(202\) −5.45126 + 21.4733i −0.383549 + 1.51086i
\(203\) −19.7693 + 3.07048i −1.38753 + 0.215505i
\(204\) 14.2321 1.41928i 0.996444 0.0993696i
\(205\) −7.75527 + 10.6246i −0.541651 + 0.742053i
\(206\) 11.7801 + 2.99053i 0.820760 + 0.208360i
\(207\) −0.107904 + 0.272079i −0.00749985 + 0.0189108i
\(208\) 4.46116 2.89963i 0.309326 0.201053i
\(209\) −4.68301 −0.323931
\(210\) −14.3720 1.85624i −0.991762 0.128093i
\(211\) 17.3613i 1.19520i −0.801795 0.597599i \(-0.796121\pi\)
0.801795 0.597599i \(-0.203879\pi\)
\(212\) −2.37919 + 4.38399i −0.163403 + 0.301094i
\(213\) −12.7332 + 8.64813i −0.872463 + 0.592560i
\(214\) −0.871749 + 3.43395i −0.0595915 + 0.234740i
\(215\) 4.82416 6.60901i 0.329005 0.450731i
\(216\) 12.7045 + 7.38891i 0.864431 + 0.502752i
\(217\) −3.85230 24.8030i −0.261511 1.68374i
\(218\) −5.04275 + 19.8641i −0.341538 + 1.34537i
\(219\) 6.66683 + 9.81599i 0.450503 + 0.663303i
\(220\) 8.11360 3.84990i 0.547019 0.259560i
\(221\) 5.49206 0.369436
\(222\) −5.17680 14.2702i −0.347444 0.957752i
\(223\) 6.52959 0.437253 0.218627 0.975809i \(-0.429842\pi\)
0.218627 + 0.975809i \(0.429842\pi\)
\(224\) 6.93555 + 13.2627i 0.463401 + 0.886149i
\(225\) 14.9655 + 1.01681i 0.997700 + 0.0677876i
\(226\) 19.4784 + 4.94482i 1.29568 + 0.328924i
\(227\) 12.4592 0.826949 0.413474 0.910516i \(-0.364315\pi\)
0.413474 + 0.910516i \(0.364315\pi\)
\(228\) 0.801630 + 8.03847i 0.0530892 + 0.532361i
\(229\) −3.65759 −0.241701 −0.120850 0.992671i \(-0.538562\pi\)
−0.120850 + 0.992671i \(0.538562\pi\)
\(230\) 0.237626 0.196782i 0.0156686 0.0129754i
\(231\) −6.27745 6.72892i −0.413026 0.442731i
\(232\) −15.7097 14.5133i −1.03139 0.952842i
\(233\) 1.23863 0.0811454 0.0405727 0.999177i \(-0.487082\pi\)
0.0405727 + 0.999177i \(0.487082\pi\)
\(234\) 4.57275 + 3.30734i 0.298930 + 0.216208i
\(235\) 14.0716 + 10.2714i 0.917929 + 0.670029i
\(236\) −1.77741 + 3.27513i −0.115700 + 0.213193i
\(237\) −10.6841 15.7309i −0.694006 1.02183i
\(238\) −1.45812 + 15.3797i −0.0945159 + 0.996917i
\(239\) 19.6091i 1.26841i −0.773165 0.634205i \(-0.781328\pi\)
0.773165 0.634205i \(-0.218672\pi\)
\(240\) −7.99730 13.2681i −0.516223 0.856454i
\(241\) 24.2251i 1.56048i 0.625482 + 0.780239i \(0.284902\pi\)
−0.625482 + 0.780239i \(0.715098\pi\)
\(242\) −9.55043 2.42449i −0.613925 0.155852i
\(243\) −2.46063 + 15.3930i −0.157849 + 0.987463i
\(244\) −19.8970 10.7981i −1.27378 0.691277i
\(245\) 4.95890 14.8462i 0.316812 0.948488i
\(246\) 4.91395 + 13.5456i 0.313302 + 0.863638i
\(247\) 3.10199i 0.197375i
\(248\) 18.2087 19.7098i 1.15625 1.25158i
\(249\) −9.89171 14.5642i −0.626861 0.922967i
\(250\) −13.3166 8.52463i −0.842213 0.539145i
\(251\) 14.6425i 0.924229i −0.886820 0.462115i \(-0.847091\pi\)
0.886820 0.462115i \(-0.152909\pi\)
\(252\) −10.4758 + 11.9272i −0.659911 + 0.751344i
\(253\) 0.195924 0.0123176
\(254\) −0.505756 + 1.99225i −0.0317339 + 0.125005i
\(255\) 0.542304 15.9817i 0.0339604 1.00081i
\(256\) −6.49619 + 14.6219i −0.406012 + 0.913868i
\(257\) 15.8068i 0.986002i −0.870029 0.493001i \(-0.835900\pi\)
0.870029 0.493001i \(-0.164100\pi\)
\(258\) −3.05672 8.42605i −0.190303 0.524583i
\(259\) 16.2022 2.51646i 1.00676 0.156365i
\(260\) −2.55014 5.37439i −0.158153 0.333305i
\(261\) 8.36299 21.0872i 0.517656 1.30526i
\(262\) −0.652431 + 2.57002i −0.0403073 + 0.158777i
\(263\) −14.2549 −0.878997 −0.439499 0.898243i \(-0.644844\pi\)
−0.439499 + 0.898243i \(0.644844\pi\)
\(264\) 1.46251 9.72850i 0.0900111 0.598748i
\(265\) 4.50439 + 3.28791i 0.276702 + 0.201975i
\(266\) −8.68666 0.823566i −0.532613 0.0504961i
\(267\) 13.0728 + 19.2478i 0.800040 + 1.17795i
\(268\) −12.8889 6.99479i −0.787314 0.427275i
\(269\) 9.33525i 0.569180i 0.958649 + 0.284590i \(0.0918575\pi\)
−0.958649 + 0.284590i \(0.908142\pi\)
\(270\) 10.0758 12.9799i 0.613191 0.789934i
\(271\) 0.207201i 0.0125865i 0.999980 + 0.00629327i \(0.00200322\pi\)
−0.999980 + 0.00629327i \(0.997997\pi\)
\(272\) −13.8473 + 9.00037i −0.839617 + 0.545727i
\(273\) −4.45719 + 4.15814i −0.269761 + 0.251662i
\(274\) −25.3567 6.43710i −1.53185 0.388880i
\(275\) −3.06036 9.56292i −0.184547 0.576666i
\(276\) −0.0335379 0.336307i −0.00201874 0.0202433i
\(277\) 28.6571 1.72184 0.860918 0.508744i \(-0.169890\pi\)
0.860918 + 0.508744i \(0.169890\pi\)
\(278\) −0.939447 0.238490i −0.0563443 0.0143037i
\(279\) 26.4565 + 10.4924i 1.58391 + 0.628165i
\(280\) 15.7272 5.71442i 0.939881 0.341502i
\(281\) 3.11015i 0.185536i 0.995688 + 0.0927681i \(0.0295715\pi\)
−0.995688 + 0.0927681i \(0.970428\pi\)
\(282\) 17.9403 6.50821i 1.06833 0.387559i
\(283\) 20.5801i 1.22336i −0.791106 0.611679i \(-0.790495\pi\)
0.791106 0.611679i \(-0.209505\pi\)
\(284\) 8.47770 15.6214i 0.503059 0.926958i
\(285\) 9.02667 + 0.306301i 0.534694 + 0.0181437i
\(286\) 0.929508 3.66147i 0.0549629 0.216507i
\(287\) −15.3796 + 2.38869i −0.907826 + 0.141000i
\(288\) −16.9495 0.845110i −0.998759 0.0497986i
\(289\) −0.0471902 −0.00277589
\(290\) −18.4170 + 15.2513i −1.08148 + 0.895589i
\(291\) 9.39980 + 13.8399i 0.551026 + 0.811310i
\(292\) −12.0425 6.53545i −0.704734 0.382458i
\(293\) −11.9389 −0.697476 −0.348738 0.937220i \(-0.613390\pi\)
−0.348738 + 0.937220i \(0.613390\pi\)
\(294\) −10.4609 13.5857i −0.610091 0.792332i
\(295\) 3.36508 + 2.45629i 0.195922 + 0.143011i
\(296\) 12.8751 + 11.8946i 0.748353 + 0.691357i
\(297\) 10.1852 2.26748i 0.591007 0.131573i
\(298\) 3.22007 + 0.817453i 0.186534 + 0.0473538i
\(299\) 0.129778i 0.00750528i
\(300\) −15.8911 + 6.89014i −0.917471 + 0.397802i
\(301\) 9.56684 1.48588i 0.551423 0.0856447i
\(302\) −11.4139 2.89755i −0.656794 0.166735i
\(303\) 22.4460 15.2449i 1.28949 0.875795i
\(304\) −5.08353 7.82116i −0.291561 0.448574i
\(305\) −14.9224 + 20.4434i −0.854454 + 1.17059i
\(306\) −14.1937 10.2659i −0.811399 0.586862i
\(307\) 7.70581i 0.439794i −0.975523 0.219897i \(-0.929428\pi\)
0.975523 0.219897i \(-0.0705721\pi\)
\(308\) 10.0066 + 3.57505i 0.570179 + 0.203707i
\(309\) −8.36324 12.3137i −0.475768 0.700503i
\(310\) −19.1347 23.1064i −1.08678 1.31236i
\(311\) 26.8427 1.52211 0.761054 0.648688i \(-0.224682\pi\)
0.761054 + 0.648688i \(0.224682\pi\)
\(312\) −6.44409 0.968753i −0.364825 0.0548449i
\(313\) 8.20422 0.463730 0.231865 0.972748i \(-0.425517\pi\)
0.231865 + 0.972748i \(0.425517\pi\)
\(314\) −4.89454 + 19.2803i −0.276215 + 1.08805i
\(315\) 11.6599 + 13.3808i 0.656961 + 0.753924i
\(316\) 19.2990 + 10.4735i 1.08565 + 0.589183i
\(317\) 30.7315i 1.72605i −0.505159 0.863026i \(-0.668566\pi\)
0.505159 0.863026i \(-0.331434\pi\)
\(318\) 5.74279 2.08331i 0.322040 0.116826i
\(319\) −15.1849 −0.850189
\(320\) 15.2373 + 9.37147i 0.851791 + 0.523881i
\(321\) 3.58949 2.43791i 0.200346 0.136071i
\(322\) 0.363425 + 0.0344556i 0.0202529 + 0.00192014i
\(323\) 9.62849i 0.535744i
\(324\) −5.63566 17.0950i −0.313092 0.949723i
\(325\) −6.33441 + 2.02716i −0.351370 + 0.112447i
\(326\) −14.5493 3.69352i −0.805812 0.204565i
\(327\) 20.7639 14.1025i 1.14825 0.779867i
\(328\) −12.2214 11.2906i −0.674815 0.623421i
\(329\) 3.16366 + 20.3692i 0.174418 + 1.12299i
\(330\) −10.5629 3.06638i −0.581471 0.168798i
\(331\) 20.3258i 1.11721i −0.829434 0.558604i \(-0.811337\pi\)
0.829434 0.558604i \(-0.188663\pi\)
\(332\) 17.8677 + 9.69677i 0.980617 + 0.532180i
\(333\) −6.85402 + 17.2823i −0.375598 + 0.947066i
\(334\) −0.160887 + 0.633758i −0.00880335 + 0.0346777i
\(335\) −9.66644 + 13.2429i −0.528134 + 0.723535i
\(336\) 4.42373 17.7885i 0.241334 0.970442i
\(337\) 8.04781i 0.438392i −0.975681 0.219196i \(-0.929657\pi\)
0.975681 0.219196i \(-0.0703434\pi\)
\(338\) 15.3942 + 3.90801i 0.837335 + 0.212568i
\(339\) −13.8286 20.3607i −0.751065 1.10584i
\(340\) 7.91558 + 16.6819i 0.429282 + 0.904706i
\(341\) 19.0513i 1.03169i
\(342\) 5.79832 8.01679i 0.313537 0.433499i
\(343\) 16.5766 8.25942i 0.895050 0.445967i
\(344\) 7.60233 + 7.02333i 0.409890 + 0.378672i
\(345\) −0.377650 0.0128147i −0.0203320 0.000689922i
\(346\) 5.28286 + 1.34112i 0.284008 + 0.0720989i
\(347\) 20.1082i 1.07946i 0.841837 + 0.539732i \(0.181475\pi\)
−0.841837 + 0.539732i \(0.818525\pi\)
\(348\) 2.59932 + 26.0651i 0.139338 + 1.39724i
\(349\) −2.29568 −0.122885 −0.0614423 0.998111i \(-0.519570\pi\)
−0.0614423 + 0.998111i \(0.519570\pi\)
\(350\) −3.99500 18.2768i −0.213542 0.976934i
\(351\) −1.50196 6.74662i −0.0801688 0.360108i
\(352\) 3.65680 + 10.7551i 0.194908 + 0.573247i
\(353\) 15.2039i 0.809221i −0.914489 0.404610i \(-0.867407\pi\)
0.914489 0.404610i \(-0.132593\pi\)
\(354\) 4.29025 1.55638i 0.228024 0.0827204i
\(355\) −16.0504 11.7157i −0.851866 0.621807i
\(356\) −23.6137 12.8151i −1.25152 0.679201i
\(357\) 13.8350 12.9067i 0.732225 0.683097i
\(358\) −18.8967 4.79715i −0.998719 0.253537i
\(359\) 29.0532i 1.53337i 0.642023 + 0.766685i \(0.278095\pi\)
−0.642023 + 0.766685i \(0.721905\pi\)
\(360\) −3.45534 + 18.6564i −0.182113 + 0.983278i
\(361\) −13.5617 −0.713773
\(362\) 32.2082 + 8.17644i 1.69282 + 0.429744i
\(363\) 6.78029 + 9.98304i 0.355873 + 0.523974i
\(364\) 2.36809 6.62830i 0.124121 0.347417i
\(365\) −9.03165 + 12.3732i −0.472738 + 0.647644i
\(366\) 9.45525 + 26.0640i 0.494234 + 1.36239i
\(367\) −7.34446 −0.383378 −0.191689 0.981456i \(-0.561396\pi\)
−0.191689 + 0.981456i \(0.561396\pi\)
\(368\) 0.212680 + 0.327215i 0.0110867 + 0.0170573i
\(369\) 6.50601 16.4048i 0.338689 0.854002i
\(370\) 15.0939 12.4995i 0.784694 0.649817i
\(371\) 1.01270 + 6.52030i 0.0525770 + 0.338517i
\(372\) −32.7019 + 3.26117i −1.69552 + 0.169084i
\(373\) 19.5085 1.01011 0.505056 0.863086i \(-0.331472\pi\)
0.505056 + 0.863086i \(0.331472\pi\)
\(374\) −2.88517 + 11.3651i −0.149188 + 0.587675i
\(375\) 5.27348 + 18.6330i 0.272321 + 0.962206i
\(376\) −14.9537 + 16.1865i −0.771179 + 0.834755i
\(377\) 10.0583i 0.518030i
\(378\) 19.2917 2.41481i 0.992257 0.124205i
\(379\) 3.57410i 0.183589i 0.995778 + 0.0917945i \(0.0292603\pi\)
−0.995778 + 0.0917945i \(0.970740\pi\)
\(380\) −9.42220 + 4.47083i −0.483349 + 0.229349i
\(381\) 2.08249 1.41439i 0.106689 0.0724612i
\(382\) −4.78180 + 18.8362i −0.244658 + 0.963744i
\(383\) 14.6339i 0.747757i 0.927478 + 0.373878i \(0.121972\pi\)
−0.927478 + 0.373878i \(0.878028\pi\)
\(384\) 17.8353 8.11800i 0.910154 0.414270i
\(385\) 5.44864 10.5572i 0.277689 0.538043i
\(386\) −4.47620 + 17.6324i −0.227833 + 0.897466i
\(387\) −4.04706 + 10.2046i −0.205724 + 0.518730i
\(388\) −16.9791 9.21456i −0.861985 0.467798i
\(389\) −13.4414 −0.681507 −0.340754 0.940153i \(-0.610682\pi\)
−0.340754 + 0.940153i \(0.610682\pi\)
\(390\) −2.03114 + 6.99681i −0.102851 + 0.354297i
\(391\) 0.402828i 0.0203719i
\(392\) 17.9328 + 8.39126i 0.905745 + 0.423823i
\(393\) 2.68644 1.82458i 0.135513 0.0920377i
\(394\) 8.89888 35.0540i 0.448319 1.76600i
\(395\) 14.4739 19.8290i 0.728260 0.997705i
\(396\) −9.24633 + 7.72525i −0.464646 + 0.388208i
\(397\) 7.47449i 0.375134i 0.982252 + 0.187567i \(0.0600601\pi\)
−0.982252 + 0.187567i \(0.939940\pi\)
\(398\) −5.95649 + 23.4635i −0.298572 + 1.17612i
\(399\) 7.28991 + 7.81419i 0.364952 + 0.391199i
\(400\) 12.6491 15.4920i 0.632454 0.774598i
\(401\) 30.4076i 1.51848i −0.650808 0.759242i \(-0.725570\pi\)
0.650808 0.759242i \(-0.274430\pi\)
\(402\) 6.12492 + 16.8838i 0.305483 + 0.842085i
\(403\) −12.6194 −0.628619
\(404\) −14.9444 + 27.5373i −0.743514 + 1.37003i
\(405\) −19.7807 + 3.70447i −0.982912 + 0.184076i
\(406\) −28.1668 2.67045i −1.39790 0.132532i
\(407\) 12.4450 0.616875
\(408\) 20.0023 + 3.00698i 0.990260 + 0.148868i
\(409\) 24.7533i 1.22397i −0.790868 0.611986i \(-0.790371\pi\)
0.790868 0.611986i \(-0.209629\pi\)
\(410\) −14.3275 + 11.8648i −0.707586 + 0.585962i
\(411\) 18.0019 + 26.5053i 0.887967 + 1.30741i
\(412\) 15.1068 + 8.19843i 0.744257 + 0.403908i
\(413\) 0.756558 + 4.87110i 0.0372278 + 0.239691i
\(414\) −0.242585 + 0.335400i −0.0119224 + 0.0164840i
\(415\) 13.4004 18.3584i 0.657802 0.901177i
\(416\) 7.12407 2.42224i 0.349286 0.118760i
\(417\) 0.666956 + 0.982002i 0.0326610 + 0.0480888i
\(418\) −6.41916 1.62958i −0.313971 0.0797055i
\(419\) 11.5934i 0.566374i 0.959065 + 0.283187i \(0.0913918\pi\)
−0.959065 + 0.283187i \(0.908608\pi\)
\(420\) −19.0543 7.54554i −0.929753 0.368185i
\(421\) 12.7176i 0.619816i −0.950767 0.309908i \(-0.899702\pi\)
0.950767 0.309908i \(-0.100298\pi\)
\(422\) 6.04133 23.7977i 0.294087 1.15845i
\(423\) −21.7271 8.61679i −1.05641 0.418963i
\(424\) −4.78676 + 5.18138i −0.232466 + 0.251630i
\(425\) 19.6618 6.29225i 0.953739 0.305219i
\(426\) −20.4632 + 7.42343i −0.991443 + 0.359666i
\(427\) −29.5928 + 4.59622i −1.43209 + 0.222427i
\(428\) −2.38987 + 4.40368i −0.115519 + 0.212860i
\(429\) −3.82732 + 2.59944i −0.184785 + 0.125502i
\(430\) 8.91242 7.38050i 0.429795 0.355919i
\(431\) 2.50836i 0.120823i −0.998174 0.0604117i \(-0.980759\pi\)
0.998174 0.0604117i \(-0.0192414\pi\)
\(432\) 14.8433 + 14.5491i 0.714149 + 0.699994i
\(433\) 24.6527 1.18473 0.592366 0.805669i \(-0.298194\pi\)
0.592366 + 0.805669i \(0.298194\pi\)
\(434\) 3.35041 35.3389i 0.160825 1.69632i
\(435\) 29.2694 + 0.993192i 1.40336 + 0.0476199i
\(436\) −13.8245 + 25.4737i −0.662075 + 1.21997i
\(437\) −0.227523 −0.0108839
\(438\) 5.72271 + 15.7750i 0.273442 + 0.753760i
\(439\) 5.50924i 0.262942i 0.991320 + 0.131471i \(0.0419700\pi\)
−0.991320 + 0.131471i \(0.958030\pi\)
\(440\) 12.4613 2.45384i 0.594068 0.116982i
\(441\) −1.45612 + 20.9495i −0.0693392 + 0.997593i
\(442\) 7.52815 + 1.91111i 0.358078 + 0.0909023i
\(443\) 13.1356i 0.624093i −0.950067 0.312047i \(-0.898986\pi\)
0.950067 0.312047i \(-0.101014\pi\)
\(444\) −2.13031 21.3620i −0.101100 1.01380i
\(445\) −17.7099 + 24.2622i −0.839527 + 1.15014i
\(446\) 8.95033 + 2.27215i 0.423810 + 0.107589i
\(447\) −2.28607 3.36593i −0.108128 0.159203i
\(448\) 4.89170 + 20.5930i 0.231111 + 0.972927i
\(449\) 10.4000i 0.490806i −0.969421 0.245403i \(-0.921080\pi\)
0.969421 0.245403i \(-0.0789203\pi\)
\(450\) 20.1599 + 6.60144i 0.950346 + 0.311195i
\(451\) −11.8131 −0.556257
\(452\) 24.9790 + 13.5561i 1.17491 + 0.637624i
\(453\) 8.10322 + 11.9309i 0.380722 + 0.560562i
\(454\) 17.0783 + 4.33553i 0.801524 + 0.203477i
\(455\) −6.99299 3.60914i −0.327836 0.169199i
\(456\) −1.69839 + 11.2976i −0.0795342 + 0.529057i
\(457\) 40.4322i 1.89134i 0.325129 + 0.945670i \(0.394592\pi\)
−0.325129 + 0.945670i \(0.605408\pi\)
\(458\) −5.01359 1.27276i −0.234270 0.0594722i
\(459\) 4.66205 + 20.9413i 0.217606 + 0.977458i
\(460\) 0.394198 0.187047i 0.0183796 0.00872109i
\(461\) 18.2567i 0.850301i −0.905123 0.425151i \(-0.860221\pi\)
0.905123 0.425151i \(-0.139779\pi\)
\(462\) −6.26321 11.4080i −0.291391 0.530747i
\(463\) 42.1208i 1.95752i 0.205016 + 0.978759i \(0.434275\pi\)
−0.205016 + 0.978759i \(0.565725\pi\)
\(464\) −16.4836 25.3604i −0.765230 1.17733i
\(465\) −1.24609 + 36.7221i −0.0577858 + 1.70295i
\(466\) 1.69783 + 0.431015i 0.0786506 + 0.0199664i
\(467\) −32.5243 −1.50504 −0.752521 0.658568i \(-0.771163\pi\)
−0.752521 + 0.658568i \(0.771163\pi\)
\(468\) 5.11714 + 6.12470i 0.236540 + 0.283114i
\(469\) −19.1696 + 2.97734i −0.885170 + 0.137481i
\(470\) 15.7142 + 18.9759i 0.724842 + 0.875292i
\(471\) 20.1536 13.6880i 0.928631 0.630708i
\(472\) −3.57603 + 3.87084i −0.164600 + 0.178170i
\(473\) 7.34833 0.337877
\(474\) −9.17106 25.2806i −0.421241 1.16118i
\(475\) 3.55395 + 11.1053i 0.163066 + 0.509545i
\(476\) −7.35048 + 20.5741i −0.336908 + 0.943010i
\(477\) −6.95497 2.75828i −0.318446 0.126293i
\(478\) 6.82354 26.8789i 0.312101 1.22941i
\(479\) −15.9517 −0.728852 −0.364426 0.931232i \(-0.618735\pi\)
−0.364426 + 0.931232i \(0.618735\pi\)
\(480\) −6.34516 20.9700i −0.289616 0.957143i
\(481\) 8.24346i 0.375869i
\(482\) −8.42980 + 33.2062i −0.383967 + 1.51250i
\(483\) −0.304989 0.326923i −0.0138775 0.0148755i
\(484\) −12.2474 6.64667i −0.556702 0.302121i
\(485\) −12.7340 + 17.4454i −0.578223 + 0.792156i
\(486\) −8.72929 + 20.2435i −0.395969 + 0.918264i
\(487\) 8.42432i 0.381742i 0.981615 + 0.190871i \(0.0611313\pi\)
−0.981615 + 0.190871i \(0.938869\pi\)
\(488\) −23.5160 21.7250i −1.06452 0.983445i
\(489\) 10.3292 + 15.2084i 0.467104 + 0.687746i
\(490\) 11.9635 18.6246i 0.540454 0.841373i
\(491\) 16.9685 0.765777 0.382888 0.923795i \(-0.374929\pi\)
0.382888 + 0.923795i \(0.374929\pi\)
\(492\) 2.02215 + 20.2774i 0.0911655 + 0.914176i
\(493\) 31.2208i 1.40611i
\(494\) −1.07942 + 4.25200i −0.0485655 + 0.191307i
\(495\) 7.18635 + 11.3940i 0.323002 + 0.512124i
\(496\) 31.8179 20.6807i 1.42866 0.928592i
\(497\) −3.60855 23.2336i −0.161865 1.04217i
\(498\) −8.49089 23.4057i −0.380486 1.04883i
\(499\) 34.6615i 1.55166i −0.630940 0.775831i \(-0.717331\pi\)
0.630940 0.775831i \(-0.282669\pi\)
\(500\) −15.2871 16.3189i −0.683659 0.729802i
\(501\) 0.662465 0.449933i 0.0295968 0.0201015i
\(502\) 5.09528 20.0710i 0.227413 0.895814i
\(503\) 20.2162i 0.901396i −0.892676 0.450698i \(-0.851175\pi\)
0.892676 0.450698i \(-0.148825\pi\)
\(504\) −18.5099 + 12.7037i −0.824496 + 0.565868i
\(505\) 28.2935 + 20.6524i 1.25904 + 0.919022i
\(506\) 0.268559 + 0.0681770i 0.0119389 + 0.00303084i
\(507\) −10.9291 16.0915i −0.485376 0.714650i
\(508\) −1.38651 + 2.55485i −0.0615166 + 0.113353i
\(509\) 2.33728i 0.103598i −0.998658 0.0517992i \(-0.983504\pi\)
0.998658 0.0517992i \(-0.0164956\pi\)
\(510\) 6.30461 21.7179i 0.279173 0.961685i
\(511\) −17.9108 + 2.78182i −0.792326 + 0.123061i
\(512\) −13.9926 + 17.7822i −0.618393 + 0.785869i
\(513\) −11.8280 + 2.63319i −0.522217 + 0.116258i
\(514\) 5.50041 21.6669i 0.242613 0.955687i
\(515\) 11.3298 15.5216i 0.499251 0.683966i
\(516\) −1.25788 12.6135i −0.0553749 0.555280i
\(517\) 15.6457i 0.688097i
\(518\) 23.0846 + 2.18861i 1.01428 + 0.0961619i
\(519\) −3.75054 5.52216i −0.164631 0.242396i
\(520\) −1.62540 8.25425i −0.0712787 0.361973i
\(521\) 18.0595 0.791203 0.395601 0.918422i \(-0.370536\pi\)
0.395601 + 0.918422i \(0.370536\pi\)
\(522\) 18.8013 25.9948i 0.822910 1.13776i
\(523\) 15.6316i 0.683522i −0.939787 0.341761i \(-0.888977\pi\)
0.939787 0.341761i \(-0.111023\pi\)
\(524\) −1.78862 + 3.29579i −0.0781362 + 0.143977i
\(525\) −11.1930 + 19.9929i −0.488501 + 0.872563i
\(526\) −19.5397 4.96040i −0.851973 0.216284i
\(527\) 39.1704 1.70629
\(528\) 5.39001 12.8263i 0.234570 0.558192i
\(529\) −22.9905 −0.999586
\(530\) 5.03020 + 6.07428i 0.218498 + 0.263850i
\(531\) −5.19583 2.06062i −0.225480 0.0894233i
\(532\) −11.6205 4.15165i −0.503813 0.179997i
\(533\) 7.82491i 0.338934i
\(534\) 11.2215 + 30.9327i 0.485600 + 1.33859i
\(535\) 4.52462 + 3.30268i 0.195616 + 0.142787i
\(536\) −15.2332 14.0730i −0.657975 0.607863i
\(537\) 13.4156 + 19.7526i 0.578926 + 0.852389i
\(538\) −3.24846 + 12.7961i −0.140051 + 0.551681i
\(539\) 13.3947 4.26368i 0.576952 0.183650i
\(540\) 18.3279 14.2859i 0.788708 0.614768i
\(541\) 14.7905i 0.635895i 0.948108 + 0.317948i \(0.102994\pi\)
−0.948108 + 0.317948i \(0.897006\pi\)
\(542\) −0.0721011 + 0.284017i −0.00309701 + 0.0121996i
\(543\) −22.8661 33.6671i −0.981276 1.44479i
\(544\) −22.1129 + 7.51855i −0.948084 + 0.322355i
\(545\) 26.1733 + 19.1048i 1.12114 + 0.818360i
\(546\) −7.55656 + 4.14870i −0.323391 + 0.177548i
\(547\) −35.5600 −1.52043 −0.760217 0.649669i \(-0.774908\pi\)
−0.760217 + 0.649669i \(0.774908\pi\)
\(548\) −32.5173 17.6471i −1.38907 0.753847i
\(549\) 12.5186 31.5656i 0.534282 1.34719i
\(550\) −0.867262 14.1732i −0.0369802 0.604346i
\(551\) 17.6339 0.751231
\(552\) 0.0710556 0.472657i 0.00302433 0.0201176i
\(553\) 28.7033 4.45808i 1.22059 0.189577i
\(554\) 39.2812 + 9.97201i 1.66890 + 0.423670i
\(555\) −23.9881 0.813986i −1.01824 0.0345518i
\(556\) −1.20474 0.653813i −0.0510925 0.0277278i
\(557\) 1.35270i 0.0573158i 0.999589 + 0.0286579i \(0.00912334\pi\)
−0.999589 + 0.0286579i \(0.990877\pi\)
\(558\) 32.6137 + 23.5886i 1.38065 + 0.998585i
\(559\) 4.86748i 0.205872i
\(560\) 23.5463 2.36023i 0.995014 0.0997378i
\(561\) 11.8799 8.06859i 0.501570 0.340656i
\(562\) −1.08226 + 4.26319i −0.0456525 + 0.179832i
\(563\) 30.5252 1.28649 0.643243 0.765662i \(-0.277589\pi\)
0.643243 + 0.765662i \(0.277589\pi\)
\(564\) 26.8561 2.67820i 1.13085 0.112773i
\(565\) 18.7338 25.6650i 0.788136 1.07973i
\(566\) 7.16140 28.2098i 0.301016 1.18575i
\(567\) −19.6387 13.4656i −0.824746 0.565504i
\(568\) 17.0566 18.4627i 0.715677 0.774678i
\(569\) 15.3875i 0.645079i −0.946556 0.322539i \(-0.895464\pi\)
0.946556 0.322539i \(-0.104536\pi\)
\(570\) 12.2666 + 3.56093i 0.513790 + 0.149151i
\(571\) 42.4541i 1.77665i −0.459217 0.888324i \(-0.651870\pi\)
0.459217 0.888324i \(-0.348130\pi\)
\(572\) 2.54822 4.69545i 0.106546 0.196327i
\(573\) 19.6894 13.3727i 0.822538 0.558652i
\(574\) −21.9125 2.07748i −0.914609 0.0867125i
\(575\) −0.148687 0.464613i −0.00620068 0.0193757i
\(576\) −22.9392 7.05647i −0.955799 0.294019i
\(577\) −0.806615 −0.0335798 −0.0167899 0.999859i \(-0.505345\pi\)
−0.0167899 + 0.999859i \(0.505345\pi\)
\(578\) −0.0646852 0.0164211i −0.00269055 0.000683028i
\(579\) 18.4311 12.5180i 0.765971 0.520232i
\(580\) −30.5519 + 14.4968i −1.26860 + 0.601949i
\(581\) 26.5746 4.12745i 1.10250 0.171235i
\(582\) 8.06865 + 22.2418i 0.334456 + 0.921951i
\(583\) 5.00827i 0.207421i
\(584\) −14.2329 13.1489i −0.588960 0.544105i
\(585\) 7.54732 4.76018i 0.312043 0.196809i
\(586\) −16.3650 4.15446i −0.676033 0.171619i
\(587\) −2.83907 −0.117181 −0.0585905 0.998282i \(-0.518661\pi\)
−0.0585905 + 0.998282i \(0.518661\pi\)
\(588\) −9.61158 22.2625i −0.396375 0.918089i
\(589\) 22.1240i 0.911603i
\(590\) 3.75789 + 4.53789i 0.154710 + 0.186822i
\(591\) −36.6419 + 24.8864i −1.50724 + 1.02369i
\(592\) 13.5094 + 20.7845i 0.555231 + 0.854239i
\(593\) 32.6365i 1.34022i 0.742262 + 0.670110i \(0.233753\pi\)
−0.742262 + 0.670110i \(0.766247\pi\)
\(594\) 14.7503 + 0.436121i 0.605211 + 0.0178943i
\(595\) 21.7060 + 11.2027i 0.889861 + 0.459265i
\(596\) 4.12940 + 2.24102i 0.169147 + 0.0917958i
\(597\) 24.5263 16.6578i 1.00380 0.681758i
\(598\) 0.0451599 0.177892i 0.00184673 0.00727453i
\(599\) 38.2058i 1.56105i −0.625128 0.780523i \(-0.714953\pi\)
0.625128 0.780523i \(-0.285047\pi\)
\(600\) −24.1800 + 3.91481i −0.987146 + 0.159821i
\(601\) 36.9925i 1.50896i −0.656325 0.754479i \(-0.727890\pi\)
0.656325 0.754479i \(-0.272110\pi\)
\(602\) 13.6306 + 1.29230i 0.555543 + 0.0526701i
\(603\) 8.10932 20.4476i 0.330237 0.832689i
\(604\) −14.6371 7.94353i −0.595575 0.323218i
\(605\) −9.18536 + 12.5838i −0.373438 + 0.511604i
\(606\) 36.0723 13.0860i 1.46534 0.531581i
\(607\) −29.2308 −1.18644 −0.593220 0.805041i \(-0.702143\pi\)
−0.593220 + 0.805041i \(0.702143\pi\)
\(608\) −4.24658 12.4897i −0.172222 0.506524i
\(609\) 23.6378 + 25.3378i 0.957853 + 1.02674i
\(610\) −27.5685 + 22.8299i −1.11622 + 0.924354i
\(611\) 10.3636 0.419266
\(612\) −15.8835 19.0109i −0.642051 0.768470i
\(613\) −1.66640 −0.0673052 −0.0336526 0.999434i \(-0.510714\pi\)
−0.0336526 + 0.999434i \(0.510714\pi\)
\(614\) 2.68145 10.5626i 0.108214 0.426273i
\(615\) 22.7702 + 0.772657i 0.918182 + 0.0311565i
\(616\) 12.4724 + 8.38252i 0.502526 + 0.337741i
\(617\) 21.0418 0.847111 0.423556 0.905870i \(-0.360782\pi\)
0.423556 + 0.905870i \(0.360782\pi\)
\(618\) −7.17888 19.7891i −0.288777 0.796033i
\(619\) 8.07998 0.324762 0.162381 0.986728i \(-0.448083\pi\)
0.162381 + 0.986728i \(0.448083\pi\)
\(620\) −18.1881 38.3312i −0.730453 1.53942i
\(621\) 0.494848 0.110165i 0.0198576 0.00442077i
\(622\) 36.7942 + 9.34065i 1.47531 + 0.374526i
\(623\) −35.1206 + 5.45478i −1.40708 + 0.218541i
\(624\) −8.49602 3.57030i −0.340113 0.142926i
\(625\) −20.3550 + 14.5147i −0.814198 + 0.580587i
\(626\) 11.2458 + 2.85488i 0.449473 + 0.114104i
\(627\) 4.55725 + 6.70993i 0.181999 + 0.267969i
\(628\) −13.4182 + 24.7250i −0.535445 + 0.986634i
\(629\) 25.5875i 1.02024i
\(630\) 11.3264 + 22.3989i 0.451254 + 0.892395i
\(631\) −27.5940 −1.09850 −0.549250 0.835658i \(-0.685087\pi\)
−0.549250 + 0.835658i \(0.685087\pi\)
\(632\) 22.8092 + 21.0720i 0.907302 + 0.838201i
\(633\) −24.8756 + 16.8951i −0.988718 + 0.671518i
\(634\) 10.6939 42.1247i 0.424708 1.67299i
\(635\) 2.62501 + 1.91609i 0.104170 + 0.0760377i
\(636\) 8.59679 0.857307i 0.340885 0.0339944i
\(637\) −2.82423 8.87257i −0.111900 0.351544i
\(638\) −20.8144 5.28399i −0.824050 0.209195i
\(639\) 24.7825 + 9.82852i 0.980381 + 0.388810i
\(640\) 17.6252 + 18.1480i 0.696698 + 0.717364i
\(641\) 26.2441i 1.03658i 0.855205 + 0.518290i \(0.173431\pi\)
−0.855205 + 0.518290i \(0.826569\pi\)
\(642\) 5.76858 2.09267i 0.227668 0.0825911i
\(643\) 10.0020i 0.394440i −0.980359 0.197220i \(-0.936809\pi\)
0.980359 0.197220i \(-0.0631913\pi\)
\(644\) 0.486169 + 0.173693i 0.0191577 + 0.00684447i
\(645\) −14.1642 0.480631i −0.557714 0.0189248i
\(646\) 3.35050 13.1981i 0.131824 0.519272i
\(647\) 39.2518i 1.54315i −0.636140 0.771573i \(-0.719470\pi\)
0.636140 0.771573i \(-0.280530\pi\)
\(648\) −1.77632 25.3938i −0.0697804 0.997562i
\(649\) 3.74151i 0.146867i
\(650\) −9.38819 + 0.574468i −0.368235 + 0.0225325i
\(651\) −31.7895 + 29.6566i −1.24593 + 1.16234i
\(652\) −18.6580 10.1257i −0.730703 0.396552i
\(653\) 14.4218i 0.564370i 0.959360 + 0.282185i \(0.0910592\pi\)
−0.959360 + 0.282185i \(0.908941\pi\)
\(654\) 33.3692 12.1053i 1.30484 0.473356i
\(655\) 3.38630 + 2.47178i 0.132314 + 0.0965804i
\(656\) −12.8234 19.7292i −0.500671 0.770297i
\(657\) 7.57679 19.1048i 0.295599 0.745349i
\(658\) −2.75149 + 29.0217i −0.107264 + 1.13138i
\(659\) −28.6527 −1.11615 −0.558075 0.829790i \(-0.688460\pi\)
−0.558075 + 0.829790i \(0.688460\pi\)
\(660\) −13.4120 7.87885i −0.522060 0.306684i
\(661\) −30.3370 −1.17997 −0.589987 0.807413i \(-0.700867\pi\)
−0.589987 + 0.807413i \(0.700867\pi\)
\(662\) 7.07293 27.8613i 0.274897 1.08286i
\(663\) −5.34458 7.86915i −0.207566 0.305613i
\(664\) 21.1176 + 19.5092i 0.819521 + 0.757106i
\(665\) −6.32742 + 12.2599i −0.245367 + 0.475417i
\(666\) −15.4089 + 21.3044i −0.597082 + 0.825530i
\(667\) −0.737753 −0.0285659
\(668\) −0.441067 + 0.812728i −0.0170654 + 0.0314454i
\(669\) −6.35424 9.35575i −0.245669 0.361714i
\(670\) −17.8583 + 14.7887i −0.689927 + 0.571339i
\(671\) −22.7303 −0.877495
\(672\) 12.2537 22.8439i 0.472699 0.881224i
\(673\) 35.2784i 1.35988i −0.733267 0.679940i \(-0.762006\pi\)
0.733267 0.679940i \(-0.237994\pi\)
\(674\) 2.80046 11.0314i 0.107870 0.424914i
\(675\) −13.1067 22.4324i −0.504477 0.863425i
\(676\) 19.7415 + 10.7137i 0.759287 + 0.412065i
\(677\) −19.1645 −0.736552 −0.368276 0.929717i \(-0.620052\pi\)
−0.368276 + 0.929717i \(0.620052\pi\)
\(678\) −11.8702 32.7211i −0.455874 1.25665i
\(679\) −25.2530 + 3.92219i −0.969122 + 0.150520i
\(680\) 5.04521 + 25.6210i 0.193475 + 0.982519i
\(681\) −12.1247 17.8519i −0.464618 0.684086i
\(682\) 6.62943 26.1143i 0.253854 0.999968i
\(683\) 13.2192i 0.505820i −0.967490 0.252910i \(-0.918612\pi\)
0.967490 0.252910i \(-0.0813877\pi\)
\(684\) 10.7376 8.97121i 0.410563 0.343023i
\(685\) −24.3874 + 33.4103i −0.931795 + 1.27654i
\(686\) 25.5961 5.55320i 0.977265 0.212022i
\(687\) 3.55938 + 5.24069i 0.135799 + 0.199945i
\(688\) 7.97681 + 12.2726i 0.304113 + 0.467887i
\(689\) 3.31744 0.126384
\(690\) −0.513198 0.148979i −0.0195371 0.00567154i
\(691\) 36.7836 1.39931 0.699657 0.714479i \(-0.253336\pi\)
0.699657 + 0.714479i \(0.253336\pi\)
\(692\) 6.77472 + 3.67663i 0.257536 + 0.139765i
\(693\) −3.53248 + 15.5427i −0.134188 + 0.590419i
\(694\) −6.99720 + 27.5630i −0.265610 + 1.04628i
\(695\) −0.903535 + 1.23783i −0.0342731 + 0.0469535i
\(696\) −5.50709 + 36.6328i −0.208746 + 1.38856i
\(697\) 24.2883i 0.919985i
\(698\) −3.14676 0.798843i −0.119107 0.0302367i
\(699\) −1.20537 1.77474i −0.0455912 0.0671268i
\(700\) 0.883818 26.4427i 0.0334052 0.999442i
\(701\) 4.86743 0.183840 0.0919201 0.995766i \(-0.470700\pi\)
0.0919201 + 0.995766i \(0.470700\pi\)
\(702\) 0.288883 9.77048i 0.0109032 0.368763i
\(703\) −14.4522 −0.545074
\(704\) 1.26998 + 16.0148i 0.0478642 + 0.603581i
\(705\) 1.02333 30.1576i 0.0385410 1.13580i
\(706\) 5.29061 20.8405i 0.199115 0.784342i
\(707\) 6.36113 + 40.9561i 0.239235 + 1.54031i
\(708\) 6.42238 0.640466i 0.241368 0.0240702i
\(709\) 0.768670i 0.0288680i 0.999896 + 0.0144340i \(0.00459465\pi\)
−0.999896 + 0.0144340i \(0.995405\pi\)
\(710\) −17.9240 21.6443i −0.672675 0.812298i
\(711\) −12.1424 + 30.6168i −0.455374 + 1.14822i
\(712\) −27.9087 25.7832i −1.04592 0.966265i
\(713\) 0.925604i 0.0346642i
\(714\) 23.4553 12.8775i 0.877794 0.481927i
\(715\) −4.82440 3.52150i −0.180422 0.131697i
\(716\) −24.2330 13.1512i −0.905629 0.491484i
\(717\) −28.0965 + 19.0826i −1.04928 + 0.712651i
\(718\) −10.1099 + 39.8242i −0.377297 + 1.48623i
\(719\) −45.3201 −1.69015 −0.845077 0.534644i \(-0.820446\pi\)
−0.845077 + 0.534644i \(0.820446\pi\)
\(720\) −11.2284 + 24.3706i −0.418456 + 0.908237i
\(721\) 22.4683 3.48968i 0.836762 0.129962i
\(722\) −18.5895 4.71916i −0.691829 0.175629i
\(723\) 34.7104 23.5746i 1.29089 0.876749i
\(724\) 41.3036 + 22.4154i 1.53504 + 0.833063i
\(725\) 11.5238 + 36.0093i 0.427984 + 1.33735i
\(726\) 5.82010 + 16.0435i 0.216004 + 0.595430i
\(727\) −19.4319 −0.720688 −0.360344 0.932819i \(-0.617341\pi\)
−0.360344 + 0.932819i \(0.617341\pi\)
\(728\) 5.55252 8.26160i 0.205790 0.306195i
\(729\) 24.4501 11.4540i 0.905558 0.424223i
\(730\) −16.6856 + 13.8176i −0.617562 + 0.511411i
\(731\) 15.1085i 0.558809i
\(732\) 3.89094 + 39.0170i 0.143813 + 1.44211i
\(733\) 33.0895i 1.22219i −0.791558 0.611094i \(-0.790730\pi\)
0.791558 0.611094i \(-0.209270\pi\)
\(734\) −10.0673 2.55571i −0.371591 0.0943329i
\(735\) −26.0977 + 7.34229i −0.962629 + 0.270824i
\(736\) 0.177665 + 0.522533i 0.00654881 + 0.0192608i
\(737\) −14.7243 −0.542375
\(738\) 14.6265 20.2227i 0.538410 0.744409i
\(739\) 12.9023i 0.474619i 0.971434 + 0.237310i \(0.0762656\pi\)
−0.971434 + 0.237310i \(0.923734\pi\)
\(740\) 25.0393 11.8811i 0.920461 0.436758i
\(741\) 4.44461 3.01869i 0.163277 0.110894i
\(742\) −0.880767 + 9.28999i −0.0323340 + 0.341046i
\(743\) 20.1716 0.740025 0.370012 0.929027i \(-0.379353\pi\)
0.370012 + 0.929027i \(0.379353\pi\)
\(744\) −45.9605 6.90934i −1.68499 0.253309i
\(745\) 3.09698 4.24281i 0.113464 0.155444i
\(746\) 26.7410 + 6.78852i 0.979057 + 0.248545i
\(747\) −11.2418 + 28.3462i −0.411317 + 1.03713i
\(748\) −7.90959 + 14.5745i −0.289203 + 0.532898i
\(749\) 1.01725 + 6.54958i 0.0371696 + 0.239316i
\(750\) 0.744657 + 27.3760i 0.0271910 + 0.999630i
\(751\) 15.5652 0.567982 0.283991 0.958827i \(-0.408341\pi\)
0.283991 + 0.958827i \(0.408341\pi\)
\(752\) −26.1301 + 16.9838i −0.952867 + 0.619336i
\(753\) −20.9802 + 14.2493i −0.764561 + 0.519275i
\(754\) −3.50007 + 13.7873i −0.127465 + 0.502104i
\(755\) −10.9776 + 15.0391i −0.399514 + 0.547327i
\(756\) 27.2841 + 3.40300i 0.992311 + 0.123766i
\(757\) 29.6612 1.07806 0.539028 0.842288i \(-0.318792\pi\)
0.539028 + 0.842288i \(0.318792\pi\)
\(758\) −1.24370 + 4.89914i −0.0451734 + 0.177945i
\(759\) −0.190662 0.280724i −0.00692061 0.0101896i
\(760\) −14.4711 + 2.84960i −0.524921 + 0.103366i
\(761\) −41.8111 −1.51565 −0.757825 0.652457i \(-0.773738\pi\)
−0.757825 + 0.652457i \(0.773738\pi\)
\(762\) 3.34671 1.21409i 0.121239 0.0439818i
\(763\) 5.88444 + 37.8869i 0.213031 + 1.37160i
\(764\) −13.1091 + 24.1555i −0.474272 + 0.873914i
\(765\) −23.4267 + 14.7755i −0.846993 + 0.534209i
\(766\) −5.09226 + 20.0592i −0.183991 + 0.724767i
\(767\) 2.47835 0.0894880
\(768\) 27.2723 4.92133i 0.984106 0.177583i
\(769\) 9.12224i 0.328956i 0.986381 + 0.164478i \(0.0525940\pi\)
−0.986381 + 0.164478i \(0.947406\pi\)
\(770\) 11.1423 12.5751i 0.401540 0.453174i
\(771\) −22.6484 + 15.3823i −0.815662 + 0.553982i
\(772\) −12.2714 + 22.6117i −0.441656 + 0.813814i
\(773\) 17.9114 0.644228 0.322114 0.946701i \(-0.395606\pi\)
0.322114 + 0.946701i \(0.395606\pi\)
\(774\) −9.09842 + 12.5795i −0.327036 + 0.452162i
\(775\) −45.1782 + 14.4581i −1.62285 + 0.519350i
\(776\) −20.0674 18.5391i −0.720379 0.665514i
\(777\) −19.3728 20.7660i −0.694994 0.744977i
\(778\) −18.4246 4.67731i −0.660555 0.167690i
\(779\) 13.7184 0.491512
\(780\) −5.21889 + 8.88398i −0.186866 + 0.318097i
\(781\) 17.8458i 0.638575i
\(782\) −0.140175 + 0.552171i −0.00501265 + 0.0197456i
\(783\) −38.3526 + 8.53822i −1.37061 + 0.305131i
\(784\) 21.6612 + 17.7424i 0.773614 + 0.633657i
\(785\) 25.4040 + 18.5433i 0.906707 + 0.661838i
\(786\) 4.31730 1.56619i 0.153993 0.0558641i
\(787\) 36.9161i 1.31592i 0.753055 + 0.657958i \(0.228579\pi\)
−0.753055 + 0.657958i \(0.771421\pi\)
\(788\) 24.3960 44.9531i 0.869072 1.60139i
\(789\) 13.8721 + 20.4248i 0.493861 + 0.727143i
\(790\) 26.7399 22.1437i 0.951363 0.787837i
\(791\) 37.1512 5.77016i 1.32094 0.205163i
\(792\) −15.3625 + 7.37174i −0.545882 + 0.261943i
\(793\) 15.0564i 0.534668i
\(794\) −2.60095 + 10.2455i −0.0923044 + 0.363600i
\(795\) 0.327575 9.65362i 0.0116179 0.342379i
\(796\) −16.3295 + 30.0895i −0.578785 + 1.06649i
\(797\) 29.7782 1.05480 0.527399 0.849618i \(-0.323167\pi\)
0.527399 + 0.849618i \(0.323167\pi\)
\(798\) 7.27336 + 13.2479i 0.257474 + 0.468971i
\(799\) −32.1683 −1.13803
\(800\) 22.7294 16.8338i 0.803604 0.595164i
\(801\) 14.8571 37.4619i 0.524948 1.32365i
\(802\) 10.5812 41.6808i 0.373634 1.47180i
\(803\) −13.7573 −0.485486
\(804\) 2.52048 + 25.2745i 0.0888903 + 0.891362i
\(805\) 0.264721 0.512918i 0.00933020 0.0180780i
\(806\) −17.2979 4.39128i −0.609293 0.154676i
\(807\) 13.3758 9.08457i 0.470850 0.319792i
\(808\) −30.0672 + 32.5459i −1.05776 + 1.14496i
\(809\) 8.02026i 0.281977i −0.990011 0.140989i \(-0.954972\pi\)
0.990011 0.140989i \(-0.0450281\pi\)
\(810\) −28.4032 1.80541i −0.997986 0.0634356i
\(811\) −2.93155 −0.102941 −0.0514703 0.998675i \(-0.516391\pi\)
−0.0514703 + 0.998675i \(0.516391\pi\)
\(812\) −37.6800 13.4619i −1.32231 0.472420i
\(813\) 0.296882 0.201636i 0.0104121 0.00707170i
\(814\) 17.0588 + 4.33057i 0.597909 + 0.151786i
\(815\) −13.9931 + 19.1704i −0.490159 + 0.671509i
\(816\) 26.3714 + 11.0821i 0.923184 + 0.387951i
\(817\) −8.53350 −0.298549
\(818\) 8.61360 33.9302i 0.301167 1.18634i
\(819\) 10.2954 + 2.33989i 0.359750 + 0.0817624i
\(820\) −23.7679 + 11.2779i −0.830012 + 0.393840i
\(821\) −28.8608 −1.00725 −0.503624 0.863923i \(-0.668000\pi\)
−0.503624 + 0.863923i \(0.668000\pi\)
\(822\) 15.4525 + 42.5959i 0.538969 + 1.48570i
\(823\) 55.7417i 1.94303i −0.236970 0.971517i \(-0.576154\pi\)
0.236970 0.971517i \(-0.423846\pi\)
\(824\) 17.8545 + 16.4947i 0.621991 + 0.574620i
\(825\) −10.7238 + 13.6911i −0.373355 + 0.476662i
\(826\) −0.657992 + 6.94025i −0.0228945 + 0.241482i
\(827\) 30.4567i 1.05908i 0.848284 + 0.529541i \(0.177636\pi\)
−0.848284 + 0.529541i \(0.822364\pi\)
\(828\) −0.449231 + 0.375330i −0.0156119 + 0.0130436i
\(829\) 25.9657 0.901827 0.450913 0.892568i \(-0.351098\pi\)
0.450913 + 0.892568i \(0.351098\pi\)
\(830\) 24.7567 20.5014i 0.859319 0.711614i
\(831\) −27.8875 41.0605i −0.967407 1.42437i
\(832\) 10.6081 0.841225i 0.367769 0.0291642i
\(833\) 8.76633 + 27.5402i 0.303735 + 0.954212i
\(834\) 0.572505 + 1.57815i 0.0198242 + 0.0546468i
\(835\) 0.835048 + 0.609531i 0.0288980 + 0.0210937i
\(836\) −8.23190 4.46745i −0.284706 0.154510i
\(837\) −10.7123 48.1182i −0.370271 1.66321i
\(838\) −4.03424 + 15.8915i −0.139361 + 0.548961i
\(839\) −2.14123 −0.0739234 −0.0369617 0.999317i \(-0.511768\pi\)
−0.0369617 + 0.999317i \(0.511768\pi\)
\(840\) −23.4926 16.9734i −0.810573 0.585637i
\(841\) 28.1788 0.971681
\(842\) 4.42542 17.4324i 0.152510 0.600760i
\(843\) 4.45631 3.02664i 0.153483 0.104243i
\(844\) 16.5621 30.5180i 0.570091 1.05047i
\(845\) 14.8057 20.2836i 0.509333 0.697778i
\(846\) −26.7837 19.3719i −0.920842 0.666019i
\(847\) −18.2156 + 2.82917i −0.625895 + 0.0972113i
\(848\) −8.36438 + 5.43661i −0.287234 + 0.186694i
\(849\) −29.4876 + 20.0274i −1.01201 + 0.687339i
\(850\) 29.1407 1.78313i 0.999518 0.0611609i
\(851\) 0.604637 0.0207267
\(852\) −30.6327 + 3.05482i −1.04946 + 0.104657i
\(853\) 44.6580i 1.52906i 0.644587 + 0.764531i \(0.277029\pi\)
−0.644587 + 0.764531i \(0.722971\pi\)
\(854\) −42.1632 3.99741i −1.44279 0.136789i
\(855\) −8.34540 13.2317i −0.285407 0.452515i
\(856\) −4.80826 + 5.20465i −0.164343 + 0.177891i
\(857\) 23.0490i 0.787338i 0.919252 + 0.393669i \(0.128794\pi\)
−0.919252 + 0.393669i \(0.871206\pi\)
\(858\) −6.15079 + 2.23132i −0.209984 + 0.0761761i
\(859\) −14.2677 −0.486806 −0.243403 0.969925i \(-0.578264\pi\)
−0.243403 + 0.969925i \(0.578264\pi\)
\(860\) 14.7848 7.01539i 0.504158 0.239223i
\(861\) 18.3891 + 19.7117i 0.626700 + 0.671771i
\(862\) 0.872852 3.43829i 0.0297295 0.117109i
\(863\) 0.233651 0.00795357 0.00397679 0.999992i \(-0.498734\pi\)
0.00397679 + 0.999992i \(0.498734\pi\)
\(864\) 15.2835 + 25.1081i 0.519954 + 0.854194i
\(865\) 5.08091 6.96077i 0.172756 0.236673i
\(866\) 33.7922 + 8.57857i 1.14831 + 0.291512i
\(867\) 0.0459230 + 0.0676152i 0.00155963 + 0.00229633i
\(868\) 16.8897 47.2743i 0.573272 1.60459i
\(869\) 22.0471 0.747898
\(870\) 39.7749 + 11.5465i 1.34849 + 0.391462i
\(871\) 9.75324i 0.330476i
\(872\) −27.8140 + 30.1070i −0.941902 + 1.01955i
\(873\) 10.6828 26.9365i 0.361558 0.911663i
\(874\) −0.311874 0.0791729i −0.0105493 0.00267806i
\(875\) −29.1702 4.90903i −0.986133 0.165955i
\(876\) 2.35496 + 23.6147i 0.0795667 + 0.797868i
\(877\) 40.6170 1.37154 0.685770 0.727819i \(-0.259466\pi\)
0.685770 + 0.727819i \(0.259466\pi\)
\(878\) −1.91709 + 7.55170i −0.0646987 + 0.254858i
\(879\) 11.6183 + 17.1063i 0.391874 + 0.576981i
\(880\) 17.9350 + 0.972681i 0.604587 + 0.0327891i
\(881\) −40.1040 −1.35114 −0.675569 0.737297i \(-0.736102\pi\)
−0.675569 + 0.737297i \(0.736102\pi\)
\(882\) −9.28590 + 28.2094i −0.312672 + 0.949861i
\(883\) 57.5009 1.93506 0.967530 0.252757i \(-0.0813374\pi\)
0.967530 + 0.252757i \(0.0813374\pi\)
\(884\) 9.65407 + 5.23925i 0.324701 + 0.176215i
\(885\) 0.244720 7.21190i 0.00822618 0.242425i
\(886\) 4.57091 18.0055i 0.153563 0.604905i
\(887\) 13.7551i 0.461850i 0.972972 + 0.230925i \(0.0741752\pi\)
−0.972972 + 0.230925i \(0.925825\pi\)
\(888\) 4.51342 30.0230i 0.151460 1.00751i
\(889\) 0.590172 + 3.79982i 0.0197937 + 0.127442i
\(890\) −32.7182 + 27.0944i −1.09672 + 0.908206i
\(891\) −13.1606 12.3871i −0.440898 0.414982i
\(892\) 11.4779 + 6.22902i 0.384307 + 0.208563i
\(893\) 18.1691i 0.608006i
\(894\) −1.96233 5.40929i −0.0656302 0.180914i
\(895\) −18.1743 + 24.8985i −0.607500 + 0.832265i
\(896\) −0.460684 + 29.9297i −0.0153904 + 0.999882i
\(897\) −0.185950 + 0.126293i −0.00620868 + 0.00421681i
\(898\) 3.61896 14.2556i 0.120766 0.475716i
\(899\) 71.7380i 2.39260i
\(900\) 25.3367 + 16.0640i 0.844556 + 0.535467i
\(901\) −10.2972 −0.343051
\(902\) −16.1926 4.11069i −0.539155 0.136871i
\(903\) −11.4389 12.2616i −0.380664 0.408041i
\(904\) 29.5223 + 27.2739i 0.981898 + 0.907116i
\(905\) 30.9770 42.4379i 1.02971 1.41069i
\(906\) 6.95568 + 19.1738i 0.231087 + 0.637007i
\(907\) −53.8251 −1.78723 −0.893617 0.448830i \(-0.851841\pi\)
−0.893617 + 0.448830i \(0.851841\pi\)
\(908\) 21.9011 + 11.8857i 0.726815 + 0.394442i
\(909\) −43.6864 17.3257i −1.44899 0.574656i
\(910\) −8.32962 7.38057i −0.276124 0.244664i
\(911\) 34.4197i 1.14038i −0.821514 0.570188i \(-0.806870\pi\)
0.821514 0.570188i \(-0.193130\pi\)
\(912\) −6.25933 + 14.8949i −0.207267 + 0.493221i
\(913\) 20.4120 0.675540
\(914\) −14.0695 + 55.4218i −0.465378 + 1.83319i
\(915\) 43.8135 + 1.48672i 1.44843 + 0.0491494i
\(916\) −6.42941 3.48923i −0.212434 0.115287i
\(917\) 0.761329 + 4.90181i 0.0251413 + 0.161872i
\(918\) −0.896686 + 30.3273i −0.0295951 + 1.00095i
\(919\) 56.8106 1.87401 0.937005 0.349316i \(-0.113586\pi\)
0.937005 + 0.349316i \(0.113586\pi\)
\(920\) 0.605428 0.119219i 0.0199604 0.00393054i
\(921\) −11.0411 + 7.49888i −0.363816 + 0.247097i
\(922\) 6.35293 25.0251i 0.209223 0.824159i
\(923\) −11.8210 −0.389092
\(924\) −4.61547 17.8168i −0.151838 0.586128i
\(925\) −9.44454 29.5120i −0.310534 0.970348i
\(926\) −14.6571 + 57.7363i −0.481661 + 1.89733i
\(927\) −9.50475 + 23.9661i −0.312177 + 0.787151i
\(928\) −13.7697 40.4983i −0.452013 1.32942i
\(929\) 8.90906 0.292297 0.146148 0.989263i \(-0.453312\pi\)
0.146148 + 0.989263i \(0.453312\pi\)
\(930\) −14.4865 + 49.9026i −0.475031 + 1.63637i
\(931\) −15.5551 + 4.95135i −0.509798 + 0.162274i
\(932\) 2.17729 + 1.18161i 0.0713196 + 0.0387051i
\(933\) −26.1219 38.4608i −0.855191 1.25915i
\(934\) −44.5821 11.3177i −1.45877 0.370327i
\(935\) 14.9748 + 10.9306i 0.489728 + 0.357470i
\(936\) 4.88299 + 10.1760i 0.159605 + 0.332612i
\(937\) 29.8344 0.974647 0.487323 0.873222i \(-0.337973\pi\)
0.487323 + 0.873222i \(0.337973\pi\)
\(938\) −27.3125 2.58945i −0.891784 0.0845485i
\(939\) −7.98391 11.7552i −0.260545 0.383617i
\(940\) 14.9368 + 31.4791i 0.487185 + 1.02673i
\(941\) 51.4975i 1.67877i 0.543537 + 0.839385i \(0.317085\pi\)
−0.543537 + 0.839385i \(0.682915\pi\)
\(942\) 32.3884 11.7495i 1.05527 0.382821i
\(943\) −0.573937 −0.0186900
\(944\) −6.24875 + 4.06151i −0.203380 + 0.132191i
\(945\) 7.82559 29.7281i 0.254566 0.967055i
\(946\) 10.0726 + 2.55705i 0.327489 + 0.0831370i
\(947\) 8.19688i 0.266363i 0.991092 + 0.133181i \(0.0425193\pi\)
−0.991092 + 0.133181i \(0.957481\pi\)
\(948\) −3.77400 37.8443i −0.122574 1.22913i
\(949\) 9.11276i 0.295813i
\(950\) 1.00714 + 16.4591i 0.0326759 + 0.534003i
\(951\) −44.0328 + 29.9062i −1.42786 + 0.969777i
\(952\) −17.2349 + 25.6438i −0.558585 + 0.831119i
\(953\) −16.6673 −0.539906 −0.269953 0.962873i \(-0.587008\pi\)
−0.269953 + 0.962873i \(0.587008\pi\)
\(954\) −8.57360 6.20104i −0.277581 0.200766i
\(955\) 24.8188 + 18.1162i 0.803119 + 0.586225i
\(956\) 18.7065 34.4694i 0.605012 1.11482i
\(957\) 14.7771 + 21.7572i 0.477675 + 0.703311i
\(958\) −21.8656 5.55084i −0.706444 0.179339i
\(959\) −48.3629 + 7.51152i −1.56172 + 0.242560i
\(960\) −1.40045 30.9522i −0.0451994 0.998978i
\(961\) −59.0043 −1.90337
\(962\) 2.86854 11.2996i 0.0924854 0.364313i
\(963\) −6.98621 2.77067i −0.225127 0.0892835i
\(964\) −23.1100 + 42.5835i −0.744324 + 1.37152i
\(965\) 23.2327 + 16.9584i 0.747887 + 0.545910i
\(966\) −0.304297 0.554254i −0.00979059 0.0178328i
\(967\) 13.9782i 0.449509i 0.974415 + 0.224754i \(0.0721580\pi\)
−0.974415 + 0.224754i \(0.927842\pi\)
\(968\) −14.4751 13.3727i −0.465247 0.429813i
\(969\) −13.7959 + 9.36993i −0.443189 + 0.301006i
\(970\) −23.5256 + 19.4819i −0.755362 + 0.625526i
\(971\) 34.0060i 1.09130i −0.838012 0.545652i \(-0.816282\pi\)
0.838012 0.545652i \(-0.183718\pi\)
\(972\) −19.0098 + 24.7109i −0.609740 + 0.792601i
\(973\) −1.79181 + 0.278296i −0.0574428 + 0.00892177i
\(974\) −2.93147 + 11.5475i −0.0939305 + 0.370006i
\(975\) 9.06887 + 7.10337i 0.290436 + 0.227490i
\(976\) −24.6744 37.9623i −0.789808 1.21514i
\(977\) −24.4774 −0.783101 −0.391550 0.920157i \(-0.628061\pi\)
−0.391550 + 0.920157i \(0.628061\pi\)
\(978\) 8.86645 + 24.4410i 0.283518 + 0.781535i
\(979\) −26.9763 −0.862166
\(980\) 22.8797 21.3663i 0.730864 0.682523i
\(981\) −40.4127 16.0273i −1.29028 0.511712i
\(982\) 23.2593 + 5.90465i 0.742233 + 0.188425i
\(983\) 27.1165i 0.864881i −0.901663 0.432440i \(-0.857653\pi\)
0.901663 0.432440i \(-0.142347\pi\)
\(984\) −4.28425 + 28.4986i −0.136577 + 0.908502i
\(985\) −46.1876 33.7140i −1.47166 1.07422i
\(986\) 10.8641 42.7954i 0.345984 1.36288i
\(987\) 26.1068 24.3552i 0.830989 0.775235i
\(988\) −2.95920 + 5.45275i −0.0941448 + 0.173475i
\(989\) 0.357017 0.0113525
\(990\) 5.88571 + 18.1189i 0.187060 + 0.575856i
\(991\) 37.8179 1.20133 0.600663 0.799502i \(-0.294903\pi\)
0.600663 + 0.799502i \(0.294903\pi\)
\(992\) 50.8103 17.2759i 1.61323 0.548509i
\(993\) −29.1233 + 19.7800i −0.924202 + 0.627700i
\(994\) 3.13842 33.1028i 0.0995446 1.04996i
\(995\) 30.9158 + 22.5666i 0.980097 + 0.715408i
\(996\) −3.49410 35.0376i −0.110715 1.11021i
\(997\) 28.4532i 0.901122i −0.892746 0.450561i \(-0.851224\pi\)
0.892746 0.450561i \(-0.148776\pi\)
\(998\) 12.0614 47.5117i 0.381798 1.50396i
\(999\) 31.4325 6.99763i 0.994480 0.221395i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.u.e.629.157 yes 160
3.2 odd 2 inner 840.2.u.e.629.3 yes 160
5.4 even 2 inner 840.2.u.e.629.4 yes 160
7.6 odd 2 inner 840.2.u.e.629.160 yes 160
8.5 even 2 inner 840.2.u.e.629.156 yes 160
15.14 odd 2 inner 840.2.u.e.629.158 yes 160
21.20 even 2 inner 840.2.u.e.629.2 yes 160
24.5 odd 2 inner 840.2.u.e.629.6 yes 160
35.34 odd 2 inner 840.2.u.e.629.1 160
40.29 even 2 inner 840.2.u.e.629.5 yes 160
56.13 odd 2 inner 840.2.u.e.629.153 yes 160
105.104 even 2 inner 840.2.u.e.629.159 yes 160
120.29 odd 2 inner 840.2.u.e.629.155 yes 160
168.125 even 2 inner 840.2.u.e.629.7 yes 160
280.69 odd 2 inner 840.2.u.e.629.8 yes 160
840.629 even 2 inner 840.2.u.e.629.154 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.u.e.629.1 160 35.34 odd 2 inner
840.2.u.e.629.2 yes 160 21.20 even 2 inner
840.2.u.e.629.3 yes 160 3.2 odd 2 inner
840.2.u.e.629.4 yes 160 5.4 even 2 inner
840.2.u.e.629.5 yes 160 40.29 even 2 inner
840.2.u.e.629.6 yes 160 24.5 odd 2 inner
840.2.u.e.629.7 yes 160 168.125 even 2 inner
840.2.u.e.629.8 yes 160 280.69 odd 2 inner
840.2.u.e.629.153 yes 160 56.13 odd 2 inner
840.2.u.e.629.154 yes 160 840.629 even 2 inner
840.2.u.e.629.155 yes 160 120.29 odd 2 inner
840.2.u.e.629.156 yes 160 8.5 even 2 inner
840.2.u.e.629.157 yes 160 1.1 even 1 trivial
840.2.u.e.629.158 yes 160 15.14 odd 2 inner
840.2.u.e.629.159 yes 160 105.104 even 2 inner
840.2.u.e.629.160 yes 160 7.6 odd 2 inner