Properties

Label 8325.2
Level 8325
Weight 2
Dimension 1787613
Nonzero newspaces 160
Sturm bound 9849600

Downloads

Learn more

Defining parameters

Level: N N = 8325=325237 8325 = 3^{2} \cdot 5^{2} \cdot 37
Weight: k k = 2 2
Nonzero newspaces: 160 160
Sturm bound: 98496009849600

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(8325))M_{2}(\Gamma_1(8325)).

Total New Old
Modular forms 2478528 1800527 678001
Cusp forms 2446273 1787613 658660
Eisenstein series 32255 12914 19341

Decomposition of S2new(Γ1(8325))S_{2}^{\mathrm{new}}(\Gamma_1(8325))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
8325.2.a χ8325(1,)\chi_{8325}(1, \cdot) 8325.2.a.a 1 1
8325.2.a.b 1
8325.2.a.c 1
8325.2.a.d 1
8325.2.a.e 1
8325.2.a.f 1
8325.2.a.g 1
8325.2.a.h 1
8325.2.a.i 1
8325.2.a.j 1
8325.2.a.k 1
8325.2.a.l 1
8325.2.a.m 1
8325.2.a.n 1
8325.2.a.o 1
8325.2.a.p 1
8325.2.a.q 1
8325.2.a.r 1
8325.2.a.s 1
8325.2.a.t 1
8325.2.a.u 1
8325.2.a.v 1
8325.2.a.w 1
8325.2.a.x 1
8325.2.a.y 1
8325.2.a.z 1
8325.2.a.ba 1
8325.2.a.bb 1
8325.2.a.bc 1
8325.2.a.bd 1
8325.2.a.be 1
8325.2.a.bf 2
8325.2.a.bg 2
8325.2.a.bh 2
8325.2.a.bi 2
8325.2.a.bj 2
8325.2.a.bk 2
8325.2.a.bl 2
8325.2.a.bm 2
8325.2.a.bn 2
8325.2.a.bo 3
8325.2.a.bp 3
8325.2.a.bq 3
8325.2.a.br 3
8325.2.a.bs 3
8325.2.a.bt 4
8325.2.a.bu 4
8325.2.a.bv 4
8325.2.a.bw 4
8325.2.a.bx 5
8325.2.a.by 5
8325.2.a.bz 5
8325.2.a.ca 5
8325.2.a.cb 5
8325.2.a.cc 5
8325.2.a.cd 5
8325.2.a.ce 5
8325.2.a.cf 5
8325.2.a.cg 5
8325.2.a.ch 5
8325.2.a.ci 6
8325.2.a.cj 6
8325.2.a.ck 6
8325.2.a.cl 6
8325.2.a.cm 7
8325.2.a.cn 7
8325.2.a.co 8
8325.2.a.cp 8
8325.2.a.cq 9
8325.2.a.cr 9
8325.2.a.cs 10
8325.2.a.ct 10
8325.2.a.cu 13
8325.2.a.cv 13
8325.2.a.cw 16
8325.2.a.cx 16
8325.2.c χ8325(1999,)\chi_{8325}(1999, \cdot) n/a 270 1
8325.2.e χ8325(5401,)\chi_{8325}(5401, \cdot) n/a 298 1
8325.2.g χ8325(7399,)\chi_{8325}(7399, \cdot) n/a 284 1
8325.2.i χ8325(2776,)\chi_{8325}(2776, \cdot) n/a 1368 2
8325.2.j χ8325(676,)\chi_{8325}(676, \cdot) n/a 598 2
8325.2.k χ8325(1876,)\chi_{8325}(1876, \cdot) n/a 1432 2
8325.2.l χ8325(3451,)\chi_{8325}(3451, \cdot) n/a 1432 2
8325.2.m χ8325(2818,)\chi_{8325}(2818, \cdot) n/a 566 2
8325.2.p χ8325(5174,)\chi_{8325}(5174, \cdot) n/a 456 2
8325.2.q χ8325(332,)\chi_{8325}(332, \cdot) n/a 456 2
8325.2.r χ8325(593,)\chi_{8325}(593, \cdot) n/a 432 2
8325.2.v χ8325(3176,)\chi_{8325}(3176, \cdot) n/a 484 2
8325.2.w χ8325(1918,)\chi_{8325}(1918, \cdot) n/a 566 2
8325.2.y χ8325(1666,)\chi_{8325}(1666, \cdot) n/a 1800 4
8325.2.z χ8325(3526,)\chi_{8325}(3526, \cdot) n/a 1432 2
8325.2.bb χ8325(5449,)\chi_{8325}(5449, \cdot) n/a 1360 2
8325.2.bd χ8325(2749,)\chi_{8325}(2749, \cdot) n/a 1360 2
8325.2.bi χ8325(1849,)\chi_{8325}(1849, \cdot) n/a 1360 2
8325.2.bk χ8325(6724,)\chi_{8325}(6724, \cdot) n/a 568 2
8325.2.bm χ8325(3874,)\chi_{8325}(3874, \cdot) n/a 1360 2
8325.2.bp χ8325(2626,)\chi_{8325}(2626, \cdot) n/a 1432 2
8325.2.br χ8325(4726,)\chi_{8325}(4726, \cdot) n/a 596 2
8325.2.bt χ8325(4774,)\chi_{8325}(4774, \cdot) n/a 1296 2
8325.2.bv χ8325(1099,)\chi_{8325}(1099, \cdot) n/a 564 2
8325.2.bw χ8325(751,)\chi_{8325}(751, \cdot) n/a 1432 2
8325.2.bz χ8325(1174,)\chi_{8325}(1174, \cdot) n/a 1360 2
8325.2.cb χ8325(2401,)\chi_{8325}(2401, \cdot) n/a 4296 6
8325.2.cc χ8325(451,)\chi_{8325}(451, \cdot) n/a 1788 6
8325.2.cd χ8325(601,)\chi_{8325}(601, \cdot) n/a 4296 6
8325.2.ce χ8325(739,)\chi_{8325}(739, \cdot) n/a 1888 4
8325.2.ch χ8325(334,)\chi_{8325}(334, \cdot) n/a 1800 4
8325.2.cj χ8325(406,)\chi_{8325}(406, \cdot) n/a 1896 4
8325.2.cm χ8325(1318,)\chi_{8325}(1318, \cdot) n/a 2720 4
8325.2.cn χ8325(82,)\chi_{8325}(82, \cdot) n/a 1132 4
8325.2.cq χ8325(2707,)\chi_{8325}(2707, \cdot) n/a 2720 4
8325.2.cr χ8325(1768,)\chi_{8325}(1768, \cdot) n/a 2720 4
8325.2.ct χ8325(1451,)\chi_{8325}(1451, \cdot) n/a 2864 4
8325.2.cx χ8325(1157,)\chi_{8325}(1157, \cdot) n/a 2720 4
8325.2.cy χ8325(1343,)\chi_{8325}(1343, \cdot) n/a 2720 4
8325.2.cz χ8325(3449,)\chi_{8325}(3449, \cdot) n/a 2720 4
8325.2.db χ8325(3899,)\chi_{8325}(3899, \cdot) n/a 2720 4
8325.2.de χ8325(401,)\chi_{8325}(401, \cdot) n/a 2864 4
8325.2.dg χ8325(251,)\chi_{8325}(251, \cdot) n/a 968 4
8325.2.dh χ8325(1232,)\chi_{8325}(1232, \cdot) n/a 912 4
8325.2.di χ8325(1268,)\chi_{8325}(1268, \cdot) n/a 912 4
8325.2.dn χ8325(482,)\chi_{8325}(482, \cdot) n/a 2592 4
8325.2.do χ8325(4043,)\chi_{8325}(4043, \cdot) n/a 2720 4
8325.2.dp χ8325(2432,)\chi_{8325}(2432, \cdot) n/a 2720 4
8325.2.dq χ8325(443,)\chi_{8325}(443, \cdot) n/a 2720 4
8325.2.du χ8325(524,)\chi_{8325}(524, \cdot) n/a 2720 4
8325.2.dw χ8325(674,)\chi_{8325}(674, \cdot) n/a 912 4
8325.2.dx χ8325(1901,)\chi_{8325}(1901, \cdot) n/a 2864 4
8325.2.dz χ8325(532,)\chi_{8325}(532, \cdot) n/a 1132 4
8325.2.ec χ8325(193,)\chi_{8325}(193, \cdot) n/a 2720 4
8325.2.ed χ8325(43,)\chi_{8325}(43, \cdot) n/a 2720 4
8325.2.eg χ8325(643,)\chi_{8325}(643, \cdot) n/a 2720 4
8325.2.eh χ8325(121,)\chi_{8325}(121, \cdot) n/a 9088 8
8325.2.ei χ8325(766,)\chi_{8325}(766, \cdot) n/a 3776 8
8325.2.ej χ8325(556,)\chi_{8325}(556, \cdot) n/a 8640 8
8325.2.ek χ8325(211,)\chi_{8325}(211, \cdot) n/a 9088 8
8325.2.en χ8325(2224,)\chi_{8325}(2224, \cdot) n/a 1704 6
8325.2.eo χ8325(724,)\chi_{8325}(724, \cdot) n/a 4080 6
8325.2.et χ8325(1024,)\chi_{8325}(1024, \cdot) n/a 4080 6
8325.2.ew χ8325(49,)\chi_{8325}(49, \cdot) n/a 4080 6
8325.2.ex χ8325(2449,)\chi_{8325}(2449, \cdot) n/a 1692 6
8325.2.ey χ8325(226,)\chi_{8325}(226, \cdot) n/a 1782 6
8325.2.ez χ8325(151,)\chi_{8325}(151, \cdot) n/a 4296 6
8325.2.fe χ8325(1501,)\chi_{8325}(1501, \cdot) n/a 4296 6
8325.2.ff χ8325(349,)\chi_{8325}(349, \cdot) n/a 4080 6
8325.2.fh χ8325(253,)\chi_{8325}(253, \cdot) n/a 3784 8
8325.2.fi χ8325(179,)\chi_{8325}(179, \cdot) n/a 3040 8
8325.2.fm χ8325(1592,)\chi_{8325}(1592, \cdot) n/a 2880 8
8325.2.fn χ8325(998,)\chi_{8325}(998, \cdot) n/a 3040 8
8325.2.fo χ8325(746,)\chi_{8325}(746, \cdot) n/a 3040 8
8325.2.fr χ8325(1153,)\chi_{8325}(1153, \cdot) n/a 3784 8
8325.2.fu χ8325(529,)\chi_{8325}(529, \cdot) n/a 9088 8
8325.2.fw χ8325(544,)\chi_{8325}(544, \cdot) n/a 9088 8
8325.2.fx χ8325(1306,)\chi_{8325}(1306, \cdot) n/a 3792 8
8325.2.fz χ8325(961,)\chi_{8325}(961, \cdot) n/a 9088 8
8325.2.gb χ8325(1009,)\chi_{8325}(1009, \cdot) n/a 3792 8
8325.2.gd χ8325(889,)\chi_{8325}(889, \cdot) n/a 8640 8
8325.2.gg χ8325(286,)\chi_{8325}(286, \cdot) n/a 9088 8
8325.2.gi χ8325(619,)\chi_{8325}(619, \cdot) n/a 9088 8
8325.2.gl χ8325(64,)\chi_{8325}(64, \cdot) n/a 3776 8
8325.2.gn χ8325(184,)\chi_{8325}(184, \cdot) n/a 9088 8
8325.2.gr χ8325(196,)\chi_{8325}(196, \cdot) n/a 9088 8
8325.2.gt χ8325(454,)\chi_{8325}(454, \cdot) n/a 9088 8
8325.2.gu χ8325(718,)\chi_{8325}(718, \cdot) n/a 8160 12
8325.2.gx χ8325(457,)\chi_{8325}(457, \cdot) n/a 8160 12
8325.2.gy χ8325(757,)\chi_{8325}(757, \cdot) n/a 3396 12
8325.2.ha χ8325(707,)\chi_{8325}(707, \cdot) n/a 8160 12
8325.2.hd χ8325(293,)\chi_{8325}(293, \cdot) n/a 8160 12
8325.2.hg χ8325(476,)\chi_{8325}(476, \cdot) n/a 2880 12
8325.2.hh χ8325(1424,)\chi_{8325}(1424, \cdot) n/a 8160 12
8325.2.hi χ8325(1226,)\chi_{8325}(1226, \cdot) n/a 8592 12
8325.2.hj χ8325(224,)\chi_{8325}(224, \cdot) n/a 2736 12
8325.2.hm χ8325(182,)\chi_{8325}(182, \cdot) n/a 8160 12
8325.2.hn χ8325(107,)\chi_{8325}(107, \cdot) n/a 2736 12
8325.2.hs χ8325(818,)\chi_{8325}(818, \cdot) n/a 2736 12
8325.2.ht χ8325(632,)\chi_{8325}(632, \cdot) n/a 8160 12
8325.2.hv χ8325(1049,)\chi_{8325}(1049, \cdot) n/a 8160 12
8325.2.hw χ8325(1001,)\chi_{8325}(1001, \cdot) n/a 8592 12
8325.2.hy χ8325(832,)\chi_{8325}(832, \cdot) n/a 8160 12
8325.2.ib χ8325(568,)\chi_{8325}(568, \cdot) n/a 3396 12
8325.2.ic χ8325(607,)\chi_{8325}(607, \cdot) n/a 8160 12
8325.2.ie χ8325(16,)\chi_{8325}(16, \cdot) n/a 27264 24
8325.2.if χ8325(46,)\chi_{8325}(46, \cdot) n/a 11328 24
8325.2.ig χ8325(571,)\chi_{8325}(571, \cdot) n/a 27264 24
8325.2.ih χ8325(637,)\chi_{8325}(637, \cdot) n/a 18176 16
8325.2.ik χ8325(142,)\chi_{8325}(142, \cdot) n/a 18176 16
8325.2.il χ8325(763,)\chi_{8325}(763, \cdot) n/a 18176 16
8325.2.io χ8325(208,)\chi_{8325}(208, \cdot) n/a 7568 16
8325.2.iq χ8325(569,)\chi_{8325}(569, \cdot) n/a 18176 16
8325.2.ir χ8325(341,)\chi_{8325}(341, \cdot) n/a 6080 16
8325.2.it χ8325(191,)\chi_{8325}(191, \cdot) n/a 18176 16
8325.2.ix χ8325(887,)\chi_{8325}(887, \cdot) n/a 18176 16
8325.2.iy χ8325(122,)\chi_{8325}(122, \cdot) n/a 18176 16
8325.2.iz χ8325(47,)\chi_{8325}(47, \cdot) n/a 18176 16
8325.2.ja χ8325(38,)\chi_{8325}(38, \cdot) n/a 17280 16
8325.2.jf χ8325(602,)\chi_{8325}(602, \cdot) n/a 6080 16
8325.2.jg χ8325(233,)\chi_{8325}(233, \cdot) n/a 6080 16
8325.2.jh χ8325(134,)\chi_{8325}(134, \cdot) n/a 6080 16
8325.2.jj χ8325(734,)\chi_{8325}(734, \cdot) n/a 18176 16
8325.2.jm χ8325(236,)\chi_{8325}(236, \cdot) n/a 18176 16
8325.2.jo χ8325(356,)\chi_{8325}(356, \cdot) n/a 18176 16
8325.2.jp χ8325(212,)\chi_{8325}(212, \cdot) n/a 18176 16
8325.2.jq χ8325(137,)\chi_{8325}(137, \cdot) n/a 18176 16
8325.2.ju χ8325(14,)\chi_{8325}(14, \cdot) n/a 18176 16
8325.2.jw χ8325(88,)\chi_{8325}(88, \cdot) n/a 18176 16
8325.2.jx χ8325(808,)\chi_{8325}(808, \cdot) n/a 18176 16
8325.2.ka χ8325(658,)\chi_{8325}(658, \cdot) n/a 7568 16
8325.2.kb χ8325(547,)\chi_{8325}(547, \cdot) n/a 18176 16
8325.2.kd χ8325(229,)\chi_{8325}(229, \cdot) n/a 27264 24
8325.2.ke χ8325(691,)\chi_{8325}(691, \cdot) n/a 27264 24
8325.2.kj χ8325(391,)\chi_{8325}(391, \cdot) n/a 27264 24
8325.2.kk χ8325(136,)\chi_{8325}(136, \cdot) n/a 11376 24
8325.2.kl χ8325(379,)\chi_{8325}(379, \cdot) n/a 11376 24
8325.2.km χ8325(34,)\chi_{8325}(34, \cdot) n/a 27264 24
8325.2.kp χ8325(4,)\chi_{8325}(4, \cdot) n/a 27264 24
8325.2.ku χ8325(139,)\chi_{8325}(139, \cdot) n/a 27264 24
8325.2.kv χ8325(289,)\chi_{8325}(289, \cdot) n/a 11328 24
8325.2.kz χ8325(172,)\chi_{8325}(172, \cdot) n/a 22704 48
8325.2.la χ8325(277,)\chi_{8325}(277, \cdot) n/a 54528 48
8325.2.ld χ8325(13,)\chi_{8325}(13, \cdot) n/a 54528 48
8325.2.lf χ8325(146,)\chi_{8325}(146, \cdot) n/a 54528 48
8325.2.lg χ8325(479,)\chi_{8325}(479, \cdot) n/a 54528 48
8325.2.li χ8325(263,)\chi_{8325}(263, \cdot) n/a 54528 48
8325.2.lj χ8325(62,)\chi_{8325}(62, \cdot) n/a 18240 48
8325.2.lo χ8325(53,)\chi_{8325}(53, \cdot) n/a 18240 48
8325.2.lp χ8325(488,)\chi_{8325}(488, \cdot) n/a 54528 48
8325.2.ls χ8325(89,)\chi_{8325}(89, \cdot) n/a 18240 48
8325.2.lt χ8325(56,)\chi_{8325}(56, \cdot) n/a 54528 48
8325.2.lu χ8325(59,)\chi_{8325}(59, \cdot) n/a 54528 48
8325.2.lv χ8325(116,)\chi_{8325}(116, \cdot) n/a 18240 48
8325.2.ly χ8325(83,)\chi_{8325}(83, \cdot) n/a 54528 48
8325.2.mb χ8325(77,)\chi_{8325}(77, \cdot) n/a 54528 48
8325.2.md χ8325(22,)\chi_{8325}(22, \cdot) n/a 54528 48
8325.2.me χ8325(163,)\chi_{8325}(163, \cdot) n/a 22704 48
8325.2.mh χ8325(283,)\chi_{8325}(283, \cdot) n/a 54528 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(8325))S_{2}^{\mathrm{old}}(\Gamma_1(8325)) into lower level spaces

S2old(Γ1(8325)) S_{2}^{\mathrm{old}}(\Gamma_1(8325)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))12^{\oplus 12}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))12^{\oplus 12}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))6^{\oplus 6}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))8^{\oplus 8}\oplusS2new(Γ1(25))S_{2}^{\mathrm{new}}(\Gamma_1(25))6^{\oplus 6}\oplusS2new(Γ1(37))S_{2}^{\mathrm{new}}(\Gamma_1(37))9^{\oplus 9}\oplusS2new(Γ1(45))S_{2}^{\mathrm{new}}(\Gamma_1(45))4^{\oplus 4}\oplusS2new(Γ1(75))S_{2}^{\mathrm{new}}(\Gamma_1(75))4^{\oplus 4}\oplusS2new(Γ1(111))S_{2}^{\mathrm{new}}(\Gamma_1(111))6^{\oplus 6}\oplusS2new(Γ1(185))S_{2}^{\mathrm{new}}(\Gamma_1(185))6^{\oplus 6}\oplusS2new(Γ1(225))S_{2}^{\mathrm{new}}(\Gamma_1(225))2^{\oplus 2}\oplusS2new(Γ1(333))S_{2}^{\mathrm{new}}(\Gamma_1(333))3^{\oplus 3}\oplusS2new(Γ1(555))S_{2}^{\mathrm{new}}(\Gamma_1(555))4^{\oplus 4}\oplusS2new(Γ1(925))S_{2}^{\mathrm{new}}(\Gamma_1(925))3^{\oplus 3}\oplusS2new(Γ1(1665))S_{2}^{\mathrm{new}}(\Gamma_1(1665))2^{\oplus 2}\oplusS2new(Γ1(2775))S_{2}^{\mathrm{new}}(\Gamma_1(2775))2^{\oplus 2}