Properties

Label 37.2
Level 37
Weight 2
Dimension 40
Nonzero newspaces 6
Newform subspaces 8
Sturm bound 228
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 37 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 8 \)
Sturm bound: \(228\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(37))\).

Total New Old
Modular forms 75 75 0
Cusp forms 40 40 0
Eisenstein series 35 35 0

Trace form

\( 40 q - 15 q^{2} - 14 q^{3} - 11 q^{4} - 12 q^{5} - 6 q^{6} - 10 q^{7} - 3 q^{8} - 5 q^{9} - 6 q^{11} + 10 q^{12} - 4 q^{13} + 6 q^{14} + 6 q^{15} + 13 q^{16} + 21 q^{18} + 2 q^{19} + 24 q^{20} + 14 q^{21}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
37.2.a \(\chi_{37}(1, \cdot)\) 37.2.a.a 1 1
37.2.a.b 1
37.2.b \(\chi_{37}(36, \cdot)\) 37.2.b.a 2 1
37.2.c \(\chi_{37}(10, \cdot)\) 37.2.c.a 2 2
37.2.e \(\chi_{37}(11, \cdot)\) 37.2.e.a 4 2
37.2.f \(\chi_{37}(7, \cdot)\) 37.2.f.a 6 6
37.2.f.b 6
37.2.h \(\chi_{37}(3, \cdot)\) 37.2.h.a 18 6