Defining parameters
Level: | \( N \) | = | \( 555 = 3 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 30 \) | ||
Newform subspaces: | \( 56 \) | ||
Sturm bound: | \(43776\) | ||
Trace bound: | \(8\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(555))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11520 | 7723 | 3797 |
Cusp forms | 10369 | 7307 | 3062 |
Eisenstein series | 1151 | 416 | 735 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(555))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(555))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(555)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(111))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(185))\)\(^{\oplus 2}\)