Properties

 Label 555.2 Level 555 Weight 2 Dimension 7307 Nonzero newspaces 30 Newform subspaces 56 Sturm bound 43776 Trace bound 8

Defining parameters

 Level: $$N$$ = $$555 = 3 \cdot 5 \cdot 37$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$30$$ Newform subspaces: $$56$$ Sturm bound: $$43776$$ Trace bound: $$8$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(555))$$.

Total New Old
Modular forms 11520 7723 3797
Cusp forms 10369 7307 3062
Eisenstein series 1151 416 735

Trace form

 $$7307 q + 5 q^{2} - 33 q^{3} - 63 q^{4} - q^{5} - 107 q^{6} - 64 q^{7} + 9 q^{8} - 37 q^{9} + O(q^{10})$$ $$7307 q + 5 q^{2} - 33 q^{3} - 63 q^{4} - q^{5} - 107 q^{6} - 64 q^{7} + 9 q^{8} - 37 q^{9} - 103 q^{10} + 20 q^{11} - 31 q^{12} - 54 q^{13} + 24 q^{14} - 51 q^{15} - 183 q^{16} + 14 q^{17} - 31 q^{18} - 60 q^{19} + 9 q^{20} - 100 q^{21} - 44 q^{22} + 24 q^{23} - 15 q^{24} - 109 q^{25} + 2 q^{26} - 45 q^{27} - 256 q^{28} - 38 q^{29} - 125 q^{30} - 400 q^{31} - 215 q^{32} - 104 q^{33} - 302 q^{34} - 100 q^{35} - 243 q^{36} - 193 q^{37} - 76 q^{38} - 110 q^{39} - 369 q^{40} - 194 q^{41} - 156 q^{42} - 180 q^{43} - 212 q^{44} - 55 q^{45} - 432 q^{46} - 40 q^{47} - 127 q^{48} - 97 q^{49} - 13 q^{50} - 86 q^{51} + 22 q^{52} + 74 q^{53} - 35 q^{54} - 88 q^{55} + 120 q^{56} - 8 q^{57} - 58 q^{58} - 76 q^{59} - 175 q^{60} - 330 q^{61} - 264 q^{62} - 244 q^{63} - 463 q^{64} - 144 q^{65} - 568 q^{66} - 172 q^{67} - 302 q^{68} - 300 q^{69} - 480 q^{70} - 200 q^{71} - 459 q^{72} - 378 q^{73} - 475 q^{74} - 285 q^{75} - 788 q^{76} - 192 q^{77} - 494 q^{78} - 280 q^{79} - 363 q^{80} - 397 q^{81} - 358 q^{82} - 84 q^{83} - 484 q^{84} - 256 q^{85} - 364 q^{86} - 226 q^{87} - 228 q^{88} - 78 q^{89} - 175 q^{90} - 248 q^{91} + 96 q^{92} + 104 q^{93} + 88 q^{94} + 12 q^{95} + 305 q^{96} + 22 q^{97} + 157 q^{98} + 164 q^{99} + O(q^{100})$$

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(555))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
555.2.a $$\chi_{555}(1, \cdot)$$ 555.2.a.a 1 1
555.2.a.b 1
555.2.a.c 2
555.2.a.d 2
555.2.a.e 2
555.2.a.f 2
555.2.a.g 2
555.2.a.h 3
555.2.a.i 3
555.2.a.j 5
555.2.c $$\chi_{555}(334, \cdot)$$ 555.2.c.a 2 1
555.2.c.b 8
555.2.c.c 26
555.2.e $$\chi_{555}(406, \cdot)$$ 555.2.e.a 2 1
555.2.e.b 10
555.2.e.c 12
555.2.g $$\chi_{555}(184, \cdot)$$ 555.2.g.a 40 1
555.2.i $$\chi_{555}(121, \cdot)$$ 555.2.i.a 2 2
555.2.i.b 4
555.2.i.c 4
555.2.i.d 10
555.2.i.e 14
555.2.i.f 14
555.2.j $$\chi_{555}(43, \cdot)$$ 555.2.j.a 76 2
555.2.m $$\chi_{555}(179, \cdot)$$ 555.2.m.a 16 2
555.2.m.b 128
555.2.n $$\chi_{555}(332, \cdot)$$ 555.2.n.a 32 2
555.2.n.b 112
555.2.o $$\chi_{555}(38, \cdot)$$ 555.2.o.a 144 2
555.2.s $$\chi_{555}(191, \cdot)$$ 555.2.s.a 104 2
555.2.t $$\chi_{555}(253, \cdot)$$ 555.2.t.a 76 2
555.2.x $$\chi_{555}(64, \cdot)$$ 555.2.x.a 80 2
555.2.z $$\chi_{555}(196, \cdot)$$ 555.2.z.a 20 2
555.2.z.b 28
555.2.bb $$\chi_{555}(454, \cdot)$$ 555.2.bb.a 72 2
555.2.bc $$\chi_{555}(16, \cdot)$$ 555.2.bc.a 6 6
555.2.bc.b 36
555.2.bc.c 36
555.2.bc.d 36
555.2.bc.e 42
555.2.bd $$\chi_{555}(82, \cdot)$$ 555.2.bd.a 152 4
555.2.bg $$\chi_{555}(236, \cdot)$$ 555.2.bg.a 208 4
555.2.bh $$\chi_{555}(122, \cdot)$$ 555.2.bh.a 288 4
555.2.bi $$\chi_{555}(47, \cdot)$$ 555.2.bi.a 288 4
555.2.bm $$\chi_{555}(14, \cdot)$$ 555.2.bm.a 288 4
555.2.bn $$\chi_{555}(193, \cdot)$$ 555.2.bn.a 152 4
555.2.bp $$\chi_{555}(4, \cdot)$$ 555.2.bp.a 240 6
555.2.bs $$\chi_{555}(34, \cdot)$$ 555.2.bs.a 216 6
555.2.bt $$\chi_{555}(136, \cdot)$$ 555.2.bt.a 72 6
555.2.bt.b 84
555.2.bx $$\chi_{555}(22, \cdot)$$ 555.2.bx.a 456 12
555.2.bz $$\chi_{555}(56, \cdot)$$ 555.2.bz.a 600 12
555.2.ca $$\chi_{555}(59, \cdot)$$ 555.2.ca.a 864 12
555.2.cc $$\chi_{555}(53, \cdot)$$ 555.2.cc.a 864 12
555.2.cf $$\chi_{555}(62, \cdot)$$ 555.2.cf.a 864 12
555.2.ch $$\chi_{555}(13, \cdot)$$ 555.2.ch.a 456 12

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(555))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(555)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(15))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(37))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(111))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(185))$$$$^{\oplus 2}$$