Properties

Label 832.4.f.j.129.1
Level $832$
Weight $4$
Character 832.129
Analytic conductor $49.090$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(129,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.129"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 109x^{2} + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.1
Root \(7.86546i\) of defining polynomial
Character \(\chi\) \(=\) 832.129
Dual form 832.4.f.j.129.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.86546 q^{3} -2.13454i q^{5} +3.86546i q^{7} +7.40362 q^{9} +53.1928i q^{11} +(34.8655 + 31.3273i) q^{13} +12.5201i q^{15} +43.3273 q^{17} -148.386i q^{19} -22.6727i q^{21} -122.655 q^{23} +120.444 q^{25} +114.942 q^{27} -83.8836 q^{29} +190.269i q^{31} -312.000i q^{33} +8.25098 q^{35} -131.713i q^{37} +(-204.502 - 183.749i) q^{39} -387.695i q^{41} -74.6365 q^{43} -15.8033i q^{45} +298.789i q^{47} +328.058 q^{49} -254.135 q^{51} -100.386 q^{53} +113.542 q^{55} +870.349i q^{57} +479.309i q^{59} +479.811 q^{61} +28.6184i q^{63} +(66.8694 - 74.4217i) q^{65} +415.273i q^{67} +719.426 q^{69} +293.946i q^{71} -106.727i q^{73} -706.458 q^{75} -205.614 q^{77} -906.044 q^{79} -874.084 q^{81} +22.1605i q^{83} -92.4839i q^{85} +492.016 q^{87} -665.433i q^{89} +(-121.094 + 134.771i) q^{91} -1116.02i q^{93} -316.735 q^{95} +1254.24i q^{97} +393.819i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 118 q^{9} + 110 q^{13} + 26 q^{17} - 196 q^{23} - 78 q^{25} + 666 q^{27} - 748 q^{29} - 350 q^{35} - 52 q^{39} + 438 q^{43} + 1106 q^{49} - 1046 q^{51} - 48 q^{53} - 960 q^{55} + 564 q^{61}+ \cdots + 324 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.86546 −1.12881 −0.564404 0.825499i \(-0.690894\pi\)
−0.564404 + 0.825499i \(0.690894\pi\)
\(4\) 0 0
\(5\) 2.13454i 0.190919i −0.995433 0.0954595i \(-0.969568\pi\)
0.995433 0.0954595i \(-0.0304321\pi\)
\(6\) 0 0
\(7\) 3.86546i 0.208715i 0.994540 + 0.104358i \(0.0332786\pi\)
−0.994540 + 0.104358i \(0.966721\pi\)
\(8\) 0 0
\(9\) 7.40362 0.274208
\(10\) 0 0
\(11\) 53.1928i 1.45802i 0.684503 + 0.729010i \(0.260019\pi\)
−0.684503 + 0.729010i \(0.739981\pi\)
\(12\) 0 0
\(13\) 34.8655 + 31.3273i 0.743841 + 0.668356i
\(14\) 0 0
\(15\) 12.5201i 0.215511i
\(16\) 0 0
\(17\) 43.3273 0.618142 0.309071 0.951039i \(-0.399982\pi\)
0.309071 + 0.951039i \(0.399982\pi\)
\(18\) 0 0
\(19\) 148.386i 1.79168i −0.444374 0.895841i \(-0.646574\pi\)
0.444374 0.895841i \(-0.353426\pi\)
\(20\) 0 0
\(21\) 22.6727i 0.235599i
\(22\) 0 0
\(23\) −122.655 −1.11197 −0.555984 0.831193i \(-0.687658\pi\)
−0.555984 + 0.831193i \(0.687658\pi\)
\(24\) 0 0
\(25\) 120.444 0.963550
\(26\) 0 0
\(27\) 114.942 0.819280
\(28\) 0 0
\(29\) −83.8836 −0.537131 −0.268565 0.963261i \(-0.586550\pi\)
−0.268565 + 0.963261i \(0.586550\pi\)
\(30\) 0 0
\(31\) 190.269i 1.10237i 0.834384 + 0.551183i \(0.185823\pi\)
−0.834384 + 0.551183i \(0.814177\pi\)
\(32\) 0 0
\(33\) 312.000i 1.64583i
\(34\) 0 0
\(35\) 8.25098 0.0398477
\(36\) 0 0
\(37\) 131.713i 0.585228i −0.956231 0.292614i \(-0.905475\pi\)
0.956231 0.292614i \(-0.0945252\pi\)
\(38\) 0 0
\(39\) −204.502 183.749i −0.839654 0.754446i
\(40\) 0 0
\(41\) 387.695i 1.47677i −0.674377 0.738387i \(-0.735588\pi\)
0.674377 0.738387i \(-0.264412\pi\)
\(42\) 0 0
\(43\) −74.6365 −0.264697 −0.132348 0.991203i \(-0.542252\pi\)
−0.132348 + 0.991203i \(0.542252\pi\)
\(44\) 0 0
\(45\) 15.8033i 0.0523516i
\(46\) 0 0
\(47\) 298.789i 0.927295i 0.886020 + 0.463648i \(0.153460\pi\)
−0.886020 + 0.463648i \(0.846540\pi\)
\(48\) 0 0
\(49\) 328.058 0.956438
\(50\) 0 0
\(51\) −254.135 −0.697764
\(52\) 0 0
\(53\) −100.386 −0.260170 −0.130085 0.991503i \(-0.541525\pi\)
−0.130085 + 0.991503i \(0.541525\pi\)
\(54\) 0 0
\(55\) 113.542 0.278364
\(56\) 0 0
\(57\) 870.349i 2.02247i
\(58\) 0 0
\(59\) 479.309i 1.05764i 0.848734 + 0.528820i \(0.177365\pi\)
−0.848734 + 0.528820i \(0.822635\pi\)
\(60\) 0 0
\(61\) 479.811 1.00711 0.503553 0.863964i \(-0.332026\pi\)
0.503553 + 0.863964i \(0.332026\pi\)
\(62\) 0 0
\(63\) 28.6184i 0.0572314i
\(64\) 0 0
\(65\) 66.8694 74.4217i 0.127602 0.142014i
\(66\) 0 0
\(67\) 415.273i 0.757219i 0.925557 + 0.378609i \(0.123598\pi\)
−0.925557 + 0.378609i \(0.876402\pi\)
\(68\) 0 0
\(69\) 719.426 1.25520
\(70\) 0 0
\(71\) 293.946i 0.491337i 0.969354 + 0.245669i \(0.0790075\pi\)
−0.969354 + 0.245669i \(0.920993\pi\)
\(72\) 0 0
\(73\) 106.727i 0.171116i −0.996333 0.0855579i \(-0.972733\pi\)
0.996333 0.0855579i \(-0.0272673\pi\)
\(74\) 0 0
\(75\) −706.458 −1.08766
\(76\) 0 0
\(77\) −205.614 −0.304311
\(78\) 0 0
\(79\) −906.044 −1.29035 −0.645177 0.764033i \(-0.723216\pi\)
−0.645177 + 0.764033i \(0.723216\pi\)
\(80\) 0 0
\(81\) −874.084 −1.19902
\(82\) 0 0
\(83\) 22.1605i 0.0293064i 0.999893 + 0.0146532i \(0.00466442\pi\)
−0.999893 + 0.0146532i \(0.995336\pi\)
\(84\) 0 0
\(85\) 92.4839i 0.118015i
\(86\) 0 0
\(87\) 492.016 0.606317
\(88\) 0 0
\(89\) 665.433i 0.792537i −0.918135 0.396269i \(-0.870305\pi\)
0.918135 0.396269i \(-0.129695\pi\)
\(90\) 0 0
\(91\) −121.094 + 134.771i −0.139496 + 0.155251i
\(92\) 0 0
\(93\) 1116.02i 1.24436i
\(94\) 0 0
\(95\) −316.735 −0.342066
\(96\) 0 0
\(97\) 1254.24i 1.31287i 0.754381 + 0.656437i \(0.227937\pi\)
−0.754381 + 0.656437i \(0.772063\pi\)
\(98\) 0 0
\(99\) 393.819i 0.399801i
\(100\) 0 0
\(101\) −1757.21 −1.73118 −0.865588 0.500757i \(-0.833055\pi\)
−0.865588 + 0.500757i \(0.833055\pi\)
\(102\) 0 0
\(103\) −86.2769 −0.0825351 −0.0412676 0.999148i \(-0.513140\pi\)
−0.0412676 + 0.999148i \(0.513140\pi\)
\(104\) 0 0
\(105\) −48.3958 −0.0449804
\(106\) 0 0
\(107\) −2100.93 −1.89817 −0.949087 0.315013i \(-0.897991\pi\)
−0.949087 + 0.315013i \(0.897991\pi\)
\(108\) 0 0
\(109\) 2166.87i 1.90411i 0.305920 + 0.952057i \(0.401036\pi\)
−0.305920 + 0.952057i \(0.598964\pi\)
\(110\) 0 0
\(111\) 772.556i 0.660611i
\(112\) 0 0
\(113\) −356.779 −0.297017 −0.148509 0.988911i \(-0.547447\pi\)
−0.148509 + 0.988911i \(0.547447\pi\)
\(114\) 0 0
\(115\) 261.811i 0.212296i
\(116\) 0 0
\(117\) 258.131 + 231.935i 0.203967 + 0.183269i
\(118\) 0 0
\(119\) 167.480i 0.129016i
\(120\) 0 0
\(121\) −1498.47 −1.12582
\(122\) 0 0
\(123\) 2274.01i 1.66699i
\(124\) 0 0
\(125\) 523.909i 0.374879i
\(126\) 0 0
\(127\) −997.666 −0.697075 −0.348538 0.937295i \(-0.613322\pi\)
−0.348538 + 0.937295i \(0.613322\pi\)
\(128\) 0 0
\(129\) 437.777 0.298792
\(130\) 0 0
\(131\) 1680.88 1.12106 0.560530 0.828134i \(-0.310597\pi\)
0.560530 + 0.828134i \(0.310597\pi\)
\(132\) 0 0
\(133\) 573.578 0.373951
\(134\) 0 0
\(135\) 245.348i 0.156416i
\(136\) 0 0
\(137\) 1578.58i 0.984433i 0.870473 + 0.492217i \(0.163813\pi\)
−0.870473 + 0.492217i \(0.836187\pi\)
\(138\) 0 0
\(139\) −1724.07 −1.05204 −0.526021 0.850472i \(-0.676316\pi\)
−0.526021 + 0.850472i \(0.676316\pi\)
\(140\) 0 0
\(141\) 1752.54i 1.04674i
\(142\) 0 0
\(143\) −1666.39 + 1854.59i −0.974477 + 1.08454i
\(144\) 0 0
\(145\) 179.053i 0.102548i
\(146\) 0 0
\(147\) −1924.21 −1.07964
\(148\) 0 0
\(149\) 2729.67i 1.50083i 0.660970 + 0.750413i \(0.270145\pi\)
−0.660970 + 0.750413i \(0.729855\pi\)
\(150\) 0 0
\(151\) 484.316i 0.261014i −0.991447 0.130507i \(-0.958340\pi\)
0.991447 0.130507i \(-0.0416604\pi\)
\(152\) 0 0
\(153\) 320.779 0.169500
\(154\) 0 0
\(155\) 406.137 0.210463
\(156\) 0 0
\(157\) −235.775 −0.119853 −0.0599264 0.998203i \(-0.519087\pi\)
−0.0599264 + 0.998203i \(0.519087\pi\)
\(158\) 0 0
\(159\) 588.807 0.293682
\(160\) 0 0
\(161\) 474.116i 0.232085i
\(162\) 0 0
\(163\) 1455.22i 0.699274i −0.936885 0.349637i \(-0.886305\pi\)
0.936885 0.349637i \(-0.113695\pi\)
\(164\) 0 0
\(165\) −665.977 −0.314219
\(166\) 0 0
\(167\) 1630.52i 0.755528i 0.925902 + 0.377764i \(0.123307\pi\)
−0.925902 + 0.377764i \(0.876693\pi\)
\(168\) 0 0
\(169\) 234.201 + 2184.48i 0.106600 + 0.994302i
\(170\) 0 0
\(171\) 1098.59i 0.491294i
\(172\) 0 0
\(173\) 960.241 0.421999 0.210999 0.977486i \(-0.432328\pi\)
0.210999 + 0.977486i \(0.432328\pi\)
\(174\) 0 0
\(175\) 465.570i 0.201108i
\(176\) 0 0
\(177\) 2811.37i 1.19387i
\(178\) 0 0
\(179\) 2100.32 0.877012 0.438506 0.898728i \(-0.355508\pi\)
0.438506 + 0.898728i \(0.355508\pi\)
\(180\) 0 0
\(181\) −3385.80 −1.39041 −0.695206 0.718811i \(-0.744687\pi\)
−0.695206 + 0.718811i \(0.744687\pi\)
\(182\) 0 0
\(183\) −2814.31 −1.13683
\(184\) 0 0
\(185\) −281.146 −0.111731
\(186\) 0 0
\(187\) 2304.70i 0.901263i
\(188\) 0 0
\(189\) 444.303i 0.170996i
\(190\) 0 0
\(191\) −3728.07 −1.41232 −0.706162 0.708050i \(-0.749575\pi\)
−0.706162 + 0.708050i \(0.749575\pi\)
\(192\) 0 0
\(193\) 2573.20i 0.959705i −0.877349 0.479852i \(-0.840690\pi\)
0.877349 0.479852i \(-0.159310\pi\)
\(194\) 0 0
\(195\) −392.220 + 436.518i −0.144038 + 0.160306i
\(196\) 0 0
\(197\) 1941.54i 0.702178i 0.936342 + 0.351089i \(0.114188\pi\)
−0.936342 + 0.351089i \(0.885812\pi\)
\(198\) 0 0
\(199\) 2290.69 0.815994 0.407997 0.912983i \(-0.366227\pi\)
0.407997 + 0.912983i \(0.366227\pi\)
\(200\) 0 0
\(201\) 2435.77i 0.854755i
\(202\) 0 0
\(203\) 324.249i 0.112107i
\(204\) 0 0
\(205\) −827.550 −0.281944
\(206\) 0 0
\(207\) −908.088 −0.304911
\(208\) 0 0
\(209\) 7893.04 2.61231
\(210\) 0 0
\(211\) −1175.23 −0.383440 −0.191720 0.981450i \(-0.561407\pi\)
−0.191720 + 0.981450i \(0.561407\pi\)
\(212\) 0 0
\(213\) 1724.13i 0.554625i
\(214\) 0 0
\(215\) 159.315i 0.0505357i
\(216\) 0 0
\(217\) −735.478 −0.230080
\(218\) 0 0
\(219\) 626.003i 0.193157i
\(220\) 0 0
\(221\) 1510.63 + 1357.33i 0.459800 + 0.413139i
\(222\) 0 0
\(223\) 4350.88i 1.30653i 0.757129 + 0.653265i \(0.226601\pi\)
−0.757129 + 0.653265i \(0.773399\pi\)
\(224\) 0 0
\(225\) 891.720 0.264213
\(226\) 0 0
\(227\) 3645.85i 1.06601i −0.846113 0.533003i \(-0.821063\pi\)
0.846113 0.533003i \(-0.178937\pi\)
\(228\) 0 0
\(229\) 3239.15i 0.934713i −0.884069 0.467357i \(-0.845206\pi\)
0.884069 0.467357i \(-0.154794\pi\)
\(230\) 0 0
\(231\) 1206.02 0.343509
\(232\) 0 0
\(233\) −2182.68 −0.613700 −0.306850 0.951758i \(-0.599275\pi\)
−0.306850 + 0.951758i \(0.599275\pi\)
\(234\) 0 0
\(235\) 637.777 0.177038
\(236\) 0 0
\(237\) 5314.36 1.45656
\(238\) 0 0
\(239\) 58.8048i 0.0159153i −0.999968 0.00795767i \(-0.997467\pi\)
0.999968 0.00795767i \(-0.00253303\pi\)
\(240\) 0 0
\(241\) 202.261i 0.0540614i 0.999635 + 0.0270307i \(0.00860518\pi\)
−0.999635 + 0.0270307i \(0.991395\pi\)
\(242\) 0 0
\(243\) 2023.48 0.534182
\(244\) 0 0
\(245\) 700.253i 0.182602i
\(246\) 0 0
\(247\) 4648.52 5173.53i 1.19748 1.33273i
\(248\) 0 0
\(249\) 129.981i 0.0330813i
\(250\) 0 0
\(251\) −113.992 −0.0286658 −0.0143329 0.999897i \(-0.504562\pi\)
−0.0143329 + 0.999897i \(0.504562\pi\)
\(252\) 0 0
\(253\) 6524.34i 1.62127i
\(254\) 0 0
\(255\) 542.460i 0.133216i
\(256\) 0 0
\(257\) −4234.73 −1.02784 −0.513920 0.857838i \(-0.671807\pi\)
−0.513920 + 0.857838i \(0.671807\pi\)
\(258\) 0 0
\(259\) 509.131 0.122146
\(260\) 0 0
\(261\) −621.042 −0.147286
\(262\) 0 0
\(263\) 228.481 0.0535695 0.0267847 0.999641i \(-0.491473\pi\)
0.0267847 + 0.999641i \(0.491473\pi\)
\(264\) 0 0
\(265\) 214.277i 0.0496714i
\(266\) 0 0
\(267\) 3903.07i 0.894623i
\(268\) 0 0
\(269\) −1219.30 −0.276365 −0.138183 0.990407i \(-0.544126\pi\)
−0.138183 + 0.990407i \(0.544126\pi\)
\(270\) 0 0
\(271\) 5891.13i 1.32052i −0.751037 0.660260i \(-0.770446\pi\)
0.751037 0.660260i \(-0.229554\pi\)
\(272\) 0 0
\(273\) 710.274 790.494i 0.157464 0.175249i
\(274\) 0 0
\(275\) 6406.73i 1.40488i
\(276\) 0 0
\(277\) 6139.39 1.33170 0.665849 0.746087i \(-0.268069\pi\)
0.665849 + 0.746087i \(0.268069\pi\)
\(278\) 0 0
\(279\) 1408.68i 0.302278i
\(280\) 0 0
\(281\) 1852.24i 0.393221i 0.980482 + 0.196611i \(0.0629935\pi\)
−0.980482 + 0.196611i \(0.937006\pi\)
\(282\) 0 0
\(283\) 172.290 0.0361892 0.0180946 0.999836i \(-0.494240\pi\)
0.0180946 + 0.999836i \(0.494240\pi\)
\(284\) 0 0
\(285\) 1857.80 0.386127
\(286\) 0 0
\(287\) 1498.62 0.308225
\(288\) 0 0
\(289\) −3035.75 −0.617900
\(290\) 0 0
\(291\) 7356.70i 1.48198i
\(292\) 0 0
\(293\) 5725.00i 1.14150i 0.821125 + 0.570748i \(0.193347\pi\)
−0.821125 + 0.570748i \(0.806653\pi\)
\(294\) 0 0
\(295\) 1023.10 0.201924
\(296\) 0 0
\(297\) 6114.07i 1.19453i
\(298\) 0 0
\(299\) −4276.41 3842.44i −0.827127 0.743190i
\(300\) 0 0
\(301\) 288.504i 0.0552462i
\(302\) 0 0
\(303\) 10306.8 1.95417
\(304\) 0 0
\(305\) 1024.18i 0.192276i
\(306\) 0 0
\(307\) 2115.94i 0.393364i 0.980467 + 0.196682i \(0.0630167\pi\)
−0.980467 + 0.196682i \(0.936983\pi\)
\(308\) 0 0
\(309\) 506.054 0.0931663
\(310\) 0 0
\(311\) −3912.14 −0.713303 −0.356651 0.934238i \(-0.616082\pi\)
−0.356651 + 0.934238i \(0.616082\pi\)
\(312\) 0 0
\(313\) 3751.20 0.677413 0.338706 0.940892i \(-0.390011\pi\)
0.338706 + 0.940892i \(0.390011\pi\)
\(314\) 0 0
\(315\) 61.0871 0.0109266
\(316\) 0 0
\(317\) 8277.14i 1.46653i −0.679942 0.733266i \(-0.737995\pi\)
0.679942 0.733266i \(-0.262005\pi\)
\(318\) 0 0
\(319\) 4462.00i 0.783147i
\(320\) 0 0
\(321\) 12322.9 2.14268
\(322\) 0 0
\(323\) 6429.14i 1.10751i
\(324\) 0 0
\(325\) 4199.33 + 3773.18i 0.716728 + 0.643994i
\(326\) 0 0
\(327\) 12709.7i 2.14938i
\(328\) 0 0
\(329\) −1154.96 −0.193541
\(330\) 0 0
\(331\) 887.123i 0.147313i 0.997284 + 0.0736567i \(0.0234669\pi\)
−0.997284 + 0.0736567i \(0.976533\pi\)
\(332\) 0 0
\(333\) 975.152i 0.160474i
\(334\) 0 0
\(335\) 886.417 0.144568
\(336\) 0 0
\(337\) −6563.94 −1.06101 −0.530506 0.847681i \(-0.677998\pi\)
−0.530506 + 0.847681i \(0.677998\pi\)
\(338\) 0 0
\(339\) 2092.67 0.335275
\(340\) 0 0
\(341\) −10120.9 −1.60727
\(342\) 0 0
\(343\) 2593.95i 0.408338i
\(344\) 0 0
\(345\) 1535.64i 0.239641i
\(346\) 0 0
\(347\) 8654.04 1.33883 0.669414 0.742890i \(-0.266545\pi\)
0.669414 + 0.742890i \(0.266545\pi\)
\(348\) 0 0
\(349\) 10173.5i 1.56039i 0.625535 + 0.780196i \(0.284881\pi\)
−0.625535 + 0.780196i \(0.715119\pi\)
\(350\) 0 0
\(351\) 4007.50 + 3600.82i 0.609414 + 0.547571i
\(352\) 0 0
\(353\) 921.610i 0.138958i 0.997583 + 0.0694792i \(0.0221338\pi\)
−0.997583 + 0.0694792i \(0.977866\pi\)
\(354\) 0 0
\(355\) 627.439 0.0938056
\(356\) 0 0
\(357\) 982.347i 0.145634i
\(358\) 0 0
\(359\) 2056.77i 0.302374i 0.988505 + 0.151187i \(0.0483096\pi\)
−0.988505 + 0.151187i \(0.951690\pi\)
\(360\) 0 0
\(361\) −15159.3 −2.21013
\(362\) 0 0
\(363\) 8789.21 1.27084
\(364\) 0 0
\(365\) −227.813 −0.0326693
\(366\) 0 0
\(367\) 2211.81 0.314593 0.157296 0.987551i \(-0.449722\pi\)
0.157296 + 0.987551i \(0.449722\pi\)
\(368\) 0 0
\(369\) 2870.34i 0.404944i
\(370\) 0 0
\(371\) 388.036i 0.0543014i
\(372\) 0 0
\(373\) −10546.1 −1.46396 −0.731981 0.681325i \(-0.761404\pi\)
−0.731981 + 0.681325i \(0.761404\pi\)
\(374\) 0 0
\(375\) 3072.97i 0.423167i
\(376\) 0 0
\(377\) −2924.64 2627.85i −0.399540 0.358994i
\(378\) 0 0
\(379\) 12239.0i 1.65877i −0.558680 0.829384i \(-0.688692\pi\)
0.558680 0.829384i \(-0.311308\pi\)
\(380\) 0 0
\(381\) 5851.77 0.786864
\(382\) 0 0
\(383\) 7234.70i 0.965211i −0.875838 0.482605i \(-0.839691\pi\)
0.875838 0.482605i \(-0.160309\pi\)
\(384\) 0 0
\(385\) 438.892i 0.0580988i
\(386\) 0 0
\(387\) −552.580 −0.0725820
\(388\) 0 0
\(389\) −11781.1 −1.53554 −0.767768 0.640728i \(-0.778633\pi\)
−0.767768 + 0.640728i \(0.778633\pi\)
\(390\) 0 0
\(391\) −5314.29 −0.687354
\(392\) 0 0
\(393\) −9859.12 −1.26546
\(394\) 0 0
\(395\) 1933.99i 0.246353i
\(396\) 0 0
\(397\) 11724.0i 1.48214i −0.671425 0.741072i \(-0.734317\pi\)
0.671425 0.741072i \(-0.265683\pi\)
\(398\) 0 0
\(399\) −3364.30 −0.422120
\(400\) 0 0
\(401\) 1707.99i 0.212701i 0.994329 + 0.106350i \(0.0339165\pi\)
−0.994329 + 0.106350i \(0.966084\pi\)
\(402\) 0 0
\(403\) −5960.62 + 6633.82i −0.736773 + 0.819985i
\(404\) 0 0
\(405\) 1865.77i 0.228915i
\(406\) 0 0
\(407\) 7006.17 0.853275
\(408\) 0 0
\(409\) 9607.06i 1.16146i 0.814095 + 0.580732i \(0.197234\pi\)
−0.814095 + 0.580732i \(0.802766\pi\)
\(410\) 0 0
\(411\) 9259.11i 1.11124i
\(412\) 0 0
\(413\) −1852.75 −0.220746
\(414\) 0 0
\(415\) 47.3024 0.00559514
\(416\) 0 0
\(417\) 10112.5 1.18755
\(418\) 0 0
\(419\) 2708.67 0.315817 0.157908 0.987454i \(-0.449525\pi\)
0.157908 + 0.987454i \(0.449525\pi\)
\(420\) 0 0
\(421\) 10957.4i 1.26848i 0.773137 + 0.634239i \(0.218686\pi\)
−0.773137 + 0.634239i \(0.781314\pi\)
\(422\) 0 0
\(423\) 2212.12i 0.254272i
\(424\) 0 0
\(425\) 5218.50 0.595611
\(426\) 0 0
\(427\) 1854.69i 0.210199i
\(428\) 0 0
\(429\) 9774.12 10878.0i 1.10000 1.22423i
\(430\) 0 0
\(431\) 9513.13i 1.06318i 0.847001 + 0.531591i \(0.178406\pi\)
−0.847001 + 0.531591i \(0.821594\pi\)
\(432\) 0 0
\(433\) 7271.33 0.807016 0.403508 0.914976i \(-0.367791\pi\)
0.403508 + 0.914976i \(0.367791\pi\)
\(434\) 0 0
\(435\) 1050.23i 0.115758i
\(436\) 0 0
\(437\) 18200.2i 1.99229i
\(438\) 0 0
\(439\) 9615.25 1.04535 0.522677 0.852531i \(-0.324933\pi\)
0.522677 + 0.852531i \(0.324933\pi\)
\(440\) 0 0
\(441\) 2428.82 0.262263
\(442\) 0 0
\(443\) 4782.54 0.512924 0.256462 0.966554i \(-0.417443\pi\)
0.256462 + 0.966554i \(0.417443\pi\)
\(444\) 0 0
\(445\) −1420.39 −0.151310
\(446\) 0 0
\(447\) 16010.7i 1.69414i
\(448\) 0 0
\(449\) 6868.72i 0.721949i −0.932576 0.360974i \(-0.882444\pi\)
0.932576 0.360974i \(-0.117556\pi\)
\(450\) 0 0
\(451\) 20622.6 2.15317
\(452\) 0 0
\(453\) 2840.73i 0.294634i
\(454\) 0 0
\(455\) 287.674 + 258.481i 0.0296404 + 0.0266325i
\(456\) 0 0
\(457\) 8401.47i 0.859966i 0.902837 + 0.429983i \(0.141480\pi\)
−0.902837 + 0.429983i \(0.858520\pi\)
\(458\) 0 0
\(459\) 4980.12 0.506431
\(460\) 0 0
\(461\) 15930.5i 1.60945i 0.593650 + 0.804723i \(0.297686\pi\)
−0.593650 + 0.804723i \(0.702314\pi\)
\(462\) 0 0
\(463\) 11572.2i 1.16156i −0.814060 0.580781i \(-0.802747\pi\)
0.814060 0.580781i \(-0.197253\pi\)
\(464\) 0 0
\(465\) −2382.18 −0.237572
\(466\) 0 0
\(467\) −10862.4 −1.07634 −0.538169 0.842837i \(-0.680884\pi\)
−0.538169 + 0.842837i \(0.680884\pi\)
\(468\) 0 0
\(469\) −1605.22 −0.158043
\(470\) 0 0
\(471\) 1382.93 0.135291
\(472\) 0 0
\(473\) 3970.12i 0.385933i
\(474\) 0 0
\(475\) 17872.1i 1.72638i
\(476\) 0 0
\(477\) −743.216 −0.0713407
\(478\) 0 0
\(479\) 2085.72i 0.198954i −0.995040 0.0994769i \(-0.968283\pi\)
0.995040 0.0994769i \(-0.0317169\pi\)
\(480\) 0 0
\(481\) 4126.21 4592.23i 0.391141 0.435317i
\(482\) 0 0
\(483\) 2780.91i 0.261979i
\(484\) 0 0
\(485\) 2677.23 0.250653
\(486\) 0 0
\(487\) 11829.6i 1.10072i 0.834929 + 0.550358i \(0.185509\pi\)
−0.834929 + 0.550358i \(0.814491\pi\)
\(488\) 0 0
\(489\) 8535.54i 0.789347i
\(490\) 0 0
\(491\) 2700.04 0.248169 0.124085 0.992272i \(-0.460401\pi\)
0.124085 + 0.992272i \(0.460401\pi\)
\(492\) 0 0
\(493\) −3634.45 −0.332023
\(494\) 0 0
\(495\) 840.622 0.0763296
\(496\) 0 0
\(497\) −1136.24 −0.102550
\(498\) 0 0
\(499\) 3013.67i 0.270361i 0.990821 + 0.135181i \(0.0431615\pi\)
−0.990821 + 0.135181i \(0.956839\pi\)
\(500\) 0 0
\(501\) 9563.74i 0.852847i
\(502\) 0 0
\(503\) −13902.0 −1.23233 −0.616163 0.787619i \(-0.711314\pi\)
−0.616163 + 0.787619i \(0.711314\pi\)
\(504\) 0 0
\(505\) 3750.83i 0.330515i
\(506\) 0 0
\(507\) −1373.69 12813.0i −0.120331 1.12238i
\(508\) 0 0
\(509\) 1630.66i 0.142000i 0.997476 + 0.0709999i \(0.0226190\pi\)
−0.997476 + 0.0709999i \(0.977381\pi\)
\(510\) 0 0
\(511\) 412.549 0.0357145
\(512\) 0 0
\(513\) 17055.7i 1.46789i
\(514\) 0 0
\(515\) 184.162i 0.0157575i
\(516\) 0 0
\(517\) −15893.4 −1.35202
\(518\) 0 0
\(519\) −5632.25 −0.476355
\(520\) 0 0
\(521\) 8654.86 0.727785 0.363893 0.931441i \(-0.381447\pi\)
0.363893 + 0.931441i \(0.381447\pi\)
\(522\) 0 0
\(523\) −5093.00 −0.425816 −0.212908 0.977072i \(-0.568293\pi\)
−0.212908 + 0.977072i \(0.568293\pi\)
\(524\) 0 0
\(525\) 2730.78i 0.227012i
\(526\) 0 0
\(527\) 8243.85i 0.681418i
\(528\) 0 0
\(529\) 2877.15 0.236472
\(530\) 0 0
\(531\) 3548.62i 0.290013i
\(532\) 0 0
\(533\) 12145.4 13517.2i 0.987011 1.09849i
\(534\) 0 0
\(535\) 4484.52i 0.362398i
\(536\) 0 0
\(537\) −12319.3 −0.989979
\(538\) 0 0
\(539\) 17450.3i 1.39451i
\(540\) 0 0
\(541\) 5004.07i 0.397674i −0.980033 0.198837i \(-0.936284\pi\)
0.980033 0.198837i \(-0.0637165\pi\)
\(542\) 0 0
\(543\) 19859.3 1.56951
\(544\) 0 0
\(545\) 4625.27 0.363532
\(546\) 0 0
\(547\) 10856.3 0.848598 0.424299 0.905522i \(-0.360521\pi\)
0.424299 + 0.905522i \(0.360521\pi\)
\(548\) 0 0
\(549\) 3552.34 0.276157
\(550\) 0 0
\(551\) 12447.1i 0.962368i
\(552\) 0 0
\(553\) 3502.28i 0.269316i
\(554\) 0 0
\(555\) 1649.05 0.126123
\(556\) 0 0
\(557\) 23083.8i 1.75600i −0.478658 0.878001i \(-0.658877\pi\)
0.478658 0.878001i \(-0.341123\pi\)
\(558\) 0 0
\(559\) −2602.24 2338.16i −0.196892 0.176912i
\(560\) 0 0
\(561\) 13518.1i 1.01735i
\(562\) 0 0
\(563\) −15495.9 −1.15999 −0.579996 0.814619i \(-0.696946\pi\)
−0.579996 + 0.814619i \(0.696946\pi\)
\(564\) 0 0
\(565\) 761.559i 0.0567062i
\(566\) 0 0
\(567\) 3378.74i 0.250253i
\(568\) 0 0
\(569\) −18165.5 −1.33838 −0.669188 0.743094i \(-0.733358\pi\)
−0.669188 + 0.743094i \(0.733358\pi\)
\(570\) 0 0
\(571\) −8289.75 −0.607557 −0.303779 0.952743i \(-0.598248\pi\)
−0.303779 + 0.952743i \(0.598248\pi\)
\(572\) 0 0
\(573\) 21866.9 1.59424
\(574\) 0 0
\(575\) −14773.0 −1.07144
\(576\) 0 0
\(577\) 5336.46i 0.385026i −0.981294 0.192513i \(-0.938336\pi\)
0.981294 0.192513i \(-0.0616637\pi\)
\(578\) 0 0
\(579\) 15093.0i 1.08332i
\(580\) 0 0
\(581\) −85.6604 −0.00611668
\(582\) 0 0
\(583\) 5339.78i 0.379333i
\(584\) 0 0
\(585\) 495.075 550.990i 0.0349895 0.0389413i
\(586\) 0 0
\(587\) 6877.72i 0.483601i 0.970326 + 0.241800i \(0.0777379\pi\)
−0.970326 + 0.241800i \(0.922262\pi\)
\(588\) 0 0
\(589\) 28233.2 1.97509
\(590\) 0 0
\(591\) 11388.0i 0.792624i
\(592\) 0 0
\(593\) 8358.37i 0.578814i 0.957206 + 0.289407i \(0.0934582\pi\)
−0.957206 + 0.289407i \(0.906542\pi\)
\(594\) 0 0
\(595\) 357.493 0.0246315
\(596\) 0 0
\(597\) −13436.0 −0.921101
\(598\) 0 0
\(599\) −14896.0 −1.01609 −0.508043 0.861332i \(-0.669631\pi\)
−0.508043 + 0.861332i \(0.669631\pi\)
\(600\) 0 0
\(601\) 7661.60 0.520005 0.260003 0.965608i \(-0.416277\pi\)
0.260003 + 0.965608i \(0.416277\pi\)
\(602\) 0 0
\(603\) 3074.52i 0.207636i
\(604\) 0 0
\(605\) 3198.54i 0.214941i
\(606\) 0 0
\(607\) 22718.2 1.51912 0.759558 0.650440i \(-0.225415\pi\)
0.759558 + 0.650440i \(0.225415\pi\)
\(608\) 0 0
\(609\) 1901.87i 0.126548i
\(610\) 0 0
\(611\) −9360.26 + 10417.4i −0.619763 + 0.689761i
\(612\) 0 0
\(613\) 12080.9i 0.795995i −0.917387 0.397997i \(-0.869705\pi\)
0.917387 0.397997i \(-0.130295\pi\)
\(614\) 0 0
\(615\) 4853.96 0.318261
\(616\) 0 0
\(617\) 21104.3i 1.37703i 0.725223 + 0.688514i \(0.241737\pi\)
−0.725223 + 0.688514i \(0.758263\pi\)
\(618\) 0 0
\(619\) 12516.1i 0.812706i 0.913716 + 0.406353i \(0.133200\pi\)
−0.913716 + 0.406353i \(0.866800\pi\)
\(620\) 0 0
\(621\) −14098.1 −0.911013
\(622\) 0 0
\(623\) 2572.21 0.165415
\(624\) 0 0
\(625\) 13937.2 0.891978
\(626\) 0 0
\(627\) −46296.3 −2.94880
\(628\) 0 0
\(629\) 5706.76i 0.361754i
\(630\) 0 0
\(631\) 10069.7i 0.635288i −0.948210 0.317644i \(-0.897108\pi\)
0.948210 0.317644i \(-0.102892\pi\)
\(632\) 0 0
\(633\) 6893.24 0.432831
\(634\) 0 0
\(635\) 2129.56i 0.133085i
\(636\) 0 0
\(637\) 11437.9 + 10277.2i 0.711438 + 0.639241i
\(638\) 0 0
\(639\) 2176.26i 0.134729i
\(640\) 0 0
\(641\) 3388.87 0.208818 0.104409 0.994534i \(-0.466705\pi\)
0.104409 + 0.994534i \(0.466705\pi\)
\(642\) 0 0
\(643\) 24633.3i 1.51080i −0.655264 0.755400i \(-0.727443\pi\)
0.655264 0.755400i \(-0.272557\pi\)
\(644\) 0 0
\(645\) 934.453i 0.0570451i
\(646\) 0 0
\(647\) −1908.12 −0.115945 −0.0579723 0.998318i \(-0.518463\pi\)
−0.0579723 + 0.998318i \(0.518463\pi\)
\(648\) 0 0
\(649\) −25495.8 −1.54206
\(650\) 0 0
\(651\) 4313.91 0.259717
\(652\) 0 0
\(653\) 10331.4 0.619141 0.309570 0.950877i \(-0.399815\pi\)
0.309570 + 0.950877i \(0.399815\pi\)
\(654\) 0 0
\(655\) 3587.90i 0.214032i
\(656\) 0 0
\(657\) 790.166i 0.0469213i
\(658\) 0 0
\(659\) −19039.8 −1.12547 −0.562737 0.826636i \(-0.690251\pi\)
−0.562737 + 0.826636i \(0.690251\pi\)
\(660\) 0 0
\(661\) 28643.0i 1.68545i 0.538343 + 0.842726i \(0.319050\pi\)
−0.538343 + 0.842726i \(0.680950\pi\)
\(662\) 0 0
\(663\) −8860.52 7961.35i −0.519026 0.466355i
\(664\) 0 0
\(665\) 1224.33i 0.0713945i
\(666\) 0 0
\(667\) 10288.7 0.597272
\(668\) 0 0
\(669\) 25519.9i 1.47482i
\(670\) 0 0
\(671\) 25522.5i 1.46838i
\(672\) 0 0
\(673\) 18372.8 1.05233 0.526166 0.850382i \(-0.323629\pi\)
0.526166 + 0.850382i \(0.323629\pi\)
\(674\) 0 0
\(675\) 13844.0 0.789417
\(676\) 0 0
\(677\) 12837.4 0.728779 0.364389 0.931247i \(-0.381278\pi\)
0.364389 + 0.931247i \(0.381278\pi\)
\(678\) 0 0
\(679\) −4848.22 −0.274017
\(680\) 0 0
\(681\) 21384.6i 1.20332i
\(682\) 0 0
\(683\) 12224.7i 0.684871i 0.939541 + 0.342436i \(0.111252\pi\)
−0.939541 + 0.342436i \(0.888748\pi\)
\(684\) 0 0
\(685\) 3369.55 0.187947
\(686\) 0 0
\(687\) 18999.1i 1.05511i
\(688\) 0 0
\(689\) −3499.99 3144.81i −0.193525 0.173886i
\(690\) 0 0
\(691\) 7662.99i 0.421873i 0.977500 + 0.210936i \(0.0676513\pi\)
−0.977500 + 0.210936i \(0.932349\pi\)
\(692\) 0 0
\(693\) −1522.29 −0.0834446
\(694\) 0 0
\(695\) 3680.10i 0.200855i
\(696\) 0 0
\(697\) 16797.8i 0.912856i
\(698\) 0 0
\(699\) 12802.4 0.692750
\(700\) 0 0
\(701\) −15215.8 −0.819818 −0.409909 0.912126i \(-0.634440\pi\)
−0.409909 + 0.912126i \(0.634440\pi\)
\(702\) 0 0
\(703\) −19544.3 −1.04854
\(704\) 0 0
\(705\) −3740.86 −0.199842
\(706\) 0 0
\(707\) 6792.42i 0.361323i
\(708\) 0 0
\(709\) 15410.9i 0.816314i 0.912912 + 0.408157i \(0.133828\pi\)
−0.912912 + 0.408157i \(0.866172\pi\)
\(710\) 0 0
\(711\) −6708.01 −0.353825
\(712\) 0 0
\(713\) 23337.4i 1.22579i
\(714\) 0 0
\(715\) 3958.70 + 3556.97i 0.207059 + 0.186046i
\(716\) 0 0
\(717\) 344.917i 0.0179654i
\(718\) 0 0
\(719\) −1155.79 −0.0599494 −0.0299747 0.999551i \(-0.509543\pi\)
−0.0299747 + 0.999551i \(0.509543\pi\)
\(720\) 0 0
\(721\) 333.500i 0.0172263i
\(722\) 0 0
\(723\) 1186.36i 0.0610249i
\(724\) 0 0
\(725\) −10103.2 −0.517552
\(726\) 0 0
\(727\) −18048.8 −0.920759 −0.460379 0.887722i \(-0.652287\pi\)
−0.460379 + 0.887722i \(0.652287\pi\)
\(728\) 0 0
\(729\) 11731.6 0.596029
\(730\) 0 0
\(731\) −3233.80 −0.163620
\(732\) 0 0
\(733\) 7855.68i 0.395847i −0.980217 0.197924i \(-0.936580\pi\)
0.980217 0.197924i \(-0.0634198\pi\)
\(734\) 0 0
\(735\) 4107.31i 0.206123i
\(736\) 0 0
\(737\) −22089.5 −1.10404
\(738\) 0 0
\(739\) 302.801i 0.0150727i −0.999972 0.00753635i \(-0.997601\pi\)
0.999972 0.00753635i \(-0.00239892\pi\)
\(740\) 0 0
\(741\) −27265.7 + 30345.1i −1.35173 + 1.50439i
\(742\) 0 0
\(743\) 17199.9i 0.849265i −0.905366 0.424633i \(-0.860403\pi\)
0.905366 0.424633i \(-0.139597\pi\)
\(744\) 0 0
\(745\) 5826.58 0.286536
\(746\) 0 0
\(747\) 164.068i 0.00803604i
\(748\) 0 0
\(749\) 8121.07i 0.396178i
\(750\) 0 0
\(751\) −12999.7 −0.631644 −0.315822 0.948819i \(-0.602280\pi\)
−0.315822 + 0.948819i \(0.602280\pi\)
\(752\) 0 0
\(753\) 668.616 0.0323582
\(754\) 0 0
\(755\) −1033.79 −0.0498325
\(756\) 0 0
\(757\) −6046.81 −0.290324 −0.145162 0.989408i \(-0.546370\pi\)
−0.145162 + 0.989408i \(0.546370\pi\)
\(758\) 0 0
\(759\) 38268.2i 1.83010i
\(760\) 0 0
\(761\) 26902.3i 1.28148i 0.767758 + 0.640740i \(0.221372\pi\)
−0.767758 + 0.640740i \(0.778628\pi\)
\(762\) 0 0
\(763\) −8375.95 −0.397418
\(764\) 0 0
\(765\) 684.715i 0.0323607i
\(766\) 0 0
\(767\) −15015.5 + 16711.3i −0.706880 + 0.786716i
\(768\) 0 0
\(769\) 2068.29i 0.0969887i −0.998823 0.0484943i \(-0.984558\pi\)
0.998823 0.0484943i \(-0.0154423\pi\)
\(770\) 0 0
\(771\) 24838.6 1.16024
\(772\) 0 0
\(773\) 8389.72i 0.390371i −0.980766 0.195186i \(-0.937469\pi\)
0.980766 0.195186i \(-0.0625310\pi\)
\(774\) 0 0
\(775\) 22916.7i 1.06218i
\(776\) 0 0
\(777\) −2986.29 −0.137880
\(778\) 0 0
\(779\) −57528.3 −2.64591
\(780\) 0 0
\(781\) −15635.8 −0.716379
\(782\) 0 0
\(783\) −9641.73 −0.440060
\(784\) 0 0
\(785\) 503.271i 0.0228822i
\(786\) 0 0
\(787\) 21458.3i 0.971928i 0.873979 + 0.485964i \(0.161531\pi\)
−0.873979 + 0.485964i \(0.838469\pi\)
\(788\) 0 0
\(789\) −1340.15 −0.0604697
\(790\) 0 0
\(791\) 1379.11i 0.0619920i
\(792\) 0 0
\(793\) 16728.8 + 15031.2i 0.749128 + 0.673106i
\(794\) 0 0
\(795\) 1256.83i 0.0560695i
\(796\) 0 0
\(797\) −6049.72 −0.268873 −0.134437 0.990922i \(-0.542922\pi\)
−0.134437 + 0.990922i \(0.542922\pi\)
\(798\) 0 0
\(799\) 12945.7i 0.573200i
\(800\) 0 0
\(801\) 4926.62i 0.217320i
\(802\) 0 0
\(803\) 5677.10 0.249490
\(804\) 0 0
\(805\) −1012.02 −0.0443094
\(806\) 0 0
\(807\) 7151.78 0.311964
\(808\) 0 0
\(809\) −33364.1 −1.44996 −0.724981 0.688769i \(-0.758152\pi\)
−0.724981 + 0.688769i \(0.758152\pi\)
\(810\) 0 0
\(811\) 2210.77i 0.0957221i 0.998854 + 0.0478611i \(0.0152405\pi\)
−0.998854 + 0.0478611i \(0.984760\pi\)
\(812\) 0 0
\(813\) 34554.2i 1.49061i
\(814\) 0 0
\(815\) −3106.23 −0.133505
\(816\) 0 0
\(817\) 11075.0i 0.474253i
\(818\) 0 0
\(819\) −896.537 + 997.794i −0.0382510 + 0.0425711i
\(820\) 0 0
\(821\) 25402.9i 1.07986i 0.841709 + 0.539932i \(0.181550\pi\)
−0.841709 + 0.539932i \(0.818450\pi\)
\(822\) 0 0
\(823\) 42030.9 1.78020 0.890100 0.455765i \(-0.150634\pi\)
0.890100 + 0.455765i \(0.150634\pi\)
\(824\) 0 0
\(825\) 37578.4i 1.58583i
\(826\) 0 0
\(827\) 27713.0i 1.16527i 0.812735 + 0.582633i \(0.197978\pi\)
−0.812735 + 0.582633i \(0.802022\pi\)
\(828\) 0 0
\(829\) −23579.7 −0.987886 −0.493943 0.869494i \(-0.664445\pi\)
−0.493943 + 0.869494i \(0.664445\pi\)
\(830\) 0 0
\(831\) −36010.4 −1.50323
\(832\) 0 0
\(833\) 14213.9 0.591214
\(834\) 0 0
\(835\) 3480.41 0.144245
\(836\) 0 0
\(837\) 21869.9i 0.903146i
\(838\) 0 0
\(839\) 8648.03i 0.355856i −0.984044 0.177928i \(-0.943061\pi\)
0.984044 0.177928i \(-0.0569394\pi\)
\(840\) 0 0
\(841\) −17352.5 −0.711491
\(842\) 0 0
\(843\) 10864.2i 0.443872i
\(844\) 0 0
\(845\) 4662.86 499.911i 0.189831 0.0203520i
\(846\) 0 0
\(847\) 5792.27i 0.234976i
\(848\) 0 0
\(849\) −1010.56 −0.0408507
\(850\) 0 0
\(851\) 16155.2i 0.650755i
\(852\) 0 0
\(853\) 23117.7i 0.927942i −0.885851 0.463971i \(-0.846424\pi\)
0.885851 0.463971i \(-0.153576\pi\)
\(854\) 0 0
\(855\) −2344.98 −0.0937974
\(856\) 0 0
\(857\) −3246.65 −0.129409 −0.0647045 0.997904i \(-0.520610\pi\)
−0.0647045 + 0.997904i \(0.520610\pi\)
\(858\) 0 0
\(859\) −29452.5 −1.16986 −0.584928 0.811085i \(-0.698877\pi\)
−0.584928 + 0.811085i \(0.698877\pi\)
\(860\) 0 0
\(861\) −8790.09 −0.347927
\(862\) 0 0
\(863\) 15485.4i 0.610809i −0.952223 0.305405i \(-0.901208\pi\)
0.952223 0.305405i \(-0.0987917\pi\)
\(864\) 0 0
\(865\) 2049.67i 0.0805676i
\(866\) 0 0
\(867\) 17806.0 0.697491
\(868\) 0 0
\(869\) 48195.0i 1.88136i
\(870\) 0 0
\(871\) −13009.4 + 14478.7i −0.506092 + 0.563251i
\(872\) 0 0
\(873\) 9285.92i 0.360001i
\(874\) 0 0
\(875\) 2025.15 0.0782430
\(876\) 0 0
\(877\) 13702.1i 0.527578i 0.964580 + 0.263789i \(0.0849723\pi\)
−0.964580 + 0.263789i \(0.915028\pi\)
\(878\) 0 0
\(879\) 33579.8i 1.28853i
\(880\) 0 0
\(881\) −16868.6 −0.645084 −0.322542 0.946555i \(-0.604537\pi\)
−0.322542 + 0.946555i \(0.604537\pi\)
\(882\) 0 0
\(883\) 15162.4 0.577867 0.288934 0.957349i \(-0.406699\pi\)
0.288934 + 0.957349i \(0.406699\pi\)
\(884\) 0 0
\(885\) −6000.98 −0.227933
\(886\) 0 0
\(887\) −13173.9 −0.498686 −0.249343 0.968415i \(-0.580215\pi\)
−0.249343 + 0.968415i \(0.580215\pi\)
\(888\) 0 0
\(889\) 3856.44i 0.145490i
\(890\) 0 0
\(891\) 46494.9i 1.74819i
\(892\) 0 0
\(893\) 44336.0 1.66142
\(894\) 0 0
\(895\) 4483.21i 0.167438i
\(896\) 0 0
\(897\) 25083.1 + 22537.7i 0.933668 + 0.838919i
\(898\) 0 0
\(899\) 15960.4i 0.592114i
\(900\) 0 0
\(901\) −4349.43 −0.160822
\(902\) 0 0
\(903\) 1692.21i 0.0623624i
\(904\) 0 0
\(905\) 7227.12i 0.265456i
\(906\) 0 0
\(907\) 32190.1 1.17845 0.589225 0.807969i \(-0.299433\pi\)
0.589225 + 0.807969i \(0.299433\pi\)
\(908\) 0 0
\(909\) −13009.7 −0.474703
\(910\) 0 0
\(911\) 13646.0 0.496281 0.248141 0.968724i \(-0.420180\pi\)
0.248141 + 0.968724i \(0.420180\pi\)
\(912\) 0 0
\(913\) −1178.78 −0.0427293
\(914\) 0 0
\(915\) 6007.26i 0.217043i
\(916\) 0 0
\(917\) 6497.36i 0.233982i
\(918\) 0 0
\(919\) 34923.6 1.25356 0.626780 0.779196i \(-0.284372\pi\)
0.626780 + 0.779196i \(0.284372\pi\)
\(920\) 0 0
\(921\) 12410.9i 0.444033i
\(922\) 0 0
\(923\) −9208.52 + 10248.6i −0.328388 + 0.365477i
\(924\) 0 0
\(925\) 15864.0i 0.563897i
\(926\) 0 0
\(927\) −638.761 −0.0226318
\(928\) 0 0
\(929\) 4287.49i 0.151419i 0.997130 + 0.0757094i \(0.0241221\pi\)
−0.997130 + 0.0757094i \(0.975878\pi\)
\(930\) 0 0
\(931\) 48679.1i 1.71363i
\(932\) 0 0
\(933\) 22946.5 0.805182
\(934\) 0 0
\(935\) 4919.47 0.172068
\(936\) 0 0
\(937\) −14174.1 −0.494182 −0.247091 0.968992i \(-0.579475\pi\)
−0.247091 + 0.968992i \(0.579475\pi\)
\(938\) 0 0
\(939\) −22002.5 −0.764669
\(940\) 0 0
\(941\) 11317.1i 0.392058i 0.980598 + 0.196029i \(0.0628047\pi\)
−0.980598 + 0.196029i \(0.937195\pi\)
\(942\) 0 0
\(943\) 47552.5i 1.64212i
\(944\) 0 0
\(945\) 948.382 0.0326464
\(946\) 0 0
\(947\) 40514.3i 1.39022i 0.718904 + 0.695110i \(0.244644\pi\)
−0.718904 + 0.695110i \(0.755356\pi\)
\(948\) 0 0
\(949\) 3343.47 3721.09i 0.114366 0.127283i
\(950\) 0 0
\(951\) 48549.3i 1.65543i
\(952\) 0 0
\(953\) 49479.9 1.68186 0.840930 0.541144i \(-0.182009\pi\)
0.840930 + 0.541144i \(0.182009\pi\)
\(954\) 0 0
\(955\) 7957.72i 0.269640i
\(956\) 0 0
\(957\) 26171.7i 0.884023i
\(958\) 0 0
\(959\) −6101.95 −0.205466
\(960\) 0 0
\(961\) −6411.32 −0.215210
\(962\) 0 0
\(963\) −15554.5 −0.520495
\(964\) 0 0
\(965\) −5492.60 −0.183226
\(966\) 0 0
\(967\) 46779.9i 1.55568i −0.628465 0.777838i \(-0.716316\pi\)
0.628465 0.777838i \(-0.283684\pi\)
\(968\) 0 0
\(969\) 37709.9i 1.25017i
\(970\) 0 0
\(971\) −24378.5 −0.805710 −0.402855 0.915264i \(-0.631982\pi\)
−0.402855 + 0.915264i \(0.631982\pi\)
\(972\) 0 0
\(973\) 6664.32i 0.219577i
\(974\) 0 0
\(975\) −24631.0 22131.4i −0.809049 0.726946i
\(976\) 0 0
\(977\) 24237.6i 0.793685i 0.917887 + 0.396842i \(0.129894\pi\)
−0.917887 + 0.396842i \(0.870106\pi\)
\(978\) 0 0
\(979\) 35396.2 1.15554
\(980\) 0 0
\(981\) 16042.7i 0.522124i
\(982\) 0 0
\(983\) 32953.2i 1.06922i −0.845098 0.534611i \(-0.820458\pi\)
0.845098 0.534611i \(-0.179542\pi\)
\(984\) 0 0
\(985\) 4144.29 0.134059
\(986\) 0 0
\(987\) 6774.36 0.218470
\(988\) 0 0
\(989\) 9154.51 0.294334
\(990\) 0 0
\(991\) −30254.8 −0.969804 −0.484902 0.874569i \(-0.661145\pi\)
−0.484902 + 0.874569i \(0.661145\pi\)
\(992\) 0 0
\(993\) 5203.39i 0.166288i
\(994\) 0 0
\(995\) 4889.57i 0.155789i
\(996\) 0 0
\(997\) 4794.46 0.152299 0.0761495 0.997096i \(-0.475737\pi\)
0.0761495 + 0.997096i \(0.475737\pi\)
\(998\) 0 0
\(999\) 15139.3i 0.479466i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.f.j.129.1 4
4.3 odd 2 832.4.f.h.129.3 4
8.3 odd 2 208.4.f.d.129.2 4
8.5 even 2 26.4.b.a.25.4 yes 4
13.12 even 2 inner 832.4.f.j.129.2 4
24.5 odd 2 234.4.b.b.181.2 4
40.13 odd 4 650.4.c.f.649.3 4
40.29 even 2 650.4.d.d.51.1 4
40.37 odd 4 650.4.c.e.649.2 4
52.51 odd 2 832.4.f.h.129.4 4
104.5 odd 4 338.4.a.i.1.2 2
104.21 odd 4 338.4.a.f.1.2 2
104.29 even 6 338.4.e.g.147.1 8
104.37 odd 12 338.4.c.i.191.1 4
104.45 odd 12 338.4.c.h.315.1 4
104.51 odd 2 208.4.f.d.129.1 4
104.61 even 6 338.4.e.g.23.3 8
104.69 even 6 338.4.e.g.23.1 8
104.77 even 2 26.4.b.a.25.2 4
104.85 odd 12 338.4.c.i.315.1 4
104.93 odd 12 338.4.c.h.191.1 4
104.101 even 6 338.4.e.g.147.3 8
312.77 odd 2 234.4.b.b.181.3 4
520.77 odd 4 650.4.c.f.649.2 4
520.389 even 2 650.4.d.d.51.3 4
520.493 odd 4 650.4.c.e.649.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.b.a.25.2 4 104.77 even 2
26.4.b.a.25.4 yes 4 8.5 even 2
208.4.f.d.129.1 4 104.51 odd 2
208.4.f.d.129.2 4 8.3 odd 2
234.4.b.b.181.2 4 24.5 odd 2
234.4.b.b.181.3 4 312.77 odd 2
338.4.a.f.1.2 2 104.21 odd 4
338.4.a.i.1.2 2 104.5 odd 4
338.4.c.h.191.1 4 104.93 odd 12
338.4.c.h.315.1 4 104.45 odd 12
338.4.c.i.191.1 4 104.37 odd 12
338.4.c.i.315.1 4 104.85 odd 12
338.4.e.g.23.1 8 104.69 even 6
338.4.e.g.23.3 8 104.61 even 6
338.4.e.g.147.1 8 104.29 even 6
338.4.e.g.147.3 8 104.101 even 6
650.4.c.e.649.2 4 40.37 odd 4
650.4.c.e.649.3 4 520.493 odd 4
650.4.c.f.649.2 4 520.77 odd 4
650.4.c.f.649.3 4 40.13 odd 4
650.4.d.d.51.1 4 40.29 even 2
650.4.d.d.51.3 4 520.389 even 2
832.4.f.h.129.3 4 4.3 odd 2
832.4.f.h.129.4 4 52.51 odd 2
832.4.f.j.129.1 4 1.1 even 1 trivial
832.4.f.j.129.2 4 13.12 even 2 inner