Properties

Label 338.4.c.i.315.1
Level $338$
Weight $4$
Character 338.315
Analytic conductor $19.943$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(191,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,3,-8,-38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 315.1
Root \(-3.43273 - 5.94566i\) of defining polynomial
Character \(\chi\) \(=\) 338.315
Dual form 338.4.c.i.191.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(-2.93273 - 5.07964i) q^{3} +(-2.00000 + 3.46410i) q^{4} -2.13454 q^{5} +(5.86546 - 10.1593i) q^{6} +(-1.93273 + 3.34759i) q^{7} -8.00000 q^{8} +(-3.70181 + 6.41172i) q^{9} +(-2.13454 - 3.69713i) q^{10} +(26.5964 + 46.0663i) q^{11} +23.4618 q^{12} -7.73092 q^{14} +(6.26003 + 10.8427i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(21.6636 - 37.5225i) q^{17} -14.8072 q^{18} +(74.1928 - 128.506i) q^{19} +(4.26908 - 7.39426i) q^{20} +22.6727 q^{21} +(-53.1928 + 92.1326i) q^{22} +(-61.3273 - 106.222i) q^{23} +(23.4618 + 40.6371i) q^{24} -120.444 q^{25} -114.942 q^{27} +(-7.73092 - 13.3903i) q^{28} +(-41.9418 - 72.6453i) q^{29} +(-12.5201 + 21.6854i) q^{30} -190.269 q^{31} +(16.0000 - 27.7128i) q^{32} +(156.000 - 270.200i) q^{33} +86.6546 q^{34} +(4.12549 - 7.14556i) q^{35} +(-14.8072 - 25.6469i) q^{36} +(-65.8564 - 114.067i) q^{37} +296.771 q^{38} +17.0763 q^{40} +(-193.847 - 335.753i) q^{41} +(22.6727 + 39.2703i) q^{42} +(37.3182 - 64.6371i) q^{43} -212.771 q^{44} +(7.90166 - 13.6861i) q^{45} +(122.655 - 212.444i) q^{46} +298.789 q^{47} +(-46.9237 + 81.2742i) q^{48} +(164.029 + 284.107i) q^{49} +(-120.444 - 208.615i) q^{50} -254.135 q^{51} +100.386 q^{53} +(-114.942 - 199.085i) q^{54} +(-56.7710 - 98.3303i) q^{55} +(15.4618 - 26.7807i) q^{56} -870.349 q^{57} +(83.8836 - 145.291i) q^{58} +(239.655 - 415.094i) q^{59} -50.0802 q^{60} +(239.906 - 415.529i) q^{61} +(-190.269 - 329.556i) q^{62} +(-14.3092 - 24.7843i) q^{63} +64.0000 q^{64} +624.000 q^{66} +(-207.636 - 359.637i) q^{67} +(86.6546 + 150.090i) q^{68} +(-359.713 + 623.041i) q^{69} +16.5020 q^{70} +(146.973 - 254.564i) q^{71} +(29.6145 - 51.2938i) q^{72} -106.727 q^{73} +(131.713 - 228.133i) q^{74} +(353.229 + 611.811i) q^{75} +(296.771 + 514.023i) q^{76} -205.614 q^{77} -906.044 q^{79} +(17.0763 + 29.5771i) q^{80} +(437.042 + 756.979i) q^{81} +(387.695 - 671.507i) q^{82} +22.1605 q^{83} +(-45.3454 + 78.5405i) q^{84} +(-46.2419 + 80.0934i) q^{85} +149.273 q^{86} +(-246.008 + 426.098i) q^{87} +(-212.771 - 368.530i) q^{88} +(332.717 + 576.282i) q^{89} +31.6066 q^{90} +490.618 q^{92} +(558.008 + 966.498i) q^{93} +(298.789 + 517.518i) q^{94} +(-158.367 + 274.300i) q^{95} -187.695 q^{96} +(627.120 - 1086.20i) q^{97} +(-328.058 + 568.214i) q^{98} -393.819 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} - 38 q^{5} - 6 q^{6} + 7 q^{7} - 32 q^{8} - 59 q^{9} - 38 q^{10} + 18 q^{11} - 24 q^{12} + 28 q^{14} - 137 q^{15} - 32 q^{16} + 13 q^{17} - 236 q^{18} + 120 q^{19} + 76 q^{20}+ \cdots + 2844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) −2.93273 5.07964i −0.564404 0.977577i −0.997105 0.0760390i \(-0.975773\pi\)
0.432701 0.901538i \(-0.357561\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −2.13454 −0.190919 −0.0954595 0.995433i \(-0.530432\pi\)
−0.0954595 + 0.995433i \(0.530432\pi\)
\(6\) 5.86546 10.1593i 0.399094 0.691251i
\(7\) −1.93273 + 3.34759i −0.104358 + 0.180753i −0.913476 0.406894i \(-0.866612\pi\)
0.809118 + 0.587646i \(0.199945\pi\)
\(8\) −8.00000 −0.353553
\(9\) −3.70181 + 6.41172i −0.137104 + 0.237471i
\(10\) −2.13454 3.69713i −0.0675001 0.116914i
\(11\) 26.5964 + 46.0663i 0.729010 + 1.26268i 0.957302 + 0.289090i \(0.0933526\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(12\) 23.4618 0.564404
\(13\) 0 0
\(14\) −7.73092 −0.147584
\(15\) 6.26003 + 10.8427i 0.107756 + 0.186638i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 21.6636 37.5225i 0.309071 0.535327i −0.669088 0.743183i \(-0.733315\pi\)
0.978159 + 0.207856i \(0.0666486\pi\)
\(18\) −14.8072 −0.193894
\(19\) 74.1928 128.506i 0.895841 1.55164i 0.0630816 0.998008i \(-0.479907\pi\)
0.832760 0.553634i \(-0.186759\pi\)
\(20\) 4.26908 7.39426i 0.0477298 0.0826704i
\(21\) 22.6727 0.235599
\(22\) −53.1928 + 92.1326i −0.515488 + 0.892851i
\(23\) −61.3273 106.222i −0.555984 0.962992i −0.997826 0.0658995i \(-0.979008\pi\)
0.441843 0.897093i \(-0.354325\pi\)
\(24\) 23.4618 + 40.6371i 0.199547 + 0.345626i
\(25\) −120.444 −0.963550
\(26\) 0 0
\(27\) −114.942 −0.819280
\(28\) −7.73092 13.3903i −0.0521788 0.0903763i
\(29\) −41.9418 72.6453i −0.268565 0.465169i 0.699926 0.714215i \(-0.253216\pi\)
−0.968492 + 0.249046i \(0.919883\pi\)
\(30\) −12.5201 + 21.6854i −0.0761947 + 0.131973i
\(31\) −190.269 −1.10237 −0.551183 0.834384i \(-0.685823\pi\)
−0.551183 + 0.834384i \(0.685823\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 156.000 270.200i 0.822913 1.42533i
\(34\) 86.6546 0.437092
\(35\) 4.12549 7.14556i 0.0199239 0.0345091i
\(36\) −14.8072 25.6469i −0.0685520 0.118736i
\(37\) −65.8564 114.067i −0.292614 0.506823i 0.681813 0.731527i \(-0.261192\pi\)
−0.974427 + 0.224704i \(0.927859\pi\)
\(38\) 296.771 1.26691
\(39\) 0 0
\(40\) 17.0763 0.0675001
\(41\) −193.847 335.753i −0.738387 1.27892i −0.953221 0.302273i \(-0.902254\pi\)
0.214834 0.976651i \(-0.431079\pi\)
\(42\) 22.6727 + 39.2703i 0.0832970 + 0.144275i
\(43\) 37.3182 64.6371i 0.132348 0.229234i −0.792233 0.610219i \(-0.791082\pi\)
0.924581 + 0.380985i \(0.124415\pi\)
\(44\) −212.771 −0.729010
\(45\) 7.90166 13.6861i 0.0261758 0.0453378i
\(46\) 122.655 212.444i 0.393140 0.680938i
\(47\) 298.789 0.927295 0.463648 0.886020i \(-0.346540\pi\)
0.463648 + 0.886020i \(0.346540\pi\)
\(48\) −46.9237 + 81.2742i −0.141101 + 0.244394i
\(49\) 164.029 + 284.107i 0.478219 + 0.828300i
\(50\) −120.444 208.615i −0.340666 0.590051i
\(51\) −254.135 −0.697764
\(52\) 0 0
\(53\) 100.386 0.260170 0.130085 0.991503i \(-0.458475\pi\)
0.130085 + 0.991503i \(0.458475\pi\)
\(54\) −114.942 199.085i −0.289659 0.501704i
\(55\) −56.7710 98.3303i −0.139182 0.241070i
\(56\) 15.4618 26.7807i 0.0368960 0.0639057i
\(57\) −870.349 −2.02247
\(58\) 83.8836 145.291i 0.189904 0.328924i
\(59\) 239.655 415.094i 0.528820 0.915943i −0.470615 0.882338i \(-0.655968\pi\)
0.999435 0.0336044i \(-0.0106986\pi\)
\(60\) −50.0802 −0.107756
\(61\) 239.906 415.529i 0.503553 0.872180i −0.496438 0.868072i \(-0.665359\pi\)
0.999992 0.00410807i \(-0.00130764\pi\)
\(62\) −190.269 329.556i −0.389745 0.675058i
\(63\) −14.3092 24.7843i −0.0286157 0.0495639i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 624.000 1.16377
\(67\) −207.636 359.637i −0.378609 0.655771i 0.612251 0.790664i \(-0.290264\pi\)
−0.990860 + 0.134893i \(0.956931\pi\)
\(68\) 86.6546 + 150.090i 0.154535 + 0.267663i
\(69\) −359.713 + 623.041i −0.627599 + 1.08703i
\(70\) 16.5020 0.0281766
\(71\) 146.973 254.564i 0.245669 0.425510i −0.716651 0.697432i \(-0.754326\pi\)
0.962319 + 0.271922i \(0.0876592\pi\)
\(72\) 29.6145 51.2938i 0.0484736 0.0839588i
\(73\) −106.727 −0.171116 −0.0855579 0.996333i \(-0.527267\pi\)
−0.0855579 + 0.996333i \(0.527267\pi\)
\(74\) 131.713 228.133i 0.206910 0.358378i
\(75\) 353.229 + 611.811i 0.543832 + 0.941944i
\(76\) 296.771 + 514.023i 0.447921 + 0.775821i
\(77\) −205.614 −0.304311
\(78\) 0 0
\(79\) −906.044 −1.29035 −0.645177 0.764033i \(-0.723216\pi\)
−0.645177 + 0.764033i \(0.723216\pi\)
\(80\) 17.0763 + 29.5771i 0.0238649 + 0.0413352i
\(81\) 437.042 + 756.979i 0.599509 + 1.03838i
\(82\) 387.695 671.507i 0.522119 0.904336i
\(83\) 22.1605 0.0293064 0.0146532 0.999893i \(-0.495336\pi\)
0.0146532 + 0.999893i \(0.495336\pi\)
\(84\) −45.3454 + 78.5405i −0.0588999 + 0.102018i
\(85\) −46.2419 + 80.0934i −0.0590075 + 0.102204i
\(86\) 149.273 0.187169
\(87\) −246.008 + 426.098i −0.303159 + 0.525086i
\(88\) −212.771 368.530i −0.257744 0.446426i
\(89\) 332.717 + 576.282i 0.396269 + 0.686357i 0.993262 0.115889i \(-0.0369716\pi\)
−0.596994 + 0.802246i \(0.703638\pi\)
\(90\) 31.6066 0.0370181
\(91\) 0 0
\(92\) 490.618 0.555984
\(93\) 558.008 + 966.498i 0.622180 + 1.07765i
\(94\) 298.789 + 517.518i 0.327848 + 0.567850i
\(95\) −158.367 + 274.300i −0.171033 + 0.296238i
\(96\) −187.695 −0.199547
\(97\) 627.120 1086.20i 0.656437 1.13698i −0.325094 0.945682i \(-0.605396\pi\)
0.981531 0.191301i \(-0.0612707\pi\)
\(98\) −328.058 + 568.214i −0.338152 + 0.585696i
\(99\) −393.819 −0.399801
\(100\) 240.887 417.229i 0.240887 0.417229i
\(101\) 878.604 + 1521.79i 0.865588 + 1.49924i 0.866462 + 0.499243i \(0.166388\pi\)
−0.000874171 1.00000i \(0.500278\pi\)
\(102\) −254.135 440.174i −0.246697 0.427291i
\(103\) 86.2769 0.0825351 0.0412676 0.999148i \(-0.486860\pi\)
0.0412676 + 0.999148i \(0.486860\pi\)
\(104\) 0 0
\(105\) −48.3958 −0.0449804
\(106\) 100.386 + 173.873i 0.0919840 + 0.159321i
\(107\) −1050.47 1819.46i −0.949087 1.64387i −0.747353 0.664427i \(-0.768675\pi\)
−0.201735 0.979440i \(-0.564658\pi\)
\(108\) 229.884 398.170i 0.204820 0.354759i
\(109\) 2166.87 1.90411 0.952057 0.305920i \(-0.0989642\pi\)
0.952057 + 0.305920i \(0.0989642\pi\)
\(110\) 113.542 196.661i 0.0984165 0.170462i
\(111\) −386.278 + 669.053i −0.330305 + 0.572106i
\(112\) 61.8474 0.0521788
\(113\) 178.389 308.980i 0.148509 0.257224i −0.782168 0.623068i \(-0.785886\pi\)
0.930676 + 0.365843i \(0.119219\pi\)
\(114\) −870.349 1507.49i −0.715050 1.23850i
\(115\) 130.906 + 226.735i 0.106148 + 0.183854i
\(116\) 335.534 0.268565
\(117\) 0 0
\(118\) 958.618 0.747864
\(119\) 83.7400 + 145.042i 0.0645078 + 0.111731i
\(120\) −50.0802 86.7415i −0.0380973 0.0659865i
\(121\) −749.235 + 1297.71i −0.562911 + 0.974991i
\(122\) 959.622 0.712132
\(123\) −1137.00 + 1969.35i −0.833497 + 1.44366i
\(124\) 380.538 659.111i 0.275591 0.477338i
\(125\) 523.909 0.374879
\(126\) 28.6184 49.5685i 0.0202344 0.0350469i
\(127\) −498.833 864.004i −0.348538 0.603685i 0.637452 0.770490i \(-0.279988\pi\)
−0.985990 + 0.166805i \(0.946655\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) −437.777 −0.298792
\(130\) 0 0
\(131\) −1680.88 −1.12106 −0.560530 0.828134i \(-0.689403\pi\)
−0.560530 + 0.828134i \(0.689403\pi\)
\(132\) 624.000 + 1080.80i 0.411456 + 0.712663i
\(133\) 286.789 + 496.733i 0.186976 + 0.323851i
\(134\) 415.273 719.274i 0.267717 0.463700i
\(135\) 245.348 0.156416
\(136\) −173.309 + 300.180i −0.109273 + 0.189267i
\(137\) −789.291 + 1367.09i −0.492217 + 0.852544i −0.999960 0.00896417i \(-0.997147\pi\)
0.507743 + 0.861509i \(0.330480\pi\)
\(138\) −1438.85 −0.887559
\(139\) −862.035 + 1493.09i −0.526021 + 0.911094i 0.473520 + 0.880783i \(0.342983\pi\)
−0.999541 + 0.0303112i \(0.990350\pi\)
\(140\) 16.5020 + 28.5822i 0.00996193 + 0.0172546i
\(141\) −876.268 1517.74i −0.523369 0.906502i
\(142\) 587.891 0.347428
\(143\) 0 0
\(144\) 118.458 0.0685520
\(145\) 89.5264 + 155.064i 0.0512742 + 0.0888096i
\(146\) −106.727 184.857i −0.0604986 0.104787i
\(147\) 962.106 1666.42i 0.539818 0.934991i
\(148\) 526.851 0.292614
\(149\) −1364.83 + 2363.96i −0.750413 + 1.29975i 0.197210 + 0.980361i \(0.436812\pi\)
−0.947623 + 0.319392i \(0.896521\pi\)
\(150\) −706.458 + 1223.62i −0.384547 + 0.666055i
\(151\) −484.316 −0.261014 −0.130507 0.991447i \(-0.541660\pi\)
−0.130507 + 0.991447i \(0.541660\pi\)
\(152\) −593.542 + 1028.05i −0.316728 + 0.548589i
\(153\) 160.389 + 277.803i 0.0847498 + 0.146791i
\(154\) −205.614 356.135i −0.107590 0.186352i
\(155\) 406.137 0.210463
\(156\) 0 0
\(157\) 235.775 0.119853 0.0599264 0.998203i \(-0.480913\pi\)
0.0599264 + 0.998203i \(0.480913\pi\)
\(158\) −906.044 1569.31i −0.456209 0.790177i
\(159\) −294.404 509.922i −0.146841 0.254336i
\(160\) −34.1526 + 59.1541i −0.0168750 + 0.0292284i
\(161\) 474.116 0.232085
\(162\) −874.084 + 1513.96i −0.423917 + 0.734246i
\(163\) −727.611 + 1260.26i −0.349637 + 0.605589i −0.986185 0.165648i \(-0.947028\pi\)
0.636548 + 0.771237i \(0.280362\pi\)
\(164\) 1550.78 0.738387
\(165\) −332.988 + 576.753i −0.157110 + 0.272122i
\(166\) 22.1605 + 38.3831i 0.0103614 + 0.0179464i
\(167\) −815.259 1412.07i −0.377764 0.654307i 0.612972 0.790104i \(-0.289974\pi\)
−0.990737 + 0.135798i \(0.956640\pi\)
\(168\) −181.382 −0.0832970
\(169\) 0 0
\(170\) −184.968 −0.0834493
\(171\) 549.295 + 951.407i 0.245647 + 0.425473i
\(172\) 149.273 + 258.548i 0.0661742 + 0.114617i
\(173\) −480.120 + 831.593i −0.210999 + 0.365461i −0.952028 0.306012i \(-0.901005\pi\)
0.741028 + 0.671474i \(0.234338\pi\)
\(174\) −984.031 −0.428731
\(175\) 232.785 403.196i 0.100554 0.174164i
\(176\) 425.542 737.060i 0.182253 0.315671i
\(177\) −2811.37 −1.19387
\(178\) −665.433 + 1152.56i −0.280204 + 0.485328i
\(179\) −1050.16 1818.93i −0.438506 0.759515i 0.559068 0.829122i \(-0.311159\pi\)
−0.997575 + 0.0696067i \(0.977826\pi\)
\(180\) 31.6066 + 54.7443i 0.0130879 + 0.0226689i
\(181\) −3385.80 −1.39041 −0.695206 0.718811i \(-0.744687\pi\)
−0.695206 + 0.718811i \(0.744687\pi\)
\(182\) 0 0
\(183\) −2814.31 −1.13683
\(184\) 490.618 + 849.776i 0.196570 + 0.340469i
\(185\) 140.573 + 243.480i 0.0558656 + 0.0967621i
\(186\) −1116.02 + 1933.00i −0.439948 + 0.762011i
\(187\) 2304.70 0.901263
\(188\) −597.578 + 1035.04i −0.231824 + 0.401531i
\(189\) 222.151 384.778i 0.0854981 0.148087i
\(190\) −633.470 −0.241877
\(191\) 1864.04 3228.61i 0.706162 1.22311i −0.260109 0.965579i \(-0.583758\pi\)
0.966271 0.257529i \(-0.0829083\pi\)
\(192\) −187.695 325.097i −0.0705505 0.122197i
\(193\) 1286.60 + 2228.46i 0.479852 + 0.831129i 0.999733 0.0231102i \(-0.00735687\pi\)
−0.519881 + 0.854239i \(0.674024\pi\)
\(194\) 2508.48 0.928343
\(195\) 0 0
\(196\) −1312.23 −0.478219
\(197\) −970.770 1681.42i −0.351089 0.608104i 0.635352 0.772223i \(-0.280855\pi\)
−0.986440 + 0.164119i \(0.947522\pi\)
\(198\) −393.819 682.114i −0.141351 0.244827i
\(199\) 1145.35 1983.80i 0.407997 0.706671i −0.586668 0.809827i \(-0.699561\pi\)
0.994665 + 0.103156i \(0.0328941\pi\)
\(200\) 963.550 0.340666
\(201\) −1217.88 + 2109.44i −0.427378 + 0.740240i
\(202\) −1757.21 + 3043.57i −0.612063 + 1.06012i
\(203\) 324.249 0.112107
\(204\) 508.269 880.348i 0.174441 0.302141i
\(205\) 413.775 + 716.679i 0.140972 + 0.244171i
\(206\) 86.2769 + 149.436i 0.0291806 + 0.0505422i
\(207\) 908.088 0.304911
\(208\) 0 0
\(209\) 7893.04 2.61231
\(210\) −48.3958 83.8240i −0.0159030 0.0275448i
\(211\) −587.613 1017.78i −0.191720 0.332069i 0.754100 0.656759i \(-0.228073\pi\)
−0.945820 + 0.324690i \(0.894740\pi\)
\(212\) −200.771 + 347.746i −0.0650425 + 0.112657i
\(213\) −1724.13 −0.554625
\(214\) 2100.93 3638.92i 0.671106 1.16239i
\(215\) −79.6573 + 137.970i −0.0252678 + 0.0437652i
\(216\) 919.534 0.289659
\(217\) 367.739 636.942i 0.115040 0.199256i
\(218\) 2166.87 + 3753.13i 0.673206 + 1.16603i
\(219\) 313.001 + 542.134i 0.0965784 + 0.167279i
\(220\) 454.168 0.139182
\(221\) 0 0
\(222\) −1545.11 −0.467122
\(223\) 2175.44 + 3767.97i 0.653265 + 1.13149i 0.982326 + 0.187180i \(0.0599347\pi\)
−0.329060 + 0.944309i \(0.606732\pi\)
\(224\) 61.8474 + 107.123i 0.0184480 + 0.0319529i
\(225\) 445.860 772.252i 0.132107 0.228815i
\(226\) 713.558 0.210023
\(227\) 1822.93 3157.40i 0.533003 0.923189i −0.466254 0.884651i \(-0.654397\pi\)
0.999257 0.0385380i \(-0.0122701\pi\)
\(228\) 1740.70 3014.98i 0.505617 0.875754i
\(229\) 3239.15 0.934713 0.467357 0.884069i \(-0.345206\pi\)
0.467357 + 0.884069i \(0.345206\pi\)
\(230\) −261.811 + 453.470i −0.0750579 + 0.130004i
\(231\) 603.012 + 1044.45i 0.171754 + 0.297487i
\(232\) 335.534 + 581.162i 0.0949522 + 0.164462i
\(233\) 2182.68 0.613700 0.306850 0.951758i \(-0.400725\pi\)
0.306850 + 0.951758i \(0.400725\pi\)
\(234\) 0 0
\(235\) −637.777 −0.177038
\(236\) 958.618 + 1660.38i 0.264410 + 0.457971i
\(237\) 2657.18 + 4602.38i 0.728281 + 1.26142i
\(238\) −167.480 + 290.084i −0.0456139 + 0.0790056i
\(239\) 58.8048 0.0159153 0.00795767 0.999968i \(-0.497467\pi\)
0.00795767 + 0.999968i \(0.497467\pi\)
\(240\) 100.160 173.483i 0.0269389 0.0466595i
\(241\) −101.131 + 175.163i −0.0270307 + 0.0468185i −0.879224 0.476408i \(-0.841939\pi\)
0.852194 + 0.523227i \(0.175272\pi\)
\(242\) −2996.94 −0.796077
\(243\) 1011.74 1752.38i 0.267091 0.462615i
\(244\) 959.622 + 1662.11i 0.251777 + 0.436090i
\(245\) −350.127 606.437i −0.0913011 0.158138i
\(246\) −4548.02 −1.17874
\(247\) 0 0
\(248\) 1522.15 0.389745
\(249\) −64.9907 112.567i −0.0165406 0.0286492i
\(250\) 523.909 + 907.438i 0.132540 + 0.229566i
\(251\) 56.9961 98.7201i 0.0143329 0.0248253i −0.858770 0.512361i \(-0.828771\pi\)
0.873103 + 0.487536i \(0.162104\pi\)
\(252\) 114.474 0.0286157
\(253\) 3262.17 5650.24i 0.810635 1.40406i
\(254\) 997.666 1728.01i 0.246453 0.426870i
\(255\) 542.460 0.133216
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −2117.36 3667.38i −0.513920 0.890136i −0.999870 0.0161491i \(-0.994859\pi\)
0.485949 0.873987i \(-0.338474\pi\)
\(258\) −437.777 758.253i −0.105639 0.182972i
\(259\) 509.131 0.122146
\(260\) 0 0
\(261\) 621.042 0.147286
\(262\) −1680.88 2911.36i −0.396355 0.686507i
\(263\) −114.241 197.871i −0.0267847 0.0463925i 0.852322 0.523017i \(-0.175194\pi\)
−0.879107 + 0.476624i \(0.841860\pi\)
\(264\) −1248.00 + 2161.60i −0.290944 + 0.503929i
\(265\) −214.277 −0.0496714
\(266\) −573.578 + 993.467i −0.132212 + 0.228998i
\(267\) 1951.54 3380.16i 0.447311 0.774766i
\(268\) 1661.09 0.378609
\(269\) −609.652 + 1055.95i −0.138183 + 0.239339i −0.926809 0.375534i \(-0.877459\pi\)
0.788626 + 0.614873i \(0.210793\pi\)
\(270\) 245.348 + 424.955i 0.0553015 + 0.0957849i
\(271\) 2945.57 + 5101.87i 0.660260 + 1.14360i 0.980547 + 0.196283i \(0.0628871\pi\)
−0.320288 + 0.947320i \(0.603780\pi\)
\(272\) −693.237 −0.154535
\(273\) 0 0
\(274\) −3157.16 −0.696100
\(275\) −3203.37 5548.40i −0.702438 1.21666i
\(276\) −1438.85 2492.16i −0.313800 0.543517i
\(277\) −3069.70 + 5316.87i −0.665849 + 1.15328i 0.313205 + 0.949685i \(0.398597\pi\)
−0.979054 + 0.203599i \(0.934736\pi\)
\(278\) −3448.14 −0.743905
\(279\) 704.340 1219.95i 0.151139 0.261780i
\(280\) −33.0039 + 57.1645i −0.00704415 + 0.0122008i
\(281\) 1852.24 0.393221 0.196611 0.980482i \(-0.437006\pi\)
0.196611 + 0.980482i \(0.437006\pi\)
\(282\) 1752.54 3035.48i 0.370078 0.640994i
\(283\) −86.1448 149.207i −0.0180946 0.0313408i 0.856836 0.515589i \(-0.172427\pi\)
−0.874931 + 0.484248i \(0.839093\pi\)
\(284\) 587.891 + 1018.26i 0.122834 + 0.212755i
\(285\) 1857.80 0.386127
\(286\) 0 0
\(287\) 1498.62 0.308225
\(288\) 118.458 + 205.175i 0.0242368 + 0.0419794i
\(289\) 1517.87 + 2629.03i 0.308950 + 0.535118i
\(290\) −179.053 + 310.129i −0.0362564 + 0.0627979i
\(291\) −7356.70 −1.48198
\(292\) 213.454 369.713i 0.0427789 0.0740953i
\(293\) 2862.50 4958.00i 0.570748 0.988564i −0.425742 0.904845i \(-0.639987\pi\)
0.996489 0.0837193i \(-0.0266799\pi\)
\(294\) 3848.42 0.763417
\(295\) −511.552 + 886.035i −0.100962 + 0.174871i
\(296\) 526.851 + 912.533i 0.103455 + 0.179189i
\(297\) −3057.04 5294.94i −0.597263 1.03449i
\(298\) −5459.33 −1.06124
\(299\) 0 0
\(300\) −2825.83 −0.543832
\(301\) 144.252 + 249.852i 0.0276231 + 0.0478446i
\(302\) −484.316 838.859i −0.0922822 0.159837i
\(303\) 5153.42 8925.98i 0.977083 1.69236i
\(304\) −2374.17 −0.447921
\(305\) −512.088 + 886.963i −0.0961380 + 0.166516i
\(306\) −320.779 + 555.605i −0.0599271 + 0.103797i
\(307\) −2115.94 −0.393364 −0.196682 0.980467i \(-0.563017\pi\)
−0.196682 + 0.980467i \(0.563017\pi\)
\(308\) 411.229 712.269i 0.0760777 0.131771i
\(309\) −253.027 438.255i −0.0465832 0.0806844i
\(310\) 406.137 + 703.450i 0.0744098 + 0.128882i
\(311\) 3912.14 0.713303 0.356651 0.934238i \(-0.383918\pi\)
0.356651 + 0.934238i \(0.383918\pi\)
\(312\) 0 0
\(313\) 3751.20 0.677413 0.338706 0.940892i \(-0.390011\pi\)
0.338706 + 0.940892i \(0.390011\pi\)
\(314\) 235.775 + 408.374i 0.0423744 + 0.0733946i
\(315\) 30.5436 + 52.9030i 0.00546328 + 0.00946269i
\(316\) 1812.09 3138.63i 0.322588 0.558739i
\(317\) −8277.14 −1.46653 −0.733266 0.679942i \(-0.762005\pi\)
−0.733266 + 0.679942i \(0.762005\pi\)
\(318\) 588.807 1019.84i 0.103832 0.179843i
\(319\) 2231.00 3864.20i 0.391574 0.678225i
\(320\) −136.611 −0.0238649
\(321\) −6161.46 + 10672.0i −1.07134 + 1.85561i
\(322\) 474.116 + 821.194i 0.0820543 + 0.142122i
\(323\) −3214.57 5567.80i −0.553757 0.959136i
\(324\) −3496.34 −0.599509
\(325\) 0 0
\(326\) −2910.44 −0.494462
\(327\) −6354.84 11006.9i −1.07469 1.86142i
\(328\) 1550.78 + 2686.03i 0.261059 + 0.452168i
\(329\) −577.479 + 1000.22i −0.0967703 + 0.167611i
\(330\) −1331.95 −0.222187
\(331\) −443.562 + 768.271i −0.0736567 + 0.127577i −0.900501 0.434853i \(-0.856800\pi\)
0.826845 + 0.562430i \(0.190134\pi\)
\(332\) −44.3209 + 76.7661i −0.00732659 + 0.0126900i
\(333\) 975.152 0.160474
\(334\) 1630.52 2824.14i 0.267120 0.462665i
\(335\) 443.208 + 767.660i 0.0722838 + 0.125199i
\(336\) −181.382 314.162i −0.0294499 0.0510088i
\(337\) 6563.94 1.06101 0.530506 0.847681i \(-0.322002\pi\)
0.530506 + 0.847681i \(0.322002\pi\)
\(338\) 0 0
\(339\) −2092.67 −0.335275
\(340\) −184.968 320.373i −0.0295038 0.0511020i
\(341\) −5060.47 8764.99i −0.803636 1.39194i
\(342\) −1098.59 + 1902.81i −0.173699 + 0.300855i
\(343\) −2593.95 −0.408338
\(344\) −298.546 + 517.097i −0.0467922 + 0.0810465i
\(345\) 767.821 1329.91i 0.119821 0.207535i
\(346\) −1920.48 −0.298398
\(347\) 4327.02 7494.62i 0.669414 1.15946i −0.308654 0.951174i \(-0.599879\pi\)
0.978068 0.208285i \(-0.0667881\pi\)
\(348\) −984.031 1704.39i −0.151579 0.262543i
\(349\) 5086.77 + 8810.54i 0.780196 + 1.35134i 0.931827 + 0.362903i \(0.118214\pi\)
−0.151631 + 0.988437i \(0.548452\pi\)
\(350\) 931.141 0.142204
\(351\) 0 0
\(352\) 1702.17 0.257744
\(353\) 460.805 + 798.137i 0.0694792 + 0.120342i 0.898672 0.438621i \(-0.144533\pi\)
−0.829193 + 0.558962i \(0.811200\pi\)
\(354\) −2811.37 4869.43i −0.422098 0.731095i
\(355\) −313.719 + 543.378i −0.0469028 + 0.0812381i
\(356\) −2661.73 −0.396269
\(357\) 491.173 850.737i 0.0728170 0.126123i
\(358\) 2100.32 3637.86i 0.310071 0.537058i
\(359\) 2056.77 0.302374 0.151187 0.988505i \(-0.451690\pi\)
0.151187 + 0.988505i \(0.451690\pi\)
\(360\) −63.2133 + 109.489i −0.00925454 + 0.0160293i
\(361\) −7579.63 13128.3i −1.10506 1.91403i
\(362\) −3385.80 5864.37i −0.491585 0.851449i
\(363\) 8789.21 1.27084
\(364\) 0 0
\(365\) 227.813 0.0326693
\(366\) −2814.31 4874.53i −0.401930 0.696164i
\(367\) −1105.90 1915.48i −0.157296 0.272445i 0.776597 0.629998i \(-0.216944\pi\)
−0.933893 + 0.357553i \(0.883611\pi\)
\(368\) −981.237 + 1699.55i −0.138996 + 0.240748i
\(369\) 2870.34 0.404944
\(370\) −281.146 + 486.960i −0.0395030 + 0.0684212i
\(371\) −194.018 + 336.049i −0.0271507 + 0.0470264i
\(372\) −4464.06 −0.622180
\(373\) −5273.06 + 9133.21i −0.731981 + 1.26783i 0.224055 + 0.974577i \(0.428071\pi\)
−0.956035 + 0.293251i \(0.905263\pi\)
\(374\) 2304.70 + 3991.86i 0.318645 + 0.551909i
\(375\) −1536.49 2661.27i −0.211583 0.366473i
\(376\) −2390.31 −0.327848
\(377\) 0 0
\(378\) 888.606 0.120913
\(379\) 6119.48 + 10599.2i 0.829384 + 1.43653i 0.898522 + 0.438928i \(0.144642\pi\)
−0.0691388 + 0.997607i \(0.522025\pi\)
\(380\) −633.470 1097.20i −0.0855166 0.148119i
\(381\) −2925.89 + 5067.78i −0.393432 + 0.681445i
\(382\) 7456.14 0.998664
\(383\) −3617.35 + 6265.43i −0.482605 + 0.835897i −0.999801 0.0199705i \(-0.993643\pi\)
0.517195 + 0.855867i \(0.326976\pi\)
\(384\) 375.389 650.194i 0.0498867 0.0864064i
\(385\) 438.892 0.0580988
\(386\) −2573.20 + 4456.91i −0.339307 + 0.587697i
\(387\) 276.290 + 478.549i 0.0362910 + 0.0628579i
\(388\) 2508.48 + 4344.82i 0.328219 + 0.568491i
\(389\) −11781.1 −1.53554 −0.767768 0.640728i \(-0.778633\pi\)
−0.767768 + 0.640728i \(0.778633\pi\)
\(390\) 0 0
\(391\) −5314.29 −0.687354
\(392\) −1312.23 2272.85i −0.169076 0.292848i
\(393\) 4929.56 + 8538.25i 0.632731 + 1.09592i
\(394\) 1941.54 3362.85i 0.248257 0.429994i
\(395\) 1933.99 0.246353
\(396\) 787.638 1364.23i 0.0999502 0.173119i
\(397\) −5862.01 + 10153.3i −0.741072 + 1.28358i 0.210935 + 0.977500i \(0.432349\pi\)
−0.952007 + 0.306075i \(0.900984\pi\)
\(398\) 4581.38 0.576995
\(399\) 1682.15 2913.57i 0.211060 0.365566i
\(400\) 963.550 + 1668.92i 0.120444 + 0.208615i
\(401\) −853.995 1479.16i −0.106350 0.184204i 0.807939 0.589266i \(-0.200583\pi\)
−0.914289 + 0.405062i \(0.867250\pi\)
\(402\) −4871.53 −0.604403
\(403\) 0 0
\(404\) −7028.83 −0.865588
\(405\) −932.884 1615.80i −0.114458 0.198247i
\(406\) 324.249 + 561.615i 0.0396359 + 0.0686514i
\(407\) 3503.08 6067.52i 0.426637 0.738958i
\(408\) 2033.08 0.246697
\(409\) 4803.53 8319.96i 0.580732 1.00586i −0.414661 0.909976i \(-0.636100\pi\)
0.995393 0.0958812i \(-0.0305669\pi\)
\(410\) −827.550 + 1433.36i −0.0996824 + 0.172655i
\(411\) 9259.11 1.11124
\(412\) −172.554 + 298.872i −0.0206338 + 0.0357388i
\(413\) 926.375 + 1604.53i 0.110373 + 0.191171i
\(414\) 908.088 + 1572.85i 0.107802 + 0.186719i
\(415\) −47.3024 −0.00559514
\(416\) 0 0
\(417\) 10112.5 1.18755
\(418\) 7893.04 + 13671.1i 0.923591 + 1.59971i
\(419\) 1354.34 + 2345.78i 0.157908 + 0.273505i 0.934114 0.356974i \(-0.116192\pi\)
−0.776206 + 0.630480i \(0.782858\pi\)
\(420\) 96.7916 167.648i 0.0112451 0.0194771i
\(421\) 10957.4 1.26848 0.634239 0.773137i \(-0.281314\pi\)
0.634239 + 0.773137i \(0.281314\pi\)
\(422\) 1175.23 2035.55i 0.135567 0.234808i
\(423\) −1106.06 + 1915.75i −0.127136 + 0.220206i
\(424\) −803.084 −0.0919840
\(425\) −2609.25 + 4519.36i −0.297805 + 0.515814i
\(426\) −1724.13 2986.28i −0.196090 0.339637i
\(427\) 927.345 + 1606.21i 0.105099 + 0.182037i
\(428\) 8403.73 0.949087
\(429\) 0 0
\(430\) −318.629 −0.0357341
\(431\) 4756.56 + 8238.61i 0.531591 + 0.920742i 0.999320 + 0.0368705i \(0.0117389\pi\)
−0.467729 + 0.883872i \(0.654928\pi\)
\(432\) 919.534 + 1592.68i 0.102410 + 0.177379i
\(433\) 3635.66 6297.16i 0.403508 0.698896i −0.590639 0.806936i \(-0.701124\pi\)
0.994147 + 0.108040i \(0.0344575\pi\)
\(434\) 1470.96 0.162691
\(435\) 525.114 909.523i 0.0578788 0.100249i
\(436\) −4333.74 + 7506.26i −0.476029 + 0.824506i
\(437\) −18200.2 −1.99229
\(438\) −626.003 + 1084.27i −0.0682913 + 0.118284i
\(439\) 4807.62 + 8327.05i 0.522677 + 0.905304i 0.999652 + 0.0263867i \(0.00840013\pi\)
−0.476974 + 0.878917i \(0.658267\pi\)
\(440\) 454.168 + 786.643i 0.0492082 + 0.0852312i
\(441\) −2428.82 −0.262263
\(442\) 0 0
\(443\) −4782.54 −0.512924 −0.256462 0.966554i \(-0.582557\pi\)
−0.256462 + 0.966554i \(0.582557\pi\)
\(444\) −1545.11 2676.21i −0.165153 0.286053i
\(445\) −710.197 1230.10i −0.0756552 0.131039i
\(446\) −4350.88 + 7535.94i −0.461928 + 0.800083i
\(447\) 16010.7 1.69414
\(448\) −123.695 + 214.246i −0.0130447 + 0.0225941i
\(449\) 3434.36 5948.49i 0.360974 0.625226i −0.627147 0.778901i \(-0.715778\pi\)
0.988121 + 0.153675i \(0.0491109\pi\)
\(450\) 1783.44 0.186827
\(451\) 10311.3 17859.7i 1.07658 1.86470i
\(452\) 713.558 + 1235.92i 0.0742543 + 0.128612i
\(453\) 1420.37 + 2460.15i 0.147317 + 0.255161i
\(454\) 7291.70 0.753781
\(455\) 0 0
\(456\) 6962.79 0.715050
\(457\) 4200.74 + 7275.89i 0.429983 + 0.744752i 0.996871 0.0790424i \(-0.0251862\pi\)
−0.566888 + 0.823795i \(0.691853\pi\)
\(458\) 3239.15 + 5610.38i 0.330471 + 0.572393i
\(459\) −2490.06 + 4312.91i −0.253216 + 0.438582i
\(460\) −1047.24 −0.106148
\(461\) −7965.23 + 13796.2i −0.804723 + 1.39382i 0.111754 + 0.993736i \(0.464353\pi\)
−0.916478 + 0.400086i \(0.868980\pi\)
\(462\) −1206.02 + 2088.89i −0.121449 + 0.210355i
\(463\) −11572.2 −1.16156 −0.580781 0.814060i \(-0.697253\pi\)
−0.580781 + 0.814060i \(0.697253\pi\)
\(464\) −671.068 + 1162.32i −0.0671413 + 0.116292i
\(465\) −1191.09 2063.03i −0.118786 0.205743i
\(466\) 2182.68 + 3780.51i 0.216976 + 0.375813i
\(467\) −10862.4 −1.07634 −0.538169 0.842837i \(-0.680884\pi\)
−0.538169 + 0.842837i \(0.680884\pi\)
\(468\) 0 0
\(469\) 1605.22 0.158043
\(470\) −637.777 1104.66i −0.0625925 0.108413i
\(471\) −691.464 1197.65i −0.0676454 0.117165i
\(472\) −1917.24 + 3320.75i −0.186966 + 0.323835i
\(473\) 3970.12 0.385933
\(474\) −5314.36 + 9204.75i −0.514972 + 0.891958i
\(475\) −8936.05 + 15477.7i −0.863188 + 1.49509i
\(476\) −669.920 −0.0645078
\(477\) −371.608 + 643.644i −0.0356704 + 0.0617829i
\(478\) 58.8048 + 101.853i 0.00562692 + 0.00974612i
\(479\) 1042.86 + 1806.28i 0.0994769 + 0.172299i 0.911468 0.411370i \(-0.134950\pi\)
−0.811991 + 0.583669i \(0.801616\pi\)
\(480\) 400.642 0.0380973
\(481\) 0 0
\(482\) −404.522 −0.0382272
\(483\) −1390.46 2408.34i −0.130989 0.226880i
\(484\) −2996.94 5190.85i −0.281456 0.487495i
\(485\) −1338.61 + 2318.55i −0.125326 + 0.217072i
\(486\) 4046.96 0.377723
\(487\) 5914.78 10244.7i 0.550358 0.953247i −0.447891 0.894088i \(-0.647825\pi\)
0.998249 0.0591591i \(-0.0188419\pi\)
\(488\) −1919.24 + 3324.23i −0.178033 + 0.308362i
\(489\) 8535.54 0.789347
\(490\) 700.253 1212.87i 0.0645596 0.111821i
\(491\) −1350.02 2338.30i −0.124085 0.214921i 0.797290 0.603596i \(-0.206266\pi\)
−0.921375 + 0.388675i \(0.872933\pi\)
\(492\) −4548.02 7877.39i −0.416749 0.721830i
\(493\) −3634.45 −0.332023
\(494\) 0 0
\(495\) 840.622 0.0763296
\(496\) 1522.15 + 2636.45i 0.137796 + 0.238669i
\(497\) 568.118 + 984.009i 0.0512748 + 0.0888105i
\(498\) 129.981 225.134i 0.0116960 0.0202581i
\(499\) 3013.67 0.270361 0.135181 0.990821i \(-0.456839\pi\)
0.135181 + 0.990821i \(0.456839\pi\)
\(500\) −1047.82 + 1814.88i −0.0937198 + 0.162327i
\(501\) −4781.87 + 8282.44i −0.426423 + 0.738587i
\(502\) 227.984 0.0202698
\(503\) 6951.00 12039.5i 0.616163 1.06723i −0.374016 0.927422i \(-0.622020\pi\)
0.990179 0.139803i \(-0.0446471\pi\)
\(504\) 114.474 + 198.274i 0.0101172 + 0.0175235i
\(505\) −1875.42 3248.32i −0.165257 0.286234i
\(506\) 13048.7 1.14641
\(507\) 0 0
\(508\) 3990.67 0.348538
\(509\) −815.332 1412.20i −0.0709999 0.122975i 0.828340 0.560226i \(-0.189286\pi\)
−0.899340 + 0.437250i \(0.855952\pi\)
\(510\) 542.460 + 939.569i 0.0470991 + 0.0815781i
\(511\) 206.274 357.278i 0.0178572 0.0309296i
\(512\) −512.000 −0.0441942
\(513\) −8527.85 + 14770.7i −0.733945 + 1.27123i
\(514\) 4234.73 7334.76i 0.363397 0.629421i
\(515\) −184.162 −0.0157575
\(516\) 875.555 1516.51i 0.0746980 0.129381i
\(517\) 7946.71 + 13764.1i 0.676008 + 1.17088i
\(518\) 509.131 + 881.840i 0.0431852 + 0.0747989i
\(519\) 5632.25 0.476355
\(520\) 0 0
\(521\) 8654.86 0.727785 0.363893 0.931441i \(-0.381447\pi\)
0.363893 + 0.931441i \(0.381447\pi\)
\(522\) 621.042 + 1075.68i 0.0520733 + 0.0901936i
\(523\) −2546.50 4410.67i −0.212908 0.368767i 0.739716 0.672920i \(-0.234960\pi\)
−0.952623 + 0.304153i \(0.901627\pi\)
\(524\) 3361.75 5822.73i 0.280265 0.485433i
\(525\) −2730.78 −0.227012
\(526\) 228.481 395.741i 0.0189397 0.0328045i
\(527\) −4121.92 + 7139.38i −0.340709 + 0.590126i
\(528\) −4992.00 −0.411456
\(529\) −1438.58 + 2491.69i −0.118236 + 0.204790i
\(530\) −214.277 371.139i −0.0175615 0.0304174i
\(531\) 1774.31 + 3073.20i 0.145007 + 0.251159i
\(532\) −2294.31 −0.186976
\(533\) 0 0
\(534\) 7806.15 0.632594
\(535\) 2242.26 + 3883.71i 0.181199 + 0.313846i
\(536\) 1661.09 + 2877.10i 0.133859 + 0.231850i
\(537\) −6159.67 + 10668.9i −0.494989 + 0.857347i
\(538\) −2438.61 −0.195420
\(539\) −8725.16 + 15112.4i −0.697253 + 1.20768i
\(540\) −490.696 + 849.910i −0.0391040 + 0.0677302i
\(541\) 5004.07 0.397674 0.198837 0.980033i \(-0.436284\pi\)
0.198837 + 0.980033i \(0.436284\pi\)
\(542\) −5891.13 + 10203.7i −0.466874 + 0.808650i
\(543\) 9929.63 + 17198.6i 0.784754 + 1.35923i
\(544\) −693.237 1200.72i −0.0546365 0.0946333i
\(545\) −4625.27 −0.363532
\(546\) 0 0
\(547\) −10856.3 −0.848598 −0.424299 0.905522i \(-0.639479\pi\)
−0.424299 + 0.905522i \(0.639479\pi\)
\(548\) −3157.16 5468.37i −0.246108 0.426272i
\(549\) 1776.17 + 3076.42i 0.138078 + 0.239159i
\(550\) 6406.73 11096.8i 0.496698 0.860307i
\(551\) −12447.1 −0.962368
\(552\) 2877.70 4984.33i 0.221890 0.384324i
\(553\) 1751.14 3033.06i 0.134658 0.233235i
\(554\) −12278.8 −0.941653
\(555\) 824.526 1428.12i 0.0630616 0.109226i
\(556\) −3448.14 5972.35i −0.263010 0.455547i
\(557\) −11541.9 19991.2i −0.878001 1.52074i −0.853531 0.521042i \(-0.825543\pi\)
−0.0244704 0.999701i \(-0.507790\pi\)
\(558\) 2817.36 0.213743
\(559\) 0 0
\(560\) −132.016 −0.00996193
\(561\) −6759.06 11707.0i −0.508677 0.881054i
\(562\) 1852.24 + 3208.17i 0.139025 + 0.240798i
\(563\) 7747.97 13419.9i 0.579996 1.00458i −0.415483 0.909601i \(-0.636387\pi\)
0.995479 0.0949820i \(-0.0302793\pi\)
\(564\) 7010.14 0.523369
\(565\) −380.779 + 659.529i −0.0283531 + 0.0491090i
\(566\) 172.290 298.414i 0.0127948 0.0221613i
\(567\) −3378.74 −0.250253
\(568\) −1175.78 + 2036.52i −0.0868570 + 0.150441i
\(569\) −9082.73 15731.7i −0.669188 1.15907i −0.978132 0.207987i \(-0.933309\pi\)
0.308944 0.951080i \(-0.400024\pi\)
\(570\) 1857.80 + 3217.80i 0.136517 + 0.236454i
\(571\) −8289.75 −0.607557 −0.303779 0.952743i \(-0.598248\pi\)
−0.303779 + 0.952743i \(0.598248\pi\)
\(572\) 0 0
\(573\) −21866.9 −1.59424
\(574\) 1498.62 + 2595.68i 0.108974 + 0.188749i
\(575\) 7386.49 + 12793.8i 0.535718 + 0.927891i
\(576\) −236.916 + 410.350i −0.0171380 + 0.0296839i
\(577\) 5336.46 0.385026 0.192513 0.981294i \(-0.438336\pi\)
0.192513 + 0.981294i \(0.438336\pi\)
\(578\) −3035.75 + 5258.06i −0.218461 + 0.378385i
\(579\) 7546.50 13070.9i 0.541661 0.938185i
\(580\) −716.211 −0.0512742
\(581\) −42.8302 + 74.1841i −0.00305834 + 0.00529720i
\(582\) −7356.70 12742.2i −0.523960 0.907526i
\(583\) 2669.89 + 4624.39i 0.189667 + 0.328512i
\(584\) 853.816 0.0604986
\(585\) 0 0
\(586\) 11450.0 0.807159
\(587\) −3438.86 5956.28i −0.241800 0.418811i 0.719427 0.694568i \(-0.244405\pi\)
−0.961227 + 0.275758i \(0.911071\pi\)
\(588\) 3848.42 + 6665.67i 0.269909 + 0.467496i
\(589\) −14116.6 + 24450.6i −0.987545 + 1.71048i
\(590\) −2046.21 −0.142782
\(591\) −5694.01 + 9862.32i −0.396312 + 0.686432i
\(592\) −1053.70 + 1825.07i −0.0731536 + 0.126706i
\(593\) 8358.37 0.578814 0.289407 0.957206i \(-0.406542\pi\)
0.289407 + 0.957206i \(0.406542\pi\)
\(594\) 6114.07 10589.9i 0.422329 0.731495i
\(595\) −178.746 309.598i −0.0123158 0.0213315i
\(596\) −5459.33 9455.84i −0.375206 0.649876i
\(597\) −13436.0 −0.921101
\(598\) 0 0
\(599\) −14896.0 −1.01609 −0.508043 0.861332i \(-0.669631\pi\)
−0.508043 + 0.861332i \(0.669631\pi\)
\(600\) −2825.83 4894.48i −0.192273 0.333027i
\(601\) −3830.80 6635.14i −0.260003 0.450338i 0.706240 0.707973i \(-0.250390\pi\)
−0.966242 + 0.257635i \(0.917057\pi\)
\(602\) −288.504 + 499.704i −0.0195325 + 0.0338313i
\(603\) 3074.52 0.207636
\(604\) 968.631 1677.72i 0.0652534 0.113022i
\(605\) 1599.27 2770.02i 0.107470 0.186144i
\(606\) 20613.7 1.38180
\(607\) −11359.1 + 19674.5i −0.759558 + 1.31559i 0.183519 + 0.983016i \(0.441251\pi\)
−0.943076 + 0.332576i \(0.892082\pi\)
\(608\) −2374.17 4112.18i −0.158364 0.274294i
\(609\) −950.933 1647.06i −0.0632738 0.109594i
\(610\) −2048.35 −0.135960
\(611\) 0 0
\(612\) −1283.12 −0.0847498
\(613\) 6040.47 + 10462.4i 0.397997 + 0.689352i 0.993479 0.114018i \(-0.0363720\pi\)
−0.595481 + 0.803369i \(0.703039\pi\)
\(614\) −2115.94 3664.91i −0.139075 0.240885i
\(615\) 2426.98 4203.65i 0.159131 0.275622i
\(616\) 1644.92 0.107590
\(617\) 10552.1 18276.9i 0.688514 1.19254i −0.283804 0.958882i \(-0.591597\pi\)
0.972318 0.233660i \(-0.0750702\pi\)
\(618\) 506.054 876.511i 0.0329393 0.0570525i
\(619\) −12516.1 −0.812706 −0.406353 0.913716i \(-0.633200\pi\)
−0.406353 + 0.913716i \(0.633200\pi\)
\(620\) −812.274 + 1406.90i −0.0526157 + 0.0911330i
\(621\) 7049.07 + 12209.3i 0.455506 + 0.788960i
\(622\) 3912.14 + 6776.03i 0.252191 + 0.436807i
\(623\) −2572.21 −0.165415
\(624\) 0 0
\(625\) 13937.2 0.891978
\(626\) 3751.20 + 6497.27i 0.239502 + 0.414829i
\(627\) −23148.1 40093.8i −1.47440 2.55373i
\(628\) −471.550 + 816.748i −0.0299632 + 0.0518978i
\(629\) −5706.76 −0.361754
\(630\) −61.0871 + 105.806i −0.00386313 + 0.00669113i
\(631\) 5034.83 8720.58i 0.317644 0.550176i −0.662352 0.749193i \(-0.730442\pi\)
0.979996 + 0.199017i \(0.0637749\pi\)
\(632\) 7248.35 0.456209
\(633\) −3446.62 + 5969.72i −0.216415 + 0.374842i
\(634\) −8277.14 14336.4i −0.518497 0.898064i
\(635\) 1064.78 + 1844.25i 0.0665425 + 0.115255i
\(636\) 2355.23 0.146841
\(637\) 0 0
\(638\) 8924.00 0.553769
\(639\) 1088.13 + 1884.70i 0.0673643 + 0.116678i
\(640\) −136.611 236.616i −0.00843751 0.0146142i
\(641\) 1694.43 2934.84i 0.104409 0.180842i −0.809088 0.587688i \(-0.800038\pi\)
0.913497 + 0.406846i \(0.133372\pi\)
\(642\) −24645.9 −1.51510
\(643\) 12316.7 21333.1i 0.755400 1.30839i −0.189776 0.981827i \(-0.560776\pi\)
0.945175 0.326563i \(-0.105891\pi\)
\(644\) −948.233 + 1642.39i −0.0580211 + 0.100496i
\(645\) 934.453 0.0570451
\(646\) 6429.14 11135.6i 0.391565 0.678211i
\(647\) −954.062 1652.48i −0.0579723 0.100411i 0.835583 0.549365i \(-0.185130\pi\)
−0.893555 + 0.448954i \(0.851797\pi\)
\(648\) −3496.34 6055.83i −0.211958 0.367123i
\(649\) 25495.8 1.54206
\(650\) 0 0
\(651\) −4313.91 −0.259717
\(652\) −2910.44 5041.03i −0.174819 0.302795i
\(653\) 5165.70 + 8947.26i 0.309570 + 0.536192i 0.978268 0.207342i \(-0.0664814\pi\)
−0.668698 + 0.743534i \(0.733148\pi\)
\(654\) 12709.7 22013.8i 0.759921 1.31622i
\(655\) 3587.90 0.214032
\(656\) −3101.56 + 5372.06i −0.184597 + 0.319731i
\(657\) 395.083 684.304i 0.0234607 0.0406351i
\(658\) −2309.91 −0.136854
\(659\) −9519.92 + 16489.0i −0.562737 + 0.974688i 0.434520 + 0.900662i \(0.356918\pi\)
−0.997256 + 0.0740261i \(0.976415\pi\)
\(660\) −1331.95 2307.01i −0.0785548 0.136061i
\(661\) 14321.5 + 24805.6i 0.842726 + 1.45964i 0.887582 + 0.460650i \(0.152384\pi\)
−0.0448562 + 0.998993i \(0.514283\pi\)
\(662\) −1774.25 −0.104166
\(663\) 0 0
\(664\) −177.284 −0.0103614
\(665\) −612.163 1060.30i −0.0356972 0.0618294i
\(666\) 975.152 + 1689.01i 0.0567363 + 0.0982701i
\(667\) −5144.35 + 8910.28i −0.298636 + 0.517252i
\(668\) 6522.07 0.377764
\(669\) 12759.9 22100.9i 0.737411 1.27723i
\(670\) −886.417 + 1535.32i −0.0511123 + 0.0885292i
\(671\) 25522.5 1.46838
\(672\) 362.763 628.324i 0.0208242 0.0360687i
\(673\) 9186.40 + 15911.3i 0.526166 + 0.911346i 0.999535 + 0.0304820i \(0.00970424\pi\)
−0.473369 + 0.880864i \(0.656962\pi\)
\(674\) 6563.94 + 11369.1i 0.375124 + 0.649734i
\(675\) 13844.0 0.789417
\(676\) 0 0
\(677\) −12837.4 −0.728779 −0.364389 0.931247i \(-0.618722\pi\)
−0.364389 + 0.931247i \(0.618722\pi\)
\(678\) −2092.67 3624.61i −0.118538 0.205313i
\(679\) 2424.11 + 4198.68i 0.137008 + 0.237306i
\(680\) 369.935 640.747i 0.0208623 0.0361346i
\(681\) −21384.6 −1.20332
\(682\) 10120.9 17530.0i 0.568256 0.984249i
\(683\) 6112.37 10586.9i 0.342436 0.593116i −0.642449 0.766329i \(-0.722081\pi\)
0.984884 + 0.173213i \(0.0554148\pi\)
\(684\) −4394.36 −0.245647
\(685\) 1684.77 2918.11i 0.0939736 0.162767i
\(686\) −2593.95 4492.85i −0.144369 0.250055i
\(687\) −9499.56 16453.7i −0.527556 0.913754i
\(688\) −1194.18 −0.0661742
\(689\) 0 0
\(690\) 3071.29 0.169452
\(691\) −3831.50 6636.35i −0.210936 0.365352i 0.741072 0.671426i \(-0.234318\pi\)
−0.952008 + 0.306074i \(0.900985\pi\)
\(692\) −1920.48 3326.37i −0.105500 0.182731i
\(693\) 761.146 1318.34i 0.0417223 0.0722651i
\(694\) 17308.1 0.946694
\(695\) 1840.05 3187.06i 0.100427 0.173945i
\(696\) 1968.06 3408.78i 0.107183 0.185646i
\(697\) −16797.8 −0.912856
\(698\) −10173.5 + 17621.1i −0.551682 + 0.955542i
\(699\) −6401.21 11087.2i −0.346375 0.599939i
\(700\) 931.141 + 1612.78i 0.0502769 + 0.0870821i
\(701\) −15215.8 −0.819818 −0.409909 0.912126i \(-0.634440\pi\)
−0.409909 + 0.912126i \(0.634440\pi\)
\(702\) 0 0
\(703\) −19544.3 −1.04854
\(704\) 1702.17 + 2948.24i 0.0911263 + 0.157835i
\(705\) 1870.43 + 3239.68i 0.0999212 + 0.173069i
\(706\) −921.610 + 1596.27i −0.0491292 + 0.0850943i
\(707\) −6792.42 −0.361323
\(708\) 5622.74 9738.87i 0.298468 0.516962i
\(709\) 7705.43 13346.2i 0.408157 0.706949i −0.586526 0.809930i \(-0.699505\pi\)
0.994683 + 0.102981i \(0.0328382\pi\)
\(710\) −1254.88 −0.0663306
\(711\) 3354.00 5809.30i 0.176913 0.306422i
\(712\) −2661.73 4610.26i −0.140102 0.242664i
\(713\) 11668.7 + 20210.8i 0.612897 + 1.06157i
\(714\) 1964.69 0.102979
\(715\) 0 0
\(716\) 8401.27 0.438506
\(717\) −172.459 298.707i −0.00898268 0.0155585i
\(718\) 2056.77 + 3562.44i 0.106905 + 0.185166i
\(719\) −577.894 + 1000.94i −0.0299747 + 0.0519177i −0.880624 0.473816i \(-0.842876\pi\)
0.850649 + 0.525734i \(0.176209\pi\)
\(720\) −252.853 −0.0130879
\(721\) −166.750 + 288.819i −0.00861317 + 0.0149184i
\(722\) 15159.3 26256.6i 0.781398 1.35342i
\(723\) 1186.36 0.0610249
\(724\) 6771.60 11728.7i 0.347603 0.602066i
\(725\) 5051.62 + 8749.67i 0.258776 + 0.448213i
\(726\) 8789.21 + 15223.4i 0.449309 + 0.778226i
\(727\) 18048.8 0.920759 0.460379 0.887722i \(-0.347713\pi\)
0.460379 + 0.887722i \(0.347713\pi\)
\(728\) 0 0
\(729\) 11731.6 0.596029
\(730\) 227.813 + 394.584i 0.0115503 + 0.0200058i
\(731\) −1616.90 2800.55i −0.0818101 0.141699i
\(732\) 5628.63 9749.07i 0.284208 0.492262i
\(733\) −7855.68 −0.395847 −0.197924 0.980217i \(-0.563420\pi\)
−0.197924 + 0.980217i \(0.563420\pi\)
\(734\) 2211.81 3830.96i 0.111225 0.192648i
\(735\) −2053.65 + 3557.03i −0.103061 + 0.178508i
\(736\) −3924.95 −0.196570
\(737\) 11044.8 19130.1i 0.552020 0.956127i
\(738\) 2870.34 + 4971.58i 0.143169 + 0.247976i
\(739\) −151.401 262.234i −0.00753635 0.0130533i 0.862233 0.506512i \(-0.169066\pi\)
−0.869769 + 0.493459i \(0.835732\pi\)
\(740\) −1124.59 −0.0558656
\(741\) 0 0
\(742\) −776.072 −0.0383969
\(743\) −8599.96 14895.6i −0.424633 0.735485i 0.571753 0.820426i \(-0.306263\pi\)
−0.996386 + 0.0849402i \(0.972930\pi\)
\(744\) −4464.06 7731.98i −0.219974 0.381006i
\(745\) 2913.29 5045.97i 0.143268 0.248148i
\(746\) −21092.2 −1.03518
\(747\) −82.0339 + 142.087i −0.00401802 + 0.00695942i
\(748\) −4609.40 + 7983.71i −0.225316 + 0.390258i
\(749\) 8121.07 0.396178
\(750\) 3072.97 5322.54i 0.149612 0.259136i
\(751\) −6499.83 11258.0i −0.315822 0.547019i 0.663790 0.747919i \(-0.268947\pi\)
−0.979612 + 0.200900i \(0.935614\pi\)
\(752\) −2390.31 4140.14i −0.115912 0.200765i
\(753\) −668.616 −0.0323582
\(754\) 0 0
\(755\) 1033.79 0.0498325
\(756\) 888.606 + 1539.11i 0.0427490 + 0.0740435i
\(757\) −3023.40 5236.69i −0.145162 0.251428i 0.784272 0.620418i \(-0.213037\pi\)
−0.929433 + 0.368990i \(0.879704\pi\)
\(758\) −12239.0 + 21198.5i −0.586463 + 1.01578i
\(759\) −38268.2 −1.83010
\(760\) 1266.94 2194.40i 0.0604694 0.104736i
\(761\) −13451.1 + 23298.1i −0.640740 + 1.10979i 0.344527 + 0.938776i \(0.388039\pi\)
−0.985268 + 0.171019i \(0.945294\pi\)
\(762\) −11703.5 −0.556397
\(763\) −4187.97 + 7253.78i −0.198709 + 0.344174i
\(764\) 7456.14 + 12914.4i 0.353081 + 0.611554i
\(765\) −342.358 592.981i −0.0161804 0.0280252i
\(766\) −14469.4 −0.682507
\(767\) 0 0
\(768\) 1501.56 0.0705505
\(769\) −1034.14 1791.19i −0.0484943 0.0839947i 0.840759 0.541409i \(-0.182109\pi\)
−0.889254 + 0.457414i \(0.848776\pi\)
\(770\) 438.892 + 760.184i 0.0205410 + 0.0355781i
\(771\) −12419.3 + 21510.9i −0.580118 + 1.00479i
\(772\) −10292.8 −0.479852
\(773\) 4194.86 7265.71i 0.195186 0.338072i −0.751776 0.659419i \(-0.770802\pi\)
0.946961 + 0.321347i \(0.104136\pi\)
\(774\) −552.580 + 957.097i −0.0256616 + 0.0444472i
\(775\) 22916.7 1.06218
\(776\) −5016.96 + 8689.63i −0.232086 + 0.401984i
\(777\) −1493.14 2586.20i −0.0689398 0.119407i
\(778\) −11781.1 20405.4i −0.542894 0.940320i
\(779\) −57528.3 −2.64591
\(780\) 0 0
\(781\) 15635.8 0.716379
\(782\) −5314.29 9204.62i −0.243016 0.420917i
\(783\) 4820.86 + 8349.98i 0.220030 + 0.381103i
\(784\) 2624.47 4545.71i 0.119555 0.207075i
\(785\) −503.271 −0.0228822
\(786\) −9859.12 + 17076.5i −0.447409 + 0.774934i
\(787\) 10729.2 18583.5i 0.485964 0.841714i −0.513906 0.857847i \(-0.671802\pi\)
0.999870 + 0.0161324i \(0.00513532\pi\)
\(788\) 7766.16 0.351089
\(789\) −670.074 + 1160.60i −0.0302348 + 0.0523683i
\(790\) 1933.99 + 3349.76i 0.0870990 + 0.150860i
\(791\) 689.557 + 1194.35i 0.0309960 + 0.0536866i
\(792\) 3150.55 0.141351
\(793\) 0 0
\(794\) −23448.0 −1.04803
\(795\) 628.416 + 1088.45i 0.0280348 + 0.0485576i
\(796\) 4581.38 + 7935.19i 0.203998 + 0.353336i
\(797\) 3024.86 5239.21i 0.134437 0.232851i −0.790945 0.611887i \(-0.790411\pi\)
0.925382 + 0.379036i \(0.123744\pi\)
\(798\) 6728.60 0.298484
\(799\) 6472.86 11211.3i 0.286600 0.496406i
\(800\) −1927.10 + 3337.83i −0.0851666 + 0.147513i
\(801\) −4926.62 −0.217320
\(802\) 1707.99 2958.32i 0.0752010 0.130252i
\(803\) −2838.55 4916.52i −0.124745 0.216065i
\(804\) −4871.53 8437.74i −0.213689 0.370120i
\(805\) −1012.02 −0.0443094
\(806\) 0 0
\(807\) 7151.78 0.311964
\(808\) −7028.83 12174.3i −0.306032 0.530062i
\(809\) 16682.1 + 28894.2i 0.724981 + 1.25570i 0.958982 + 0.283468i \(0.0914850\pi\)
−0.234000 + 0.972237i \(0.575182\pi\)
\(810\) 1865.77 3231.60i 0.0809338 0.140181i
\(811\) 2210.77 0.0957221 0.0478611 0.998854i \(-0.484760\pi\)
0.0478611 + 0.998854i \(0.484760\pi\)
\(812\) −648.497 + 1123.23i −0.0280268 + 0.0485439i
\(813\) 17277.1 29924.8i 0.745307 1.29091i
\(814\) 14012.3 0.603356
\(815\) 1553.11 2690.07i 0.0667524 0.115619i
\(816\) 2033.08 + 3521.39i 0.0872205 + 0.151070i
\(817\) −5537.49 9591.21i −0.237126 0.410715i
\(818\) 19214.1 0.821279
\(819\) 0 0
\(820\) −3310.20 −0.140972
\(821\) −12701.5 21999.6i −0.539932 0.935189i −0.998907 0.0467399i \(-0.985117\pi\)
0.458976 0.888449i \(-0.348217\pi\)
\(822\) 9259.11 + 16037.3i 0.392881 + 0.680491i
\(823\) 21015.5 36399.8i 0.890100 1.54170i 0.0503464 0.998732i \(-0.483967\pi\)
0.839754 0.542967i \(-0.182699\pi\)
\(824\) −690.215 −0.0291806
\(825\) −18789.2 + 32543.9i −0.792917 + 1.37337i
\(826\) −1852.75 + 3209.06i −0.0780453 + 0.135178i
\(827\) −27713.0 −1.16527 −0.582633 0.812735i \(-0.697978\pi\)
−0.582633 + 0.812735i \(0.697978\pi\)
\(828\) −1816.18 + 3145.71i −0.0762276 + 0.132030i
\(829\) 11789.9 + 20420.6i 0.493943 + 0.855534i 0.999976 0.00698019i \(-0.00222188\pi\)
−0.506033 + 0.862514i \(0.668889\pi\)
\(830\) −47.3024 81.9302i −0.00197818 0.00342631i
\(831\) 36010.4 1.50323
\(832\) 0 0
\(833\) 14213.9 0.591214
\(834\) 10112.5 + 17515.3i 0.419863 + 0.727225i
\(835\) 1740.20 + 3014.12i 0.0721224 + 0.124920i
\(836\) −15786.1 + 27342.3i −0.653077 + 1.13116i
\(837\) 21869.9 0.903146
\(838\) −2708.67 + 4691.56i −0.111658 + 0.193397i
\(839\) 4324.02 7489.42i 0.177928 0.308180i −0.763243 0.646112i \(-0.776394\pi\)
0.941171 + 0.337932i \(0.109727\pi\)
\(840\) 387.166 0.0159030
\(841\) 8676.27 15027.7i 0.355745 0.616169i
\(842\) 10957.4 + 18978.7i 0.448474 + 0.776781i
\(843\) −5432.11 9408.70i −0.221936 0.384404i
\(844\) 4700.91 0.191720
\(845\) 0 0
\(846\) −4424.24 −0.179797
\(847\) −2896.14 5016.26i −0.117488 0.203495i
\(848\) −803.084 1390.98i −0.0325213 0.0563285i
\(849\) −505.279 + 875.169i −0.0204254 + 0.0353778i
\(850\) −10437.0 −0.421160
\(851\) −8077.59 + 13990.8i −0.325378 + 0.563570i
\(852\) 3448.25 5972.55i 0.138656 0.240160i
\(853\) 23117.7 0.927942 0.463971 0.885851i \(-0.346424\pi\)
0.463971 + 0.885851i \(0.346424\pi\)
\(854\) −1854.69 + 3212.42i −0.0743164 + 0.128720i
\(855\) −1172.49 2030.82i −0.0468987 0.0812309i
\(856\) 8403.73 + 14555.7i 0.335553 + 0.581195i
\(857\) 3246.65 0.129409 0.0647045 0.997904i \(-0.479390\pi\)
0.0647045 + 0.997904i \(0.479390\pi\)
\(858\) 0 0
\(859\) 29452.5 1.16986 0.584928 0.811085i \(-0.301123\pi\)
0.584928 + 0.811085i \(0.301123\pi\)
\(860\) −318.629 551.882i −0.0126339 0.0218826i
\(861\) −4395.04 7612.44i −0.173964 0.301314i
\(862\) −9513.13 + 16477.2i −0.375891 + 0.651063i
\(863\) 15485.4 0.610809 0.305405 0.952223i \(-0.401208\pi\)
0.305405 + 0.952223i \(0.401208\pi\)
\(864\) −1839.07 + 3185.36i −0.0724148 + 0.125426i
\(865\) 1024.84 1775.07i 0.0402838 0.0697736i
\(866\) 14542.7 0.570646
\(867\) 8903.02 15420.5i 0.348746 0.604045i
\(868\) 1470.96 + 2547.77i 0.0575201 + 0.0996278i
\(869\) −24097.5 41738.1i −0.940681 1.62931i
\(870\) 2100.45 0.0818530
\(871\) 0 0
\(872\) −17335.0 −0.673206
\(873\) 4642.96 + 8041.84i 0.180000 + 0.311770i
\(874\) −18200.2 31523.6i −0.704382 1.22003i
\(875\) −1012.58 + 1753.83i −0.0391215 + 0.0677604i
\(876\) −2504.01 −0.0965784
\(877\) −6851.03 + 11866.3i −0.263789 + 0.456896i −0.967246 0.253842i \(-0.918306\pi\)
0.703457 + 0.710738i \(0.251639\pi\)
\(878\) −9615.25 + 16654.1i −0.369589 + 0.640147i
\(879\) −33579.8 −1.28853
\(880\) −908.337 + 1573.29i −0.0347955 + 0.0602675i
\(881\) −8434.32 14608.7i −0.322542 0.558659i 0.658470 0.752607i \(-0.271204\pi\)
−0.981012 + 0.193948i \(0.937871\pi\)
\(882\) −2428.82 4206.84i −0.0927240 0.160603i
\(883\) 15162.4 0.577867 0.288934 0.957349i \(-0.406699\pi\)
0.288934 + 0.957349i \(0.406699\pi\)
\(884\) 0 0
\(885\) 6000.98 0.227933
\(886\) −4782.54 8283.61i −0.181346 0.314101i
\(887\) 6586.93 + 11408.9i 0.249343 + 0.431875i 0.963344 0.268270i \(-0.0864519\pi\)
−0.714001 + 0.700145i \(0.753119\pi\)
\(888\) 3090.23 5352.43i 0.116781 0.202270i
\(889\) 3856.44 0.145490
\(890\) 1420.39 2460.20i 0.0534963 0.0926584i
\(891\) −23247.5 + 40265.8i −0.874096 + 1.51398i
\(892\) −17403.5 −0.653265
\(893\) 22168.0 38396.1i 0.830709 1.43883i
\(894\) 16010.7 + 27731.4i 0.598970 + 1.03745i
\(895\) 2241.61 + 3882.58i 0.0837192 + 0.145006i
\(896\) −494.779 −0.0184480
\(897\) 0 0
\(898\) 13737.4 0.510495
\(899\) 7980.22 + 13822.2i 0.296057 + 0.512786i
\(900\) 1783.44 + 3089.01i 0.0660533 + 0.114408i
\(901\) 2174.72 3766.72i 0.0804110 0.139276i
\(902\) 41245.1 1.52252
\(903\) 846.105 1465.50i 0.0311812 0.0540074i
\(904\) −1427.12 + 2471.84i −0.0525057 + 0.0909425i
\(905\) 7227.12 0.265456
\(906\) −2840.73 + 4920.29i −0.104169 + 0.180426i
\(907\) −16095.0 27877.4i −0.589225 1.02057i −0.994334 0.106300i \(-0.966100\pi\)
0.405109 0.914268i \(-0.367234\pi\)
\(908\) 7291.70 + 12629.6i 0.266502 + 0.461595i
\(909\) −13009.7 −0.474703
\(910\) 0 0
\(911\) 13646.0 0.496281 0.248141 0.968724i \(-0.420180\pi\)
0.248141 + 0.968724i \(0.420180\pi\)
\(912\) 6962.79 + 12059.9i 0.252808 + 0.437877i
\(913\) 589.388 + 1020.85i 0.0213646 + 0.0370046i
\(914\) −8401.47 + 14551.8i −0.304044 + 0.526619i
\(915\) 6007.26 0.217043
\(916\) −6478.31 + 11220.8i −0.233678 + 0.404743i
\(917\) 3248.68 5626.88i 0.116991 0.202635i
\(918\) −9960.23 −0.358101
\(919\) −17461.8 + 30244.7i −0.626780 + 1.08561i 0.361414 + 0.932406i \(0.382294\pi\)
−0.988194 + 0.153209i \(0.951039\pi\)
\(920\) −1047.24 1813.88i −0.0375289 0.0650020i
\(921\) 6205.47 + 10748.2i 0.222016 + 0.384544i
\(922\) −31860.9 −1.13805
\(923\) 0 0
\(924\) −4824.09 −0.171754
\(925\) 7931.99 + 13738.6i 0.281948 + 0.488349i
\(926\) −11572.2 20043.6i −0.410674 0.711309i
\(927\) −319.381 + 553.184i −0.0113159 + 0.0195997i
\(928\) −2684.27 −0.0949522
\(929\) 2143.75 3713.08i 0.0757094 0.131133i −0.825685 0.564131i \(-0.809211\pi\)
0.901395 + 0.432999i \(0.142545\pi\)
\(930\) 2382.18 4126.06i 0.0839944 0.145483i
\(931\) 48679.1 1.71363
\(932\) −4365.36 + 7561.03i −0.153425 + 0.265740i
\(933\) −11473.3 19872.3i −0.402591 0.697308i
\(934\) −10862.4 18814.2i −0.380543 0.659120i
\(935\) −4919.47 −0.172068
\(936\) 0 0
\(937\) −14174.1 −0.494182 −0.247091 0.968992i \(-0.579475\pi\)
−0.247091 + 0.968992i \(0.579475\pi\)
\(938\) 1605.22 + 2780.32i 0.0558767 + 0.0967813i
\(939\) −11001.3 19054.7i −0.382335 0.662223i
\(940\) 1275.55 2209.33i 0.0442596 0.0766598i
\(941\) 11317.1 0.392058 0.196029 0.980598i \(-0.437195\pi\)
0.196029 + 0.980598i \(0.437195\pi\)
\(942\) 1382.93 2395.30i 0.0478325 0.0828484i
\(943\) −23776.3 + 41181.7i −0.821062 + 1.42212i
\(944\) −7668.95 −0.264410
\(945\) −474.191 + 821.323i −0.0163232 + 0.0282726i
\(946\) 3970.12 + 6876.45i 0.136448 + 0.236335i
\(947\) 20257.2 + 35086.4i 0.695110 + 1.20397i 0.970144 + 0.242531i \(0.0779776\pi\)
−0.275034 + 0.961435i \(0.588689\pi\)
\(948\) −21257.5 −0.728281
\(949\) 0 0
\(950\) −35744.2 −1.22073
\(951\) 24274.6 + 42044.9i 0.827717 + 1.43365i
\(952\) −669.920 1160.34i −0.0228070 0.0395028i
\(953\) 24740.0 42850.9i 0.840930 1.45653i −0.0481798 0.998839i \(-0.515342\pi\)
0.889110 0.457694i \(-0.151325\pi\)
\(954\) −1486.43 −0.0504455
\(955\) −3978.86 + 6891.59i −0.134820 + 0.233515i
\(956\) −117.610 + 203.706i −0.00397884 + 0.00689155i
\(957\) −26171.7 −0.884023
\(958\) −2085.72 + 3612.57i −0.0703408 + 0.121834i
\(959\) −3050.97 5284.44i −0.102733 0.177939i
\(960\) 400.642 + 693.932i 0.0134694 + 0.0233298i
\(961\) 6411.32 0.215210
\(962\) 0 0
\(963\) 15554.5 0.520495
\(964\) −404.522 700.654i −0.0135153 0.0234093i
\(965\) −2746.30 4756.73i −0.0916130 0.158678i
\(966\) 2780.91 4816.68i 0.0926235 0.160429i
\(967\) 46779.9 1.55568 0.777838 0.628465i \(-0.216316\pi\)
0.777838 + 0.628465i \(0.216316\pi\)
\(968\) 5993.88 10381.7i 0.199019 0.344711i
\(969\) −18854.9 + 32657.7i −0.625086 + 1.08268i
\(970\) −5354.45 −0.177238
\(971\) −12189.3 + 21112.4i −0.402855 + 0.697766i −0.994069 0.108749i \(-0.965316\pi\)
0.591214 + 0.806515i \(0.298649\pi\)
\(972\) 4046.96 + 7009.53i 0.133545 + 0.231307i
\(973\) −3332.16 5771.47i −0.109788 0.190159i
\(974\) 23659.1 0.778323
\(975\) 0 0
\(976\) −7676.98 −0.251777
\(977\) 12118.8 + 20990.4i 0.396842 + 0.687351i 0.993334 0.115268i \(-0.0367726\pi\)
−0.596492 + 0.802619i \(0.703439\pi\)
\(978\) 8535.54 + 14784.0i 0.279076 + 0.483374i
\(979\) −17698.1 + 30654.0i −0.577768 + 1.00072i
\(980\) 2801.01 0.0913011
\(981\) −8021.34 + 13893.4i −0.261062 + 0.452172i
\(982\) 2700.04 4676.60i 0.0877410 0.151972i
\(983\) −32953.2 −1.06922 −0.534611 0.845098i \(-0.679542\pi\)
−0.534611 + 0.845098i \(0.679542\pi\)
\(984\) 9096.03 15754.8i 0.294686 0.510411i
\(985\) 2072.15 + 3589.06i 0.0670295 + 0.116099i
\(986\) −3634.45 6295.05i −0.117388 0.203322i
\(987\) 6774.36 0.218470
\(988\) 0 0
\(989\) −9154.51 −0.294334
\(990\) 840.622 + 1456.00i 0.0269866 + 0.0467422i
\(991\) 15127.4 + 26201.4i 0.484902 + 0.839875i 0.999850 0.0173469i \(-0.00552196\pi\)
−0.514948 + 0.857222i \(0.672189\pi\)
\(992\) −3044.31 + 5272.89i −0.0974363 + 0.168765i
\(993\) 5203.39 0.166288
\(994\) −1136.24 + 1968.02i −0.0362567 + 0.0627985i
\(995\) −2444.79 + 4234.49i −0.0778944 + 0.134917i
\(996\) 519.925 0.0165406
\(997\) 2397.23 4152.12i 0.0761495 0.131895i −0.825436 0.564496i \(-0.809071\pi\)
0.901586 + 0.432601i \(0.142404\pi\)
\(998\) 3013.67 + 5219.83i 0.0955872 + 0.165562i
\(999\) 7569.65 + 13111.0i 0.239733 + 0.415230i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.i.315.1 4
13.2 odd 12 26.4.b.a.25.4 yes 4
13.3 even 3 338.4.a.f.1.2 2
13.4 even 6 338.4.c.h.191.1 4
13.5 odd 4 338.4.e.g.23.3 8
13.6 odd 12 338.4.e.g.147.1 8
13.7 odd 12 338.4.e.g.147.3 8
13.8 odd 4 338.4.e.g.23.1 8
13.9 even 3 inner 338.4.c.i.191.1 4
13.10 even 6 338.4.a.i.1.2 2
13.11 odd 12 26.4.b.a.25.2 4
13.12 even 2 338.4.c.h.315.1 4
39.2 even 12 234.4.b.b.181.2 4
39.11 even 12 234.4.b.b.181.3 4
52.11 even 12 208.4.f.d.129.1 4
52.15 even 12 208.4.f.d.129.2 4
65.2 even 12 650.4.c.e.649.2 4
65.24 odd 12 650.4.d.d.51.3 4
65.28 even 12 650.4.c.f.649.3 4
65.37 even 12 650.4.c.f.649.2 4
65.54 odd 12 650.4.d.d.51.1 4
65.63 even 12 650.4.c.e.649.3 4
104.11 even 12 832.4.f.h.129.4 4
104.37 odd 12 832.4.f.j.129.2 4
104.67 even 12 832.4.f.h.129.3 4
104.93 odd 12 832.4.f.j.129.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.b.a.25.2 4 13.11 odd 12
26.4.b.a.25.4 yes 4 13.2 odd 12
208.4.f.d.129.1 4 52.11 even 12
208.4.f.d.129.2 4 52.15 even 12
234.4.b.b.181.2 4 39.2 even 12
234.4.b.b.181.3 4 39.11 even 12
338.4.a.f.1.2 2 13.3 even 3
338.4.a.i.1.2 2 13.10 even 6
338.4.c.h.191.1 4 13.4 even 6
338.4.c.h.315.1 4 13.12 even 2
338.4.c.i.191.1 4 13.9 even 3 inner
338.4.c.i.315.1 4 1.1 even 1 trivial
338.4.e.g.23.1 8 13.8 odd 4
338.4.e.g.23.3 8 13.5 odd 4
338.4.e.g.147.1 8 13.6 odd 12
338.4.e.g.147.3 8 13.7 odd 12
650.4.c.e.649.2 4 65.2 even 12
650.4.c.e.649.3 4 65.63 even 12
650.4.c.f.649.2 4 65.37 even 12
650.4.c.f.649.3 4 65.28 even 12
650.4.d.d.51.1 4 65.54 odd 12
650.4.d.d.51.3 4 65.24 odd 12
832.4.f.h.129.3 4 104.67 even 12
832.4.f.h.129.4 4 104.11 even 12
832.4.f.j.129.1 4 104.93 odd 12
832.4.f.j.129.2 4 104.37 odd 12