Properties

Label 338.4.e.g.23.3
Level $338$
Weight $4$
Character 338.23
Analytic conductor $19.943$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,4,Mod(23,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.23"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,6,16,0,0,0,0,-118,76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.45979465625856.49
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 109x^{6} + 8965x^{4} - 317844x^{2} + 8503056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.3
Root \(6.81169 + 3.93273i\) of defining polynomial
Character \(\chi\) \(=\) 338.23
Dual form 338.4.e.g.147.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(-2.93273 - 5.07964i) q^{3} +(2.00000 - 3.46410i) q^{4} +2.13454i q^{5} +(-10.1593 - 5.86546i) q^{6} +(-3.34759 - 1.93273i) q^{7} -8.00000i q^{8} +(-3.70181 + 6.41172i) q^{9} +(2.13454 + 3.69713i) q^{10} +(-46.0663 + 26.5964i) q^{11} -23.4618 q^{12} -7.73092 q^{14} +(10.8427 - 6.26003i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-21.6636 + 37.5225i) q^{17} +14.8072i q^{18} +(-128.506 - 74.1928i) q^{19} +(7.39426 + 4.26908i) q^{20} +22.6727i q^{21} +(-53.1928 + 92.1326i) q^{22} +(61.3273 + 106.222i) q^{23} +(-40.6371 + 23.4618i) q^{24} +120.444 q^{25} -114.942 q^{27} +(-13.3903 + 7.73092i) q^{28} +(-41.9418 - 72.6453i) q^{29} +(12.5201 - 21.6854i) q^{30} +190.269i q^{31} +(-27.7128 - 16.0000i) q^{32} +(270.200 + 156.000i) q^{33} +86.6546i q^{34} +(4.12549 - 7.14556i) q^{35} +(14.8072 + 25.6469i) q^{36} +(114.067 - 65.8564i) q^{37} -296.771 q^{38} +17.0763 q^{40} +(-335.753 + 193.847i) q^{41} +(22.6727 + 39.2703i) q^{42} +(-37.3182 + 64.6371i) q^{43} +212.771i q^{44} +(-13.6861 - 7.90166i) q^{45} +(212.444 + 122.655i) q^{46} +298.789i q^{47} +(-46.9237 + 81.2742i) q^{48} +(-164.029 - 284.107i) q^{49} +(208.615 - 120.444i) q^{50} +254.135 q^{51} +100.386 q^{53} +(-199.085 + 114.942i) q^{54} +(-56.7710 - 98.3303i) q^{55} +(-15.4618 + 26.7807i) q^{56} +870.349i q^{57} +(-145.291 - 83.8836i) q^{58} +(415.094 + 239.655i) q^{59} -50.0802i q^{60} +(239.906 - 415.529i) q^{61} +(190.269 + 329.556i) q^{62} +(24.7843 - 14.3092i) q^{63} -64.0000 q^{64} +624.000 q^{66} +(-359.637 + 207.636i) q^{67} +(86.6546 + 150.090i) q^{68} +(359.713 - 623.041i) q^{69} -16.5020i q^{70} +(-254.564 - 146.973i) q^{71} +(51.2938 + 29.6145i) q^{72} -106.727i q^{73} +(131.713 - 228.133i) q^{74} +(-353.229 - 611.811i) q^{75} +(-514.023 + 296.771i) q^{76} +205.614 q^{77} -906.044 q^{79} +(29.5771 - 17.0763i) q^{80} +(437.042 + 756.979i) q^{81} +(-387.695 + 671.507i) q^{82} -22.1605i q^{83} +(78.5405 + 45.3454i) q^{84} +(-80.0934 - 46.2419i) q^{85} +149.273i q^{86} +(-246.008 + 426.098i) q^{87} +(212.771 + 368.530i) q^{88} +(-576.282 + 332.717i) q^{89} -31.6066 q^{90} +490.618 q^{92} +(966.498 - 558.008i) q^{93} +(298.789 + 517.518i) q^{94} +(158.367 - 274.300i) q^{95} +187.695i q^{96} +(-1086.20 - 627.120i) q^{97} +(-568.214 - 328.058i) q^{98} -393.819i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} + 16 q^{4} - 118 q^{9} + 76 q^{10} + 48 q^{12} + 56 q^{14} - 64 q^{16} - 26 q^{17} - 72 q^{22} + 196 q^{23} - 156 q^{25} - 1332 q^{27} - 748 q^{29} - 548 q^{30} - 350 q^{35} + 472 q^{36} - 960 q^{38}+ \cdots - 324 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.612372 0.353553i
\(3\) −2.93273 5.07964i −0.564404 0.977577i −0.997105 0.0760390i \(-0.975773\pi\)
0.432701 0.901538i \(-0.357561\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 2.13454i 0.190919i 0.995433 + 0.0954595i \(0.0304321\pi\)
−0.995433 + 0.0954595i \(0.969568\pi\)
\(6\) −10.1593 5.86546i −0.691251 0.399094i
\(7\) −3.34759 1.93273i −0.180753 0.104358i 0.406894 0.913476i \(-0.366612\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −3.70181 + 6.41172i −0.137104 + 0.237471i
\(10\) 2.13454 + 3.69713i 0.0675001 + 0.116914i
\(11\) −46.0663 + 26.5964i −1.26268 + 0.729010i −0.973593 0.228292i \(-0.926686\pi\)
−0.289090 + 0.957302i \(0.593353\pi\)
\(12\) −23.4618 −0.564404
\(13\) 0 0
\(14\) −7.73092 −0.147584
\(15\) 10.8427 6.26003i 0.186638 0.107756i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −21.6636 + 37.5225i −0.309071 + 0.535327i −0.978159 0.207856i \(-0.933351\pi\)
0.669088 + 0.743183i \(0.266685\pi\)
\(18\) 14.8072i 0.193894i
\(19\) −128.506 74.1928i −1.55164 0.895841i −0.998008 0.0630816i \(-0.979907\pi\)
−0.553634 0.832760i \(-0.686759\pi\)
\(20\) 7.39426 + 4.26908i 0.0826704 + 0.0477298i
\(21\) 22.6727i 0.235599i
\(22\) −53.1928 + 92.1326i −0.515488 + 0.892851i
\(23\) 61.3273 + 106.222i 0.555984 + 0.962992i 0.997826 + 0.0658995i \(0.0209917\pi\)
−0.441843 + 0.897093i \(0.645675\pi\)
\(24\) −40.6371 + 23.4618i −0.345626 + 0.199547i
\(25\) 120.444 0.963550
\(26\) 0 0
\(27\) −114.942 −0.819280
\(28\) −13.3903 + 7.73092i −0.0903763 + 0.0521788i
\(29\) −41.9418 72.6453i −0.268565 0.465169i 0.699926 0.714215i \(-0.253216\pi\)
−0.968492 + 0.249046i \(0.919883\pi\)
\(30\) 12.5201 21.6854i 0.0761947 0.131973i
\(31\) 190.269i 1.10237i 0.834384 + 0.551183i \(0.185823\pi\)
−0.834384 + 0.551183i \(0.814177\pi\)
\(32\) −27.7128 16.0000i −0.153093 0.0883883i
\(33\) 270.200 + 156.000i 1.42533 + 0.822913i
\(34\) 86.6546i 0.437092i
\(35\) 4.12549 7.14556i 0.0199239 0.0345091i
\(36\) 14.8072 + 25.6469i 0.0685520 + 0.118736i
\(37\) 114.067 65.8564i 0.506823 0.292614i −0.224704 0.974427i \(-0.572141\pi\)
0.731527 + 0.681813i \(0.238808\pi\)
\(38\) −296.771 −1.26691
\(39\) 0 0
\(40\) 17.0763 0.0675001
\(41\) −335.753 + 193.847i −1.27892 + 0.738387i −0.976651 0.214834i \(-0.931079\pi\)
−0.302273 + 0.953221i \(0.597746\pi\)
\(42\) 22.6727 + 39.2703i 0.0832970 + 0.144275i
\(43\) −37.3182 + 64.6371i −0.132348 + 0.229234i −0.924581 0.380985i \(-0.875585\pi\)
0.792233 + 0.610219i \(0.208918\pi\)
\(44\) 212.771i 0.729010i
\(45\) −13.6861 7.90166i −0.0453378 0.0261758i
\(46\) 212.444 + 122.655i 0.680938 + 0.393140i
\(47\) 298.789i 0.927295i 0.886020 + 0.463648i \(0.153460\pi\)
−0.886020 + 0.463648i \(0.846540\pi\)
\(48\) −46.9237 + 81.2742i −0.141101 + 0.244394i
\(49\) −164.029 284.107i −0.478219 0.828300i
\(50\) 208.615 120.444i 0.590051 0.340666i
\(51\) 254.135 0.697764
\(52\) 0 0
\(53\) 100.386 0.260170 0.130085 0.991503i \(-0.458475\pi\)
0.130085 + 0.991503i \(0.458475\pi\)
\(54\) −199.085 + 114.942i −0.501704 + 0.289659i
\(55\) −56.7710 98.3303i −0.139182 0.241070i
\(56\) −15.4618 + 26.7807i −0.0368960 + 0.0639057i
\(57\) 870.349i 2.02247i
\(58\) −145.291 83.8836i −0.328924 0.189904i
\(59\) 415.094 + 239.655i 0.915943 + 0.528820i 0.882338 0.470615i \(-0.155968\pi\)
0.0336044 + 0.999435i \(0.489301\pi\)
\(60\) 50.0802i 0.107756i
\(61\) 239.906 415.529i 0.503553 0.872180i −0.496438 0.868072i \(-0.665359\pi\)
0.999992 0.00410807i \(-0.00130764\pi\)
\(62\) 190.269 + 329.556i 0.389745 + 0.675058i
\(63\) 24.7843 14.3092i 0.0495639 0.0286157i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 624.000 1.16377
\(67\) −359.637 + 207.636i −0.655771 + 0.378609i −0.790664 0.612251i \(-0.790264\pi\)
0.134893 + 0.990860i \(0.456931\pi\)
\(68\) 86.6546 + 150.090i 0.154535 + 0.267663i
\(69\) 359.713 623.041i 0.627599 1.08703i
\(70\) 16.5020i 0.0281766i
\(71\) −254.564 146.973i −0.425510 0.245669i 0.271922 0.962319i \(-0.412341\pi\)
−0.697432 + 0.716651i \(0.745674\pi\)
\(72\) 51.2938 + 29.6145i 0.0839588 + 0.0484736i
\(73\) 106.727i 0.171116i −0.996333 0.0855579i \(-0.972733\pi\)
0.996333 0.0855579i \(-0.0272673\pi\)
\(74\) 131.713 228.133i 0.206910 0.358378i
\(75\) −353.229 611.811i −0.543832 0.941944i
\(76\) −514.023 + 296.771i −0.775821 + 0.447921i
\(77\) 205.614 0.304311
\(78\) 0 0
\(79\) −906.044 −1.29035 −0.645177 0.764033i \(-0.723216\pi\)
−0.645177 + 0.764033i \(0.723216\pi\)
\(80\) 29.5771 17.0763i 0.0413352 0.0238649i
\(81\) 437.042 + 756.979i 0.599509 + 1.03838i
\(82\) −387.695 + 671.507i −0.522119 + 0.904336i
\(83\) 22.1605i 0.0293064i −0.999893 0.0146532i \(-0.995336\pi\)
0.999893 0.0146532i \(-0.00466442\pi\)
\(84\) 78.5405 + 45.3454i 0.102018 + 0.0588999i
\(85\) −80.0934 46.2419i −0.102204 0.0590075i
\(86\) 149.273i 0.187169i
\(87\) −246.008 + 426.098i −0.303159 + 0.525086i
\(88\) 212.771 + 368.530i 0.257744 + 0.446426i
\(89\) −576.282 + 332.717i −0.686357 + 0.396269i −0.802246 0.596994i \(-0.796362\pi\)
0.115889 + 0.993262i \(0.463028\pi\)
\(90\) −31.6066 −0.0370181
\(91\) 0 0
\(92\) 490.618 0.555984
\(93\) 966.498 558.008i 1.07765 0.622180i
\(94\) 298.789 + 517.518i 0.327848 + 0.567850i
\(95\) 158.367 274.300i 0.171033 0.296238i
\(96\) 187.695i 0.199547i
\(97\) −1086.20 627.120i −1.13698 0.656437i −0.191301 0.981531i \(-0.561271\pi\)
−0.945682 + 0.325094i \(0.894604\pi\)
\(98\) −568.214 328.058i −0.585696 0.338152i
\(99\) 393.819i 0.399801i
\(100\) 240.887 417.229i 0.240887 0.417229i
\(101\) −878.604 1521.79i −0.865588 1.49924i −0.866462 0.499243i \(-0.833612\pi\)
0.000874171 1.00000i \(-0.499722\pi\)
\(102\) 440.174 254.135i 0.427291 0.246697i
\(103\) −86.2769 −0.0825351 −0.0412676 0.999148i \(-0.513140\pi\)
−0.0412676 + 0.999148i \(0.513140\pi\)
\(104\) 0 0
\(105\) −48.3958 −0.0449804
\(106\) 173.873 100.386i 0.159321 0.0919840i
\(107\) −1050.47 1819.46i −0.949087 1.64387i −0.747353 0.664427i \(-0.768675\pi\)
−0.201735 0.979440i \(-0.564658\pi\)
\(108\) −229.884 + 398.170i −0.204820 + 0.354759i
\(109\) 2166.87i 1.90411i −0.305920 0.952057i \(-0.598964\pi\)
0.305920 0.952057i \(-0.401036\pi\)
\(110\) −196.661 113.542i −0.170462 0.0984165i
\(111\) −669.053 386.278i −0.572106 0.330305i
\(112\) 61.8474i 0.0521788i
\(113\) 178.389 308.980i 0.148509 0.257224i −0.782168 0.623068i \(-0.785886\pi\)
0.930676 + 0.365843i \(0.119219\pi\)
\(114\) 870.349 + 1507.49i 0.715050 + 1.23850i
\(115\) −226.735 + 130.906i −0.183854 + 0.106148i
\(116\) −335.534 −0.268565
\(117\) 0 0
\(118\) 958.618 0.747864
\(119\) 145.042 83.7400i 0.111731 0.0645078i
\(120\) −50.0802 86.7415i −0.0380973 0.0659865i
\(121\) 749.235 1297.71i 0.562911 0.974991i
\(122\) 959.622i 0.712132i
\(123\) 1969.35 + 1137.00i 1.44366 + 0.833497i
\(124\) 659.111 + 380.538i 0.477338 + 0.275591i
\(125\) 523.909i 0.374879i
\(126\) 28.6184 49.5685i 0.0202344 0.0350469i
\(127\) 498.833 + 864.004i 0.348538 + 0.603685i 0.985990 0.166805i \(-0.0533450\pi\)
−0.637452 + 0.770490i \(0.720012\pi\)
\(128\) −110.851 + 64.0000i −0.0765466 + 0.0441942i
\(129\) 437.777 0.298792
\(130\) 0 0
\(131\) −1680.88 −1.12106 −0.560530 0.828134i \(-0.689403\pi\)
−0.560530 + 0.828134i \(0.689403\pi\)
\(132\) 1080.80 624.000i 0.712663 0.411456i
\(133\) 286.789 + 496.733i 0.186976 + 0.323851i
\(134\) −415.273 + 719.274i −0.267717 + 0.463700i
\(135\) 245.348i 0.156416i
\(136\) 300.180 + 173.309i 0.189267 + 0.109273i
\(137\) −1367.09 789.291i −0.852544 0.492217i 0.00896417 0.999960i \(-0.497147\pi\)
−0.861509 + 0.507743i \(0.830480\pi\)
\(138\) 1438.85i 0.887559i
\(139\) −862.035 + 1493.09i −0.526021 + 0.911094i 0.473520 + 0.880783i \(0.342983\pi\)
−0.999541 + 0.0303112i \(0.990350\pi\)
\(140\) −16.5020 28.5822i −0.00996193 0.0172546i
\(141\) 1517.74 876.268i 0.906502 0.523369i
\(142\) −587.891 −0.347428
\(143\) 0 0
\(144\) 118.458 0.0685520
\(145\) 155.064 89.5264i 0.0888096 0.0512742i
\(146\) −106.727 184.857i −0.0604986 0.104787i
\(147\) −962.106 + 1666.42i −0.539818 + 0.934991i
\(148\) 526.851i 0.292614i
\(149\) 2363.96 + 1364.83i 1.29975 + 0.750413i 0.980361 0.197210i \(-0.0631881\pi\)
0.319392 + 0.947623i \(0.396521\pi\)
\(150\) −1223.62 706.458i −0.666055 0.384547i
\(151\) 484.316i 0.261014i −0.991447 0.130507i \(-0.958340\pi\)
0.991447 0.130507i \(-0.0416604\pi\)
\(152\) −593.542 + 1028.05i −0.316728 + 0.548589i
\(153\) −160.389 277.803i −0.0847498 0.146791i
\(154\) 356.135 205.614i 0.186352 0.107590i
\(155\) −406.137 −0.210463
\(156\) 0 0
\(157\) 235.775 0.119853 0.0599264 0.998203i \(-0.480913\pi\)
0.0599264 + 0.998203i \(0.480913\pi\)
\(158\) −1569.31 + 906.044i −0.790177 + 0.456209i
\(159\) −294.404 509.922i −0.146841 0.254336i
\(160\) 34.1526 59.1541i 0.0168750 0.0292284i
\(161\) 474.116i 0.232085i
\(162\) 1513.96 + 874.084i 0.734246 + 0.423917i
\(163\) −1260.26 727.611i −0.605589 0.349637i 0.165648 0.986185i \(-0.447028\pi\)
−0.771237 + 0.636548i \(0.780362\pi\)
\(164\) 1550.78i 0.738387i
\(165\) −332.988 + 576.753i −0.157110 + 0.272122i
\(166\) −22.1605 38.3831i −0.0103614 0.0179464i
\(167\) 1412.07 815.259i 0.654307 0.377764i −0.135798 0.990737i \(-0.543360\pi\)
0.790104 + 0.612972i \(0.210026\pi\)
\(168\) 181.382 0.0832970
\(169\) 0 0
\(170\) −184.968 −0.0834493
\(171\) 951.407 549.295i 0.425473 0.245647i
\(172\) 149.273 + 258.548i 0.0661742 + 0.114617i
\(173\) 480.120 831.593i 0.210999 0.365461i −0.741028 0.671474i \(-0.765662\pi\)
0.952028 + 0.306012i \(0.0989949\pi\)
\(174\) 984.031i 0.428731i
\(175\) −403.196 232.785i −0.174164 0.100554i
\(176\) 737.060 + 425.542i 0.315671 + 0.182253i
\(177\) 2811.37i 1.19387i
\(178\) −665.433 + 1152.56i −0.280204 + 0.485328i
\(179\) 1050.16 + 1818.93i 0.438506 + 0.759515i 0.997575 0.0696067i \(-0.0221744\pi\)
−0.559068 + 0.829122i \(0.688841\pi\)
\(180\) −54.7443 + 31.6066i −0.0226689 + 0.0130879i
\(181\) 3385.80 1.39041 0.695206 0.718811i \(-0.255313\pi\)
0.695206 + 0.718811i \(0.255313\pi\)
\(182\) 0 0
\(183\) −2814.31 −1.13683
\(184\) 849.776 490.618i 0.340469 0.196570i
\(185\) 140.573 + 243.480i 0.0558656 + 0.0967621i
\(186\) 1116.02 1933.00i 0.439948 0.762011i
\(187\) 2304.70i 0.901263i
\(188\) 1035.04 + 597.578i 0.401531 + 0.231824i
\(189\) 384.778 + 222.151i 0.148087 + 0.0854981i
\(190\) 633.470i 0.241877i
\(191\) 1864.04 3228.61i 0.706162 1.22311i −0.260109 0.965579i \(-0.583758\pi\)
0.966271 0.257529i \(-0.0829083\pi\)
\(192\) 187.695 + 325.097i 0.0705505 + 0.122197i
\(193\) −2228.46 + 1286.60i −0.831129 + 0.479852i −0.854239 0.519881i \(-0.825976\pi\)
0.0231102 + 0.999733i \(0.492643\pi\)
\(194\) −2508.48 −0.928343
\(195\) 0 0
\(196\) −1312.23 −0.478219
\(197\) −1681.42 + 970.770i −0.608104 + 0.351089i −0.772223 0.635352i \(-0.780855\pi\)
0.164119 + 0.986440i \(0.447522\pi\)
\(198\) −393.819 682.114i −0.141351 0.244827i
\(199\) −1145.35 + 1983.80i −0.407997 + 0.706671i −0.994665 0.103156i \(-0.967106\pi\)
0.586668 + 0.809827i \(0.300439\pi\)
\(200\) 963.550i 0.340666i
\(201\) 2109.44 + 1217.88i 0.740240 + 0.427378i
\(202\) −3043.57 1757.21i −1.06012 0.612063i
\(203\) 324.249i 0.112107i
\(204\) 508.269 880.348i 0.174441 0.302141i
\(205\) −413.775 716.679i −0.140972 0.244171i
\(206\) −149.436 + 86.2769i −0.0505422 + 0.0291806i
\(207\) −908.088 −0.304911
\(208\) 0 0
\(209\) 7893.04 2.61231
\(210\) −83.8240 + 48.3958i −0.0275448 + 0.0159030i
\(211\) −587.613 1017.78i −0.191720 0.332069i 0.754100 0.656759i \(-0.228073\pi\)
−0.945820 + 0.324690i \(0.894740\pi\)
\(212\) 200.771 347.746i 0.0650425 0.112657i
\(213\) 1724.13i 0.554625i
\(214\) −3638.92 2100.93i −1.16239 0.671106i
\(215\) −137.970 79.6573i −0.0437652 0.0252678i
\(216\) 919.534i 0.289659i
\(217\) 367.739 636.942i 0.115040 0.199256i
\(218\) −2166.87 3753.13i −0.673206 1.16603i
\(219\) −542.134 + 313.001i −0.167279 + 0.0965784i
\(220\) −454.168 −0.139182
\(221\) 0 0
\(222\) −1545.11 −0.467122
\(223\) 3767.97 2175.44i 1.13149 0.653265i 0.187180 0.982326i \(-0.440065\pi\)
0.944309 + 0.329060i \(0.106732\pi\)
\(224\) 61.8474 + 107.123i 0.0184480 + 0.0319529i
\(225\) −445.860 + 772.252i −0.132107 + 0.228815i
\(226\) 713.558i 0.210023i
\(227\) −3157.40 1822.93i −0.923189 0.533003i −0.0385380 0.999257i \(-0.512270\pi\)
−0.884651 + 0.466254i \(0.845603\pi\)
\(228\) 3014.98 + 1740.70i 0.875754 + 0.505617i
\(229\) 3239.15i 0.934713i 0.884069 + 0.467357i \(0.154794\pi\)
−0.884069 + 0.467357i \(0.845206\pi\)
\(230\) −261.811 + 453.470i −0.0750579 + 0.130004i
\(231\) −603.012 1044.45i −0.171754 0.297487i
\(232\) −581.162 + 335.534i −0.164462 + 0.0949522i
\(233\) −2182.68 −0.613700 −0.306850 0.951758i \(-0.599275\pi\)
−0.306850 + 0.951758i \(0.599275\pi\)
\(234\) 0 0
\(235\) −637.777 −0.177038
\(236\) 1660.38 958.618i 0.457971 0.264410i
\(237\) 2657.18 + 4602.38i 0.728281 + 1.26142i
\(238\) 167.480 290.084i 0.0456139 0.0790056i
\(239\) 58.8048i 0.0159153i −0.999968 0.00795767i \(-0.997467\pi\)
0.999968 0.00795767i \(-0.00253303\pi\)
\(240\) −173.483 100.160i −0.0466595 0.0269389i
\(241\) −175.163 101.131i −0.0468185 0.0270307i 0.476408 0.879224i \(-0.341939\pi\)
−0.523227 + 0.852194i \(0.675272\pi\)
\(242\) 2996.94i 0.796077i
\(243\) 1011.74 1752.38i 0.267091 0.462615i
\(244\) −959.622 1662.11i −0.251777 0.436090i
\(245\) 606.437 350.127i 0.158138 0.0913011i
\(246\) 4548.02 1.17874
\(247\) 0 0
\(248\) 1522.15 0.389745
\(249\) −112.567 + 64.9907i −0.0286492 + 0.0165406i
\(250\) 523.909 + 907.438i 0.132540 + 0.229566i
\(251\) −56.9961 + 98.7201i −0.0143329 + 0.0248253i −0.873103 0.487536i \(-0.837896\pi\)
0.858770 + 0.512361i \(0.171229\pi\)
\(252\) 114.474i 0.0286157i
\(253\) −5650.24 3262.17i −1.40406 0.810635i
\(254\) 1728.01 + 997.666i 0.426870 + 0.246453i
\(255\) 542.460i 0.133216i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 2117.36 + 3667.38i 0.513920 + 0.890136i 0.999870 + 0.0161491i \(0.00514064\pi\)
−0.485949 + 0.873987i \(0.661526\pi\)
\(258\) 758.253 437.777i 0.182972 0.105639i
\(259\) −509.131 −0.122146
\(260\) 0 0
\(261\) 621.042 0.147286
\(262\) −2911.36 + 1680.88i −0.686507 + 0.396355i
\(263\) −114.241 197.871i −0.0267847 0.0463925i 0.852322 0.523017i \(-0.175194\pi\)
−0.879107 + 0.476624i \(0.841860\pi\)
\(264\) 1248.00 2161.60i 0.290944 0.503929i
\(265\) 214.277i 0.0496714i
\(266\) 993.467 + 573.578i 0.228998 + 0.132212i
\(267\) 3380.16 + 1951.54i 0.774766 + 0.447311i
\(268\) 1661.09i 0.378609i
\(269\) −609.652 + 1055.95i −0.138183 + 0.239339i −0.926809 0.375534i \(-0.877459\pi\)
0.788626 + 0.614873i \(0.210793\pi\)
\(270\) −245.348 424.955i −0.0553015 0.0957849i
\(271\) −5101.87 + 2945.57i −1.14360 + 0.660260i −0.947320 0.320288i \(-0.896220\pi\)
−0.196283 + 0.980547i \(0.562887\pi\)
\(272\) 693.237 0.154535
\(273\) 0 0
\(274\) −3157.16 −0.696100
\(275\) −5548.40 + 3203.37i −1.21666 + 0.702438i
\(276\) −1438.85 2492.16i −0.313800 0.543517i
\(277\) 3069.70 5316.87i 0.665849 1.15328i −0.313205 0.949685i \(-0.601403\pi\)
0.979054 0.203599i \(-0.0652638\pi\)
\(278\) 3448.14i 0.743905i
\(279\) −1219.95 704.340i −0.261780 0.151139i
\(280\) −57.1645 33.0039i −0.0122008 0.00704415i
\(281\) 1852.24i 0.393221i 0.980482 + 0.196611i \(0.0629935\pi\)
−0.980482 + 0.196611i \(0.937006\pi\)
\(282\) 1752.54 3035.48i 0.370078 0.640994i
\(283\) 86.1448 + 149.207i 0.0180946 + 0.0313408i 0.874931 0.484248i \(-0.160907\pi\)
−0.856836 + 0.515589i \(0.827573\pi\)
\(284\) −1018.26 + 587.891i −0.212755 + 0.122834i
\(285\) −1857.80 −0.386127
\(286\) 0 0
\(287\) 1498.62 0.308225
\(288\) 205.175 118.458i 0.0419794 0.0242368i
\(289\) 1517.87 + 2629.03i 0.308950 + 0.535118i
\(290\) 179.053 310.129i 0.0362564 0.0627979i
\(291\) 7356.70i 1.48198i
\(292\) −369.713 213.454i −0.0740953 0.0427789i
\(293\) 4958.00 + 2862.50i 0.988564 + 0.570748i 0.904845 0.425742i \(-0.139987\pi\)
0.0837193 + 0.996489i \(0.473320\pi\)
\(294\) 3848.42i 0.763417i
\(295\) −511.552 + 886.035i −0.100962 + 0.174871i
\(296\) −526.851 912.533i −0.103455 0.179189i
\(297\) 5294.94 3057.04i 1.03449 0.597263i
\(298\) 5459.33 1.06124
\(299\) 0 0
\(300\) −2825.83 −0.543832
\(301\) 249.852 144.252i 0.0478446 0.0276231i
\(302\) −484.316 838.859i −0.0922822 0.159837i
\(303\) −5153.42 + 8925.98i −0.977083 + 1.69236i
\(304\) 2374.17i 0.447921i
\(305\) 886.963 + 512.088i 0.166516 + 0.0961380i
\(306\) −555.605 320.779i −0.103797 0.0599271i
\(307\) 2115.94i 0.393364i −0.980467 0.196682i \(-0.936983\pi\)
0.980467 0.196682i \(-0.0630167\pi\)
\(308\) 411.229 712.269i 0.0760777 0.131771i
\(309\) 253.027 + 438.255i 0.0465832 + 0.0806844i
\(310\) −703.450 + 406.137i −0.128882 + 0.0744098i
\(311\) −3912.14 −0.713303 −0.356651 0.934238i \(-0.616082\pi\)
−0.356651 + 0.934238i \(0.616082\pi\)
\(312\) 0 0
\(313\) 3751.20 0.677413 0.338706 0.940892i \(-0.390011\pi\)
0.338706 + 0.940892i \(0.390011\pi\)
\(314\) 408.374 235.775i 0.0733946 0.0423744i
\(315\) 30.5436 + 52.9030i 0.00546328 + 0.00946269i
\(316\) −1812.09 + 3138.63i −0.322588 + 0.558739i
\(317\) 8277.14i 1.46653i 0.679942 + 0.733266i \(0.262005\pi\)
−0.679942 + 0.733266i \(0.737995\pi\)
\(318\) −1019.84 588.807i −0.179843 0.103832i
\(319\) 3864.20 + 2231.00i 0.678225 + 0.391574i
\(320\) 136.611i 0.0238649i
\(321\) −6161.46 + 10672.0i −1.07134 + 1.85561i
\(322\) −474.116 821.194i −0.0820543 0.142122i
\(323\) 5567.80 3214.57i 0.959136 0.553757i
\(324\) 3496.34 0.599509
\(325\) 0 0
\(326\) −2910.44 −0.494462
\(327\) −11006.9 + 6354.84i −1.86142 + 1.07469i
\(328\) 1550.78 + 2686.03i 0.261059 + 0.452168i
\(329\) 577.479 1000.22i 0.0967703 0.167611i
\(330\) 1331.95i 0.222187i
\(331\) 768.271 + 443.562i 0.127577 + 0.0736567i 0.562430 0.826845i \(-0.309866\pi\)
−0.434853 + 0.900501i \(0.643200\pi\)
\(332\) −76.7661 44.3209i −0.0126900 0.00732659i
\(333\) 975.152i 0.160474i
\(334\) 1630.52 2824.14i 0.267120 0.462665i
\(335\) −443.208 767.660i −0.0722838 0.125199i
\(336\) 314.162 181.382i 0.0510088 0.0294499i
\(337\) −6563.94 −1.06101 −0.530506 0.847681i \(-0.677998\pi\)
−0.530506 + 0.847681i \(0.677998\pi\)
\(338\) 0 0
\(339\) −2092.67 −0.335275
\(340\) −320.373 + 184.968i −0.0511020 + 0.0295038i
\(341\) −5060.47 8764.99i −0.803636 1.39194i
\(342\) 1098.59 1902.81i 0.173699 0.300855i
\(343\) 2593.95i 0.408338i
\(344\) 517.097 + 298.546i 0.0810465 + 0.0467922i
\(345\) 1329.91 + 767.821i 0.207535 + 0.119821i
\(346\) 1920.48i 0.298398i
\(347\) 4327.02 7494.62i 0.669414 1.15946i −0.308654 0.951174i \(-0.599879\pi\)
0.978068 0.208285i \(-0.0667881\pi\)
\(348\) 984.031 + 1704.39i 0.151579 + 0.262543i
\(349\) −8810.54 + 5086.77i −1.35134 + 0.780196i −0.988437 0.151631i \(-0.951548\pi\)
−0.362903 + 0.931827i \(0.618214\pi\)
\(350\) −931.141 −0.142204
\(351\) 0 0
\(352\) 1702.17 0.257744
\(353\) 798.137 460.805i 0.120342 0.0694792i −0.438621 0.898672i \(-0.644533\pi\)
0.558962 + 0.829193i \(0.311200\pi\)
\(354\) −2811.37 4869.43i −0.422098 0.731095i
\(355\) 313.719 543.378i 0.0469028 0.0812381i
\(356\) 2661.73i 0.396269i
\(357\) −850.737 491.173i −0.126123 0.0728170i
\(358\) 3637.86 + 2100.32i 0.537058 + 0.310071i
\(359\) 2056.77i 0.302374i 0.988505 + 0.151187i \(0.0483096\pi\)
−0.988505 + 0.151187i \(0.951690\pi\)
\(360\) −63.2133 + 109.489i −0.00925454 + 0.0160293i
\(361\) 7579.63 + 13128.3i 1.10506 + 1.91403i
\(362\) 5864.37 3385.80i 0.851449 0.491585i
\(363\) −8789.21 −1.27084
\(364\) 0 0
\(365\) 227.813 0.0326693
\(366\) −4874.53 + 2814.31i −0.696164 + 0.401930i
\(367\) −1105.90 1915.48i −0.157296 0.272445i 0.776597 0.629998i \(-0.216944\pi\)
−0.933893 + 0.357553i \(0.883611\pi\)
\(368\) 981.237 1699.55i 0.138996 0.240748i
\(369\) 2870.34i 0.404944i
\(370\) 486.960 + 281.146i 0.0684212 + 0.0395030i
\(371\) −336.049 194.018i −0.0470264 0.0271507i
\(372\) 4464.06i 0.622180i
\(373\) −5273.06 + 9133.21i −0.731981 + 1.26783i 0.224055 + 0.974577i \(0.428071\pi\)
−0.956035 + 0.293251i \(0.905263\pi\)
\(374\) −2304.70 3991.86i −0.318645 0.551909i
\(375\) 2661.27 1536.49i 0.366473 0.211583i
\(376\) 2390.31 0.327848
\(377\) 0 0
\(378\) 888.606 0.120913
\(379\) 10599.2 6119.48i 1.43653 0.829384i 0.438928 0.898522i \(-0.355358\pi\)
0.997607 + 0.0691388i \(0.0220251\pi\)
\(380\) −633.470 1097.20i −0.0855166 0.148119i
\(381\) 2925.89 5067.78i 0.393432 0.681445i
\(382\) 7456.14i 0.998664i
\(383\) 6265.43 + 3617.35i 0.835897 + 0.482605i 0.855867 0.517195i \(-0.173024\pi\)
−0.0199705 + 0.999801i \(0.506357\pi\)
\(384\) 650.194 + 375.389i 0.0864064 + 0.0498867i
\(385\) 438.892i 0.0580988i
\(386\) −2573.20 + 4456.91i −0.339307 + 0.587697i
\(387\) −276.290 478.549i −0.0362910 0.0628579i
\(388\) −4344.82 + 2508.48i −0.568491 + 0.328219i
\(389\) 11781.1 1.53554 0.767768 0.640728i \(-0.221367\pi\)
0.767768 + 0.640728i \(0.221367\pi\)
\(390\) 0 0
\(391\) −5314.29 −0.687354
\(392\) −2272.85 + 1312.23i −0.292848 + 0.169076i
\(393\) 4929.56 + 8538.25i 0.632731 + 1.09592i
\(394\) −1941.54 + 3362.85i −0.248257 + 0.429994i
\(395\) 1933.99i 0.246353i
\(396\) −1364.23 787.638i −0.173119 0.0999502i
\(397\) −10153.3 5862.01i −1.28358 0.741072i −0.306075 0.952007i \(-0.599016\pi\)
−0.977500 + 0.210935i \(0.932349\pi\)
\(398\) 4581.38i 0.576995i
\(399\) 1682.15 2913.57i 0.211060 0.365566i
\(400\) −963.550 1668.92i −0.120444 0.208615i
\(401\) 1479.16 853.995i 0.184204 0.106350i −0.405062 0.914289i \(-0.632750\pi\)
0.589266 + 0.807939i \(0.299417\pi\)
\(402\) 4871.53 0.604403
\(403\) 0 0
\(404\) −7028.83 −0.865588
\(405\) −1615.80 + 932.884i −0.198247 + 0.114458i
\(406\) 324.249 + 561.615i 0.0396359 + 0.0686514i
\(407\) −3503.08 + 6067.52i −0.426637 + 0.738958i
\(408\) 2033.08i 0.246697i
\(409\) −8319.96 4803.53i −1.00586 0.580732i −0.0958812 0.995393i \(-0.530567\pi\)
−0.909976 + 0.414661i \(0.863900\pi\)
\(410\) −1433.36 827.550i −0.172655 0.0996824i
\(411\) 9259.11i 1.11124i
\(412\) −172.554 + 298.872i −0.0206338 + 0.0357388i
\(413\) −926.375 1604.53i −0.110373 0.191171i
\(414\) −1572.85 + 908.088i −0.186719 + 0.107802i
\(415\) 47.3024 0.00559514
\(416\) 0 0
\(417\) 10112.5 1.18755
\(418\) 13671.1 7893.04i 1.59971 0.923591i
\(419\) 1354.34 + 2345.78i 0.157908 + 0.273505i 0.934114 0.356974i \(-0.116192\pi\)
−0.776206 + 0.630480i \(0.782858\pi\)
\(420\) −96.7916 + 167.648i −0.0112451 + 0.0194771i
\(421\) 10957.4i 1.26848i −0.773137 0.634239i \(-0.781314\pi\)
0.773137 0.634239i \(-0.218686\pi\)
\(422\) −2035.55 1175.23i −0.234808 0.135567i
\(423\) −1915.75 1106.06i −0.220206 0.127136i
\(424\) 803.084i 0.0919840i
\(425\) −2609.25 + 4519.36i −0.297805 + 0.515814i
\(426\) 1724.13 + 2986.28i 0.196090 + 0.339637i
\(427\) −1606.21 + 927.345i −0.182037 + 0.105099i
\(428\) −8403.73 −0.949087
\(429\) 0 0
\(430\) −318.629 −0.0357341
\(431\) 8238.61 4756.56i 0.920742 0.531591i 0.0368705 0.999320i \(-0.488261\pi\)
0.883872 + 0.467729i \(0.154928\pi\)
\(432\) 919.534 + 1592.68i 0.102410 + 0.177379i
\(433\) −3635.66 + 6297.16i −0.403508 + 0.698896i −0.994147 0.108040i \(-0.965543\pi\)
0.590639 + 0.806936i \(0.298876\pi\)
\(434\) 1470.96i 0.162691i
\(435\) −909.523 525.114i −0.100249 0.0578788i
\(436\) −7506.26 4333.74i −0.824506 0.476029i
\(437\) 18200.2i 1.99229i
\(438\) −626.003 + 1084.27i −0.0682913 + 0.118284i
\(439\) −4807.62 8327.05i −0.522677 0.905304i −0.999652 0.0263867i \(-0.991600\pi\)
0.476974 0.878917i \(-0.341733\pi\)
\(440\) −786.643 + 454.168i −0.0852312 + 0.0492082i
\(441\) 2428.82 0.262263
\(442\) 0 0
\(443\) −4782.54 −0.512924 −0.256462 0.966554i \(-0.582557\pi\)
−0.256462 + 0.966554i \(0.582557\pi\)
\(444\) −2676.21 + 1545.11i −0.286053 + 0.165153i
\(445\) −710.197 1230.10i −0.0756552 0.131039i
\(446\) 4350.88 7535.94i 0.461928 0.800083i
\(447\) 16010.7i 1.69414i
\(448\) 214.246 + 123.695i 0.0225941 + 0.0130447i
\(449\) 5948.49 + 3434.36i 0.625226 + 0.360974i 0.778901 0.627147i \(-0.215778\pi\)
−0.153675 + 0.988121i \(0.549111\pi\)
\(450\) 1783.44i 0.186827i
\(451\) 10311.3 17859.7i 1.07658 1.86470i
\(452\) −713.558 1235.92i −0.0742543 0.128612i
\(453\) −2460.15 + 1420.37i −0.255161 + 0.147317i
\(454\) −7291.70 −0.753781
\(455\) 0 0
\(456\) 6962.79 0.715050
\(457\) 7275.89 4200.74i 0.744752 0.429983i −0.0790424 0.996871i \(-0.525186\pi\)
0.823795 + 0.566888i \(0.191853\pi\)
\(458\) 3239.15 + 5610.38i 0.330471 + 0.572393i
\(459\) 2490.06 4312.91i 0.253216 0.438582i
\(460\) 1047.24i 0.106148i
\(461\) 13796.2 + 7965.23i 1.39382 + 0.804723i 0.993736 0.111754i \(-0.0356469\pi\)
0.400086 + 0.916478i \(0.368980\pi\)
\(462\) −2088.89 1206.02i −0.210355 0.121449i
\(463\) 11572.2i 1.16156i −0.814060 0.580781i \(-0.802747\pi\)
0.814060 0.580781i \(-0.197253\pi\)
\(464\) −671.068 + 1162.32i −0.0671413 + 0.116292i
\(465\) 1191.09 + 2063.03i 0.118786 + 0.205743i
\(466\) −3780.51 + 2182.68i −0.375813 + 0.216976i
\(467\) 10862.4 1.07634 0.538169 0.842837i \(-0.319116\pi\)
0.538169 + 0.842837i \(0.319116\pi\)
\(468\) 0 0
\(469\) 1605.22 0.158043
\(470\) −1104.66 + 637.777i −0.108413 + 0.0625925i
\(471\) −691.464 1197.65i −0.0676454 0.117165i
\(472\) 1917.24 3320.75i 0.186966 0.323835i
\(473\) 3970.12i 0.385933i
\(474\) 9204.75 + 5314.36i 0.891958 + 0.514972i
\(475\) −15477.7 8936.05i −1.49509 0.863188i
\(476\) 669.920i 0.0645078i
\(477\) −371.608 + 643.644i −0.0356704 + 0.0617829i
\(478\) −58.8048 101.853i −0.00562692 0.00974612i
\(479\) −1806.28 + 1042.86i −0.172299 + 0.0994769i −0.583669 0.811991i \(-0.698384\pi\)
0.411370 + 0.911468i \(0.365050\pi\)
\(480\) −400.642 −0.0380973
\(481\) 0 0
\(482\) −404.522 −0.0382272
\(483\) −2408.34 + 1390.46i −0.226880 + 0.130989i
\(484\) −2996.94 5190.85i −0.281456 0.487495i
\(485\) 1338.61 2318.55i 0.125326 0.217072i
\(486\) 4046.96i 0.377723i
\(487\) −10244.7 5914.78i −0.953247 0.550358i −0.0591591 0.998249i \(-0.518842\pi\)
−0.894088 + 0.447891i \(0.852175\pi\)
\(488\) −3324.23 1919.24i −0.308362 0.178033i
\(489\) 8535.54i 0.789347i
\(490\) 700.253 1212.87i 0.0645596 0.111821i
\(491\) 1350.02 + 2338.30i 0.124085 + 0.214921i 0.921375 0.388675i \(-0.127067\pi\)
−0.797290 + 0.603596i \(0.793734\pi\)
\(492\) 7877.39 4548.02i 0.721830 0.416749i
\(493\) 3634.45 0.332023
\(494\) 0 0
\(495\) 840.622 0.0763296
\(496\) 2636.45 1522.15i 0.238669 0.137796i
\(497\) 568.118 + 984.009i 0.0512748 + 0.0888105i
\(498\) −129.981 + 225.134i −0.0116960 + 0.0202581i
\(499\) 3013.67i 0.270361i −0.990821 0.135181i \(-0.956839\pi\)
0.990821 0.135181i \(-0.0431615\pi\)
\(500\) 1814.88 + 1047.82i 0.162327 + 0.0937198i
\(501\) −8282.44 4781.87i −0.738587 0.426423i
\(502\) 227.984i 0.0202698i
\(503\) 6951.00 12039.5i 0.616163 1.06723i −0.374016 0.927422i \(-0.622020\pi\)
0.990179 0.139803i \(-0.0446471\pi\)
\(504\) −114.474 198.274i −0.0101172 0.0175235i
\(505\) 3248.32 1875.42i 0.286234 0.165257i
\(506\) −13048.7 −1.14641
\(507\) 0 0
\(508\) 3990.67 0.348538
\(509\) −1412.20 + 815.332i −0.122975 + 0.0709999i −0.560226 0.828340i \(-0.689286\pi\)
0.437250 + 0.899340i \(0.355952\pi\)
\(510\) 542.460 + 939.569i 0.0470991 + 0.0815781i
\(511\) −206.274 + 357.278i −0.0178572 + 0.0309296i
\(512\) 512.000i 0.0441942i
\(513\) 14770.7 + 8527.85i 1.27123 + 0.733945i
\(514\) 7334.76 + 4234.73i 0.629421 + 0.363397i
\(515\) 184.162i 0.0157575i
\(516\) 875.555 1516.51i 0.0746980 0.129381i
\(517\) −7946.71 13764.1i −0.676008 1.17088i
\(518\) −881.840 + 509.131i −0.0747989 + 0.0431852i
\(519\) −5632.25 −0.476355
\(520\) 0 0
\(521\) 8654.86 0.727785 0.363893 0.931441i \(-0.381447\pi\)
0.363893 + 0.931441i \(0.381447\pi\)
\(522\) 1075.68 621.042i 0.0901936 0.0520733i
\(523\) −2546.50 4410.67i −0.212908 0.368767i 0.739716 0.672920i \(-0.234960\pi\)
−0.952623 + 0.304153i \(0.901627\pi\)
\(524\) −3361.75 + 5822.73i −0.280265 + 0.485433i
\(525\) 2730.78i 0.227012i
\(526\) −395.741 228.481i −0.0328045 0.0189397i
\(527\) −7139.38 4121.92i −0.590126 0.340709i
\(528\) 4992.00i 0.411456i
\(529\) −1438.58 + 2491.69i −0.118236 + 0.204790i
\(530\) 214.277 + 371.139i 0.0175615 + 0.0304174i
\(531\) −3073.20 + 1774.31i −0.251159 + 0.145007i
\(532\) 2294.31 0.186976
\(533\) 0 0
\(534\) 7806.15 0.632594
\(535\) 3883.71 2242.26i 0.313846 0.181199i
\(536\) 1661.09 + 2877.10i 0.133859 + 0.231850i
\(537\) 6159.67 10668.9i 0.494989 0.857347i
\(538\) 2438.61i 0.195420i
\(539\) 15112.4 + 8725.16i 1.20768 + 0.697253i
\(540\) −849.910 490.696i −0.0677302 0.0391040i
\(541\) 5004.07i 0.397674i 0.980033 + 0.198837i \(0.0637165\pi\)
−0.980033 + 0.198837i \(0.936284\pi\)
\(542\) −5891.13 + 10203.7i −0.466874 + 0.808650i
\(543\) −9929.63 17198.6i −0.784754 1.35923i
\(544\) 1200.72 693.237i 0.0946333 0.0546365i
\(545\) 4625.27 0.363532
\(546\) 0 0
\(547\) −10856.3 −0.848598 −0.424299 0.905522i \(-0.639479\pi\)
−0.424299 + 0.905522i \(0.639479\pi\)
\(548\) −5468.37 + 3157.16i −0.426272 + 0.246108i
\(549\) 1776.17 + 3076.42i 0.138078 + 0.239159i
\(550\) −6406.73 + 11096.8i −0.496698 + 0.860307i
\(551\) 12447.1i 0.962368i
\(552\) −4984.33 2877.70i −0.384324 0.221890i
\(553\) 3033.06 + 1751.14i 0.233235 + 0.134658i
\(554\) 12278.8i 0.941653i
\(555\) 824.526 1428.12i 0.0630616 0.109226i
\(556\) 3448.14 + 5972.35i 0.263010 + 0.455547i
\(557\) 19991.2 11541.9i 1.52074 0.878001i 0.521042 0.853531i \(-0.325543\pi\)
0.999701 0.0244704i \(-0.00778994\pi\)
\(558\) −2817.36 −0.213743
\(559\) 0 0
\(560\) −132.016 −0.00996193
\(561\) −11707.0 + 6759.06i −0.881054 + 0.508677i
\(562\) 1852.24 + 3208.17i 0.139025 + 0.240798i
\(563\) −7747.97 + 13419.9i −0.579996 + 1.00458i 0.415483 + 0.909601i \(0.363613\pi\)
−0.995479 + 0.0949820i \(0.969721\pi\)
\(564\) 7010.14i 0.523369i
\(565\) 659.529 + 380.779i 0.0491090 + 0.0283531i
\(566\) 298.414 + 172.290i 0.0221613 + 0.0127948i
\(567\) 3378.74i 0.250253i
\(568\) −1175.78 + 2036.52i −0.0868570 + 0.150441i
\(569\) 9082.73 + 15731.7i 0.669188 + 1.15907i 0.978132 + 0.207987i \(0.0666911\pi\)
−0.308944 + 0.951080i \(0.599976\pi\)
\(570\) −3217.80 + 1857.80i −0.236454 + 0.136517i
\(571\) 8289.75 0.607557 0.303779 0.952743i \(-0.401752\pi\)
0.303779 + 0.952743i \(0.401752\pi\)
\(572\) 0 0
\(573\) −21866.9 −1.59424
\(574\) 2595.68 1498.62i 0.188749 0.108974i
\(575\) 7386.49 + 12793.8i 0.535718 + 0.927891i
\(576\) 236.916 410.350i 0.0171380 0.0296839i
\(577\) 5336.46i 0.385026i −0.981294 0.192513i \(-0.938336\pi\)
0.981294 0.192513i \(-0.0616637\pi\)
\(578\) 5258.06 + 3035.75i 0.378385 + 0.218461i
\(579\) 13070.9 + 7546.50i 0.938185 + 0.541661i
\(580\) 716.211i 0.0512742i
\(581\) −42.8302 + 74.1841i −0.00305834 + 0.00529720i
\(582\) 7356.70 + 12742.2i 0.523960 + 0.907526i
\(583\) −4624.39 + 2669.89i −0.328512 + 0.189667i
\(584\) −853.816 −0.0604986
\(585\) 0 0
\(586\) 11450.0 0.807159
\(587\) −5956.28 + 3438.86i −0.418811 + 0.241800i −0.694568 0.719427i \(-0.744405\pi\)
0.275758 + 0.961227i \(0.411071\pi\)
\(588\) 3848.42 + 6665.67i 0.269909 + 0.467496i
\(589\) 14116.6 24450.6i 0.987545 1.71048i
\(590\) 2046.21i 0.142782i
\(591\) 9862.32 + 5694.01i 0.686432 + 0.396312i
\(592\) −1825.07 1053.70i −0.126706 0.0731536i
\(593\) 8358.37i 0.578814i 0.957206 + 0.289407i \(0.0934582\pi\)
−0.957206 + 0.289407i \(0.906542\pi\)
\(594\) 6114.07 10589.9i 0.422329 0.731495i
\(595\) 178.746 + 309.598i 0.0123158 + 0.0213315i
\(596\) 9455.84 5459.33i 0.649876 0.375206i
\(597\) 13436.0 0.921101
\(598\) 0 0
\(599\) −14896.0 −1.01609 −0.508043 0.861332i \(-0.669631\pi\)
−0.508043 + 0.861332i \(0.669631\pi\)
\(600\) −4894.48 + 2825.83i −0.333027 + 0.192273i
\(601\) −3830.80 6635.14i −0.260003 0.450338i 0.706240 0.707973i \(-0.250390\pi\)
−0.966242 + 0.257635i \(0.917057\pi\)
\(602\) 288.504 499.704i 0.0195325 0.0338313i
\(603\) 3074.52i 0.207636i
\(604\) −1677.72 968.631i −0.113022 0.0652534i
\(605\) 2770.02 + 1599.27i 0.186144 + 0.107470i
\(606\) 20613.7i 1.38180i
\(607\) −11359.1 + 19674.5i −0.759558 + 1.31559i 0.183519 + 0.983016i \(0.441251\pi\)
−0.943076 + 0.332576i \(0.892082\pi\)
\(608\) 2374.17 + 4112.18i 0.158364 + 0.274294i
\(609\) 1647.06 950.933i 0.109594 0.0632738i
\(610\) 2048.35 0.135960
\(611\) 0 0
\(612\) −1283.12 −0.0847498
\(613\) 10462.4 6040.47i 0.689352 0.397997i −0.114018 0.993479i \(-0.536372\pi\)
0.803369 + 0.595481i \(0.203039\pi\)
\(614\) −2115.94 3664.91i −0.139075 0.240885i
\(615\) −2426.98 + 4203.65i −0.159131 + 0.275622i
\(616\) 1644.92i 0.107590i
\(617\) −18276.9 10552.1i −1.19254 0.688514i −0.233660 0.972318i \(-0.575070\pi\)
−0.958882 + 0.283804i \(0.908403\pi\)
\(618\) 876.511 + 506.054i 0.0570525 + 0.0329393i
\(619\) 12516.1i 0.812706i −0.913716 0.406353i \(-0.866800\pi\)
0.913716 0.406353i \(-0.133200\pi\)
\(620\) −812.274 + 1406.90i −0.0526157 + 0.0911330i
\(621\) −7049.07 12209.3i −0.455506 0.788960i
\(622\) −6776.03 + 3912.14i −0.436807 + 0.252191i
\(623\) 2572.21 0.165415
\(624\) 0 0
\(625\) 13937.2 0.891978
\(626\) 6497.27 3751.20i 0.414829 0.239502i
\(627\) −23148.1 40093.8i −1.47440 2.55373i
\(628\) 471.550 816.748i 0.0299632 0.0518978i
\(629\) 5706.76i 0.361754i
\(630\) 105.806 + 61.0871i 0.00669113 + 0.00386313i
\(631\) 8720.58 + 5034.83i 0.550176 + 0.317644i 0.749193 0.662352i \(-0.230442\pi\)
−0.199017 + 0.979996i \(0.563775\pi\)
\(632\) 7248.35i 0.456209i
\(633\) −3446.62 + 5969.72i −0.216415 + 0.374842i
\(634\) 8277.14 + 14336.4i 0.518497 + 0.898064i
\(635\) −1844.25 + 1064.78i −0.115255 + 0.0665425i
\(636\) −2355.23 −0.146841
\(637\) 0 0
\(638\) 8924.00 0.553769
\(639\) 1884.70 1088.13i 0.116678 0.0673643i
\(640\) −136.611 236.616i −0.00843751 0.0146142i
\(641\) −1694.43 + 2934.84i −0.104409 + 0.180842i −0.913497 0.406846i \(-0.866628\pi\)
0.809088 + 0.587688i \(0.199962\pi\)
\(642\) 24645.9i 1.51510i
\(643\) −21333.1 12316.7i −1.30839 0.755400i −0.326563 0.945175i \(-0.605891\pi\)
−0.981827 + 0.189776i \(0.939224\pi\)
\(644\) −1642.39 948.233i −0.100496 0.0580211i
\(645\) 934.453i 0.0570451i
\(646\) 6429.14 11135.6i 0.391565 0.678211i
\(647\) 954.062 + 1652.48i 0.0579723 + 0.100411i 0.893555 0.448954i \(-0.148203\pi\)
−0.835583 + 0.549365i \(0.814870\pi\)
\(648\) 6055.83 3496.34i 0.367123 0.211958i
\(649\) −25495.8 −1.54206
\(650\) 0 0
\(651\) −4313.91 −0.259717
\(652\) −5041.03 + 2910.44i −0.302795 + 0.174819i
\(653\) 5165.70 + 8947.26i 0.309570 + 0.536192i 0.978268 0.207342i \(-0.0664814\pi\)
−0.668698 + 0.743534i \(0.733148\pi\)
\(654\) −12709.7 + 22013.8i −0.759921 + 1.31622i
\(655\) 3587.90i 0.214032i
\(656\) 5372.06 + 3101.56i 0.319731 + 0.184597i
\(657\) 684.304 + 395.083i 0.0406351 + 0.0234607i
\(658\) 2309.91i 0.136854i
\(659\) −9519.92 + 16489.0i −0.562737 + 0.974688i 0.434520 + 0.900662i \(0.356918\pi\)
−0.997256 + 0.0740261i \(0.976415\pi\)
\(660\) 1331.95 + 2307.01i 0.0785548 + 0.136061i
\(661\) −24805.6 + 14321.5i −1.45964 + 0.842726i −0.998993 0.0448562i \(-0.985717\pi\)
−0.460650 + 0.887582i \(0.652384\pi\)
\(662\) 1774.25 0.104166
\(663\) 0 0
\(664\) −177.284 −0.0103614
\(665\) −1060.30 + 612.163i −0.0618294 + 0.0356972i
\(666\) 975.152 + 1689.01i 0.0567363 + 0.0982701i
\(667\) 5144.35 8910.28i 0.298636 0.517252i
\(668\) 6522.07i 0.377764i
\(669\) −22100.9 12759.9i −1.27723 0.737411i
\(670\) −1535.32 886.417i −0.0885292 0.0511123i
\(671\) 25522.5i 1.46838i
\(672\) 362.763 628.324i 0.0208242 0.0360687i
\(673\) −9186.40 15911.3i −0.526166 0.911346i −0.999535 0.0304820i \(-0.990296\pi\)
0.473369 0.880864i \(-0.343038\pi\)
\(674\) −11369.1 + 6563.94i −0.649734 + 0.375124i
\(675\) −13844.0 −0.789417
\(676\) 0 0
\(677\) −12837.4 −0.728779 −0.364389 0.931247i \(-0.618722\pi\)
−0.364389 + 0.931247i \(0.618722\pi\)
\(678\) −3624.61 + 2092.67i −0.205313 + 0.118538i
\(679\) 2424.11 + 4198.68i 0.137008 + 0.237306i
\(680\) −369.935 + 640.747i −0.0208623 + 0.0361346i
\(681\) 21384.6i 1.20332i
\(682\) −17530.0 10120.9i −0.984249 0.568256i
\(683\) 10586.9 + 6112.37i 0.593116 + 0.342436i 0.766329 0.642449i \(-0.222081\pi\)
−0.173213 + 0.984884i \(0.555415\pi\)
\(684\) 4394.36i 0.245647i
\(685\) 1684.77 2918.11i 0.0939736 0.162767i
\(686\) 2593.95 + 4492.85i 0.144369 + 0.250055i
\(687\) 16453.7 9499.56i 0.913754 0.527556i
\(688\) 1194.18 0.0661742
\(689\) 0 0
\(690\) 3071.29 0.169452
\(691\) −6636.35 + 3831.50i −0.365352 + 0.210936i −0.671426 0.741072i \(-0.734318\pi\)
0.306074 + 0.952008i \(0.400985\pi\)
\(692\) −1920.48 3326.37i −0.105500 0.182731i
\(693\) −761.146 + 1318.34i −0.0417223 + 0.0722651i
\(694\) 17308.1i 0.946694i
\(695\) −3187.06 1840.05i −0.173945 0.100427i
\(696\) 3408.78 + 1968.06i 0.185646 + 0.107183i
\(697\) 16797.8i 0.912856i
\(698\) −10173.5 + 17621.1i −0.551682 + 0.955542i
\(699\) 6401.21 + 11087.2i 0.346375 + 0.599939i
\(700\) −1612.78 + 931.141i −0.0870821 + 0.0502769i
\(701\) 15215.8 0.819818 0.409909 0.912126i \(-0.365560\pi\)
0.409909 + 0.912126i \(0.365560\pi\)
\(702\) 0 0
\(703\) −19544.3 −1.04854
\(704\) 2948.24 1702.17i 0.157835 0.0911263i
\(705\) 1870.43 + 3239.68i 0.0999212 + 0.173069i
\(706\) 921.610 1596.27i 0.0491292 0.0850943i
\(707\) 6792.42i 0.361323i
\(708\) −9738.87 5622.74i −0.516962 0.298468i
\(709\) 13346.2 + 7705.43i 0.706949 + 0.408157i 0.809930 0.586526i \(-0.199505\pi\)
−0.102981 + 0.994683i \(0.532838\pi\)
\(710\) 1254.88i 0.0663306i
\(711\) 3354.00 5809.30i 0.176913 0.306422i
\(712\) 2661.73 + 4610.26i 0.140102 + 0.242664i
\(713\) −20210.8 + 11668.7i −1.06157 + 0.612897i
\(714\) −1964.69 −0.102979
\(715\) 0 0
\(716\) 8401.27 0.438506
\(717\) −298.707 + 172.459i −0.0155585 + 0.00898268i
\(718\) 2056.77 + 3562.44i 0.106905 + 0.185166i
\(719\) 577.894 1000.94i 0.0299747 0.0519177i −0.850649 0.525734i \(-0.823791\pi\)
0.880624 + 0.473816i \(0.157124\pi\)
\(720\) 252.853i 0.0130879i
\(721\) 288.819 + 166.750i 0.0149184 + 0.00861317i
\(722\) 26256.6 + 15159.3i 1.35342 + 0.781398i
\(723\) 1186.36i 0.0610249i
\(724\) 6771.60 11728.7i 0.347603 0.602066i
\(725\) −5051.62 8749.67i −0.258776 0.448213i
\(726\) −15223.4 + 8789.21i −0.778226 + 0.449309i
\(727\) −18048.8 −0.920759 −0.460379 0.887722i \(-0.652287\pi\)
−0.460379 + 0.887722i \(0.652287\pi\)
\(728\) 0 0
\(729\) 11731.6 0.596029
\(730\) 394.584 227.813i 0.0200058 0.0115503i
\(731\) −1616.90 2800.55i −0.0818101 0.141699i
\(732\) −5628.63 + 9749.07i −0.284208 + 0.492262i
\(733\) 7855.68i 0.395847i 0.980217 + 0.197924i \(0.0634198\pi\)
−0.980217 + 0.197924i \(0.936580\pi\)
\(734\) −3830.96 2211.81i −0.192648 0.111225i
\(735\) −3557.03 2053.65i −0.178508 0.103061i
\(736\) 3924.95i 0.196570i
\(737\) 11044.8 19130.1i 0.552020 0.956127i
\(738\) −2870.34 4971.58i −0.143169 0.247976i
\(739\) 262.234 151.401i 0.0130533 0.00753635i −0.493459 0.869769i \(-0.664268\pi\)
0.506512 + 0.862233i \(0.330934\pi\)
\(740\) 1124.59 0.0558656
\(741\) 0 0
\(742\) −776.072 −0.0383969
\(743\) −14895.6 + 8599.96i −0.735485 + 0.424633i −0.820426 0.571753i \(-0.806263\pi\)
0.0849402 + 0.996386i \(0.472930\pi\)
\(744\) −4464.06 7731.98i −0.219974 0.381006i
\(745\) −2913.29 + 5045.97i −0.143268 + 0.248148i
\(746\) 21092.2i 1.03518i
\(747\) 142.087 + 82.0339i 0.00695942 + 0.00401802i
\(748\) −7983.71 4609.40i −0.390258 0.225316i
\(749\) 8121.07i 0.396178i
\(750\) 3072.97 5322.54i 0.149612 0.259136i
\(751\) 6499.83 + 11258.0i 0.315822 + 0.547019i 0.979612 0.200900i \(-0.0643865\pi\)
−0.663790 + 0.747919i \(0.731053\pi\)
\(752\) 4140.14 2390.31i 0.200765 0.115912i
\(753\) 668.616 0.0323582
\(754\) 0 0
\(755\) 1033.79 0.0498325
\(756\) 1539.11 888.606i 0.0740435 0.0427490i
\(757\) −3023.40 5236.69i −0.145162 0.251428i 0.784272 0.620418i \(-0.213037\pi\)
−0.929433 + 0.368990i \(0.879704\pi\)
\(758\) 12239.0 21198.5i 0.586463 1.01578i
\(759\) 38268.2i 1.83010i
\(760\) −2194.40 1266.94i −0.104736 0.0604694i
\(761\) −23298.1 13451.1i −1.10979 0.640740i −0.171019 0.985268i \(-0.554706\pi\)
−0.938776 + 0.344527i \(0.888039\pi\)
\(762\) 11703.5i 0.556397i
\(763\) −4187.97 + 7253.78i −0.198709 + 0.344174i
\(764\) −7456.14 12914.4i −0.353081 0.611554i
\(765\) 592.981 342.358i 0.0280252 0.0161804i
\(766\) 14469.4 0.682507
\(767\) 0 0
\(768\) 1501.56 0.0705505
\(769\) −1791.19 + 1034.14i −0.0839947 + 0.0484943i −0.541409 0.840759i \(-0.682109\pi\)
0.457414 + 0.889254i \(0.348776\pi\)
\(770\) 438.892 + 760.184i 0.0205410 + 0.0355781i
\(771\) 12419.3 21510.9i 0.580118 1.00479i
\(772\) 10292.8i 0.479852i
\(773\) −7265.71 4194.86i −0.338072 0.195186i 0.321347 0.946961i \(-0.395864\pi\)
−0.659419 + 0.751776i \(0.729198\pi\)
\(774\) −957.097 552.580i −0.0444472 0.0256616i
\(775\) 22916.7i 1.06218i
\(776\) −5016.96 + 8689.63i −0.232086 + 0.401984i
\(777\) 1493.14 + 2586.20i 0.0689398 + 0.119407i
\(778\) 20405.4 11781.1i 0.940320 0.542894i
\(779\) 57528.3 2.64591
\(780\) 0 0
\(781\) 15635.8 0.716379
\(782\) −9204.62 + 5314.29i −0.420917 + 0.243016i
\(783\) 4820.86 + 8349.98i 0.220030 + 0.381103i
\(784\) −2624.47 + 4545.71i −0.119555 + 0.207075i
\(785\) 503.271i 0.0228822i
\(786\) 17076.5 + 9859.12i 0.774934 + 0.447409i
\(787\) 18583.5 + 10729.2i 0.841714 + 0.485964i 0.857847 0.513906i \(-0.171802\pi\)
−0.0161324 + 0.999870i \(0.505135\pi\)
\(788\) 7766.16i 0.351089i
\(789\) −670.074 + 1160.60i −0.0302348 + 0.0523683i
\(790\) −1933.99 3349.76i −0.0870990 0.150860i
\(791\) −1194.35 + 689.557i −0.0536866 + 0.0309960i
\(792\) −3150.55 −0.141351
\(793\) 0 0
\(794\) −23448.0 −1.04803
\(795\) 1088.45 628.416i 0.0485576 0.0280348i
\(796\) 4581.38 + 7935.19i 0.203998 + 0.353336i
\(797\) −3024.86 + 5239.21i −0.134437 + 0.232851i −0.925382 0.379036i \(-0.876256\pi\)
0.790945 + 0.611887i \(0.209589\pi\)
\(798\) 6728.60i 0.298484i
\(799\) −11211.3 6472.86i −0.496406 0.286600i
\(800\) −3337.83 1927.10i −0.147513 0.0851666i
\(801\) 4926.62i 0.217320i
\(802\) 1707.99 2958.32i 0.0752010 0.130252i
\(803\) 2838.55 + 4916.52i 0.124745 + 0.216065i
\(804\) 8437.74 4871.53i 0.370120 0.213689i
\(805\) 1012.02 0.0443094
\(806\) 0 0
\(807\) 7151.78 0.311964
\(808\) −12174.3 + 7028.83i −0.530062 + 0.306032i
\(809\) 16682.1 + 28894.2i 0.724981 + 1.25570i 0.958982 + 0.283468i \(0.0914850\pi\)
−0.234000 + 0.972237i \(0.575182\pi\)
\(810\) −1865.77 + 3231.60i −0.0809338 + 0.140181i
\(811\) 2210.77i 0.0957221i −0.998854 0.0478611i \(-0.984760\pi\)
0.998854 0.0478611i \(-0.0152405\pi\)
\(812\) 1123.23 + 648.497i 0.0485439 + 0.0280268i
\(813\) 29924.8 + 17277.1i 1.29091 + 0.745307i
\(814\) 14012.3i 0.603356i
\(815\) 1553.11 2690.07i 0.0667524 0.115619i
\(816\) −2033.08 3521.39i −0.0872205 0.151070i
\(817\) 9591.21 5537.49i 0.410715 0.237126i
\(818\) −19214.1 −0.821279
\(819\) 0 0
\(820\) −3310.20 −0.140972
\(821\) −21999.6 + 12701.5i −0.935189 + 0.539932i −0.888449 0.458976i \(-0.848217\pi\)
−0.0467399 + 0.998907i \(0.514883\pi\)
\(822\) 9259.11 + 16037.3i 0.392881 + 0.680491i
\(823\) −21015.5 + 36399.8i −0.890100 + 1.54170i −0.0503464 + 0.998732i \(0.516033\pi\)
−0.839754 + 0.542967i \(0.817301\pi\)
\(824\) 690.215i 0.0291806i
\(825\) 32543.9 + 18789.2i 1.37337 + 0.792917i
\(826\) −3209.06 1852.75i −0.135178 0.0780453i
\(827\) 27713.0i 1.16527i −0.812735 0.582633i \(-0.802022\pi\)
0.812735 0.582633i \(-0.197978\pi\)
\(828\) −1816.18 + 3145.71i −0.0762276 + 0.132030i
\(829\) −11789.9 20420.6i −0.493943 0.855534i 0.506033 0.862514i \(-0.331111\pi\)
−0.999976 + 0.00698019i \(0.997778\pi\)
\(830\) 81.9302 47.3024i 0.00342631 0.00197818i
\(831\) −36010.4 −1.50323
\(832\) 0 0
\(833\) 14213.9 0.591214
\(834\) 17515.3 10112.5i 0.727225 0.419863i
\(835\) 1740.20 + 3014.12i 0.0721224 + 0.124920i
\(836\) 15786.1 27342.3i 0.653077 1.13116i
\(837\) 21869.9i 0.903146i
\(838\) 4691.56 + 2708.67i 0.193397 + 0.111658i
\(839\) 7489.42 + 4324.02i 0.308180 + 0.177928i 0.646112 0.763243i \(-0.276394\pi\)
−0.337932 + 0.941171i \(0.609727\pi\)
\(840\) 387.166i 0.0159030i
\(841\) 8676.27 15027.7i 0.355745 0.616169i
\(842\) −10957.4 18978.7i −0.448474 0.776781i
\(843\) 9408.70 5432.11i 0.384404 0.221936i
\(844\) −4700.91 −0.191720
\(845\) 0 0
\(846\) −4424.24 −0.179797
\(847\) −5016.26 + 2896.14i −0.203495 + 0.117488i
\(848\) −803.084 1390.98i −0.0325213 0.0563285i
\(849\) 505.279 875.169i 0.0204254 0.0353778i
\(850\) 10437.0i 0.421160i
\(851\) 13990.8 + 8077.59i 0.563570 + 0.325378i
\(852\) 5972.55 + 3448.25i 0.240160 + 0.138656i
\(853\) 23117.7i 0.927942i 0.885851 + 0.463971i \(0.153576\pi\)
−0.885851 + 0.463971i \(0.846424\pi\)
\(854\) −1854.69 + 3212.42i −0.0743164 + 0.128720i
\(855\) 1172.49 + 2030.82i 0.0468987 + 0.0812309i
\(856\) −14555.7 + 8403.73i −0.581195 + 0.335553i
\(857\) −3246.65 −0.129409 −0.0647045 0.997904i \(-0.520610\pi\)
−0.0647045 + 0.997904i \(0.520610\pi\)
\(858\) 0 0
\(859\) 29452.5 1.16986 0.584928 0.811085i \(-0.301123\pi\)
0.584928 + 0.811085i \(0.301123\pi\)
\(860\) −551.882 + 318.629i −0.0218826 + 0.0126339i
\(861\) −4395.04 7612.44i −0.173964 0.301314i
\(862\) 9513.13 16477.2i 0.375891 0.651063i
\(863\) 15485.4i 0.610809i −0.952223 0.305405i \(-0.901208\pi\)
0.952223 0.305405i \(-0.0987917\pi\)
\(864\) 3185.36 + 1839.07i 0.125426 + 0.0724148i
\(865\) 1775.07 + 1024.84i 0.0697736 + 0.0402838i
\(866\) 14542.7i 0.570646i
\(867\) 8903.02 15420.5i 0.348746 0.604045i
\(868\) −1470.96 2547.77i −0.0575201 0.0996278i
\(869\) 41738.1 24097.5i 1.62931 0.940681i
\(870\) −2100.45 −0.0818530
\(871\) 0 0
\(872\) −17335.0 −0.673206
\(873\) 8041.84 4642.96i 0.311770 0.180000i
\(874\) −18200.2 31523.6i −0.704382 1.22003i
\(875\) 1012.58 1753.83i 0.0391215 0.0677604i
\(876\) 2504.01i 0.0965784i
\(877\) 11866.3 + 6851.03i 0.456896 + 0.263789i 0.710738 0.703457i \(-0.248361\pi\)
−0.253842 + 0.967246i \(0.581694\pi\)
\(878\) −16654.1 9615.25i −0.640147 0.369589i
\(879\) 33579.8i 1.28853i
\(880\) −908.337 + 1573.29i −0.0347955 + 0.0602675i
\(881\) 8434.32 + 14608.7i 0.322542 + 0.558659i 0.981012 0.193948i \(-0.0621294\pi\)
−0.658470 + 0.752607i \(0.728796\pi\)
\(882\) 4206.84 2428.82i 0.160603 0.0927240i
\(883\) −15162.4 −0.577867 −0.288934 0.957349i \(-0.593301\pi\)
−0.288934 + 0.957349i \(0.593301\pi\)
\(884\) 0 0
\(885\) 6000.98 0.227933
\(886\) −8283.61 + 4782.54i −0.314101 + 0.181346i
\(887\) 6586.93 + 11408.9i 0.249343 + 0.431875i 0.963344 0.268270i \(-0.0864519\pi\)
−0.714001 + 0.700145i \(0.753119\pi\)
\(888\) −3090.23 + 5352.43i −0.116781 + 0.202270i
\(889\) 3856.44i 0.145490i
\(890\) −2460.20 1420.39i −0.0926584 0.0534963i
\(891\) −40265.8 23247.5i −1.51398 0.874096i
\(892\) 17403.5i 0.653265i
\(893\) 22168.0 38396.1i 0.830709 1.43883i
\(894\) −16010.7 27731.4i −0.598970 1.03745i
\(895\) −3882.58 + 2241.61i −0.145006 + 0.0837192i
\(896\) 494.779 0.0184480
\(897\) 0 0
\(898\) 13737.4 0.510495
\(899\) 13822.2 7980.22i 0.512786 0.296057i
\(900\) 1783.44 + 3089.01i 0.0660533 + 0.114408i
\(901\) −2174.72 + 3766.72i −0.0804110 + 0.139276i
\(902\) 41245.1i 1.52252i
\(903\) −1465.50 846.105i −0.0540074 0.0311812i
\(904\) −2471.84 1427.12i −0.0909425 0.0525057i
\(905\) 7227.12i 0.265456i
\(906\) −2840.73 + 4920.29i −0.104169 + 0.180426i
\(907\) 16095.0 + 27877.4i 0.589225 + 1.02057i 0.994334 + 0.106300i \(0.0339003\pi\)
−0.405109 + 0.914268i \(0.632766\pi\)
\(908\) −12629.6 + 7291.70i −0.461595 + 0.266502i
\(909\) 13009.7 0.474703
\(910\) 0 0
\(911\) 13646.0 0.496281 0.248141 0.968724i \(-0.420180\pi\)
0.248141 + 0.968724i \(0.420180\pi\)
\(912\) 12059.9 6962.79i 0.437877 0.252808i
\(913\) 589.388 + 1020.85i 0.0213646 + 0.0370046i
\(914\) 8401.47 14551.8i 0.304044 0.526619i
\(915\) 6007.26i 0.217043i
\(916\) 11220.8 + 6478.31i 0.404743 + 0.233678i
\(917\) 5626.88 + 3248.68i 0.202635 + 0.116991i
\(918\) 9960.23i 0.358101i
\(919\) −17461.8 + 30244.7i −0.626780 + 1.08561i 0.361414 + 0.932406i \(0.382294\pi\)
−0.988194 + 0.153209i \(0.951039\pi\)
\(920\) 1047.24 + 1813.88i 0.0375289 + 0.0650020i
\(921\) −10748.2 + 6205.47i −0.384544 + 0.222016i
\(922\) 31860.9 1.13805
\(923\) 0 0
\(924\) −4824.09 −0.171754
\(925\) 13738.6 7931.99i 0.488349 0.281948i
\(926\) −11572.2 20043.6i −0.410674 0.711309i
\(927\) 319.381 553.184i 0.0113159 0.0195997i
\(928\) 2684.27i 0.0949522i
\(929\) −3713.08 2143.75i −0.131133 0.0757094i 0.432999 0.901395i \(-0.357455\pi\)
−0.564131 + 0.825685i \(0.690789\pi\)
\(930\) 4126.06 + 2382.18i 0.145483 + 0.0839944i
\(931\) 48679.1i 1.71363i
\(932\) −4365.36 + 7561.03i −0.153425 + 0.265740i
\(933\) 11473.3 + 19872.3i 0.402591 + 0.697308i
\(934\) 18814.2 10862.4i 0.659120 0.380543i
\(935\) 4919.47 0.172068
\(936\) 0 0
\(937\) −14174.1 −0.494182 −0.247091 0.968992i \(-0.579475\pi\)
−0.247091 + 0.968992i \(0.579475\pi\)
\(938\) 2780.32 1605.22i 0.0967813 0.0558767i
\(939\) −11001.3 19054.7i −0.382335 0.662223i
\(940\) −1275.55 + 2209.33i −0.0442596 + 0.0766598i
\(941\) 11317.1i 0.392058i −0.980598 0.196029i \(-0.937195\pi\)
0.980598 0.196029i \(-0.0628047\pi\)
\(942\) −2395.30 1382.93i −0.0828484 0.0478325i
\(943\) −41181.7 23776.3i −1.42212 0.821062i
\(944\) 7668.95i 0.264410i
\(945\) −474.191 + 821.323i −0.0163232 + 0.0282726i
\(946\) −3970.12 6876.45i −0.136448 0.236335i
\(947\) −35086.4 + 20257.2i −1.20397 + 0.695110i −0.961435 0.275034i \(-0.911311\pi\)
−0.242531 + 0.970144i \(0.577978\pi\)
\(948\) 21257.5 0.728281
\(949\) 0 0
\(950\) −35744.2 −1.22073
\(951\) 42044.9 24274.6i 1.43365 0.827717i
\(952\) −669.920 1160.34i −0.0228070 0.0395028i
\(953\) −24740.0 + 42850.9i −0.840930 + 1.45653i 0.0481798 + 0.998839i \(0.484658\pi\)
−0.889110 + 0.457694i \(0.848675\pi\)
\(954\) 1486.43i 0.0504455i
\(955\) 6891.59 + 3978.86i 0.233515 + 0.134820i
\(956\) −203.706 117.610i −0.00689155 0.00397884i
\(957\) 26171.7i 0.884023i
\(958\) −2085.72 + 3612.57i −0.0703408 + 0.121834i
\(959\) 3050.97 + 5284.44i 0.102733 + 0.177939i
\(960\) −693.932 + 400.642i −0.0233298 + 0.0134694i
\(961\) −6411.32 −0.215210
\(962\) 0 0
\(963\) 15554.5 0.520495
\(964\) −700.654 + 404.522i −0.0234093 + 0.0135153i
\(965\) −2746.30 4756.73i −0.0916130 0.158678i
\(966\) −2780.91 + 4816.68i −0.0926235 + 0.160429i
\(967\) 46779.9i 1.55568i −0.628465 0.777838i \(-0.716316\pi\)
0.628465 0.777838i \(-0.283684\pi\)
\(968\) −10381.7 5993.88i −0.344711 0.199019i
\(969\) −32657.7 18854.9i −1.08268 0.625086i
\(970\) 5354.45i 0.177238i
\(971\) −12189.3 + 21112.4i −0.402855 + 0.697766i −0.994069 0.108749i \(-0.965316\pi\)
0.591214 + 0.806515i \(0.298649\pi\)
\(972\) −4046.96 7009.53i −0.133545 0.231307i
\(973\) 5771.47 3332.16i 0.190159 0.109788i
\(974\) −23659.1 −0.778323
\(975\) 0 0
\(976\) −7676.98 −0.251777
\(977\) 20990.4 12118.8i 0.687351 0.396842i −0.115268 0.993334i \(-0.536773\pi\)
0.802619 + 0.596492i \(0.203439\pi\)
\(978\) 8535.54 + 14784.0i 0.279076 + 0.483374i
\(979\) 17698.1 30654.0i 0.577768 1.00072i
\(980\) 2801.01i 0.0913011i
\(981\) 13893.4 + 8021.34i 0.452172 + 0.261062i
\(982\) 4676.60 + 2700.04i 0.151972 + 0.0877410i
\(983\) 32953.2i 1.06922i −0.845098 0.534611i \(-0.820458\pi\)
0.845098 0.534611i \(-0.179542\pi\)
\(984\) 9096.03 15754.8i 0.294686 0.510411i
\(985\) −2072.15 3589.06i −0.0670295 0.116099i
\(986\) 6295.05 3634.45i 0.203322 0.117388i
\(987\) −6774.36 −0.218470
\(988\) 0 0
\(989\) −9154.51 −0.294334
\(990\) 1456.00 840.622i 0.0467422 0.0269866i
\(991\) 15127.4 + 26201.4i 0.484902 + 0.839875i 0.999850 0.0173469i \(-0.00552196\pi\)
−0.514948 + 0.857222i \(0.672189\pi\)
\(992\) 3044.31 5272.89i 0.0974363 0.168765i
\(993\) 5203.39i 0.166288i
\(994\) 1968.02 + 1136.24i 0.0627985 + 0.0362567i
\(995\) −4234.49 2444.79i −0.134917 0.0778944i
\(996\) 519.925i 0.0165406i
\(997\) 2397.23 4152.12i 0.0761495 0.131895i −0.825436 0.564496i \(-0.809071\pi\)
0.901586 + 0.432601i \(0.142404\pi\)
\(998\) −3013.67 5219.83i −0.0955872 0.165562i
\(999\) −13111.0 + 7569.65i −0.415230 + 0.239733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.e.g.23.3 8
13.2 odd 12 338.4.a.i.1.2 2
13.3 even 3 26.4.b.a.25.4 yes 4
13.4 even 6 inner 338.4.e.g.147.3 8
13.5 odd 4 338.4.c.h.315.1 4
13.6 odd 12 338.4.c.h.191.1 4
13.7 odd 12 338.4.c.i.191.1 4
13.8 odd 4 338.4.c.i.315.1 4
13.9 even 3 inner 338.4.e.g.147.1 8
13.10 even 6 26.4.b.a.25.2 4
13.11 odd 12 338.4.a.f.1.2 2
13.12 even 2 inner 338.4.e.g.23.1 8
39.23 odd 6 234.4.b.b.181.3 4
39.29 odd 6 234.4.b.b.181.2 4
52.3 odd 6 208.4.f.d.129.2 4
52.23 odd 6 208.4.f.d.129.1 4
65.3 odd 12 650.4.c.f.649.3 4
65.23 odd 12 650.4.c.e.649.3 4
65.29 even 6 650.4.d.d.51.1 4
65.42 odd 12 650.4.c.e.649.2 4
65.49 even 6 650.4.d.d.51.3 4
65.62 odd 12 650.4.c.f.649.2 4
104.3 odd 6 832.4.f.h.129.3 4
104.29 even 6 832.4.f.j.129.1 4
104.75 odd 6 832.4.f.h.129.4 4
104.101 even 6 832.4.f.j.129.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.b.a.25.2 4 13.10 even 6
26.4.b.a.25.4 yes 4 13.3 even 3
208.4.f.d.129.1 4 52.23 odd 6
208.4.f.d.129.2 4 52.3 odd 6
234.4.b.b.181.2 4 39.29 odd 6
234.4.b.b.181.3 4 39.23 odd 6
338.4.a.f.1.2 2 13.11 odd 12
338.4.a.i.1.2 2 13.2 odd 12
338.4.c.h.191.1 4 13.6 odd 12
338.4.c.h.315.1 4 13.5 odd 4
338.4.c.i.191.1 4 13.7 odd 12
338.4.c.i.315.1 4 13.8 odd 4
338.4.e.g.23.1 8 13.12 even 2 inner
338.4.e.g.23.3 8 1.1 even 1 trivial
338.4.e.g.147.1 8 13.9 even 3 inner
338.4.e.g.147.3 8 13.4 even 6 inner
650.4.c.e.649.2 4 65.42 odd 12
650.4.c.e.649.3 4 65.23 odd 12
650.4.c.f.649.2 4 65.62 odd 12
650.4.c.f.649.3 4 65.3 odd 12
650.4.d.d.51.1 4 65.29 even 6
650.4.d.d.51.3 4 65.49 even 6
832.4.f.h.129.3 4 104.3 odd 6
832.4.f.h.129.4 4 104.75 odd 6
832.4.f.j.129.1 4 104.29 even 6
832.4.f.j.129.2 4 104.101 even 6