Properties

Label 650.4.c.e.649.3
Level $650$
Weight $4$
Character 650.649
Analytic conductor $38.351$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,4,Mod(649,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.649"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 109x^{2} + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.3
Root \(6.86546i\) of defining polynomial
Character \(\chi\) \(=\) 650.649
Dual form 650.4.c.e.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +5.86546i q^{3} +4.00000 q^{4} -11.7309i q^{6} -3.86546 q^{7} -8.00000 q^{8} -7.40362 q^{9} +53.1928i q^{11} +23.4618i q^{12} +(-31.3273 - 34.8655i) q^{13} +7.73092 q^{14} +16.0000 q^{16} -43.3273i q^{17} +14.8072 q^{18} +148.386i q^{19} -22.6727i q^{21} -106.386i q^{22} -122.655i q^{23} -46.9237i q^{24} +(62.6546 + 69.7309i) q^{26} +114.942i q^{27} -15.4618 q^{28} -83.8836 q^{29} -190.269i q^{31} -32.0000 q^{32} -312.000 q^{33} +86.6546i q^{34} -29.6145 q^{36} -131.713 q^{37} -296.771i q^{38} +(204.502 - 183.749i) q^{39} +387.695i q^{41} +45.3454i q^{42} +74.6365i q^{43} +212.771i q^{44} +245.309i q^{46} -298.789 q^{47} +93.8474i q^{48} -328.058 q^{49} +254.135 q^{51} +(-125.309 - 139.462i) q^{52} +100.386i q^{53} -229.884i q^{54} +30.9237 q^{56} -870.349 q^{57} +167.767 q^{58} -479.309i q^{59} -479.811 q^{61} +380.538i q^{62} +28.6184 q^{63} +64.0000 q^{64} +624.000 q^{66} +415.273 q^{67} -173.309i q^{68} +719.426 q^{69} -293.946i q^{71} +59.2290 q^{72} -106.727 q^{73} +263.426 q^{74} +593.542i q^{76} -205.614i q^{77} +(-409.004 + 367.498i) q^{78} +906.044 q^{79} -874.084 q^{81} -775.389i q^{82} -22.1605 q^{83} -90.6908i q^{84} -149.273i q^{86} -492.016i q^{87} -425.542i q^{88} -665.433i q^{89} +(121.094 + 134.771i) q^{91} -490.618i q^{92} +1116.02 q^{93} +597.578 q^{94} -187.695i q^{96} -1254.24 q^{97} +656.116 q^{98} -393.819i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} + 14 q^{7} - 32 q^{8} - 118 q^{9} + 22 q^{13} - 28 q^{14} + 64 q^{16} + 236 q^{18} - 44 q^{26} + 56 q^{28} - 748 q^{29} - 128 q^{32} - 1248 q^{33} - 472 q^{36} - 26 q^{37} + 52 q^{39}+ \cdots + 2212 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 5.86546i 1.12881i 0.825499 + 0.564404i \(0.190894\pi\)
−0.825499 + 0.564404i \(0.809106\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 11.7309i 0.798188i
\(7\) −3.86546 −0.208715 −0.104358 0.994540i \(-0.533279\pi\)
−0.104358 + 0.994540i \(0.533279\pi\)
\(8\) −8.00000 −0.353553
\(9\) −7.40362 −0.274208
\(10\) 0 0
\(11\) 53.1928i 1.45802i 0.684503 + 0.729010i \(0.260019\pi\)
−0.684503 + 0.729010i \(0.739981\pi\)
\(12\) 23.4618i 0.564404i
\(13\) −31.3273 34.8655i −0.668356 0.743841i
\(14\) 7.73092 0.147584
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 43.3273i 0.618142i −0.951039 0.309071i \(-0.899982\pi\)
0.951039 0.309071i \(-0.100018\pi\)
\(18\) 14.8072 0.193894
\(19\) 148.386i 1.79168i 0.444374 + 0.895841i \(0.353426\pi\)
−0.444374 + 0.895841i \(0.646574\pi\)
\(20\) 0 0
\(21\) 22.6727i 0.235599i
\(22\) 106.386i 1.03098i
\(23\) 122.655i 1.11197i −0.831193 0.555984i \(-0.812342\pi\)
0.831193 0.555984i \(-0.187658\pi\)
\(24\) 46.9237i 0.399094i
\(25\) 0 0
\(26\) 62.6546 + 69.7309i 0.472599 + 0.525975i
\(27\) 114.942i 0.819280i
\(28\) −15.4618 −0.104358
\(29\) −83.8836 −0.537131 −0.268565 0.963261i \(-0.586550\pi\)
−0.268565 + 0.963261i \(0.586550\pi\)
\(30\) 0 0
\(31\) 190.269i 1.10237i −0.834384 0.551183i \(-0.814177\pi\)
0.834384 0.551183i \(-0.185823\pi\)
\(32\) −32.0000 −0.176777
\(33\) −312.000 −1.64583
\(34\) 86.6546i 0.437092i
\(35\) 0 0
\(36\) −29.6145 −0.137104
\(37\) −131.713 −0.585228 −0.292614 0.956231i \(-0.594525\pi\)
−0.292614 + 0.956231i \(0.594525\pi\)
\(38\) 296.771i 1.26691i
\(39\) 204.502 183.749i 0.839654 0.754446i
\(40\) 0 0
\(41\) 387.695i 1.47677i 0.674377 + 0.738387i \(0.264412\pi\)
−0.674377 + 0.738387i \(0.735588\pi\)
\(42\) 45.3454i 0.166594i
\(43\) 74.6365i 0.264697i 0.991203 + 0.132348i \(0.0422518\pi\)
−0.991203 + 0.132348i \(0.957748\pi\)
\(44\) 212.771i 0.729010i
\(45\) 0 0
\(46\) 245.309i 0.786280i
\(47\) −298.789 −0.927295 −0.463648 0.886020i \(-0.653460\pi\)
−0.463648 + 0.886020i \(0.653460\pi\)
\(48\) 93.8474i 0.282202i
\(49\) −328.058 −0.956438
\(50\) 0 0
\(51\) 254.135 0.697764
\(52\) −125.309 139.462i −0.334178 0.371921i
\(53\) 100.386i 0.260170i 0.991503 + 0.130085i \(0.0415250\pi\)
−0.991503 + 0.130085i \(0.958475\pi\)
\(54\) 229.884i 0.579318i
\(55\) 0 0
\(56\) 30.9237 0.0737920
\(57\) −870.349 −2.02247
\(58\) 167.767 0.379809
\(59\) 479.309i 1.05764i −0.848734 0.528820i \(-0.822635\pi\)
0.848734 0.528820i \(-0.177365\pi\)
\(60\) 0 0
\(61\) −479.811 −1.00711 −0.503553 0.863964i \(-0.667974\pi\)
−0.503553 + 0.863964i \(0.667974\pi\)
\(62\) 380.538i 0.779490i
\(63\) 28.6184 0.0572314
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 624.000 1.16377
\(67\) 415.273 0.757219 0.378609 0.925557i \(-0.376402\pi\)
0.378609 + 0.925557i \(0.376402\pi\)
\(68\) 173.309i 0.309071i
\(69\) 719.426 1.25520
\(70\) 0 0
\(71\) 293.946i 0.491337i −0.969354 0.245669i \(-0.920993\pi\)
0.969354 0.245669i \(-0.0790075\pi\)
\(72\) 59.2290 0.0969472
\(73\) −106.727 −0.171116 −0.0855579 0.996333i \(-0.527267\pi\)
−0.0855579 + 0.996333i \(0.527267\pi\)
\(74\) 263.426 0.413819
\(75\) 0 0
\(76\) 593.542i 0.895841i
\(77\) 205.614i 0.304311i
\(78\) −409.004 + 367.498i −0.593725 + 0.533474i
\(79\) 906.044 1.29035 0.645177 0.764033i \(-0.276784\pi\)
0.645177 + 0.764033i \(0.276784\pi\)
\(80\) 0 0
\(81\) −874.084 −1.19902
\(82\) 775.389i 1.04424i
\(83\) −22.1605 −0.0293064 −0.0146532 0.999893i \(-0.504664\pi\)
−0.0146532 + 0.999893i \(0.504664\pi\)
\(84\) 90.6908i 0.117800i
\(85\) 0 0
\(86\) 149.273i 0.187169i
\(87\) 492.016i 0.606317i
\(88\) 425.542i 0.515488i
\(89\) 665.433i 0.792537i −0.918135 0.396269i \(-0.870305\pi\)
0.918135 0.396269i \(-0.129695\pi\)
\(90\) 0 0
\(91\) 121.094 + 134.771i 0.139496 + 0.155251i
\(92\) 490.618i 0.555984i
\(93\) 1116.02 1.24436
\(94\) 597.578 0.655697
\(95\) 0 0
\(96\) 187.695i 0.199547i
\(97\) −1254.24 −1.31287 −0.656437 0.754381i \(-0.727937\pi\)
−0.656437 + 0.754381i \(0.727937\pi\)
\(98\) 656.116 0.676304
\(99\) 393.819i 0.399801i
\(100\) 0 0
\(101\) 1757.21 1.73118 0.865588 0.500757i \(-0.166945\pi\)
0.865588 + 0.500757i \(0.166945\pi\)
\(102\) −508.269 −0.493394
\(103\) 86.2769i 0.0825351i −0.999148 0.0412676i \(-0.986860\pi\)
0.999148 0.0412676i \(-0.0131396\pi\)
\(104\) 250.618 + 278.924i 0.236300 + 0.262988i
\(105\) 0 0
\(106\) 200.771i 0.183968i
\(107\) 2100.93i 1.89817i −0.315013 0.949087i \(-0.602009\pi\)
0.315013 0.949087i \(-0.397991\pi\)
\(108\) 459.767i 0.409640i
\(109\) 2166.87i 1.90411i −0.305920 0.952057i \(-0.598964\pi\)
0.305920 0.952057i \(-0.401036\pi\)
\(110\) 0 0
\(111\) 772.556i 0.660611i
\(112\) −61.8474 −0.0521788
\(113\) 356.779i 0.297017i −0.988911 0.148509i \(-0.952553\pi\)
0.988911 0.148509i \(-0.0474472\pi\)
\(114\) 1740.70 1.43010
\(115\) 0 0
\(116\) −335.534 −0.268565
\(117\) 231.935 + 258.131i 0.183269 + 0.203967i
\(118\) 958.618i 0.747864i
\(119\) 167.480i 0.129016i
\(120\) 0 0
\(121\) −1498.47 −1.12582
\(122\) 959.622 0.712132
\(123\) −2274.01 −1.66699
\(124\) 761.076i 0.551183i
\(125\) 0 0
\(126\) −57.2368 −0.0404687
\(127\) 997.666i 0.697075i 0.937295 + 0.348538i \(0.113322\pi\)
−0.937295 + 0.348538i \(0.886678\pi\)
\(128\) −128.000 −0.0883883
\(129\) −437.777 −0.298792
\(130\) 0 0
\(131\) −1680.88 −1.12106 −0.560530 0.828134i \(-0.689403\pi\)
−0.560530 + 0.828134i \(0.689403\pi\)
\(132\) −1248.00 −0.822913
\(133\) 573.578i 0.373951i
\(134\) −830.546 −0.535435
\(135\) 0 0
\(136\) 346.618i 0.218546i
\(137\) −1578.58 −0.984433 −0.492217 0.870473i \(-0.663813\pi\)
−0.492217 + 0.870473i \(0.663813\pi\)
\(138\) −1438.85 −0.887559
\(139\) −1724.07 −1.05204 −0.526021 0.850472i \(-0.676316\pi\)
−0.526021 + 0.850472i \(0.676316\pi\)
\(140\) 0 0
\(141\) 1752.54i 1.04674i
\(142\) 587.891i 0.347428i
\(143\) 1854.59 1666.39i 1.08454 0.974477i
\(144\) −118.458 −0.0685520
\(145\) 0 0
\(146\) 213.454 0.120997
\(147\) 1924.21i 1.07964i
\(148\) −526.851 −0.292614
\(149\) 2729.67i 1.50083i −0.660970 0.750413i \(-0.729855\pi\)
0.660970 0.750413i \(-0.270145\pi\)
\(150\) 0 0
\(151\) 484.316i 0.261014i 0.991447 + 0.130507i \(0.0416604\pi\)
−0.991447 + 0.130507i \(0.958340\pi\)
\(152\) 1187.08i 0.633456i
\(153\) 320.779i 0.169500i
\(154\) 411.229i 0.215180i
\(155\) 0 0
\(156\) 818.008 734.996i 0.419827 0.377223i
\(157\) 235.775i 0.119853i −0.998203 0.0599264i \(-0.980913\pi\)
0.998203 0.0599264i \(-0.0190866\pi\)
\(158\) −1812.09 −0.912418
\(159\) −588.807 −0.293682
\(160\) 0 0
\(161\) 474.116i 0.232085i
\(162\) 1748.17 0.847834
\(163\) 1455.22 0.699274 0.349637 0.936885i \(-0.386305\pi\)
0.349637 + 0.936885i \(0.386305\pi\)
\(164\) 1550.78i 0.738387i
\(165\) 0 0
\(166\) 44.3209 0.0207227
\(167\) −1630.52 −0.755528 −0.377764 0.925902i \(-0.623307\pi\)
−0.377764 + 0.925902i \(0.623307\pi\)
\(168\) 181.382i 0.0832970i
\(169\) −234.201 + 2184.48i −0.106600 + 0.994302i
\(170\) 0 0
\(171\) 1098.59i 0.491294i
\(172\) 298.546i 0.132348i
\(173\) 960.241i 0.421999i −0.977486 0.210999i \(-0.932328\pi\)
0.977486 0.210999i \(-0.0676718\pi\)
\(174\) 984.031i 0.428731i
\(175\) 0 0
\(176\) 851.084i 0.364505i
\(177\) 2811.37 1.19387
\(178\) 1330.87i 0.560408i
\(179\) 2100.32 0.877012 0.438506 0.898728i \(-0.355508\pi\)
0.438506 + 0.898728i \(0.355508\pi\)
\(180\) 0 0
\(181\) 3385.80 1.39041 0.695206 0.718811i \(-0.255313\pi\)
0.695206 + 0.718811i \(0.255313\pi\)
\(182\) −242.189 269.542i −0.0986386 0.109779i
\(183\) 2814.31i 1.13683i
\(184\) 981.237i 0.393140i
\(185\) 0 0
\(186\) −2232.03 −0.879895
\(187\) 2304.70 0.901263
\(188\) −1195.16 −0.463648
\(189\) 444.303i 0.170996i
\(190\) 0 0
\(191\) −3728.07 −1.41232 −0.706162 0.708050i \(-0.749575\pi\)
−0.706162 + 0.708050i \(0.749575\pi\)
\(192\) 375.389i 0.141101i
\(193\) −2573.20 −0.959705 −0.479852 0.877349i \(-0.659310\pi\)
−0.479852 + 0.877349i \(0.659310\pi\)
\(194\) 2508.48 0.928343
\(195\) 0 0
\(196\) −1312.23 −0.478219
\(197\) 1941.54 0.702178 0.351089 0.936342i \(-0.385812\pi\)
0.351089 + 0.936342i \(0.385812\pi\)
\(198\) 787.638i 0.282702i
\(199\) −2290.69 −0.815994 −0.407997 0.912983i \(-0.633773\pi\)
−0.407997 + 0.912983i \(0.633773\pi\)
\(200\) 0 0
\(201\) 2435.77i 0.854755i
\(202\) −3514.42 −1.22413
\(203\) 324.249 0.112107
\(204\) 1016.54 0.348882
\(205\) 0 0
\(206\) 172.554i 0.0583611i
\(207\) 908.088i 0.304911i
\(208\) −501.237 557.847i −0.167089 0.185960i
\(209\) −7893.04 −2.61231
\(210\) 0 0
\(211\) 1175.23 0.383440 0.191720 0.981450i \(-0.438593\pi\)
0.191720 + 0.981450i \(0.438593\pi\)
\(212\) 401.542i 0.130085i
\(213\) 1724.13 0.554625
\(214\) 4201.86i 1.34221i
\(215\) 0 0
\(216\) 919.534i 0.289659i
\(217\) 735.478i 0.230080i
\(218\) 4333.74i 1.34641i
\(219\) 626.003i 0.193157i
\(220\) 0 0
\(221\) −1510.63 + 1357.33i −0.459800 + 0.413139i
\(222\) 1545.11i 0.467122i
\(223\) 4350.88 1.30653 0.653265 0.757129i \(-0.273399\pi\)
0.653265 + 0.757129i \(0.273399\pi\)
\(224\) 123.695 0.0368960
\(225\) 0 0
\(226\) 713.558i 0.210023i
\(227\) −3645.85 −1.06601 −0.533003 0.846113i \(-0.678937\pi\)
−0.533003 + 0.846113i \(0.678937\pi\)
\(228\) −3481.40 −1.01123
\(229\) 3239.15i 0.934713i 0.884069 + 0.467357i \(0.154794\pi\)
−0.884069 + 0.467357i \(0.845206\pi\)
\(230\) 0 0
\(231\) 1206.02 0.343509
\(232\) 671.068 0.189904
\(233\) 2182.68i 0.613700i −0.951758 0.306850i \(-0.900725\pi\)
0.951758 0.306850i \(-0.0992750\pi\)
\(234\) −463.871 516.261i −0.129591 0.144227i
\(235\) 0 0
\(236\) 1917.24i 0.528820i
\(237\) 5314.36i 1.45656i
\(238\) 334.960i 0.0912278i
\(239\) 58.8048i 0.0159153i −0.999968 0.00795767i \(-0.997467\pi\)
0.999968 0.00795767i \(-0.00253303\pi\)
\(240\) 0 0
\(241\) 202.261i 0.0540614i −0.999635 0.0270307i \(-0.991395\pi\)
0.999635 0.0270307i \(-0.00860518\pi\)
\(242\) 2996.94 0.796077
\(243\) 2023.48i 0.534182i
\(244\) −1919.24 −0.503553
\(245\) 0 0
\(246\) 4548.02 1.17874
\(247\) 5173.53 4648.52i 1.33273 1.19748i
\(248\) 1522.15i 0.389745i
\(249\) 129.981i 0.0330813i
\(250\) 0 0
\(251\) 113.992 0.0286658 0.0143329 0.999897i \(-0.495438\pi\)
0.0143329 + 0.999897i \(0.495438\pi\)
\(252\) 114.474 0.0286157
\(253\) 6524.34 1.62127
\(254\) 1995.33i 0.492907i
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4234.73i 1.02784i 0.857838 + 0.513920i \(0.171807\pi\)
−0.857838 + 0.513920i \(0.828193\pi\)
\(258\) 875.555 0.211278
\(259\) 509.131 0.122146
\(260\) 0 0
\(261\) 621.042 0.147286
\(262\) 3361.75 0.792709
\(263\) 228.481i 0.0535695i 0.999641 + 0.0267847i \(0.00852686\pi\)
−0.999641 + 0.0267847i \(0.991473\pi\)
\(264\) 2496.00 0.581887
\(265\) 0 0
\(266\) 1147.16i 0.264424i
\(267\) 3903.07 0.894623
\(268\) 1661.09 0.378609
\(269\) −1219.30 −0.276365 −0.138183 0.990407i \(-0.544126\pi\)
−0.138183 + 0.990407i \(0.544126\pi\)
\(270\) 0 0
\(271\) 5891.13i 1.32052i 0.751037 + 0.660260i \(0.229554\pi\)
−0.751037 + 0.660260i \(0.770446\pi\)
\(272\) 693.237i 0.154535i
\(273\) −790.494 + 710.274i −0.175249 + 0.157464i
\(274\) 3157.16 0.696100
\(275\) 0 0
\(276\) 2877.70 0.627599
\(277\) 6139.39i 1.33170i 0.746087 + 0.665849i \(0.231931\pi\)
−0.746087 + 0.665849i \(0.768069\pi\)
\(278\) 3448.14 0.743905
\(279\) 1408.68i 0.302278i
\(280\) 0 0
\(281\) 1852.24i 0.393221i −0.980482 0.196611i \(-0.937006\pi\)
0.980482 0.196611i \(-0.0629935\pi\)
\(282\) 3505.07i 0.740156i
\(283\) 172.290i 0.0361892i −0.999836 0.0180946i \(-0.994240\pi\)
0.999836 0.0180946i \(-0.00576001\pi\)
\(284\) 1175.78i 0.245669i
\(285\) 0 0
\(286\) −3709.18 + 3332.77i −0.766883 + 0.689059i
\(287\) 1498.62i 0.308225i
\(288\) 236.916 0.0484736
\(289\) 3035.75 0.617900
\(290\) 0 0
\(291\) 7356.70i 1.48198i
\(292\) −426.908 −0.0855579
\(293\) −5725.00 −1.14150 −0.570748 0.821125i \(-0.693347\pi\)
−0.570748 + 0.821125i \(0.693347\pi\)
\(294\) 3848.42i 0.763417i
\(295\) 0 0
\(296\) 1053.70 0.206910
\(297\) −6114.07 −1.19453
\(298\) 5459.33i 1.06124i
\(299\) −4276.41 + 3842.44i −0.827127 + 0.743190i
\(300\) 0 0
\(301\) 288.504i 0.0552462i
\(302\) 968.631i 0.184564i
\(303\) 10306.8i 1.95417i
\(304\) 2374.17i 0.447921i
\(305\) 0 0
\(306\) 641.558i 0.119854i
\(307\) 2115.94 0.393364 0.196682 0.980467i \(-0.436983\pi\)
0.196682 + 0.980467i \(0.436983\pi\)
\(308\) 822.458i 0.152155i
\(309\) 506.054 0.0931663
\(310\) 0 0
\(311\) −3912.14 −0.713303 −0.356651 0.934238i \(-0.616082\pi\)
−0.356651 + 0.934238i \(0.616082\pi\)
\(312\) −1636.02 + 1469.99i −0.296863 + 0.266737i
\(313\) 3751.20i 0.677413i 0.940892 + 0.338706i \(0.109989\pi\)
−0.940892 + 0.338706i \(0.890011\pi\)
\(314\) 471.550i 0.0847487i
\(315\) 0 0
\(316\) 3624.18 0.645177
\(317\) −8277.14 −1.46653 −0.733266 0.679942i \(-0.762005\pi\)
−0.733266 + 0.679942i \(0.762005\pi\)
\(318\) 1177.61 0.207665
\(319\) 4462.00i 0.783147i
\(320\) 0 0
\(321\) 12322.9 2.14268
\(322\) 948.233i 0.164109i
\(323\) 6429.14 1.10751
\(324\) −3496.34 −0.599509
\(325\) 0 0
\(326\) −2910.44 −0.494462
\(327\) 12709.7 2.14938
\(328\) 3101.56i 0.522119i
\(329\) 1154.96 0.193541
\(330\) 0 0
\(331\) 887.123i 0.147313i 0.997284 + 0.0736567i \(0.0234669\pi\)
−0.997284 + 0.0736567i \(0.976533\pi\)
\(332\) −88.6419 −0.0146532
\(333\) 975.152 0.160474
\(334\) 3261.04 0.534239
\(335\) 0 0
\(336\) 362.763i 0.0588999i
\(337\) 6563.94i 1.06101i 0.847681 + 0.530506i \(0.177998\pi\)
−0.847681 + 0.530506i \(0.822002\pi\)
\(338\) 468.401 4368.96i 0.0753777 0.703078i
\(339\) 2092.67 0.335275
\(340\) 0 0
\(341\) 10120.9 1.60727
\(342\) 2197.18i 0.347397i
\(343\) 2593.95 0.408338
\(344\) 597.092i 0.0935844i
\(345\) 0 0
\(346\) 1920.48i 0.298398i
\(347\) 8654.04i 1.33883i 0.742890 + 0.669414i \(0.233455\pi\)
−0.742890 + 0.669414i \(0.766545\pi\)
\(348\) 1968.06i 0.303159i
\(349\) 10173.5i 1.56039i −0.625535 0.780196i \(-0.715119\pi\)
0.625535 0.780196i \(-0.284881\pi\)
\(350\) 0 0
\(351\) 4007.50 3600.82i 0.609414 0.547571i
\(352\) 1702.17i 0.257744i
\(353\) 921.610 0.138958 0.0694792 0.997583i \(-0.477866\pi\)
0.0694792 + 0.997583i \(0.477866\pi\)
\(354\) −5622.74 −0.844195
\(355\) 0 0
\(356\) 2661.73i 0.396269i
\(357\) −982.347 −0.145634
\(358\) −4200.64 −0.620141
\(359\) 2056.77i 0.302374i 0.988505 + 0.151187i \(0.0483096\pi\)
−0.988505 + 0.151187i \(0.951690\pi\)
\(360\) 0 0
\(361\) −15159.3 −2.21013
\(362\) −6771.60 −0.983169
\(363\) 8789.21i 1.27084i
\(364\) 484.378 + 539.084i 0.0697480 + 0.0776255i
\(365\) 0 0
\(366\) 5628.63i 0.803861i
\(367\) 2211.81i 0.314593i −0.987551 0.157296i \(-0.949722\pi\)
0.987551 0.157296i \(-0.0502778\pi\)
\(368\) 1962.47i 0.277992i
\(369\) 2870.34i 0.404944i
\(370\) 0 0
\(371\) 388.036i 0.0543014i
\(372\) 4464.06 0.622180
\(373\) 10546.1i 1.46396i 0.681325 + 0.731981i \(0.261404\pi\)
−0.681325 + 0.731981i \(0.738596\pi\)
\(374\) −4609.40 −0.637289
\(375\) 0 0
\(376\) 2390.31 0.327848
\(377\) 2627.85 + 2924.64i 0.358994 + 0.399540i
\(378\) 888.606i 0.120913i
\(379\) 12239.0i 1.65877i 0.558680 + 0.829384i \(0.311308\pi\)
−0.558680 + 0.829384i \(0.688692\pi\)
\(380\) 0 0
\(381\) −5851.77 −0.786864
\(382\) 7456.14 0.998664
\(383\) −7234.70 −0.965211 −0.482605 0.875838i \(-0.660309\pi\)
−0.482605 + 0.875838i \(0.660309\pi\)
\(384\) 750.779i 0.0997735i
\(385\) 0 0
\(386\) 5146.40 0.678614
\(387\) 552.580i 0.0725820i
\(388\) −5016.96 −0.656437
\(389\) −11781.1 −1.53554 −0.767768 0.640728i \(-0.778633\pi\)
−0.767768 + 0.640728i \(0.778633\pi\)
\(390\) 0 0
\(391\) −5314.29 −0.687354
\(392\) 2624.47 0.338152
\(393\) 9859.12i 1.26546i
\(394\) −3883.08 −0.496514
\(395\) 0 0
\(396\) 1575.28i 0.199900i
\(397\) −11724.0 −1.48214 −0.741072 0.671425i \(-0.765683\pi\)
−0.741072 + 0.671425i \(0.765683\pi\)
\(398\) 4581.38 0.576995
\(399\) 3364.30 0.422120
\(400\) 0 0
\(401\) 1707.99i 0.212701i −0.994329 0.106350i \(-0.966084\pi\)
0.994329 0.106350i \(-0.0339165\pi\)
\(402\) 4871.53i 0.604403i
\(403\) −6633.82 + 5960.62i −0.819985 + 0.736773i
\(404\) 7028.83 0.865588
\(405\) 0 0
\(406\) −648.497 −0.0792718
\(407\) 7006.17i 0.853275i
\(408\) −2033.08 −0.246697
\(409\) 9607.06i 1.16146i 0.814095 + 0.580732i \(0.197234\pi\)
−0.814095 + 0.580732i \(0.802766\pi\)
\(410\) 0 0
\(411\) 9259.11i 1.11124i
\(412\) 345.108i 0.0412676i
\(413\) 1852.75i 0.220746i
\(414\) 1816.18i 0.215604i
\(415\) 0 0
\(416\) 1002.47 + 1115.69i 0.118150 + 0.131494i
\(417\) 10112.5i 1.18755i
\(418\) 15786.1 1.84718
\(419\) 2708.67 0.315817 0.157908 0.987454i \(-0.449525\pi\)
0.157908 + 0.987454i \(0.449525\pi\)
\(420\) 0 0
\(421\) 10957.4i 1.26848i 0.773137 + 0.634239i \(0.218686\pi\)
−0.773137 + 0.634239i \(0.781314\pi\)
\(422\) −2350.45 −0.271133
\(423\) 2212.12 0.254272
\(424\) 803.084i 0.0919840i
\(425\) 0 0
\(426\) −3448.25 −0.392179
\(427\) 1854.69 0.210199
\(428\) 8403.73i 0.949087i
\(429\) 9774.12 + 10878.0i 1.10000 + 1.22423i
\(430\) 0 0
\(431\) 9513.13i 1.06318i −0.847001 0.531591i \(-0.821594\pi\)
0.847001 0.531591i \(-0.178406\pi\)
\(432\) 1839.07i 0.204820i
\(433\) 7271.33i 0.807016i 0.914976 + 0.403508i \(0.132209\pi\)
−0.914976 + 0.403508i \(0.867791\pi\)
\(434\) 1470.96i 0.162691i
\(435\) 0 0
\(436\) 8667.48i 0.952057i
\(437\) 18200.2 1.99229
\(438\) 1252.01i 0.136583i
\(439\) −9615.25 −1.04535 −0.522677 0.852531i \(-0.675067\pi\)
−0.522677 + 0.852531i \(0.675067\pi\)
\(440\) 0 0
\(441\) 2428.82 0.262263
\(442\) 3021.25 2714.65i 0.325127 0.292133i
\(443\) 4782.54i 0.512924i −0.966554 0.256462i \(-0.917443\pi\)
0.966554 0.256462i \(-0.0825569\pi\)
\(444\) 3090.23i 0.330305i
\(445\) 0 0
\(446\) −8701.75 −0.923857
\(447\) 16010.7 1.69414
\(448\) −247.389 −0.0260894
\(449\) 6868.72i 0.721949i −0.932576 0.360974i \(-0.882444\pi\)
0.932576 0.360974i \(-0.117556\pi\)
\(450\) 0 0
\(451\) −20622.6 −2.15317
\(452\) 1427.12i 0.148509i
\(453\) −2840.73 −0.294634
\(454\) 7291.70 0.753781
\(455\) 0 0
\(456\) 6962.79 0.715050
\(457\) −8401.47 −0.859966 −0.429983 0.902837i \(-0.641480\pi\)
−0.429983 + 0.902837i \(0.641480\pi\)
\(458\) 6478.31i 0.660942i
\(459\) 4980.12 0.506431
\(460\) 0 0
\(461\) 15930.5i 1.60945i 0.593650 + 0.804723i \(0.297686\pi\)
−0.593650 + 0.804723i \(0.702314\pi\)
\(462\) −2412.05 −0.242897
\(463\) −11572.2 −1.16156 −0.580781 0.814060i \(-0.697253\pi\)
−0.580781 + 0.814060i \(0.697253\pi\)
\(464\) −1342.14 −0.134283
\(465\) 0 0
\(466\) 4365.36i 0.433952i
\(467\) 10862.4i 1.07634i −0.842837 0.538169i \(-0.819116\pi\)
0.842837 0.538169i \(-0.180884\pi\)
\(468\) 927.742 + 1032.52i 0.0916344 + 0.101984i
\(469\) −1605.22 −0.158043
\(470\) 0 0
\(471\) 1382.93 0.135291
\(472\) 3834.47i 0.373932i
\(473\) −3970.12 −0.385933
\(474\) 10628.7i 1.02994i
\(475\) 0 0
\(476\) 669.920i 0.0645078i
\(477\) 743.216i 0.0713407i
\(478\) 117.610i 0.0112538i
\(479\) 2085.72i 0.198954i −0.995040 0.0994769i \(-0.968283\pi\)
0.995040 0.0994769i \(-0.0317169\pi\)
\(480\) 0 0
\(481\) 4126.21 + 4592.23i 0.391141 + 0.435317i
\(482\) 404.522i 0.0382272i
\(483\) −2780.91 −0.261979
\(484\) −5993.88 −0.562911
\(485\) 0 0
\(486\) 4046.96i 0.377723i
\(487\) −11829.6 −1.10072 −0.550358 0.834929i \(-0.685509\pi\)
−0.550358 + 0.834929i \(0.685509\pi\)
\(488\) 3838.49 0.356066
\(489\) 8535.54i 0.789347i
\(490\) 0 0
\(491\) −2700.04 −0.248169 −0.124085 0.992272i \(-0.539599\pi\)
−0.124085 + 0.992272i \(0.539599\pi\)
\(492\) −9096.03 −0.833497
\(493\) 3634.45i 0.332023i
\(494\) −10347.1 + 9297.04i −0.942381 + 0.846748i
\(495\) 0 0
\(496\) 3044.31i 0.275591i
\(497\) 1136.24i 0.102550i
\(498\) 259.963i 0.0233920i
\(499\) 3013.67i 0.270361i −0.990821 0.135181i \(-0.956839\pi\)
0.990821 0.135181i \(-0.0431615\pi\)
\(500\) 0 0
\(501\) 9563.74i 0.852847i
\(502\) −227.984 −0.0202698
\(503\) 13902.0i 1.23233i −0.787619 0.616163i \(-0.788686\pi\)
0.787619 0.616163i \(-0.211314\pi\)
\(504\) −228.947 −0.0202344
\(505\) 0 0
\(506\) −13048.7 −1.14641
\(507\) −12813.0 1373.69i −1.12238 0.120331i
\(508\) 3990.67i 0.348538i
\(509\) 1630.66i 0.142000i −0.997476 0.0709999i \(-0.977381\pi\)
0.997476 0.0709999i \(-0.0226190\pi\)
\(510\) 0 0
\(511\) 412.549 0.0357145
\(512\) −512.000 −0.0441942
\(513\) −17055.7 −1.46789
\(514\) 8469.46i 0.726793i
\(515\) 0 0
\(516\) −1751.11 −0.149396
\(517\) 15893.4i 1.35202i
\(518\) −1018.26 −0.0863703
\(519\) 5632.25 0.476355
\(520\) 0 0
\(521\) 8654.86 0.727785 0.363893 0.931441i \(-0.381447\pi\)
0.363893 + 0.931441i \(0.381447\pi\)
\(522\) −1242.08 −0.104147
\(523\) 5093.00i 0.425816i 0.977072 + 0.212908i \(0.0682934\pi\)
−0.977072 + 0.212908i \(0.931707\pi\)
\(524\) −6723.51 −0.560530
\(525\) 0 0
\(526\) 456.963i 0.0378793i
\(527\) −8243.85 −0.681418
\(528\) −4992.00 −0.411456
\(529\) −2877.15 −0.236472
\(530\) 0 0
\(531\) 3548.62i 0.290013i
\(532\) 2294.31i 0.186976i
\(533\) 13517.2 12145.4i 1.09849 0.987011i
\(534\) −7806.15 −0.632594
\(535\) 0 0
\(536\) −3322.18 −0.267717
\(537\) 12319.3i 0.989979i
\(538\) 2438.61 0.195420
\(539\) 17450.3i 1.39451i
\(540\) 0 0
\(541\) 5004.07i 0.397674i −0.980033 0.198837i \(-0.936284\pi\)
0.980033 0.198837i \(-0.0637165\pi\)
\(542\) 11782.3i 0.933748i
\(543\) 19859.3i 1.56951i
\(544\) 1386.47i 0.109273i
\(545\) 0 0
\(546\) 1580.99 1420.55i 0.123920 0.111344i
\(547\) 10856.3i 0.848598i 0.905522 + 0.424299i \(0.139479\pi\)
−0.905522 + 0.424299i \(0.860521\pi\)
\(548\) −6314.33 −0.492217
\(549\) 3552.34 0.276157
\(550\) 0 0
\(551\) 12447.1i 0.962368i
\(552\) −5755.41 −0.443780
\(553\) −3502.28 −0.269316
\(554\) 12278.8i 0.941653i
\(555\) 0 0
\(556\) −6896.28 −0.526021
\(557\) −23083.8 −1.75600 −0.878001 0.478658i \(-0.841123\pi\)
−0.878001 + 0.478658i \(0.841123\pi\)
\(558\) 2817.36i 0.213743i
\(559\) 2602.24 2338.16i 0.196892 0.176912i
\(560\) 0 0
\(561\) 13518.1i 1.01735i
\(562\) 3704.48i 0.278050i
\(563\) 15495.9i 1.15999i 0.814619 + 0.579996i \(0.196946\pi\)
−0.814619 + 0.579996i \(0.803054\pi\)
\(564\) 7010.14i 0.523369i
\(565\) 0 0
\(566\) 344.579i 0.0255897i
\(567\) 3378.74 0.250253
\(568\) 2351.57i 0.173714i
\(569\) 18165.5 1.33838 0.669188 0.743094i \(-0.266642\pi\)
0.669188 + 0.743094i \(0.266642\pi\)
\(570\) 0 0
\(571\) 8289.75 0.607557 0.303779 0.952743i \(-0.401752\pi\)
0.303779 + 0.952743i \(0.401752\pi\)
\(572\) 7418.36 6665.54i 0.542268 0.487238i
\(573\) 21866.9i 1.59424i
\(574\) 2997.24i 0.217948i
\(575\) 0 0
\(576\) −473.832 −0.0342760
\(577\) 5336.46 0.385026 0.192513 0.981294i \(-0.438336\pi\)
0.192513 + 0.981294i \(0.438336\pi\)
\(578\) −6071.49 −0.436922
\(579\) 15093.0i 1.08332i
\(580\) 0 0
\(581\) 85.6604 0.00611668
\(582\) 14713.4i 1.04792i
\(583\) −5339.78 −0.379333
\(584\) 853.816 0.0604986
\(585\) 0 0
\(586\) 11450.0 0.807159
\(587\) 6877.72 0.483601 0.241800 0.970326i \(-0.422262\pi\)
0.241800 + 0.970326i \(0.422262\pi\)
\(588\) 7696.85i 0.539818i
\(589\) 28233.2 1.97509
\(590\) 0 0
\(591\) 11388.0i 0.792624i
\(592\) −2107.41 −0.146307
\(593\) 8358.37 0.578814 0.289407 0.957206i \(-0.406542\pi\)
0.289407 + 0.957206i \(0.406542\pi\)
\(594\) 12228.1 0.844658
\(595\) 0 0
\(596\) 10918.7i 0.750413i
\(597\) 13436.0i 0.921101i
\(598\) 8552.82 7684.87i 0.584867 0.525515i
\(599\) 14896.0 1.01609 0.508043 0.861332i \(-0.330369\pi\)
0.508043 + 0.861332i \(0.330369\pi\)
\(600\) 0 0
\(601\) 7661.60 0.520005 0.260003 0.965608i \(-0.416277\pi\)
0.260003 + 0.965608i \(0.416277\pi\)
\(602\) 577.009i 0.0390650i
\(603\) −3074.52 −0.207636
\(604\) 1937.26i 0.130507i
\(605\) 0 0
\(606\) 20613.7i 1.38180i
\(607\) 22718.2i 1.51912i −0.650440 0.759558i \(-0.725415\pi\)
0.650440 0.759558i \(-0.274585\pi\)
\(608\) 4748.34i 0.316728i
\(609\) 1901.87i 0.126548i
\(610\) 0 0
\(611\) 9360.26 + 10417.4i 0.619763 + 0.689761i
\(612\) 1283.12i 0.0847498i
\(613\) 12080.9 0.795995 0.397997 0.917387i \(-0.369705\pi\)
0.397997 + 0.917387i \(0.369705\pi\)
\(614\) −4231.87 −0.278151
\(615\) 0 0
\(616\) 1644.92i 0.107590i
\(617\) −21104.3 −1.37703 −0.688514 0.725223i \(-0.741737\pi\)
−0.688514 + 0.725223i \(0.741737\pi\)
\(618\) −1012.11 −0.0658785
\(619\) 12516.1i 0.812706i −0.913716 0.406353i \(-0.866800\pi\)
0.913716 0.406353i \(-0.133200\pi\)
\(620\) 0 0
\(621\) 14098.1 0.911013
\(622\) 7824.28 0.504381
\(623\) 2572.21i 0.165415i
\(624\) 3272.03 2939.98i 0.209914 0.188611i
\(625\) 0 0
\(626\) 7502.40i 0.479003i
\(627\) 46296.3i 2.94880i
\(628\) 943.100i 0.0599264i
\(629\) 5706.76i 0.361754i
\(630\) 0 0
\(631\) 10069.7i 0.635288i 0.948210 + 0.317644i \(0.102892\pi\)
−0.948210 + 0.317644i \(0.897108\pi\)
\(632\) −7248.35 −0.456209
\(633\) 6893.24i 0.432831i
\(634\) 16554.3 1.03699
\(635\) 0 0
\(636\) −2355.23 −0.146841
\(637\) 10277.2 + 11437.9i 0.639241 + 0.711438i
\(638\) 8924.00i 0.553769i
\(639\) 2176.26i 0.134729i
\(640\) 0 0
\(641\) 3388.87 0.208818 0.104409 0.994534i \(-0.466705\pi\)
0.104409 + 0.994534i \(0.466705\pi\)
\(642\) −24645.9 −1.51510
\(643\) 24633.3 1.51080 0.755400 0.655264i \(-0.227443\pi\)
0.755400 + 0.655264i \(0.227443\pi\)
\(644\) 1896.47i 0.116042i
\(645\) 0 0
\(646\) −12858.3 −0.783131
\(647\) 1908.12i 0.115945i 0.998318 + 0.0579723i \(0.0184635\pi\)
−0.998318 + 0.0579723i \(0.981537\pi\)
\(648\) 6992.67 0.423917
\(649\) 25495.8 1.54206
\(650\) 0 0
\(651\) −4313.91 −0.259717
\(652\) 5820.88 0.349637
\(653\) 10331.4i 0.619141i −0.950877 0.309570i \(-0.899815\pi\)
0.950877 0.309570i \(-0.100185\pi\)
\(654\) −25419.4 −1.51984
\(655\) 0 0
\(656\) 6203.12i 0.369194i
\(657\) 790.166 0.0469213
\(658\) −2309.91 −0.136854
\(659\) −19039.8 −1.12547 −0.562737 0.826636i \(-0.690251\pi\)
−0.562737 + 0.826636i \(0.690251\pi\)
\(660\) 0 0
\(661\) 28643.0i 1.68545i 0.538343 + 0.842726i \(0.319050\pi\)
−0.538343 + 0.842726i \(0.680950\pi\)
\(662\) 1774.25i 0.104166i
\(663\) −7961.35 8860.52i −0.466355 0.519026i
\(664\) 177.284 0.0103614
\(665\) 0 0
\(666\) −1950.30 −0.113473
\(667\) 10288.7i 0.597272i
\(668\) −6522.07 −0.377764
\(669\) 25519.9i 1.47482i
\(670\) 0 0
\(671\) 25522.5i 1.46838i
\(672\) 725.526i 0.0416485i
\(673\) 18372.8i 1.05233i 0.850382 + 0.526166i \(0.176371\pi\)
−0.850382 + 0.526166i \(0.823629\pi\)
\(674\) 13127.9i 0.750248i
\(675\) 0 0
\(676\) −936.802 + 8737.93i −0.0533001 + 0.497151i
\(677\) 12837.4i 0.728779i 0.931247 + 0.364389i \(0.118722\pi\)
−0.931247 + 0.364389i \(0.881278\pi\)
\(678\) −4185.34 −0.237075
\(679\) 4848.22 0.274017
\(680\) 0 0
\(681\) 21384.6i 1.20332i
\(682\) −20241.9 −1.13651
\(683\) −12224.7 −0.684871 −0.342436 0.939541i \(-0.611252\pi\)
−0.342436 + 0.939541i \(0.611252\pi\)
\(684\) 4394.36i 0.245647i
\(685\) 0 0
\(686\) −5187.90 −0.288739
\(687\) −18999.1 −1.05511
\(688\) 1194.18i 0.0661742i
\(689\) 3499.99 3144.81i 0.193525 0.173886i
\(690\) 0 0
\(691\) 7662.99i 0.421873i 0.977500 + 0.210936i \(0.0676513\pi\)
−0.977500 + 0.210936i \(0.932349\pi\)
\(692\) 3840.96i 0.210999i
\(693\) 1522.29i 0.0834446i
\(694\) 17308.1i 0.946694i
\(695\) 0 0
\(696\) 3936.13i 0.214366i
\(697\) 16797.8 0.912856
\(698\) 20347.1i 1.10336i
\(699\) 12802.4 0.692750
\(700\) 0 0
\(701\) 15215.8 0.819818 0.409909 0.912126i \(-0.365560\pi\)
0.409909 + 0.912126i \(0.365560\pi\)
\(702\) −8015.00 + 7201.63i −0.430921 + 0.387191i
\(703\) 19544.3i 1.04854i
\(704\) 3404.34i 0.182253i
\(705\) 0 0
\(706\) −1843.22 −0.0982585
\(707\) −6792.42 −0.361323
\(708\) 11245.5 0.596936
\(709\) 15410.9i 0.816314i −0.912912 0.408157i \(-0.866172\pi\)
0.912912 0.408157i \(-0.133828\pi\)
\(710\) 0 0
\(711\) −6708.01 −0.353825
\(712\) 5323.47i 0.280204i
\(713\) −23337.4 −1.22579
\(714\) 1964.69 0.102979
\(715\) 0 0
\(716\) 8401.27 0.438506
\(717\) 344.917 0.0179654
\(718\) 4113.55i 0.213811i
\(719\) 1155.79 0.0599494 0.0299747 0.999551i \(-0.490457\pi\)
0.0299747 + 0.999551i \(0.490457\pi\)
\(720\) 0 0
\(721\) 333.500i 0.0172263i
\(722\) 30318.5 1.56280
\(723\) 1186.36 0.0610249
\(724\) 13543.2 0.695206
\(725\) 0 0
\(726\) 17578.4i 0.898618i
\(727\) 18048.8i 0.920759i 0.887722 + 0.460379i \(0.152287\pi\)
−0.887722 + 0.460379i \(0.847713\pi\)
\(728\) −968.755 1078.17i −0.0493193 0.0548895i
\(729\) −11731.6 −0.596029
\(730\) 0 0
\(731\) 3233.80 0.163620
\(732\) 11257.3i 0.568415i
\(733\) 7855.68 0.395847 0.197924 0.980217i \(-0.436580\pi\)
0.197924 + 0.980217i \(0.436580\pi\)
\(734\) 4423.62i 0.222450i
\(735\) 0 0
\(736\) 3924.95i 0.196570i
\(737\) 22089.5i 1.10404i
\(738\) 5740.69i 0.286338i
\(739\) 302.801i 0.0150727i 0.999972 + 0.00753635i \(0.00239892\pi\)
−0.999972 + 0.00753635i \(0.997601\pi\)
\(740\) 0 0
\(741\) 27265.7 + 30345.1i 1.35173 + 1.50439i
\(742\) 776.072i 0.0383969i
\(743\) −17199.9 −0.849265 −0.424633 0.905366i \(-0.639597\pi\)
−0.424633 + 0.905366i \(0.639597\pi\)
\(744\) −8928.13 −0.439948
\(745\) 0 0
\(746\) 21092.2i 1.03518i
\(747\) 164.068 0.00803604
\(748\) 9218.79 0.450632
\(749\) 8121.07i 0.396178i
\(750\) 0 0
\(751\) −12999.7 −0.631644 −0.315822 0.948819i \(-0.602280\pi\)
−0.315822 + 0.948819i \(0.602280\pi\)
\(752\) −4780.63 −0.231824
\(753\) 668.616i 0.0323582i
\(754\) −5255.69 5849.28i −0.253847 0.282517i
\(755\) 0 0
\(756\) 1777.21i 0.0854981i
\(757\) 6046.81i 0.290324i −0.989408 0.145162i \(-0.953630\pi\)
0.989408 0.145162i \(-0.0463703\pi\)
\(758\) 24477.9i 1.17293i
\(759\) 38268.2i 1.83010i
\(760\) 0 0
\(761\) 26902.3i 1.28148i −0.767758 0.640740i \(-0.778628\pi\)
0.767758 0.640740i \(-0.221372\pi\)
\(762\) 11703.5 0.556397
\(763\) 8375.95i 0.397418i
\(764\) −14912.3 −0.706162
\(765\) 0 0
\(766\) 14469.4 0.682507
\(767\) −16711.3 + 15015.5i −0.786716 + 0.706880i
\(768\) 1501.56i 0.0705505i
\(769\) 2068.29i 0.0969887i −0.998823 0.0484943i \(-0.984558\pi\)
0.998823 0.0484943i \(-0.0154423\pi\)
\(770\) 0 0
\(771\) −24838.6 −1.16024
\(772\) −10292.8 −0.479852
\(773\) 8389.72 0.390371 0.195186 0.980766i \(-0.437469\pi\)
0.195186 + 0.980766i \(0.437469\pi\)
\(774\) 1105.16i 0.0513232i
\(775\) 0 0
\(776\) 10033.9 0.464171
\(777\) 2986.29i 0.137880i
\(778\) 23562.1 1.08579
\(779\) −57528.3 −2.64591
\(780\) 0 0
\(781\) 15635.8 0.716379
\(782\) 10628.6 0.486033
\(783\) 9641.73i 0.440060i
\(784\) −5248.93 −0.239109
\(785\) 0 0
\(786\) 19718.2i 0.894817i
\(787\) 21458.3 0.971928 0.485964 0.873979i \(-0.338469\pi\)
0.485964 + 0.873979i \(0.338469\pi\)
\(788\) 7766.16 0.351089
\(789\) −1340.15 −0.0604697
\(790\) 0 0
\(791\) 1379.11i 0.0619920i
\(792\) 3150.55i 0.141351i
\(793\) 15031.2 + 16728.8i 0.673106 + 0.749128i
\(794\) 23448.0 1.04803
\(795\) 0 0
\(796\) −9162.76 −0.407997
\(797\) 6049.72i 0.268873i −0.990922 0.134437i \(-0.957078\pi\)
0.990922 0.134437i \(-0.0429225\pi\)
\(798\) −6728.60 −0.298484
\(799\) 12945.7i 0.573200i
\(800\) 0 0
\(801\) 4926.62i 0.217320i
\(802\) 3415.98i 0.150402i
\(803\) 5677.10i 0.249490i
\(804\) 9743.07i 0.427378i
\(805\) 0 0
\(806\) 13267.6 11921.2i 0.579817 0.520977i
\(807\) 7151.78i 0.311964i
\(808\) −14057.7 −0.612063
\(809\) 33364.1 1.44996 0.724981 0.688769i \(-0.241848\pi\)
0.724981 + 0.688769i \(0.241848\pi\)
\(810\) 0 0
\(811\) 2210.77i 0.0957221i 0.998854 + 0.0478611i \(0.0152405\pi\)
−0.998854 + 0.0478611i \(0.984760\pi\)
\(812\) 1296.99 0.0560537
\(813\) −34554.2 −1.49061
\(814\) 14012.3i 0.603356i
\(815\) 0 0
\(816\) 4066.15 0.174441
\(817\) −11075.0 −0.474253
\(818\) 19214.1i 0.821279i
\(819\) −896.537 997.794i −0.0382510 0.0425711i
\(820\) 0 0
\(821\) 25402.9i 1.07986i 0.841709 + 0.539932i \(0.181550\pi\)
−0.841709 + 0.539932i \(0.818450\pi\)
\(822\) 18518.2i 0.785763i
\(823\) 42030.9i 1.78020i 0.455765 + 0.890100i \(0.349366\pi\)
−0.455765 + 0.890100i \(0.650634\pi\)
\(824\) 690.215i 0.0291806i
\(825\) 0 0
\(826\) 3705.50i 0.156091i
\(827\) 27713.0 1.16527 0.582633 0.812735i \(-0.302022\pi\)
0.582633 + 0.812735i \(0.302022\pi\)
\(828\) 3632.35i 0.152455i
\(829\) −23579.7 −0.987886 −0.493943 0.869494i \(-0.664445\pi\)
−0.493943 + 0.869494i \(0.664445\pi\)
\(830\) 0 0
\(831\) −36010.4 −1.50323
\(832\) −2004.95 2231.39i −0.0835445 0.0929802i
\(833\) 14213.9i 0.591214i
\(834\) 20224.9i 0.839727i
\(835\) 0 0
\(836\) −31572.1 −1.30615
\(837\) 21869.9 0.903146
\(838\) −5417.34 −0.223316
\(839\) 8648.03i 0.355856i −0.984044 0.177928i \(-0.943061\pi\)
0.984044 0.177928i \(-0.0569394\pi\)
\(840\) 0 0
\(841\) −17352.5 −0.711491
\(842\) 21914.7i 0.896949i
\(843\) 10864.2 0.443872
\(844\) 4700.91 0.191720
\(845\) 0 0
\(846\) −4424.24 −0.179797
\(847\) 5792.27 0.234976
\(848\) 1606.17i 0.0650425i
\(849\) 1010.56 0.0408507
\(850\) 0 0
\(851\) 16155.2i 0.650755i
\(852\) 6896.51 0.277313
\(853\) 23117.7 0.927942 0.463971 0.885851i \(-0.346424\pi\)
0.463971 + 0.885851i \(0.346424\pi\)
\(854\) −3709.38 −0.148633
\(855\) 0 0
\(856\) 16807.5i 0.671106i
\(857\) 3246.65i 0.129409i 0.997904 + 0.0647045i \(0.0206105\pi\)
−0.997904 + 0.0647045i \(0.979390\pi\)
\(858\) −19548.2 21756.0i −0.777816 0.865663i
\(859\) −29452.5 −1.16986 −0.584928 0.811085i \(-0.698877\pi\)
−0.584928 + 0.811085i \(0.698877\pi\)
\(860\) 0 0
\(861\) 8790.09 0.347927
\(862\) 19026.3i 0.751783i
\(863\) −15485.4 −0.610809 −0.305405 0.952223i \(-0.598792\pi\)
−0.305405 + 0.952223i \(0.598792\pi\)
\(864\) 3678.14i 0.144830i
\(865\) 0 0
\(866\) 14542.7i 0.570646i
\(867\) 17806.0i 0.697491i
\(868\) 2941.91i 0.115040i
\(869\) 48195.0i 1.88136i
\(870\) 0 0
\(871\) −13009.4 14478.7i −0.506092 0.563251i
\(872\) 17335.0i 0.673206i
\(873\) 9285.92 0.360001
\(874\) −36400.3 −1.40876
\(875\) 0 0
\(876\) 2504.01i 0.0965784i
\(877\) 13702.1 0.527578 0.263789 0.964580i \(-0.415028\pi\)
0.263789 + 0.964580i \(0.415028\pi\)
\(878\) 19230.5 0.739178
\(879\) 33579.8i 1.28853i
\(880\) 0 0
\(881\) −16868.6 −0.645084 −0.322542 0.946555i \(-0.604537\pi\)
−0.322542 + 0.946555i \(0.604537\pi\)
\(882\) −4857.64 −0.185448
\(883\) 15162.4i 0.577867i −0.957349 0.288934i \(-0.906699\pi\)
0.957349 0.288934i \(-0.0933007\pi\)
\(884\) −6042.50 + 5429.31i −0.229900 + 0.206569i
\(885\) 0 0
\(886\) 9565.09i 0.362692i
\(887\) 13173.9i 0.498686i 0.968415 + 0.249343i \(0.0802147\pi\)
−0.968415 + 0.249343i \(0.919785\pi\)
\(888\) 6180.45i 0.233561i
\(889\) 3856.44i 0.145490i
\(890\) 0 0
\(891\) 46494.9i 1.74819i
\(892\) 17403.5 0.653265
\(893\) 44336.0i 1.66142i
\(894\) −32021.5 −1.19794
\(895\) 0 0
\(896\) 494.779 0.0184480
\(897\) −22537.7 25083.1i −0.838919 0.933668i
\(898\) 13737.4i 0.510495i
\(899\) 15960.4i 0.592114i
\(900\) 0 0
\(901\) 4349.43 0.160822
\(902\) 41245.1 1.52252
\(903\) 1692.21 0.0623624
\(904\) 2854.23i 0.105011i
\(905\) 0 0
\(906\) 5681.47 0.208338
\(907\) 32190.1i 1.17845i 0.807969 + 0.589225i \(0.200567\pi\)
−0.807969 + 0.589225i \(0.799433\pi\)
\(908\) −14583.4 −0.533003
\(909\) −13009.7 −0.474703
\(910\) 0 0
\(911\) 13646.0 0.496281 0.248141 0.968724i \(-0.420180\pi\)
0.248141 + 0.968724i \(0.420180\pi\)
\(912\) −13925.6 −0.505617
\(913\) 1178.78i 0.0427293i
\(914\) 16802.9 0.608088
\(915\) 0 0
\(916\) 12956.6i 0.467357i
\(917\) 6497.36 0.233982
\(918\) −9960.23 −0.358101
\(919\) −34923.6 −1.25356 −0.626780 0.779196i \(-0.715628\pi\)
−0.626780 + 0.779196i \(0.715628\pi\)
\(920\) 0 0
\(921\) 12410.9i 0.444033i
\(922\) 31860.9i 1.13805i
\(923\) −10248.6 + 9208.52i −0.365477 + 0.328388i
\(924\) 4824.09 0.171754
\(925\) 0 0
\(926\) 23144.3 0.821349
\(927\) 638.761i 0.0226318i
\(928\) 2684.27 0.0949522
\(929\) 4287.49i 0.151419i 0.997130 + 0.0757094i \(0.0241221\pi\)
−0.997130 + 0.0757094i \(0.975878\pi\)
\(930\) 0 0
\(931\) 48679.1i 1.71363i
\(932\) 8730.72i 0.306850i
\(933\) 22946.5i 0.805182i
\(934\) 21724.7i 0.761086i
\(935\) 0 0
\(936\) −1855.48 2065.04i −0.0647953 0.0721134i
\(937\) 14174.1i 0.494182i 0.968992 + 0.247091i \(0.0794746\pi\)
−0.968992 + 0.247091i \(0.920525\pi\)
\(938\) 3210.44 0.111753
\(939\) −22002.5 −0.764669
\(940\) 0 0
\(941\) 11317.1i 0.392058i 0.980598 + 0.196029i \(0.0628047\pi\)
−0.980598 + 0.196029i \(0.937195\pi\)
\(942\) −2765.86 −0.0956651
\(943\) 47552.5 1.64212
\(944\) 7668.95i 0.264410i
\(945\) 0 0
\(946\) 7940.24 0.272896
\(947\) 40514.3 1.39022 0.695110 0.718904i \(-0.255356\pi\)
0.695110 + 0.718904i \(0.255356\pi\)
\(948\) 21257.5i 0.728281i
\(949\) 3343.47 + 3721.09i 0.114366 + 0.127283i
\(950\) 0 0
\(951\) 48549.3i 1.65543i
\(952\) 1339.84i 0.0456139i
\(953\) 49479.9i 1.68186i 0.541144 + 0.840930i \(0.317991\pi\)
−0.541144 + 0.840930i \(0.682009\pi\)
\(954\) 1486.43i 0.0504455i
\(955\) 0 0
\(956\) 235.219i 0.00795767i
\(957\) 26171.7 0.884023
\(958\) 4171.44i 0.140682i
\(959\) 6101.95 0.205466
\(960\) 0 0
\(961\) −6411.32 −0.215210
\(962\) −8252.41 9184.46i −0.276578 0.307816i
\(963\) 15554.5i 0.520495i
\(964\) 809.045i 0.0270307i
\(965\) 0 0
\(966\) 5561.82 0.185247
\(967\) 46779.9 1.55568 0.777838 0.628465i \(-0.216316\pi\)
0.777838 + 0.628465i \(0.216316\pi\)
\(968\) 11987.8 0.398038
\(969\) 37709.9i 1.25017i
\(970\) 0 0
\(971\) 24378.5 0.805710 0.402855 0.915264i \(-0.368018\pi\)
0.402855 + 0.915264i \(0.368018\pi\)
\(972\) 8093.91i 0.267091i
\(973\) 6664.32 0.219577
\(974\) 23659.1 0.778323
\(975\) 0 0
\(976\) −7676.98 −0.251777
\(977\) −24237.6 −0.793685 −0.396842 0.917887i \(-0.629894\pi\)
−0.396842 + 0.917887i \(0.629894\pi\)
\(978\) 17071.1i 0.558152i
\(979\) 35396.2 1.15554
\(980\) 0 0
\(981\) 16042.7i 0.522124i
\(982\) 5400.08 0.175482
\(983\) −32953.2 −1.06922 −0.534611 0.845098i \(-0.679542\pi\)
−0.534611 + 0.845098i \(0.679542\pi\)
\(984\) 18192.1 0.589372
\(985\) 0 0
\(986\) 7268.90i 0.234776i
\(987\) 6774.36i 0.218470i
\(988\) 20694.1 18594.1i 0.666364 0.598741i
\(989\) 9154.51 0.294334
\(990\) 0 0
\(991\) −30254.8 −0.969804 −0.484902 0.874569i \(-0.661145\pi\)
−0.484902 + 0.874569i \(0.661145\pi\)
\(992\) 6088.61i 0.194873i
\(993\) −5203.39 −0.166288
\(994\) 2272.47i 0.0725135i
\(995\) 0 0
\(996\) 519.925i 0.0165406i
\(997\) 4794.46i 0.152299i 0.997096 + 0.0761495i \(0.0242626\pi\)
−0.997096 + 0.0761495i \(0.975737\pi\)
\(998\) 6027.34i 0.191174i
\(999\) 15139.3i 0.479466i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.4.c.e.649.3 4
5.2 odd 4 26.4.b.a.25.2 4
5.3 odd 4 650.4.d.d.51.3 4
5.4 even 2 650.4.c.f.649.2 4
13.12 even 2 650.4.c.f.649.3 4
15.2 even 4 234.4.b.b.181.3 4
20.7 even 4 208.4.f.d.129.1 4
40.27 even 4 832.4.f.h.129.4 4
40.37 odd 4 832.4.f.j.129.2 4
65.2 even 12 338.4.c.i.191.1 4
65.7 even 12 338.4.c.h.315.1 4
65.12 odd 4 26.4.b.a.25.4 yes 4
65.17 odd 12 338.4.e.g.23.3 8
65.22 odd 12 338.4.e.g.23.1 8
65.32 even 12 338.4.c.i.315.1 4
65.37 even 12 338.4.c.h.191.1 4
65.38 odd 4 650.4.d.d.51.1 4
65.42 odd 12 338.4.e.g.147.3 8
65.47 even 4 338.4.a.i.1.2 2
65.57 even 4 338.4.a.f.1.2 2
65.62 odd 12 338.4.e.g.147.1 8
65.64 even 2 inner 650.4.c.e.649.2 4
195.77 even 4 234.4.b.b.181.2 4
260.207 even 4 208.4.f.d.129.2 4
520.77 odd 4 832.4.f.j.129.1 4
520.467 even 4 832.4.f.h.129.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.b.a.25.2 4 5.2 odd 4
26.4.b.a.25.4 yes 4 65.12 odd 4
208.4.f.d.129.1 4 20.7 even 4
208.4.f.d.129.2 4 260.207 even 4
234.4.b.b.181.2 4 195.77 even 4
234.4.b.b.181.3 4 15.2 even 4
338.4.a.f.1.2 2 65.57 even 4
338.4.a.i.1.2 2 65.47 even 4
338.4.c.h.191.1 4 65.37 even 12
338.4.c.h.315.1 4 65.7 even 12
338.4.c.i.191.1 4 65.2 even 12
338.4.c.i.315.1 4 65.32 even 12
338.4.e.g.23.1 8 65.22 odd 12
338.4.e.g.23.3 8 65.17 odd 12
338.4.e.g.147.1 8 65.62 odd 12
338.4.e.g.147.3 8 65.42 odd 12
650.4.c.e.649.2 4 65.64 even 2 inner
650.4.c.e.649.3 4 1.1 even 1 trivial
650.4.c.f.649.2 4 5.4 even 2
650.4.c.f.649.3 4 13.12 even 2
650.4.d.d.51.1 4 65.38 odd 4
650.4.d.d.51.3 4 5.3 odd 4
832.4.f.h.129.3 4 520.467 even 4
832.4.f.h.129.4 4 40.27 even 4
832.4.f.j.129.1 4 520.77 odd 4
832.4.f.j.129.2 4 40.37 odd 4