Properties

Label 832.4
Level 832
Weight 4
Dimension 35614
Nonzero newspaces 28
Sturm bound 172032
Trace bound 17

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(172032\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(832))\).

Total New Old
Modular forms 65376 36098 29278
Cusp forms 63648 35614 28034
Eisenstein series 1728 484 1244

Trace form

\( 35614 q - 80 q^{2} - 60 q^{3} - 80 q^{4} - 80 q^{5} - 80 q^{6} - 56 q^{7} - 80 q^{8} - 46 q^{9} - 80 q^{10} - 20 q^{11} - 80 q^{12} - 160 q^{13} - 176 q^{14} - 304 q^{15} - 80 q^{16} - 348 q^{17} - 80 q^{18}+ \cdots + 9428 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(832))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
832.4.a \(\chi_{832}(1, \cdot)\) 832.4.a.a 1 1
832.4.a.b 1
832.4.a.c 1
832.4.a.d 1
832.4.a.e 1
832.4.a.f 1
832.4.a.g 1
832.4.a.h 1
832.4.a.i 1
832.4.a.j 1
832.4.a.k 1
832.4.a.l 1
832.4.a.m 1
832.4.a.n 1
832.4.a.o 1
832.4.a.p 1
832.4.a.q 1
832.4.a.r 1
832.4.a.s 2
832.4.a.t 2
832.4.a.u 2
832.4.a.v 2
832.4.a.w 2
832.4.a.x 2
832.4.a.y 2
832.4.a.z 2
832.4.a.ba 3
832.4.a.bb 3
832.4.a.bc 3
832.4.a.bd 3
832.4.a.be 4
832.4.a.bf 5
832.4.a.bg 5
832.4.a.bh 6
832.4.a.bi 6
832.4.b \(\chi_{832}(417, \cdot)\) 832.4.b.a 12 1
832.4.b.b 12
832.4.b.c 24
832.4.b.d 24
832.4.e \(\chi_{832}(545, \cdot)\) 832.4.e.a 4 1
832.4.e.b 8
832.4.e.c 8
832.4.e.d 8
832.4.e.e 56
832.4.f \(\chi_{832}(129, \cdot)\) 832.4.f.a 2 1
832.4.f.b 2
832.4.f.c 2
832.4.f.d 2
832.4.f.e 2
832.4.f.f 2
832.4.f.g 2
832.4.f.h 4
832.4.f.i 4
832.4.f.j 4
832.4.f.k 10
832.4.f.l 10
832.4.f.m 16
832.4.f.n 20
832.4.i \(\chi_{832}(321, \cdot)\) n/a 164 2
832.4.k \(\chi_{832}(255, \cdot)\) n/a 164 2
832.4.l \(\chi_{832}(239, \cdot)\) n/a 164 2
832.4.n \(\chi_{832}(209, \cdot)\) n/a 144 2
832.4.p \(\chi_{832}(337, \cdot)\) n/a 164 2
832.4.s \(\chi_{832}(47, \cdot)\) n/a 164 2
832.4.u \(\chi_{832}(31, \cdot)\) n/a 168 2
832.4.w \(\chi_{832}(257, \cdot)\) n/a 164 2
832.4.z \(\chi_{832}(289, \cdot)\) n/a 168 2
832.4.ba \(\chi_{832}(225, \cdot)\) n/a 168 2
832.4.bd \(\chi_{832}(343, \cdot)\) None 0 4
832.4.bf \(\chi_{832}(105, \cdot)\) None 0 4
832.4.bg \(\chi_{832}(25, \cdot)\) None 0 4
832.4.bi \(\chi_{832}(135, \cdot)\) None 0 4
832.4.bk \(\chi_{832}(223, \cdot)\) n/a 336 4
832.4.bn \(\chi_{832}(175, \cdot)\) n/a 328 4
832.4.bp \(\chi_{832}(17, \cdot)\) n/a 328 4
832.4.br \(\chi_{832}(81, \cdot)\) n/a 328 4
832.4.bs \(\chi_{832}(15, \cdot)\) n/a 328 4
832.4.bu \(\chi_{832}(63, \cdot)\) n/a 328 4
832.4.bw \(\chi_{832}(99, \cdot)\) n/a 2672 8
832.4.by \(\chi_{832}(53, \cdot)\) n/a 2304 8
832.4.cb \(\chi_{832}(77, \cdot)\) n/a 2672 8
832.4.cc \(\chi_{832}(83, \cdot)\) n/a 2672 8
832.4.cf \(\chi_{832}(71, \cdot)\) None 0 8
832.4.ch \(\chi_{832}(121, \cdot)\) None 0 8
832.4.ci \(\chi_{832}(9, \cdot)\) None 0 8
832.4.ck \(\chi_{832}(7, \cdot)\) None 0 8
832.4.cn \(\chi_{832}(11, \cdot)\) n/a 5344 16
832.4.cp \(\chi_{832}(29, \cdot)\) n/a 5344 16
832.4.cq \(\chi_{832}(69, \cdot)\) n/a 5344 16
832.4.ct \(\chi_{832}(115, \cdot)\) n/a 5344 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(832))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(832)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(416))\)\(^{\oplus 2}\)