Properties

Label 820.2.u.b.221.4
Level $820$
Weight $2$
Character 820.221
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 221.4
Character \(\chi\) \(=\) 820.221
Dual form 820.2.u.b.141.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.355750 q^{3} +(0.809017 + 0.587785i) q^{5} +(0.307592 + 0.946670i) q^{7} -2.87344 q^{9} +(3.39225 - 2.46462i) q^{11} +(-1.59331 + 4.90370i) q^{13} +(-0.287808 - 0.209105i) q^{15} +(2.28447 - 1.65977i) q^{17} +(2.17078 + 6.68097i) q^{19} +(-0.109426 - 0.336778i) q^{21} +(-0.101413 + 0.312117i) q^{23} +(0.309017 + 0.951057i) q^{25} +2.08948 q^{27} +(3.80723 + 2.76611i) q^{29} +(-2.25881 + 1.64112i) q^{31} +(-1.20679 + 0.876788i) q^{33} +(-0.307592 + 0.946670i) q^{35} +(-6.30447 - 4.58047i) q^{37} +(0.566819 - 1.74449i) q^{39} +(6.39530 + 0.316543i) q^{41} +(-3.73793 + 11.5042i) q^{43} +(-2.32466 - 1.68897i) q^{45} +(-1.76202 + 5.42294i) q^{47} +(4.86155 - 3.53212i) q^{49} +(-0.812702 + 0.590462i) q^{51} +(8.16912 + 5.93522i) q^{53} +4.19306 q^{55} +(-0.772254 - 2.37675i) q^{57} +(-1.06083 + 3.26489i) q^{59} +(-4.03007 - 12.4033i) q^{61} +(-0.883847 - 2.72020i) q^{63} +(-4.17133 + 3.03065i) q^{65} +(7.67956 + 5.57953i) q^{67} +(0.0360776 - 0.111035i) q^{69} +(-11.8629 + 8.61891i) q^{71} +6.31718 q^{73} +(-0.109933 - 0.338338i) q^{75} +(3.37661 + 2.45325i) q^{77} +8.58590 q^{79} +7.87699 q^{81} +3.73133 q^{83} +2.82376 q^{85} +(-1.35442 - 0.984045i) q^{87} +(-4.09886 - 12.6150i) q^{89} -5.13227 q^{91} +(0.803571 - 0.583829i) q^{93} +(-2.17078 + 6.68097i) q^{95} +(9.84725 + 7.15445i) q^{97} +(-9.74745 + 7.08193i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.355750 −0.205392 −0.102696 0.994713i \(-0.532747\pi\)
−0.102696 + 0.994713i \(0.532747\pi\)
\(4\) 0 0
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) 0.307592 + 0.946670i 0.116259 + 0.357808i 0.992207 0.124597i \(-0.0397636\pi\)
−0.875949 + 0.482404i \(0.839764\pi\)
\(8\) 0 0
\(9\) −2.87344 −0.957814
\(10\) 0 0
\(11\) 3.39225 2.46462i 1.02280 0.743110i 0.0559475 0.998434i \(-0.482182\pi\)
0.966856 + 0.255324i \(0.0821821\pi\)
\(12\) 0 0
\(13\) −1.59331 + 4.90370i −0.441904 + 1.36004i 0.443939 + 0.896057i \(0.353581\pi\)
−0.885843 + 0.463984i \(0.846419\pi\)
\(14\) 0 0
\(15\) −0.287808 0.209105i −0.0743117 0.0539906i
\(16\) 0 0
\(17\) 2.28447 1.65977i 0.554066 0.402553i −0.275216 0.961382i \(-0.588749\pi\)
0.829282 + 0.558830i \(0.188749\pi\)
\(18\) 0 0
\(19\) 2.17078 + 6.68097i 0.498010 + 1.53272i 0.812212 + 0.583362i \(0.198263\pi\)
−0.314201 + 0.949356i \(0.601737\pi\)
\(20\) 0 0
\(21\) −0.109426 0.336778i −0.0238787 0.0734910i
\(22\) 0 0
\(23\) −0.101413 + 0.312117i −0.0211460 + 0.0650808i −0.961073 0.276296i \(-0.910893\pi\)
0.939927 + 0.341376i \(0.110893\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 2.08948 0.402120
\(28\) 0 0
\(29\) 3.80723 + 2.76611i 0.706985 + 0.513655i 0.882200 0.470876i \(-0.156062\pi\)
−0.175215 + 0.984530i \(0.556062\pi\)
\(30\) 0 0
\(31\) −2.25881 + 1.64112i −0.405694 + 0.294754i −0.771856 0.635797i \(-0.780672\pi\)
0.366162 + 0.930551i \(0.380672\pi\)
\(32\) 0 0
\(33\) −1.20679 + 0.876788i −0.210076 + 0.152629i
\(34\) 0 0
\(35\) −0.307592 + 0.946670i −0.0519925 + 0.160016i
\(36\) 0 0
\(37\) −6.30447 4.58047i −1.03645 0.753024i −0.0668598 0.997762i \(-0.521298\pi\)
−0.969589 + 0.244738i \(0.921298\pi\)
\(38\) 0 0
\(39\) 0.566819 1.74449i 0.0907638 0.279342i
\(40\) 0 0
\(41\) 6.39530 + 0.316543i 0.998777 + 0.0494357i
\(42\) 0 0
\(43\) −3.73793 + 11.5042i −0.570029 + 1.75437i 0.0824843 + 0.996592i \(0.473715\pi\)
−0.652514 + 0.757777i \(0.726285\pi\)
\(44\) 0 0
\(45\) −2.32466 1.68897i −0.346540 0.251776i
\(46\) 0 0
\(47\) −1.76202 + 5.42294i −0.257017 + 0.791017i 0.736408 + 0.676537i \(0.236520\pi\)
−0.993426 + 0.114480i \(0.963480\pi\)
\(48\) 0 0
\(49\) 4.86155 3.53212i 0.694507 0.504589i
\(50\) 0 0
\(51\) −0.812702 + 0.590462i −0.113801 + 0.0826813i
\(52\) 0 0
\(53\) 8.16912 + 5.93522i 1.12212 + 0.815265i 0.984528 0.175225i \(-0.0560653\pi\)
0.137587 + 0.990490i \(0.456065\pi\)
\(54\) 0 0
\(55\) 4.19306 0.565392
\(56\) 0 0
\(57\) −0.772254 2.37675i −0.102288 0.314809i
\(58\) 0 0
\(59\) −1.06083 + 3.26489i −0.138108 + 0.425053i −0.996061 0.0886762i \(-0.971736\pi\)
0.857952 + 0.513729i \(0.171736\pi\)
\(60\) 0 0
\(61\) −4.03007 12.4033i −0.515997 1.58808i −0.781460 0.623955i \(-0.785525\pi\)
0.265463 0.964121i \(-0.414475\pi\)
\(62\) 0 0
\(63\) −0.883847 2.72020i −0.111354 0.342713i
\(64\) 0 0
\(65\) −4.17133 + 3.03065i −0.517390 + 0.375906i
\(66\) 0 0
\(67\) 7.67956 + 5.57953i 0.938208 + 0.681648i 0.947989 0.318304i \(-0.103113\pi\)
−0.00978079 + 0.999952i \(0.503113\pi\)
\(68\) 0 0
\(69\) 0.0360776 0.111035i 0.00434323 0.0133671i
\(70\) 0 0
\(71\) −11.8629 + 8.61891i −1.40787 + 1.02288i −0.414240 + 0.910168i \(0.635953\pi\)
−0.993628 + 0.112709i \(0.964047\pi\)
\(72\) 0 0
\(73\) 6.31718 0.739370 0.369685 0.929157i \(-0.379466\pi\)
0.369685 + 0.929157i \(0.379466\pi\)
\(74\) 0 0
\(75\) −0.109933 0.338338i −0.0126939 0.0390680i
\(76\) 0 0
\(77\) 3.37661 + 2.45325i 0.384800 + 0.279574i
\(78\) 0 0
\(79\) 8.58590 0.965989 0.482994 0.875623i \(-0.339549\pi\)
0.482994 + 0.875623i \(0.339549\pi\)
\(80\) 0 0
\(81\) 7.87699 0.875222
\(82\) 0 0
\(83\) 3.73133 0.409567 0.204784 0.978807i \(-0.434351\pi\)
0.204784 + 0.978807i \(0.434351\pi\)
\(84\) 0 0
\(85\) 2.82376 0.306280
\(86\) 0 0
\(87\) −1.35442 0.984045i −0.145209 0.105501i
\(88\) 0 0
\(89\) −4.09886 12.6150i −0.434478 1.33719i −0.893621 0.448823i \(-0.851843\pi\)
0.459143 0.888363i \(-0.348157\pi\)
\(90\) 0 0
\(91\) −5.13227 −0.538009
\(92\) 0 0
\(93\) 0.803571 0.583829i 0.0833265 0.0605402i
\(94\) 0 0
\(95\) −2.17078 + 6.68097i −0.222717 + 0.685453i
\(96\) 0 0
\(97\) 9.84725 + 7.15445i 0.999837 + 0.726424i 0.962053 0.272862i \(-0.0879702\pi\)
0.0377838 + 0.999286i \(0.487970\pi\)
\(98\) 0 0
\(99\) −9.74745 + 7.08193i −0.979655 + 0.711761i
\(100\) 0 0
\(101\) −3.62369 11.1526i −0.360570 1.10972i −0.952709 0.303885i \(-0.901716\pi\)
0.592139 0.805836i \(-0.298284\pi\)
\(102\) 0 0
\(103\) −2.91210 8.96253i −0.286938 0.883104i −0.985811 0.167859i \(-0.946315\pi\)
0.698873 0.715246i \(-0.253685\pi\)
\(104\) 0 0
\(105\) 0.109426 0.336778i 0.0106789 0.0328662i
\(106\) 0 0
\(107\) 2.03096 + 6.25066i 0.196341 + 0.604274i 0.999958 + 0.00912850i \(0.00290573\pi\)
−0.803618 + 0.595146i \(0.797094\pi\)
\(108\) 0 0
\(109\) −8.37152 −0.801846 −0.400923 0.916112i \(-0.631311\pi\)
−0.400923 + 0.916112i \(0.631311\pi\)
\(110\) 0 0
\(111\) 2.24282 + 1.62950i 0.212879 + 0.154665i
\(112\) 0 0
\(113\) −10.0020 + 7.26688i −0.940909 + 0.683611i −0.948639 0.316359i \(-0.897539\pi\)
0.00773005 + 0.999970i \(0.497539\pi\)
\(114\) 0 0
\(115\) −0.265502 + 0.192899i −0.0247582 + 0.0179879i
\(116\) 0 0
\(117\) 4.57828 14.0905i 0.423262 1.30267i
\(118\) 0 0
\(119\) 2.27394 + 1.65211i 0.208452 + 0.151449i
\(120\) 0 0
\(121\) 2.03386 6.25959i 0.184897 0.569054i
\(122\) 0 0
\(123\) −2.27513 0.112610i −0.205141 0.0101537i
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) −10.7658 7.82182i −0.955312 0.694075i −0.00325465 0.999995i \(-0.501036\pi\)
−0.952057 + 0.305920i \(0.901036\pi\)
\(128\) 0 0
\(129\) 1.32977 4.09261i 0.117080 0.360334i
\(130\) 0 0
\(131\) 12.6103 9.16190i 1.10176 0.800479i 0.120418 0.992723i \(-0.461577\pi\)
0.981347 + 0.192244i \(0.0615766\pi\)
\(132\) 0 0
\(133\) −5.65696 + 4.11002i −0.490521 + 0.356384i
\(134\) 0 0
\(135\) 1.69042 + 1.22816i 0.145488 + 0.105704i
\(136\) 0 0
\(137\) −18.7412 −1.60117 −0.800585 0.599219i \(-0.795478\pi\)
−0.800585 + 0.599219i \(0.795478\pi\)
\(138\) 0 0
\(139\) −6.39792 19.6908i −0.542665 1.67015i −0.726478 0.687189i \(-0.758844\pi\)
0.183813 0.982961i \(-0.441156\pi\)
\(140\) 0 0
\(141\) 0.626839 1.92921i 0.0527894 0.162469i
\(142\) 0 0
\(143\) 6.68083 + 20.5615i 0.558679 + 1.71944i
\(144\) 0 0
\(145\) 1.45423 + 4.47567i 0.120767 + 0.371684i
\(146\) 0 0
\(147\) −1.72950 + 1.25655i −0.142646 + 0.103639i
\(148\) 0 0
\(149\) −0.984161 0.715035i −0.0806256 0.0585780i 0.546742 0.837301i \(-0.315868\pi\)
−0.627368 + 0.778723i \(0.715868\pi\)
\(150\) 0 0
\(151\) 6.52755 20.0897i 0.531205 1.63488i −0.220505 0.975386i \(-0.570770\pi\)
0.751709 0.659494i \(-0.229230\pi\)
\(152\) 0 0
\(153\) −6.56430 + 4.76924i −0.530692 + 0.385571i
\(154\) 0 0
\(155\) −2.79204 −0.224262
\(156\) 0 0
\(157\) −5.38376 16.5695i −0.429671 1.32239i −0.898450 0.439075i \(-0.855306\pi\)
0.468780 0.883315i \(-0.344694\pi\)
\(158\) 0 0
\(159\) −2.90617 2.11145i −0.230474 0.167449i
\(160\) 0 0
\(161\) −0.326665 −0.0257448
\(162\) 0 0
\(163\) 8.26118 0.647066 0.323533 0.946217i \(-0.395129\pi\)
0.323533 + 0.946217i \(0.395129\pi\)
\(164\) 0 0
\(165\) −1.49168 −0.116127
\(166\) 0 0
\(167\) −4.54182 −0.351457 −0.175728 0.984439i \(-0.556228\pi\)
−0.175728 + 0.984439i \(0.556228\pi\)
\(168\) 0 0
\(169\) −10.9904 7.98500i −0.845416 0.614231i
\(170\) 0 0
\(171\) −6.23760 19.1974i −0.477001 1.46806i
\(172\) 0 0
\(173\) −9.38787 −0.713746 −0.356873 0.934153i \(-0.616157\pi\)
−0.356873 + 0.934153i \(0.616157\pi\)
\(174\) 0 0
\(175\) −0.805286 + 0.585074i −0.0608739 + 0.0442275i
\(176\) 0 0
\(177\) 0.377390 1.16149i 0.0283663 0.0873026i
\(178\) 0 0
\(179\) 4.12004 + 2.99338i 0.307946 + 0.223736i 0.731015 0.682362i \(-0.239047\pi\)
−0.423069 + 0.906098i \(0.639047\pi\)
\(180\) 0 0
\(181\) 5.63403 4.09337i 0.418774 0.304257i −0.358370 0.933580i \(-0.616667\pi\)
0.777145 + 0.629322i \(0.216667\pi\)
\(182\) 0 0
\(183\) 1.43370 + 4.41246i 0.105982 + 0.326179i
\(184\) 0 0
\(185\) −2.40809 7.41135i −0.177047 0.544894i
\(186\) 0 0
\(187\) 3.65882 11.2607i 0.267560 0.823464i
\(188\) 0 0
\(189\) 0.642706 + 1.97805i 0.0467500 + 0.143882i
\(190\) 0 0
\(191\) 10.9352 0.791247 0.395623 0.918413i \(-0.370529\pi\)
0.395623 + 0.918413i \(0.370529\pi\)
\(192\) 0 0
\(193\) −9.14354 6.64317i −0.658166 0.478186i 0.207877 0.978155i \(-0.433345\pi\)
−0.866043 + 0.499969i \(0.833345\pi\)
\(194\) 0 0
\(195\) 1.48395 1.07815i 0.106268 0.0772083i
\(196\) 0 0
\(197\) 18.8265 13.6783i 1.34134 0.974537i 0.341942 0.939721i \(-0.388915\pi\)
0.999394 0.0348164i \(-0.0110846\pi\)
\(198\) 0 0
\(199\) −0.657008 + 2.02206i −0.0465740 + 0.143340i −0.971639 0.236468i \(-0.924010\pi\)
0.925065 + 0.379808i \(0.124010\pi\)
\(200\) 0 0
\(201\) −2.73200 1.98492i −0.192701 0.140005i
\(202\) 0 0
\(203\) −1.44753 + 4.45503i −0.101596 + 0.312682i
\(204\) 0 0
\(205\) 4.98784 + 4.01515i 0.348366 + 0.280430i
\(206\) 0 0
\(207\) 0.291404 0.896849i 0.0202540 0.0623353i
\(208\) 0 0
\(209\) 23.8298 + 17.3134i 1.64835 + 1.19759i
\(210\) 0 0
\(211\) 0.0356925 0.109850i 0.00245717 0.00756240i −0.949820 0.312796i \(-0.898734\pi\)
0.952278 + 0.305233i \(0.0987345\pi\)
\(212\) 0 0
\(213\) 4.22023 3.06618i 0.289165 0.210091i
\(214\) 0 0
\(215\) −9.78603 + 7.10997i −0.667402 + 0.484896i
\(216\) 0 0
\(217\) −2.24839 1.63355i −0.152631 0.110893i
\(218\) 0 0
\(219\) −2.24734 −0.151861
\(220\) 0 0
\(221\) 4.49913 + 13.8469i 0.302644 + 0.931443i
\(222\) 0 0
\(223\) −8.61825 + 26.5243i −0.577121 + 1.77620i 0.0517200 + 0.998662i \(0.483530\pi\)
−0.628841 + 0.777534i \(0.716470\pi\)
\(224\) 0 0
\(225\) −0.887942 2.73281i −0.0591962 0.182187i
\(226\) 0 0
\(227\) −0.943262 2.90306i −0.0626065 0.192683i 0.914861 0.403769i \(-0.132300\pi\)
−0.977468 + 0.211086i \(0.932300\pi\)
\(228\) 0 0
\(229\) 3.02921 2.20085i 0.200176 0.145436i −0.483182 0.875520i \(-0.660519\pi\)
0.683358 + 0.730084i \(0.260519\pi\)
\(230\) 0 0
\(231\) −1.20123 0.872744i −0.0790351 0.0574223i
\(232\) 0 0
\(233\) −4.36051 + 13.4203i −0.285667 + 0.879192i 0.700531 + 0.713622i \(0.252946\pi\)
−0.986198 + 0.165570i \(0.947054\pi\)
\(234\) 0 0
\(235\) −4.61303 + 3.35156i −0.300921 + 0.218632i
\(236\) 0 0
\(237\) −3.05443 −0.198407
\(238\) 0 0
\(239\) −2.97529 9.15701i −0.192456 0.592318i −0.999997 0.00250651i \(-0.999202\pi\)
0.807541 0.589811i \(-0.200798\pi\)
\(240\) 0 0
\(241\) −4.79254 3.48198i −0.308715 0.224294i 0.422630 0.906302i \(-0.361107\pi\)
−0.731345 + 0.682008i \(0.761107\pi\)
\(242\) 0 0
\(243\) −9.07067 −0.581884
\(244\) 0 0
\(245\) 6.00920 0.383914
\(246\) 0 0
\(247\) −36.2202 −2.30463
\(248\) 0 0
\(249\) −1.32742 −0.0841220
\(250\) 0 0
\(251\) −12.6861 9.21698i −0.800738 0.581770i 0.110392 0.993888i \(-0.464789\pi\)
−0.911131 + 0.412118i \(0.864789\pi\)
\(252\) 0 0
\(253\) 0.425230 + 1.30872i 0.0267340 + 0.0822787i
\(254\) 0 0
\(255\) −1.00455 −0.0629076
\(256\) 0 0
\(257\) 22.8082 16.5711i 1.42274 1.03368i 0.431425 0.902149i \(-0.358011\pi\)
0.991312 0.131531i \(-0.0419892\pi\)
\(258\) 0 0
\(259\) 2.39699 7.37717i 0.148942 0.458395i
\(260\) 0 0
\(261\) −10.9399 7.94827i −0.677160 0.491986i
\(262\) 0 0
\(263\) 7.17870 5.21563i 0.442657 0.321609i −0.344033 0.938958i \(-0.611793\pi\)
0.786690 + 0.617348i \(0.211793\pi\)
\(264\) 0 0
\(265\) 3.12033 + 9.60338i 0.191680 + 0.589931i
\(266\) 0 0
\(267\) 1.45817 + 4.48778i 0.0892385 + 0.274648i
\(268\) 0 0
\(269\) −3.51955 + 10.8321i −0.214591 + 0.660442i 0.784592 + 0.620013i \(0.212873\pi\)
−0.999182 + 0.0404293i \(0.987127\pi\)
\(270\) 0 0
\(271\) 3.10603 + 9.55937i 0.188678 + 0.580690i 0.999992 0.00391959i \(-0.00124765\pi\)
−0.811315 + 0.584610i \(0.801248\pi\)
\(272\) 0 0
\(273\) 1.82581 0.110503
\(274\) 0 0
\(275\) 3.39225 + 2.46462i 0.204561 + 0.148622i
\(276\) 0 0
\(277\) 11.9077 8.65144i 0.715463 0.519815i −0.169468 0.985536i \(-0.554205\pi\)
0.884932 + 0.465721i \(0.154205\pi\)
\(278\) 0 0
\(279\) 6.49056 4.71567i 0.388579 0.282319i
\(280\) 0 0
\(281\) 5.13225 15.7954i 0.306164 0.942277i −0.673076 0.739573i \(-0.735027\pi\)
0.979240 0.202703i \(-0.0649727\pi\)
\(282\) 0 0
\(283\) −2.61744 1.90168i −0.155591 0.113043i 0.507266 0.861790i \(-0.330656\pi\)
−0.662857 + 0.748746i \(0.730656\pi\)
\(284\) 0 0
\(285\) 0.772254 2.37675i 0.0457444 0.140787i
\(286\) 0 0
\(287\) 1.66748 + 6.15160i 0.0984282 + 0.363118i
\(288\) 0 0
\(289\) −2.78930 + 8.58457i −0.164076 + 0.504975i
\(290\) 0 0
\(291\) −3.50316 2.54520i −0.205359 0.149202i
\(292\) 0 0
\(293\) 0.0617383 0.190011i 0.00360679 0.0111006i −0.949237 0.314562i \(-0.898142\pi\)
0.952844 + 0.303461i \(0.0981424\pi\)
\(294\) 0 0
\(295\) −2.77728 + 2.01782i −0.161700 + 0.117482i
\(296\) 0 0
\(297\) 7.08804 5.14976i 0.411290 0.298819i
\(298\) 0 0
\(299\) −1.36894 0.994596i −0.0791681 0.0575190i
\(300\) 0 0
\(301\) −12.0404 −0.693998
\(302\) 0 0
\(303\) 1.28913 + 3.96752i 0.0740584 + 0.227928i
\(304\) 0 0
\(305\) 4.03007 12.4033i 0.230761 0.710209i
\(306\) 0 0
\(307\) −0.475445 1.46327i −0.0271351 0.0835132i 0.936572 0.350476i \(-0.113980\pi\)
−0.963707 + 0.266962i \(0.913980\pi\)
\(308\) 0 0
\(309\) 1.03598 + 3.18842i 0.0589349 + 0.181383i
\(310\) 0 0
\(311\) −7.77287 + 5.64732i −0.440759 + 0.320230i −0.785937 0.618307i \(-0.787819\pi\)
0.345177 + 0.938537i \(0.387819\pi\)
\(312\) 0 0
\(313\) −21.5791 15.6782i −1.21973 0.886182i −0.223648 0.974670i \(-0.571797\pi\)
−0.996077 + 0.0884879i \(0.971797\pi\)
\(314\) 0 0
\(315\) 0.883847 2.72020i 0.0497992 0.153266i
\(316\) 0 0
\(317\) 12.0312 8.74117i 0.675739 0.490953i −0.196202 0.980563i \(-0.562861\pi\)
0.871941 + 0.489610i \(0.162861\pi\)
\(318\) 0 0
\(319\) 19.7325 1.10481
\(320\) 0 0
\(321\) −0.722515 2.22367i −0.0403269 0.124113i
\(322\) 0 0
\(323\) 16.0479 + 11.6595i 0.892931 + 0.648752i
\(324\) 0 0
\(325\) −5.15605 −0.286006
\(326\) 0 0
\(327\) 2.97817 0.164693
\(328\) 0 0
\(329\) −5.67572 −0.312913
\(330\) 0 0
\(331\) 31.6482 1.73954 0.869771 0.493455i \(-0.164266\pi\)
0.869771 + 0.493455i \(0.164266\pi\)
\(332\) 0 0
\(333\) 18.1155 + 13.1617i 0.992725 + 0.721257i
\(334\) 0 0
\(335\) 2.93333 + 9.02787i 0.160265 + 0.493245i
\(336\) 0 0
\(337\) 24.7665 1.34912 0.674560 0.738220i \(-0.264334\pi\)
0.674560 + 0.738220i \(0.264334\pi\)
\(338\) 0 0
\(339\) 3.55821 2.58519i 0.193256 0.140408i
\(340\) 0 0
\(341\) −3.61772 + 11.1342i −0.195911 + 0.602951i
\(342\) 0 0
\(343\) 10.4761 + 7.61135i 0.565658 + 0.410974i
\(344\) 0 0
\(345\) 0.0944524 0.0686237i 0.00508515 0.00369458i
\(346\) 0 0
\(347\) 10.2223 + 31.4611i 0.548764 + 1.68892i 0.711869 + 0.702312i \(0.247849\pi\)
−0.163105 + 0.986609i \(0.552151\pi\)
\(348\) 0 0
\(349\) −5.18362 15.9536i −0.277473 0.853974i −0.988554 0.150865i \(-0.951794\pi\)
0.711081 0.703110i \(-0.248206\pi\)
\(350\) 0 0
\(351\) −3.32918 + 10.2462i −0.177699 + 0.546900i
\(352\) 0 0
\(353\) −4.09224 12.5946i −0.217808 0.670344i −0.998942 0.0459811i \(-0.985359\pi\)
0.781134 0.624363i \(-0.214641\pi\)
\(354\) 0 0
\(355\) −14.6634 −0.778250
\(356\) 0 0
\(357\) −0.808953 0.587739i −0.0428144 0.0311065i
\(358\) 0 0
\(359\) −28.4123 + 20.6427i −1.49954 + 1.08948i −0.528982 + 0.848633i \(0.677426\pi\)
−0.970562 + 0.240849i \(0.922574\pi\)
\(360\) 0 0
\(361\) −24.5517 + 17.8379i −1.29220 + 0.938835i
\(362\) 0 0
\(363\) −0.723547 + 2.22685i −0.0379764 + 0.116879i
\(364\) 0 0
\(365\) 5.11071 + 3.71315i 0.267507 + 0.194355i
\(366\) 0 0
\(367\) −8.54315 + 26.2931i −0.445949 + 1.37249i 0.435491 + 0.900193i \(0.356575\pi\)
−0.881440 + 0.472296i \(0.843425\pi\)
\(368\) 0 0
\(369\) −18.3765 0.909568i −0.956643 0.0473502i
\(370\) 0 0
\(371\) −3.10594 + 9.55909i −0.161252 + 0.496283i
\(372\) 0 0
\(373\) 11.1021 + 8.06615i 0.574845 + 0.417649i 0.836862 0.547414i \(-0.184388\pi\)
−0.262017 + 0.965063i \(0.584388\pi\)
\(374\) 0 0
\(375\) 0.109933 0.338338i 0.00567691 0.0174717i
\(376\) 0 0
\(377\) −19.6303 + 14.2622i −1.01101 + 0.734543i
\(378\) 0 0
\(379\) 14.2556 10.3573i 0.732262 0.532019i −0.158016 0.987436i \(-0.550510\pi\)
0.890278 + 0.455417i \(0.150510\pi\)
\(380\) 0 0
\(381\) 3.82994 + 2.78261i 0.196214 + 0.142558i
\(382\) 0 0
\(383\) 5.29390 0.270506 0.135253 0.990811i \(-0.456815\pi\)
0.135253 + 0.990811i \(0.456815\pi\)
\(384\) 0 0
\(385\) 1.28975 + 3.96944i 0.0657317 + 0.202302i
\(386\) 0 0
\(387\) 10.7407 33.0566i 0.545982 1.68036i
\(388\) 0 0
\(389\) 5.20932 + 16.0327i 0.264123 + 0.812888i 0.991894 + 0.127067i \(0.0405564\pi\)
−0.727771 + 0.685820i \(0.759444\pi\)
\(390\) 0 0
\(391\) 0.286366 + 0.881344i 0.0144821 + 0.0445715i
\(392\) 0 0
\(393\) −4.48611 + 3.25935i −0.226294 + 0.164412i
\(394\) 0 0
\(395\) 6.94614 + 5.04666i 0.349498 + 0.253925i
\(396\) 0 0
\(397\) −10.7901 + 33.2085i −0.541540 + 1.66669i 0.187538 + 0.982257i \(0.439949\pi\)
−0.729078 + 0.684431i \(0.760051\pi\)
\(398\) 0 0
\(399\) 2.01246 1.46214i 0.100749 0.0731986i
\(400\) 0 0
\(401\) −3.36461 −0.168021 −0.0840104 0.996465i \(-0.526773\pi\)
−0.0840104 + 0.996465i \(0.526773\pi\)
\(402\) 0 0
\(403\) −4.44858 13.6913i −0.221600 0.682014i
\(404\) 0 0
\(405\) 6.37262 + 4.62998i 0.316658 + 0.230066i
\(406\) 0 0
\(407\) −32.6755 −1.61966
\(408\) 0 0
\(409\) −14.4700 −0.715494 −0.357747 0.933819i \(-0.616455\pi\)
−0.357747 + 0.933819i \(0.616455\pi\)
\(410\) 0 0
\(411\) 6.66719 0.328868
\(412\) 0 0
\(413\) −3.41708 −0.168144
\(414\) 0 0
\(415\) 3.01871 + 2.19322i 0.148183 + 0.107661i
\(416\) 0 0
\(417\) 2.27606 + 7.00500i 0.111459 + 0.343036i
\(418\) 0 0
\(419\) 40.4142 1.97437 0.987183 0.159595i \(-0.0510189\pi\)
0.987183 + 0.159595i \(0.0510189\pi\)
\(420\) 0 0
\(421\) −4.92080 + 3.57517i −0.239825 + 0.174243i −0.701205 0.712959i \(-0.747354\pi\)
0.461380 + 0.887203i \(0.347354\pi\)
\(422\) 0 0
\(423\) 5.06306 15.5825i 0.246175 0.757648i
\(424\) 0 0
\(425\) 2.28447 + 1.65977i 0.110813 + 0.0805105i
\(426\) 0 0
\(427\) 10.5022 7.63029i 0.508237 0.369256i
\(428\) 0 0
\(429\) −2.37671 7.31475i −0.114748 0.353159i
\(430\) 0 0
\(431\) 1.00239 + 3.08504i 0.0482834 + 0.148601i 0.972291 0.233772i \(-0.0751069\pi\)
−0.924008 + 0.382373i \(0.875107\pi\)
\(432\) 0 0
\(433\) 4.27562 13.1590i 0.205473 0.632382i −0.794220 0.607630i \(-0.792120\pi\)
0.999694 0.0247518i \(-0.00787956\pi\)
\(434\) 0 0
\(435\) −0.517343 1.59222i −0.0248047 0.0763411i
\(436\) 0 0
\(437\) −2.30538 −0.110282
\(438\) 0 0
\(439\) 16.0428 + 11.6558i 0.765681 + 0.556300i 0.900648 0.434550i \(-0.143093\pi\)
−0.134966 + 0.990850i \(0.543093\pi\)
\(440\) 0 0
\(441\) −13.9694 + 10.1493i −0.665208 + 0.483302i
\(442\) 0 0
\(443\) 25.0636 18.2098i 1.19081 0.865174i 0.197460 0.980311i \(-0.436731\pi\)
0.993350 + 0.115137i \(0.0367308\pi\)
\(444\) 0 0
\(445\) 4.09886 12.6150i 0.194304 0.598008i
\(446\) 0 0
\(447\) 0.350115 + 0.254374i 0.0165599 + 0.0120315i
\(448\) 0 0
\(449\) 1.11295 3.42531i 0.0525234 0.161650i −0.921354 0.388724i \(-0.872916\pi\)
0.973878 + 0.227074i \(0.0729159\pi\)
\(450\) 0 0
\(451\) 22.4746 14.6882i 1.05829 0.691638i
\(452\) 0 0
\(453\) −2.32218 + 7.14693i −0.109105 + 0.335792i
\(454\) 0 0
\(455\) −4.15210 3.01668i −0.194653 0.141424i
\(456\) 0 0
\(457\) −3.20561 + 9.86586i −0.149952 + 0.461506i −0.997615 0.0690306i \(-0.978009\pi\)
0.847662 + 0.530536i \(0.178009\pi\)
\(458\) 0 0
\(459\) 4.77336 3.46805i 0.222801 0.161875i
\(460\) 0 0
\(461\) 26.1878 19.0265i 1.21969 0.886154i 0.223613 0.974678i \(-0.428215\pi\)
0.996074 + 0.0885239i \(0.0282150\pi\)
\(462\) 0 0
\(463\) −33.8023 24.5588i −1.57093 1.14134i −0.926263 0.376878i \(-0.876998\pi\)
−0.644663 0.764467i \(-0.723002\pi\)
\(464\) 0 0
\(465\) 0.993269 0.0460617
\(466\) 0 0
\(467\) 5.70350 + 17.5536i 0.263926 + 0.812282i 0.991939 + 0.126718i \(0.0404443\pi\)
−0.728012 + 0.685564i \(0.759556\pi\)
\(468\) 0 0
\(469\) −2.91980 + 8.98623i −0.134824 + 0.414946i
\(470\) 0 0
\(471\) 1.91527 + 5.89460i 0.0882511 + 0.271609i
\(472\) 0 0
\(473\) 15.6734 + 48.2376i 0.720662 + 2.21797i
\(474\) 0 0
\(475\) −5.68317 + 4.12906i −0.260762 + 0.189454i
\(476\) 0 0
\(477\) −23.4735 17.0545i −1.07478 0.780872i
\(478\) 0 0
\(479\) −4.41028 + 13.5734i −0.201511 + 0.620186i 0.798328 + 0.602223i \(0.205718\pi\)
−0.999839 + 0.0179634i \(0.994282\pi\)
\(480\) 0 0
\(481\) 32.5062 23.6171i 1.48216 1.07685i
\(482\) 0 0
\(483\) 0.116211 0.00528779
\(484\) 0 0
\(485\) 3.76132 + 11.5761i 0.170793 + 0.525645i
\(486\) 0 0
\(487\) −9.50916 6.90881i −0.430901 0.313068i 0.351108 0.936335i \(-0.385805\pi\)
−0.782009 + 0.623267i \(0.785805\pi\)
\(488\) 0 0
\(489\) −2.93892 −0.132902
\(490\) 0 0
\(491\) 10.1144 0.456456 0.228228 0.973608i \(-0.426707\pi\)
0.228228 + 0.973608i \(0.426707\pi\)
\(492\) 0 0
\(493\) 13.2886 0.598490
\(494\) 0 0
\(495\) −12.0485 −0.541540
\(496\) 0 0
\(497\) −11.8082 8.57916i −0.529670 0.384828i
\(498\) 0 0
\(499\) −7.40518 22.7908i −0.331501 1.02026i −0.968420 0.249325i \(-0.919791\pi\)
0.636919 0.770931i \(-0.280209\pi\)
\(500\) 0 0
\(501\) 1.61575 0.0721865
\(502\) 0 0
\(503\) −9.38291 + 6.81708i −0.418363 + 0.303959i −0.776979 0.629527i \(-0.783249\pi\)
0.358616 + 0.933485i \(0.383249\pi\)
\(504\) 0 0
\(505\) 3.62369 11.1526i 0.161252 0.496282i
\(506\) 0 0
\(507\) 3.90984 + 2.84066i 0.173642 + 0.126158i
\(508\) 0 0
\(509\) −12.2483 + 8.89889i −0.542895 + 0.394436i −0.825159 0.564900i \(-0.808915\pi\)
0.282264 + 0.959337i \(0.408915\pi\)
\(510\) 0 0
\(511\) 1.94311 + 5.98029i 0.0859583 + 0.264552i
\(512\) 0 0
\(513\) 4.53579 + 13.9597i 0.200260 + 0.616337i
\(514\) 0 0
\(515\) 2.91210 8.96253i 0.128323 0.394936i
\(516\) 0 0
\(517\) 7.38825 + 22.7387i 0.324935 + 1.00005i
\(518\) 0 0
\(519\) 3.33973 0.146598
\(520\) 0 0
\(521\) 28.2808 + 20.5472i 1.23900 + 0.900189i 0.997532 0.0702183i \(-0.0223696\pi\)
0.241473 + 0.970408i \(0.422370\pi\)
\(522\) 0 0
\(523\) −25.0138 + 18.1736i −1.09378 + 0.794676i −0.980033 0.198834i \(-0.936285\pi\)
−0.113745 + 0.993510i \(0.536285\pi\)
\(524\) 0 0
\(525\) 0.286480 0.208140i 0.0125030 0.00908399i
\(526\) 0 0
\(527\) −2.43631 + 7.49819i −0.106127 + 0.326626i
\(528\) 0 0
\(529\) 18.5203 + 13.4558i 0.805229 + 0.585033i
\(530\) 0 0
\(531\) 3.04823 9.38148i 0.132282 0.407122i
\(532\) 0 0
\(533\) −11.7419 + 30.8562i −0.508598 + 1.33653i
\(534\) 0 0
\(535\) −2.03096 + 6.25066i −0.0878062 + 0.270240i
\(536\) 0 0
\(537\) −1.46570 1.06490i −0.0632498 0.0459537i
\(538\) 0 0
\(539\) 7.78628 23.9637i 0.335379 1.03219i
\(540\) 0 0
\(541\) −25.6891 + 18.6642i −1.10446 + 0.802437i −0.981782 0.190010i \(-0.939148\pi\)
−0.122677 + 0.992447i \(0.539148\pi\)
\(542\) 0 0
\(543\) −2.00431 + 1.45621i −0.0860131 + 0.0624922i
\(544\) 0 0
\(545\) −6.77270 4.92065i −0.290111 0.210778i
\(546\) 0 0
\(547\) 2.46912 0.105572 0.0527859 0.998606i \(-0.483190\pi\)
0.0527859 + 0.998606i \(0.483190\pi\)
\(548\) 0 0
\(549\) 11.5802 + 35.6401i 0.494229 + 1.52108i
\(550\) 0 0
\(551\) −10.2157 + 31.4406i −0.435202 + 1.33941i
\(552\) 0 0
\(553\) 2.64095 + 8.12801i 0.112305 + 0.345638i
\(554\) 0 0
\(555\) 0.856680 + 2.63659i 0.0363640 + 0.111917i
\(556\) 0 0
\(557\) 20.0511 14.5680i 0.849591 0.617264i −0.0754420 0.997150i \(-0.524037\pi\)
0.925033 + 0.379886i \(0.124037\pi\)
\(558\) 0 0
\(559\) −50.4573 36.6594i −2.13412 1.55053i
\(560\) 0 0
\(561\) −1.30163 + 4.00600i −0.0549547 + 0.169133i
\(562\) 0 0
\(563\) 1.26574 0.919611i 0.0533444 0.0387570i −0.560794 0.827956i \(-0.689504\pi\)
0.614138 + 0.789199i \(0.289504\pi\)
\(564\) 0 0
\(565\) −12.3632 −0.520122
\(566\) 0 0
\(567\) 2.42290 + 7.45692i 0.101752 + 0.313161i
\(568\) 0 0
\(569\) 13.5794 + 9.86599i 0.569277 + 0.413604i 0.834842 0.550489i \(-0.185559\pi\)
−0.265566 + 0.964093i \(0.585559\pi\)
\(570\) 0 0
\(571\) 7.74233 0.324006 0.162003 0.986790i \(-0.448205\pi\)
0.162003 + 0.986790i \(0.448205\pi\)
\(572\) 0 0
\(573\) −3.89021 −0.162516
\(574\) 0 0
\(575\) −0.328179 −0.0136860
\(576\) 0 0
\(577\) 28.4600 1.18480 0.592402 0.805643i \(-0.298180\pi\)
0.592402 + 0.805643i \(0.298180\pi\)
\(578\) 0 0
\(579\) 3.25281 + 2.36331i 0.135182 + 0.0982157i
\(580\) 0 0
\(581\) 1.14773 + 3.53234i 0.0476158 + 0.146546i
\(582\) 0 0
\(583\) 42.3398 1.75353
\(584\) 0 0
\(585\) 11.9861 8.70840i 0.495564 0.360048i
\(586\) 0 0
\(587\) −3.21387 + 9.89128i −0.132651 + 0.408257i −0.995217 0.0976868i \(-0.968856\pi\)
0.862566 + 0.505944i \(0.168856\pi\)
\(588\) 0 0
\(589\) −15.8676 11.5285i −0.653815 0.475024i
\(590\) 0 0
\(591\) −6.69754 + 4.86605i −0.275500 + 0.200163i
\(592\) 0 0
\(593\) −7.13117 21.9475i −0.292842 0.901276i −0.983938 0.178512i \(-0.942872\pi\)
0.691095 0.722763i \(-0.257128\pi\)
\(594\) 0 0
\(595\) 0.868567 + 2.67317i 0.0356078 + 0.109589i
\(596\) 0 0
\(597\) 0.233730 0.719349i 0.00956595 0.0294410i
\(598\) 0 0
\(599\) 5.16025 + 15.8816i 0.210842 + 0.648906i 0.999423 + 0.0339742i \(0.0108164\pi\)
−0.788580 + 0.614932i \(0.789184\pi\)
\(600\) 0 0
\(601\) −25.2778 −1.03110 −0.515551 0.856859i \(-0.672413\pi\)
−0.515551 + 0.856859i \(0.672413\pi\)
\(602\) 0 0
\(603\) −22.0668 16.0325i −0.898629 0.652892i
\(604\) 0 0
\(605\) 5.32473 3.86864i 0.216481 0.157283i
\(606\) 0 0
\(607\) −6.53243 + 4.74609i −0.265143 + 0.192638i −0.712411 0.701762i \(-0.752397\pi\)
0.447268 + 0.894400i \(0.352397\pi\)
\(608\) 0 0
\(609\) 0.514957 1.58488i 0.0208671 0.0642224i
\(610\) 0 0
\(611\) −23.7850 17.2808i −0.962239 0.699108i
\(612\) 0 0
\(613\) 14.8899 45.8265i 0.601398 1.85091i 0.0815244 0.996671i \(-0.474021\pi\)
0.519874 0.854243i \(-0.325979\pi\)
\(614\) 0 0
\(615\) −1.77443 1.42839i −0.0715517 0.0575982i
\(616\) 0 0
\(617\) 13.0695 40.2239i 0.526160 1.61935i −0.235851 0.971789i \(-0.575788\pi\)
0.762011 0.647565i \(-0.224212\pi\)
\(618\) 0 0
\(619\) −2.12691 1.54529i −0.0854879 0.0621106i 0.544220 0.838942i \(-0.316826\pi\)
−0.629708 + 0.776832i \(0.716826\pi\)
\(620\) 0 0
\(621\) −0.211900 + 0.652160i −0.00850325 + 0.0261703i
\(622\) 0 0
\(623\) 10.6815 7.76053i 0.427944 0.310919i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −8.47747 6.15924i −0.338558 0.245976i
\(628\) 0 0
\(629\) −22.0049 −0.877393
\(630\) 0 0
\(631\) 3.04260 + 9.36417i 0.121124 + 0.372782i 0.993175 0.116633i \(-0.0372103\pi\)
−0.872051 + 0.489415i \(0.837210\pi\)
\(632\) 0 0
\(633\) −0.0126976 + 0.0390792i −0.000504685 + 0.00155326i
\(634\) 0 0
\(635\) −4.11218 12.6560i −0.163187 0.502237i
\(636\) 0 0
\(637\) 9.57451 + 29.4673i 0.379356 + 1.16754i
\(638\) 0 0
\(639\) 34.0874 24.7659i 1.34848 0.979725i
\(640\) 0 0
\(641\) 27.6805 + 20.1110i 1.09331 + 0.794339i 0.979956 0.199216i \(-0.0638394\pi\)
0.113358 + 0.993554i \(0.463839\pi\)
\(642\) 0 0
\(643\) 12.2929 37.8338i 0.484786 1.49202i −0.347505 0.937678i \(-0.612971\pi\)
0.832291 0.554339i \(-0.187029\pi\)
\(644\) 0 0
\(645\) 3.48138 2.52937i 0.137079 0.0995939i
\(646\) 0 0
\(647\) 15.5622 0.611811 0.305906 0.952062i \(-0.401041\pi\)
0.305906 + 0.952062i \(0.401041\pi\)
\(648\) 0 0
\(649\) 4.44811 + 13.6899i 0.174604 + 0.537375i
\(650\) 0 0
\(651\) 0.799865 + 0.581136i 0.0313492 + 0.0227765i
\(652\) 0 0
\(653\) −20.5229 −0.803121 −0.401561 0.915832i \(-0.631532\pi\)
−0.401561 + 0.915832i \(0.631532\pi\)
\(654\) 0 0
\(655\) 15.5872 0.609041
\(656\) 0 0
\(657\) −18.1521 −0.708179
\(658\) 0 0
\(659\) 7.97088 0.310501 0.155251 0.987875i \(-0.450381\pi\)
0.155251 + 0.987875i \(0.450381\pi\)
\(660\) 0 0
\(661\) −14.4168 10.4744i −0.560748 0.407408i 0.270984 0.962584i \(-0.412651\pi\)
−0.831733 + 0.555176i \(0.812651\pi\)
\(662\) 0 0
\(663\) −1.60056 4.92603i −0.0621608 0.191311i
\(664\) 0 0
\(665\) −6.99239 −0.271153
\(666\) 0 0
\(667\) −1.24945 + 0.907780i −0.0483790 + 0.0351494i
\(668\) 0 0
\(669\) 3.06594 9.43601i 0.118536 0.364817i
\(670\) 0 0
\(671\) −44.2403 32.1425i −1.70788 1.24085i
\(672\) 0 0
\(673\) −12.6471 + 9.18865i −0.487510 + 0.354196i −0.804226 0.594324i \(-0.797420\pi\)
0.316716 + 0.948520i \(0.397420\pi\)
\(674\) 0 0
\(675\) 0.645684 + 1.98721i 0.0248524 + 0.0764878i
\(676\) 0 0
\(677\) −2.51014 7.72543i −0.0964727 0.296912i 0.891162 0.453685i \(-0.149891\pi\)
−0.987635 + 0.156773i \(0.949891\pi\)
\(678\) 0 0
\(679\) −3.74397 + 11.5228i −0.143680 + 0.442203i
\(680\) 0 0
\(681\) 0.335566 + 1.03276i 0.0128589 + 0.0395756i
\(682\) 0 0
\(683\) −29.5163 −1.12941 −0.564704 0.825293i \(-0.691010\pi\)
−0.564704 + 0.825293i \(0.691010\pi\)
\(684\) 0 0
\(685\) −15.1620 11.0158i −0.579309 0.420892i
\(686\) 0 0
\(687\) −1.07764 + 0.782952i −0.0411145 + 0.0298715i
\(688\) 0 0
\(689\) −42.1204 + 30.6023i −1.60466 + 1.16585i
\(690\) 0 0
\(691\) 5.28336 16.2605i 0.200988 0.618579i −0.798866 0.601509i \(-0.794566\pi\)
0.999854 0.0170696i \(-0.00543368\pi\)
\(692\) 0 0
\(693\) −9.70249 7.04927i −0.368567 0.267780i
\(694\) 0 0
\(695\) 6.39792 19.6908i 0.242687 0.746914i
\(696\) 0 0
\(697\) 15.1353 9.89157i 0.573289 0.374670i
\(698\) 0 0
\(699\) 1.55125 4.77426i 0.0586738 0.180579i
\(700\) 0 0
\(701\) −16.2323 11.7935i −0.613086 0.445433i 0.237414 0.971409i \(-0.423700\pi\)
−0.850500 + 0.525976i \(0.823700\pi\)
\(702\) 0 0
\(703\) 16.9163 52.0632i 0.638012 1.96360i
\(704\) 0 0
\(705\) 1.64109 1.19232i 0.0618069 0.0449053i
\(706\) 0 0
\(707\) 9.44318 6.86087i 0.355147 0.258030i
\(708\) 0 0
\(709\) −16.4213 11.9308i −0.616715 0.448070i 0.235057 0.971982i \(-0.424472\pi\)
−0.851773 + 0.523912i \(0.824472\pi\)
\(710\) 0 0
\(711\) −24.6711 −0.925238
\(712\) 0 0
\(713\) −0.283149 0.871442i −0.0106040 0.0326358i
\(714\) 0 0
\(715\) −6.68083 + 20.5615i −0.249849 + 0.768956i
\(716\) 0 0
\(717\) 1.05846 + 3.25761i 0.0395289 + 0.121658i
\(718\) 0 0
\(719\) −4.81505 14.8192i −0.179571 0.552663i 0.820242 0.572017i \(-0.193839\pi\)
−0.999813 + 0.0193543i \(0.993839\pi\)
\(720\) 0 0
\(721\) 7.58882 5.51360i 0.282623 0.205337i
\(722\) 0 0
\(723\) 1.70495 + 1.23872i 0.0634076 + 0.0460683i
\(724\) 0 0
\(725\) −1.45423 + 4.47567i −0.0540088 + 0.166222i
\(726\) 0 0
\(727\) −7.61702 + 5.53409i −0.282500 + 0.205248i −0.720007 0.693967i \(-0.755861\pi\)
0.437507 + 0.899215i \(0.355861\pi\)
\(728\) 0 0
\(729\) −20.4041 −0.755707
\(730\) 0 0
\(731\) 10.5550 + 32.4851i 0.390392 + 1.20150i
\(732\) 0 0
\(733\) −16.8148 12.2167i −0.621070 0.451234i 0.232225 0.972662i \(-0.425399\pi\)
−0.853295 + 0.521428i \(0.825399\pi\)
\(734\) 0 0
\(735\) −2.13777 −0.0788530
\(736\) 0 0
\(737\) 39.8024 1.46614
\(738\) 0 0
\(739\) −4.91341 −0.180743 −0.0903714 0.995908i \(-0.528805\pi\)
−0.0903714 + 0.995908i \(0.528805\pi\)
\(740\) 0 0
\(741\) 12.8853 0.473354
\(742\) 0 0
\(743\) −3.32545 2.41608i −0.121999 0.0886375i 0.525113 0.851033i \(-0.324023\pi\)
−0.647112 + 0.762395i \(0.724023\pi\)
\(744\) 0 0
\(745\) −0.375916 1.15695i −0.0137725 0.0423874i
\(746\) 0 0
\(747\) −10.7218 −0.392289
\(748\) 0 0
\(749\) −5.29261 + 3.84531i −0.193388 + 0.140504i
\(750\) 0 0
\(751\) 11.2026 34.4779i 0.408787 1.25812i −0.508904 0.860823i \(-0.669949\pi\)
0.917691 0.397294i \(-0.130051\pi\)
\(752\) 0 0
\(753\) 4.51307 + 3.27894i 0.164466 + 0.119491i
\(754\) 0 0
\(755\) 17.0894 12.4161i 0.621945 0.451870i
\(756\) 0 0
\(757\) 1.33484 + 4.10821i 0.0485155 + 0.149315i 0.972379 0.233406i \(-0.0749870\pi\)
−0.923864 + 0.382721i \(0.874987\pi\)
\(758\) 0 0
\(759\) −0.151275 0.465578i −0.00549095 0.0168994i
\(760\) 0 0
\(761\) −12.7995 + 39.3929i −0.463982 + 1.42799i 0.396275 + 0.918132i \(0.370303\pi\)
−0.860258 + 0.509859i \(0.829697\pi\)
\(762\) 0 0
\(763\) −2.57501 7.92507i −0.0932216 0.286907i
\(764\) 0 0
\(765\) −8.11392 −0.293360
\(766\) 0 0
\(767\) −14.3198 10.4040i −0.517059 0.375665i
\(768\) 0 0
\(769\) 12.8472 9.33407i 0.463284 0.336595i −0.331534 0.943443i \(-0.607566\pi\)
0.794818 + 0.606848i \(0.207566\pi\)
\(770\) 0 0
\(771\) −8.11402 + 5.89518i −0.292219 + 0.212310i
\(772\) 0 0
\(773\) 14.8453 45.6891i 0.533948 1.64332i −0.211962 0.977278i \(-0.567985\pi\)
0.745911 0.666046i \(-0.232015\pi\)
\(774\) 0 0
\(775\) −2.25881 1.64112i −0.0811388 0.0589508i
\(776\) 0 0
\(777\) −0.852729 + 2.62443i −0.0305915 + 0.0941509i
\(778\) 0 0
\(779\) 11.7679 + 43.4139i 0.421631 + 1.55546i
\(780\) 0 0
\(781\) −18.9997 + 58.4751i −0.679863 + 2.09240i
\(782\) 0 0
\(783\) 7.95512 + 5.77973i 0.284293 + 0.206551i
\(784\) 0 0
\(785\) 5.38376 16.5695i 0.192154 0.591391i
\(786\) 0 0
\(787\) −32.3509 + 23.5043i −1.15318 + 0.837838i −0.988901 0.148575i \(-0.952531\pi\)
−0.164284 + 0.986413i \(0.552531\pi\)
\(788\) 0 0
\(789\) −2.55382 + 1.85546i −0.0909185 + 0.0660561i
\(790\) 0 0
\(791\) −9.95587 7.23337i −0.353990 0.257189i
\(792\) 0 0
\(793\) 67.2430 2.38787
\(794\) 0 0
\(795\) −1.11006 3.41640i −0.0393697 0.121167i
\(796\) 0 0
\(797\) 4.21656 12.9772i 0.149358 0.459678i −0.848187 0.529696i \(-0.822306\pi\)
0.997546 + 0.0700187i \(0.0223059\pi\)
\(798\) 0 0
\(799\) 4.97553 + 15.3131i 0.176022 + 0.541739i
\(800\) 0 0
\(801\) 11.7778 + 36.2484i 0.416149 + 1.28078i
\(802\) 0 0
\(803\) 21.4295 15.5694i 0.756230 0.549433i
\(804\) 0 0
\(805\) −0.264278 0.192009i −0.00931457 0.00676743i
\(806\) 0 0
\(807\) 1.25208 3.85350i 0.0440753 0.135650i
\(808\) 0 0
\(809\) 1.72763 1.25520i 0.0607402 0.0441303i −0.557001 0.830512i \(-0.688048\pi\)
0.617741 + 0.786382i \(0.288048\pi\)
\(810\) 0 0
\(811\) 11.7951 0.414182 0.207091 0.978322i \(-0.433600\pi\)
0.207091 + 0.978322i \(0.433600\pi\)
\(812\) 0 0
\(813\) −1.10497 3.40074i −0.0387530 0.119269i
\(814\) 0 0
\(815\) 6.68344 + 4.85580i 0.234111 + 0.170091i
\(816\) 0 0
\(817\) −84.9732 −2.97284
\(818\) 0 0
\(819\) 14.7473 0.515312
\(820\) 0 0
\(821\) −26.8163 −0.935895 −0.467948 0.883756i \(-0.655006\pi\)
−0.467948 + 0.883756i \(0.655006\pi\)
\(822\) 0 0
\(823\) 15.0940 0.526145 0.263073 0.964776i \(-0.415264\pi\)
0.263073 + 0.964776i \(0.415264\pi\)
\(824\) 0 0
\(825\) −1.20679 0.876788i −0.0420152 0.0305258i
\(826\) 0 0
\(827\) −14.2878 43.9732i −0.496834 1.52910i −0.814079 0.580755i \(-0.802758\pi\)
0.317244 0.948344i \(-0.397242\pi\)
\(828\) 0 0
\(829\) 7.56345 0.262689 0.131345 0.991337i \(-0.458071\pi\)
0.131345 + 0.991337i \(0.458071\pi\)
\(830\) 0 0
\(831\) −4.23616 + 3.07775i −0.146951 + 0.106766i
\(832\) 0 0
\(833\) 5.24358 16.1381i 0.181679 0.559151i
\(834\) 0 0
\(835\) −3.67441 2.66962i −0.127158 0.0923859i
\(836\) 0 0
\(837\) −4.71973 + 3.42908i −0.163138 + 0.118526i
\(838\) 0 0
\(839\) 0.517600 + 1.59301i 0.0178695 + 0.0549967i 0.959594 0.281389i \(-0.0907953\pi\)
−0.941724 + 0.336386i \(0.890795\pi\)
\(840\) 0 0
\(841\) −2.11788 6.51817i −0.0730304 0.224764i
\(842\) 0 0
\(843\) −1.82580 + 5.61923i −0.0628838 + 0.193536i
\(844\) 0 0
\(845\) −4.19796 12.9200i −0.144414 0.444461i
\(846\) 0 0
\(847\) 6.55137 0.225108
\(848\) 0 0
\(849\) 0.931156 + 0.676524i 0.0319572 + 0.0232183i
\(850\) 0 0
\(851\) 2.06899 1.50321i 0.0709242 0.0515295i
\(852\) 0 0
\(853\) 11.4353 8.30825i 0.391538 0.284469i −0.374547 0.927208i \(-0.622202\pi\)
0.766086 + 0.642739i \(0.222202\pi\)
\(854\) 0 0
\(855\) 6.23760 19.1974i 0.213322 0.656536i
\(856\) 0 0
\(857\) −6.22133 4.52006i −0.212517 0.154402i 0.476435 0.879210i \(-0.341929\pi\)
−0.688952 + 0.724807i \(0.741929\pi\)
\(858\) 0 0
\(859\) 16.0757 49.4758i 0.548495 1.68809i −0.164037 0.986454i \(-0.552452\pi\)
0.712532 0.701640i \(-0.247548\pi\)
\(860\) 0 0
\(861\) −0.593206 2.18843i −0.0202164 0.0745816i
\(862\) 0 0
\(863\) −5.20911 + 16.0320i −0.177320 + 0.545735i −0.999732 0.0231577i \(-0.992628\pi\)
0.822412 + 0.568893i \(0.192628\pi\)
\(864\) 0 0
\(865\) −7.59495 5.51805i −0.258236 0.187619i
\(866\) 0 0
\(867\) 0.992292 3.05396i 0.0337000 0.103718i
\(868\) 0 0
\(869\) 29.1255 21.1609i 0.988016 0.717836i
\(870\) 0 0
\(871\) −39.5962 + 28.7683i −1.34167 + 0.974778i
\(872\) 0 0
\(873\) −28.2955 20.5579i −0.957658 0.695779i
\(874\) 0 0
\(875\) −0.995388 −0.0336503
\(876\) 0 0
\(877\) 17.3724 + 53.4668i 0.586625 + 1.80545i 0.592646 + 0.805463i \(0.298084\pi\)
−0.00602082 + 0.999982i \(0.501916\pi\)
\(878\) 0 0
\(879\) −0.0219634 + 0.0675965i −0.000740808 + 0.00227997i
\(880\) 0 0
\(881\) −10.4489 32.1583i −0.352031 1.08344i −0.957711 0.287732i \(-0.907099\pi\)
0.605680 0.795708i \(-0.292901\pi\)
\(882\) 0 0
\(883\) −12.3611 38.0436i −0.415985 1.28027i −0.911367 0.411595i \(-0.864972\pi\)
0.495382 0.868675i \(-0.335028\pi\)
\(884\) 0 0
\(885\) 0.988019 0.717838i 0.0332119 0.0241299i
\(886\) 0 0
\(887\) 11.2876 + 8.20094i 0.379002 + 0.275361i 0.760934 0.648830i \(-0.224741\pi\)
−0.381932 + 0.924190i \(0.624741\pi\)
\(888\) 0 0
\(889\) 4.09321 12.5976i 0.137282 0.422510i
\(890\) 0 0
\(891\) 26.7208 19.4138i 0.895179 0.650386i
\(892\) 0 0
\(893\) −40.0554 −1.34040
\(894\) 0 0
\(895\) 1.57372 + 4.84340i 0.0526035 + 0.161897i
\(896\) 0 0
\(897\) 0.487002 + 0.353827i 0.0162605 + 0.0118140i
\(898\) 0 0
\(899\) −13.1393 −0.438221
\(900\) 0 0
\(901\) 28.5132 0.949913
\(902\) 0 0
\(903\) 4.28338 0.142542
\(904\) 0 0
\(905\) 6.96405 0.231493
\(906\) 0 0
\(907\) −11.1460 8.09802i −0.370096 0.268890i 0.387155 0.922015i \(-0.373458\pi\)
−0.757251 + 0.653124i \(0.773458\pi\)
\(908\) 0 0
\(909\) 10.4124 + 32.0462i 0.345359 + 1.06291i
\(910\) 0 0
\(911\) 15.1631 0.502376 0.251188 0.967938i \(-0.419179\pi\)
0.251188 + 0.967938i \(0.419179\pi\)
\(912\) 0 0
\(913\) 12.6576 9.19631i 0.418906 0.304353i
\(914\) 0 0
\(915\) −1.43370 + 4.41246i −0.0473965 + 0.145872i
\(916\) 0 0
\(917\) 12.5521 + 9.11965i 0.414507 + 0.301157i
\(918\) 0 0
\(919\) 22.5381 16.3749i 0.743462 0.540157i −0.150332 0.988636i \(-0.548034\pi\)
0.893793 + 0.448479i \(0.148034\pi\)
\(920\) 0 0
\(921\) 0.169140 + 0.520558i 0.00557334 + 0.0171530i
\(922\) 0 0
\(923\) −23.3633 71.9047i −0.769011 2.36677i
\(924\) 0 0
\(925\) 2.40809 7.41135i 0.0791777 0.243684i
\(926\) 0 0
\(927\) 8.36776 + 25.7533i 0.274833 + 0.845850i
\(928\) 0 0
\(929\) −9.42567 −0.309246 −0.154623 0.987974i \(-0.549416\pi\)
−0.154623 + 0.987974i \(0.549416\pi\)
\(930\) 0 0
\(931\) 34.1513 + 24.8124i 1.11926 + 0.813193i
\(932\) 0 0
\(933\) 2.76520 2.00904i 0.0905286 0.0657729i
\(934\) 0 0
\(935\) 9.57893 6.95950i 0.313264 0.227600i
\(936\) 0 0
\(937\) −3.94565 + 12.1435i −0.128899 + 0.396709i −0.994591 0.103867i \(-0.966878\pi\)
0.865693 + 0.500576i \(0.166878\pi\)
\(938\) 0 0
\(939\) 7.67678 + 5.57751i 0.250522 + 0.182015i
\(940\) 0 0
\(941\) 6.02259 18.5356i 0.196331 0.604244i −0.803628 0.595132i \(-0.797100\pi\)
0.999958 0.00911149i \(-0.00290032\pi\)
\(942\) 0 0
\(943\) −0.747363 + 1.96398i −0.0243375 + 0.0639559i
\(944\) 0 0
\(945\) −0.642706 + 1.97805i −0.0209072 + 0.0643458i
\(946\) 0 0
\(947\) −26.2856 19.0976i −0.854166 0.620588i 0.0721256 0.997396i \(-0.477022\pi\)
−0.926291 + 0.376808i \(0.877022\pi\)
\(948\) 0 0
\(949\) −10.0652 + 30.9776i −0.326731 + 1.00557i
\(950\) 0 0
\(951\) −4.28010 + 3.10967i −0.138792 + 0.100838i
\(952\) 0 0
\(953\) −28.2440 + 20.5205i −0.914913 + 0.664723i −0.942253 0.334903i \(-0.891297\pi\)
0.0273393 + 0.999626i \(0.491297\pi\)
\(954\) 0 0
\(955\) 8.84680 + 6.42758i 0.286276 + 0.207992i
\(956\) 0 0
\(957\) −7.01984 −0.226919
\(958\) 0 0
\(959\) −5.76464 17.7417i −0.186150 0.572911i
\(960\) 0 0
\(961\) −7.17059 + 22.0688i −0.231309 + 0.711897i
\(962\) 0 0
\(963\) −5.83586 17.9609i −0.188058 0.578782i
\(964\) 0 0
\(965\) −3.49252 10.7489i −0.112428 0.346018i
\(966\) 0 0
\(967\) −11.3216 + 8.22563i −0.364079 + 0.264519i −0.754751 0.656011i \(-0.772242\pi\)
0.390673 + 0.920530i \(0.372242\pi\)
\(968\) 0 0
\(969\) −5.70905 4.14787i −0.183401 0.133249i
\(970\) 0 0
\(971\) 2.33261 7.17904i 0.0748571 0.230386i −0.906626 0.421935i \(-0.861351\pi\)
0.981483 + 0.191549i \(0.0613510\pi\)
\(972\) 0 0
\(973\) 16.6727 12.1134i 0.534503 0.388339i
\(974\) 0 0
\(975\) 1.83427 0.0587435
\(976\) 0 0
\(977\) −7.09717 21.8429i −0.227059 0.698815i −0.998076 0.0620007i \(-0.980252\pi\)
0.771017 0.636814i \(-0.219748\pi\)
\(978\) 0 0
\(979\) −44.9955 32.6911i −1.43806 1.04481i
\(980\) 0 0
\(981\) 24.0551 0.768019
\(982\) 0 0
\(983\) 17.3237 0.552542 0.276271 0.961080i \(-0.410901\pi\)
0.276271 + 0.961080i \(0.410901\pi\)
\(984\) 0 0
\(985\) 23.2709 0.741472
\(986\) 0 0
\(987\) 2.01914 0.0642699
\(988\) 0 0
\(989\) −3.21157 2.33334i −0.102122 0.0741959i
\(990\) 0 0
\(991\) −2.05433 6.32258i −0.0652580 0.200843i 0.913111 0.407711i \(-0.133673\pi\)
−0.978369 + 0.206868i \(0.933673\pi\)
\(992\) 0 0
\(993\) −11.2588 −0.357289
\(994\) 0 0
\(995\) −1.72007 + 1.24970i −0.0545298 + 0.0396182i
\(996\) 0 0
\(997\) −9.16291 + 28.2005i −0.290192 + 0.893120i 0.694602 + 0.719394i \(0.255581\pi\)
−0.984794 + 0.173726i \(0.944419\pi\)
\(998\) 0 0
\(999\) −13.1731 9.57078i −0.416777 0.302806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.221.4 yes 32
41.18 even 5 inner 820.2.u.b.141.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.141.4 32 41.18 even 5 inner
820.2.u.b.221.4 yes 32 1.1 even 1 trivial