Properties

Label 820.2.k.c.83.1
Level $820$
Weight $2$
Character 820.83
Analytic conductor $6.548$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(83,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 83.1
Character \(\chi\) \(=\) 820.83
Dual form 820.2.k.c.247.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 + 0.00282635i) q^{2} +(1.90181 - 1.90181i) q^{3} +(1.99998 - 0.00799412i) q^{4} +(-1.72661 + 1.42085i) q^{5} +(-2.68419 + 2.69494i) q^{6} +(-0.433364 - 0.433364i) q^{7} +(-2.82838 + 0.0169580i) q^{8} -4.23379i q^{9} +(2.43777 - 2.01427i) q^{10} -1.58829i q^{11} +(3.78839 - 3.81880i) q^{12} +(-4.00751 - 4.00751i) q^{13} +(0.614093 + 0.611643i) q^{14} +(-0.581488 + 5.98588i) q^{15} +(3.99987 - 0.0319762i) q^{16} +(-3.50563 + 3.50563i) q^{17} +(0.0119662 + 5.98747i) q^{18} -1.87220 q^{19} +(-3.44183 + 2.85549i) q^{20} -1.64836 q^{21} +(0.00448907 + 2.24618i) q^{22} +(-3.13069 + 3.13069i) q^{23} +(-5.34679 + 5.41129i) q^{24} +(0.962351 - 4.90651i) q^{25} +(5.67879 + 5.65614i) q^{26} +(-2.34643 - 2.34643i) q^{27} +(-0.870186 - 0.863257i) q^{28} -6.86286i q^{29} +(0.805429 - 8.46694i) q^{30} -6.19687i q^{31} +(-5.65657 + 0.0565262i) q^{32} +(-3.02063 - 3.02063i) q^{33} +(4.94780 - 4.96761i) q^{34} +(1.36400 + 0.132503i) q^{35} +(-0.0338454 - 8.46751i) q^{36} +(-6.53361 + 6.53361i) q^{37} +(2.64769 - 0.00529150i) q^{38} -15.2431 q^{39} +(4.85940 - 4.04799i) q^{40} +1.00000 q^{41} +(2.33112 - 0.00465883i) q^{42} +(4.69005 - 4.69005i) q^{43} +(-0.0126970 - 3.17655i) q^{44} +(6.01559 + 7.31009i) q^{45} +(4.41861 - 4.43630i) q^{46} +(-8.48312 - 8.48312i) q^{47} +(7.54620 - 7.66782i) q^{48} -6.62439i q^{49} +(-1.34710 + 6.94156i) q^{50} +13.3341i q^{51} +(-8.04699 - 7.98292i) q^{52} +(6.25014 + 6.25014i) q^{53} +(3.32498 + 3.31172i) q^{54} +(2.25673 + 2.74235i) q^{55} +(1.23307 + 1.21837i) q^{56} +(-3.56057 + 3.56057i) q^{57} +(0.0193969 + 9.70554i) q^{58} +0.968941 q^{59} +(-1.11512 + 11.9763i) q^{60} -1.70966 q^{61} +(0.0175145 + 8.76368i) q^{62} +(-1.83477 + 1.83477i) q^{63} +(7.99942 - 0.0959274i) q^{64} +(12.6135 + 1.22532i) q^{65} +(4.28035 + 4.26327i) q^{66} +(6.08078 + 6.08078i) q^{67} +(-6.98319 + 7.03923i) q^{68} +11.9080i q^{69} +(-1.92935 - 0.183532i) q^{70} +11.5429i q^{71} +(0.0717967 + 11.9747i) q^{72} +(-8.09127 - 8.09127i) q^{73} +(9.22144 - 9.25837i) q^{74} +(-7.50106 - 11.1615i) q^{75} +(-3.74437 + 0.0149666i) q^{76} +(-0.688308 + 0.688308i) q^{77} +(21.5569 - 0.0430823i) q^{78} -5.72448 q^{79} +(-6.86078 + 5.73844i) q^{80} +3.77641 q^{81} +(-1.41421 + 0.00282635i) q^{82} +(-2.17584 + 2.17584i) q^{83} +(-3.29668 + 0.0131771i) q^{84} +(1.07186 - 11.0338i) q^{85} +(-6.61946 + 6.64597i) q^{86} +(-13.0519 - 13.0519i) q^{87} +(0.0269343 + 4.49228i) q^{88} -2.68831i q^{89} +(-8.52797 - 10.3210i) q^{90} +3.47342i q^{91} +(-6.23630 + 6.28636i) q^{92} +(-11.7853 - 11.7853i) q^{93} +(12.0209 + 11.9729i) q^{94} +(3.23256 - 2.66012i) q^{95} +(-10.6502 + 10.8652i) q^{96} +(0.544305 - 0.544305i) q^{97} +(0.0187229 + 9.36828i) q^{98} -6.72448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 12 q^{2} - 4 q^{6} - 24 q^{8} + 4 q^{10} - 16 q^{13} + 52 q^{16} - 8 q^{17} + 18 q^{18} + 38 q^{20} + 72 q^{21} + 10 q^{22} - 12 q^{25} + 24 q^{26} - 58 q^{28} - 70 q^{30} - 38 q^{32} + 8 q^{33}+ \cdots + 122 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 + 0.00282635i −0.999998 + 0.00199853i
\(3\) 1.90181 1.90181i 1.09801 1.09801i 0.103369 0.994643i \(-0.467038\pi\)
0.994643 0.103369i \(-0.0329624\pi\)
\(4\) 1.99998 0.00799412i 0.999992 0.00399706i
\(5\) −1.72661 + 1.42085i −0.772163 + 0.635425i
\(6\) −2.68419 + 2.69494i −1.09582 + 1.10020i
\(7\) −0.433364 0.433364i −0.163796 0.163796i 0.620450 0.784246i \(-0.286950\pi\)
−0.784246 + 0.620450i \(0.786950\pi\)
\(8\) −2.82838 + 0.0169580i −0.999982 + 0.00599557i
\(9\) 4.23379i 1.41126i
\(10\) 2.43777 2.01427i 0.770891 0.636967i
\(11\) 1.58829i 0.478887i −0.970910 0.239444i \(-0.923035\pi\)
0.970910 0.239444i \(-0.0769651\pi\)
\(12\) 3.78839 3.81880i 1.09361 1.10239i
\(13\) −4.00751 4.00751i −1.11148 1.11148i −0.992950 0.118533i \(-0.962181\pi\)
−0.118533 0.992950i \(-0.537819\pi\)
\(14\) 0.614093 + 0.611643i 0.164123 + 0.163469i
\(15\) −0.581488 + 5.98588i −0.150140 + 1.54555i
\(16\) 3.99987 0.0319762i 0.999968 0.00799405i
\(17\) −3.50563 + 3.50563i −0.850241 + 0.850241i −0.990163 0.139922i \(-0.955315\pi\)
0.139922 + 0.990163i \(0.455315\pi\)
\(18\) 0.0119662 + 5.98747i 0.00282045 + 1.41126i
\(19\) −1.87220 −0.429512 −0.214756 0.976668i \(-0.568896\pi\)
−0.214756 + 0.976668i \(0.568896\pi\)
\(20\) −3.44183 + 2.85549i −0.769617 + 0.638506i
\(21\) −1.64836 −0.359701
\(22\) 0.00448907 + 2.24618i 0.000957072 + 0.478886i
\(23\) −3.13069 + 3.13069i −0.652794 + 0.652794i −0.953665 0.300871i \(-0.902723\pi\)
0.300871 + 0.953665i \(0.402723\pi\)
\(24\) −5.34679 + 5.41129i −1.09141 + 1.10458i
\(25\) 0.962351 4.90651i 0.192470 0.981303i
\(26\) 5.67879 + 5.65614i 1.11370 + 1.10926i
\(27\) −2.34643 2.34643i −0.451571 0.451571i
\(28\) −0.870186 0.863257i −0.164450 0.163140i
\(29\) 6.86286i 1.27440i −0.770698 0.637201i \(-0.780092\pi\)
0.770698 0.637201i \(-0.219908\pi\)
\(30\) 0.805429 8.46694i 0.147051 1.54585i
\(31\) 6.19687i 1.11299i −0.830851 0.556495i \(-0.812146\pi\)
0.830851 0.556495i \(-0.187854\pi\)
\(32\) −5.65657 + 0.0565262i −0.999950 + 0.00999251i
\(33\) −3.02063 3.02063i −0.525824 0.525824i
\(34\) 4.94780 4.96761i 0.848540 0.851938i
\(35\) 1.36400 + 0.132503i 0.230558 + 0.0223971i
\(36\) −0.0338454 8.46751i −0.00564090 1.41125i
\(37\) −6.53361 + 6.53361i −1.07412 + 1.07412i −0.0770954 + 0.997024i \(0.524565\pi\)
−0.997024 + 0.0770954i \(0.975435\pi\)
\(38\) 2.64769 0.00529150i 0.429511 0.000858394i
\(39\) −15.2431 −2.44084
\(40\) 4.85940 4.04799i 0.768339 0.640043i
\(41\) 1.00000 0.156174
\(42\) 2.33112 0.00465883i 0.359700 0.000718874i
\(43\) 4.69005 4.69005i 0.715225 0.715225i −0.252398 0.967623i \(-0.581219\pi\)
0.967623 + 0.252398i \(0.0812192\pi\)
\(44\) −0.0126970 3.17655i −0.00191414 0.478884i
\(45\) 6.01559 + 7.31009i 0.896751 + 1.08972i
\(46\) 4.41861 4.43630i 0.651488 0.654097i
\(47\) −8.48312 8.48312i −1.23739 1.23739i −0.961064 0.276326i \(-0.910883\pi\)
−0.276326 0.961064i \(-0.589117\pi\)
\(48\) 7.54620 7.66782i 1.08920 1.10675i
\(49\) 6.62439i 0.946342i
\(50\) −1.34710 + 6.94156i −0.190509 + 0.981686i
\(51\) 13.3341i 1.86715i
\(52\) −8.04699 7.98292i −1.11592 1.10703i
\(53\) 6.25014 + 6.25014i 0.858522 + 0.858522i 0.991164 0.132642i \(-0.0423459\pi\)
−0.132642 + 0.991164i \(0.542346\pi\)
\(54\) 3.32498 + 3.31172i 0.452473 + 0.450668i
\(55\) 2.25673 + 2.74235i 0.304297 + 0.369779i
\(56\) 1.23307 + 1.21837i 0.164775 + 0.162811i
\(57\) −3.56057 + 3.56057i −0.471610 + 0.471610i
\(58\) 0.0193969 + 9.70554i 0.00254693 + 1.27440i
\(59\) 0.968941 0.126145 0.0630727 0.998009i \(-0.479910\pi\)
0.0630727 + 0.998009i \(0.479910\pi\)
\(60\) −1.11512 + 11.9763i −0.143961 + 1.54614i
\(61\) −1.70966 −0.218899 −0.109450 0.993992i \(-0.534909\pi\)
−0.109450 + 0.993992i \(0.534909\pi\)
\(62\) 0.0175145 + 8.76368i 0.00222435 + 1.11299i
\(63\) −1.83477 + 1.83477i −0.231160 + 0.231160i
\(64\) 7.99942 0.0959274i 0.999928 0.0119909i
\(65\) 12.6135 + 1.22532i 1.56451 + 0.151982i
\(66\) 4.28035 + 4.26327i 0.526874 + 0.524772i
\(67\) 6.08078 + 6.08078i 0.742885 + 0.742885i 0.973132 0.230247i \(-0.0739534\pi\)
−0.230247 + 0.973132i \(0.573953\pi\)
\(68\) −6.98319 + 7.03923i −0.846836 + 0.853633i
\(69\) 11.9080i 1.43355i
\(70\) −1.92935 0.183532i −0.230602 0.0219363i
\(71\) 11.5429i 1.36989i 0.728595 + 0.684945i \(0.240174\pi\)
−0.728595 + 0.684945i \(0.759826\pi\)
\(72\) 0.0717967 + 11.9747i 0.00846132 + 1.41124i
\(73\) −8.09127 8.09127i −0.947011 0.947011i 0.0516537 0.998665i \(-0.483551\pi\)
−0.998665 + 0.0516537i \(0.983551\pi\)
\(74\) 9.22144 9.25837i 1.07197 1.07626i
\(75\) −7.50106 11.1615i −0.866148 1.28882i
\(76\) −3.74437 + 0.0149666i −0.429509 + 0.00171678i
\(77\) −0.688308 + 0.688308i −0.0784400 + 0.0784400i
\(78\) 21.5569 0.0430823i 2.44084 0.00487811i
\(79\) −5.72448 −0.644054 −0.322027 0.946730i \(-0.604364\pi\)
−0.322027 + 0.946730i \(0.604364\pi\)
\(80\) −6.86078 + 5.73844i −0.767058 + 0.641577i
\(81\) 3.77641 0.419601
\(82\) −1.41421 + 0.00282635i −0.156173 + 0.000312118i
\(83\) −2.17584 + 2.17584i −0.238830 + 0.238830i −0.816366 0.577536i \(-0.804014\pi\)
0.577536 + 0.816366i \(0.304014\pi\)
\(84\) −3.29668 + 0.0131771i −0.359698 + 0.00143774i
\(85\) 1.07186 11.0338i 0.116260 1.19679i
\(86\) −6.61946 + 6.64597i −0.713795 + 0.716653i
\(87\) −13.0519 13.0519i −1.39931 1.39931i
\(88\) 0.0269343 + 4.49228i 0.00287120 + 0.478879i
\(89\) 2.68831i 0.284960i −0.989798 0.142480i \(-0.954492\pi\)
0.989798 0.142480i \(-0.0455077\pi\)
\(90\) −8.52797 10.3210i −0.898927 1.08793i
\(91\) 3.47342i 0.364114i
\(92\) −6.23630 + 6.28636i −0.650179 + 0.655398i
\(93\) −11.7853 11.7853i −1.22208 1.22208i
\(94\) 12.0209 + 11.9729i 1.23986 + 1.23491i
\(95\) 3.23256 2.66012i 0.331653 0.272923i
\(96\) −10.6502 + 10.8652i −1.08699 + 1.10893i
\(97\) 0.544305 0.544305i 0.0552658 0.0552658i −0.678934 0.734200i \(-0.737558\pi\)
0.734200 + 0.678934i \(0.237558\pi\)
\(98\) 0.0187229 + 9.36828i 0.00189130 + 0.946340i
\(99\) −6.72448 −0.675836
\(100\) 1.88546 9.82064i 0.188546 0.982064i
\(101\) 2.43475 0.242267 0.121133 0.992636i \(-0.461347\pi\)
0.121133 + 0.992636i \(0.461347\pi\)
\(102\) −0.0376869 18.8573i −0.00373156 1.86715i
\(103\) −3.50467 + 3.50467i −0.345326 + 0.345326i −0.858365 0.513039i \(-0.828519\pi\)
0.513039 + 0.858365i \(0.328519\pi\)
\(104\) 11.4027 + 11.2668i 1.11813 + 1.10480i
\(105\) 2.84606 2.34207i 0.277747 0.228563i
\(106\) −8.85668 8.82135i −0.860237 0.856805i
\(107\) 6.23144 + 6.23144i 0.602416 + 0.602416i 0.940953 0.338537i \(-0.109932\pi\)
−0.338537 + 0.940953i \(0.609932\pi\)
\(108\) −4.71159 4.67407i −0.453372 0.449763i
\(109\) 17.6354i 1.68916i −0.535426 0.844582i \(-0.679849\pi\)
0.535426 0.844582i \(-0.320151\pi\)
\(110\) −3.19924 3.87189i −0.305035 0.369170i
\(111\) 24.8514i 2.35879i
\(112\) −1.74726 1.71954i −0.165100 0.162482i
\(113\) −10.3543 10.3543i −0.974051 0.974051i 0.0256206 0.999672i \(-0.491844\pi\)
−0.999672 + 0.0256206i \(0.991844\pi\)
\(114\) 5.02534 5.04547i 0.470666 0.472551i
\(115\) 0.957223 9.85372i 0.0892615 0.918864i
\(116\) −0.0548625 13.7256i −0.00509386 1.27439i
\(117\) −16.9669 + 16.9669i −1.56859 + 1.56859i
\(118\) −1.37029 + 0.00273857i −0.126145 + 0.000252106i
\(119\) 3.03843 0.278533
\(120\) 1.54316 16.9402i 0.140871 1.54642i
\(121\) 8.47734 0.770667
\(122\) 2.41782 0.00483210i 0.218899 0.000437478i
\(123\) 1.90181 1.90181i 0.171481 0.171481i
\(124\) −0.0495385 12.3936i −0.00444869 1.11298i
\(125\) 5.30983 + 9.83899i 0.474926 + 0.880026i
\(126\) 2.58957 2.59994i 0.230697 0.231621i
\(127\) 7.06262 + 7.06262i 0.626706 + 0.626706i 0.947238 0.320531i \(-0.103861\pi\)
−0.320531 + 0.947238i \(0.603861\pi\)
\(128\) −11.3126 + 0.158271i −0.999902 + 0.0139893i
\(129\) 17.8392i 1.57065i
\(130\) −17.8416 1.69720i −1.56481 0.148855i
\(131\) 1.41883i 0.123963i −0.998077 0.0619817i \(-0.980258\pi\)
0.998077 0.0619817i \(-0.0197421\pi\)
\(132\) −6.06536 6.01707i −0.527922 0.523718i
\(133\) 0.811344 + 0.811344i 0.0703525 + 0.0703525i
\(134\) −8.61669 8.58232i −0.744369 0.741399i
\(135\) 7.38531 + 0.717433i 0.635626 + 0.0617468i
\(136\) 9.85580 9.97470i 0.845128 0.855323i
\(137\) 8.96763 8.96763i 0.766157 0.766157i −0.211271 0.977428i \(-0.567760\pi\)
0.977428 + 0.211271i \(0.0677602\pi\)
\(138\) −0.0336561 16.8404i −0.00286500 1.43355i
\(139\) −0.876610 −0.0743531 −0.0371765 0.999309i \(-0.511836\pi\)
−0.0371765 + 0.999309i \(0.511836\pi\)
\(140\) 2.72903 + 0.254100i 0.230645 + 0.0214754i
\(141\) −32.2666 −2.71734
\(142\) −0.0326243 16.3241i −0.00273777 1.36989i
\(143\) −6.36509 + 6.36509i −0.532275 + 0.532275i
\(144\) −0.135380 16.9346i −0.0112817 1.41122i
\(145\) 9.75112 + 11.8495i 0.809787 + 0.984046i
\(146\) 11.4656 + 11.4199i 0.948902 + 0.945117i
\(147\) −12.5984 12.5984i −1.03909 1.03909i
\(148\) −13.0149 + 13.1193i −1.06982 + 1.07840i
\(149\) 16.0098i 1.31158i 0.754945 + 0.655788i \(0.227664\pi\)
−0.754945 + 0.655788i \(0.772336\pi\)
\(150\) 10.6396 + 15.7635i 0.868722 + 1.28708i
\(151\) 17.3881i 1.41502i 0.706703 + 0.707510i \(0.250182\pi\)
−0.706703 + 0.707510i \(0.749818\pi\)
\(152\) 5.29529 0.0317488i 0.429504 0.00257517i
\(153\) 14.8421 + 14.8421i 1.19991 + 1.19991i
\(154\) 0.971467 0.975358i 0.0782830 0.0785966i
\(155\) 8.80484 + 10.6996i 0.707222 + 0.859410i
\(156\) −30.4859 + 0.121855i −2.44083 + 0.00975620i
\(157\) 8.82808 8.82808i 0.704558 0.704558i −0.260828 0.965385i \(-0.583995\pi\)
0.965385 + 0.260828i \(0.0839954\pi\)
\(158\) 8.09562 0.0161794i 0.644053 0.00128716i
\(159\) 23.7732 1.88534
\(160\) 9.68637 8.13476i 0.765775 0.643109i
\(161\) 2.71346 0.213850
\(162\) −5.34064 + 0.0106735i −0.419600 + 0.000838586i
\(163\) 10.1125 10.1125i 0.792075 0.792075i −0.189756 0.981831i \(-0.560770\pi\)
0.981831 + 0.189756i \(0.0607696\pi\)
\(164\) 1.99998 0.00799412i 0.156173 0.000624236i
\(165\) 9.50732 + 0.923572i 0.740144 + 0.0719000i
\(166\) 3.07095 3.08325i 0.238352 0.239307i
\(167\) −9.21999 9.21999i −0.713464 0.713464i 0.253794 0.967258i \(-0.418321\pi\)
−0.967258 + 0.253794i \(0.918321\pi\)
\(168\) 4.66217 0.0279529i 0.359694 0.00215661i
\(169\) 19.1203i 1.47079i
\(170\) −1.48466 + 15.6072i −0.113868 + 1.19702i
\(171\) 7.92650i 0.606154i
\(172\) 9.34253 9.41751i 0.712361 0.718079i
\(173\) −4.24416 4.24416i −0.322677 0.322677i 0.527116 0.849793i \(-0.323273\pi\)
−0.849793 + 0.527116i \(0.823273\pi\)
\(174\) 18.4950 + 18.4212i 1.40210 + 1.39651i
\(175\) −2.54336 + 1.70926i −0.192260 + 0.129208i
\(176\) −0.0507875 6.35296i −0.00382825 0.478872i
\(177\) 1.84274 1.84274i 0.138509 0.138509i
\(178\) 0.00759811 + 3.80183i 0.000569502 + 0.284960i
\(179\) 7.98914 0.597137 0.298568 0.954388i \(-0.403491\pi\)
0.298568 + 0.954388i \(0.403491\pi\)
\(180\) 12.0895 + 14.5720i 0.901100 + 1.08613i
\(181\) −14.1777 −1.05382 −0.526909 0.849922i \(-0.676649\pi\)
−0.526909 + 0.849922i \(0.676649\pi\)
\(182\) −0.00981712 4.91215i −0.000727693 0.364113i
\(183\) −3.25145 + 3.25145i −0.240354 + 0.240354i
\(184\) 8.80168 8.90786i 0.648868 0.656696i
\(185\) 1.99768 20.5643i 0.146873 1.51192i
\(186\) 16.7002 + 16.6336i 1.22452 + 1.21963i
\(187\) 5.56796 + 5.56796i 0.407170 + 0.407170i
\(188\) −17.0339 16.8983i −1.24233 1.23243i
\(189\) 2.03372i 0.147931i
\(190\) −4.56400 + 3.77111i −0.331107 + 0.273585i
\(191\) 3.45212i 0.249786i 0.992170 + 0.124893i \(0.0398588\pi\)
−0.992170 + 0.124893i \(0.960141\pi\)
\(192\) 15.0310 15.3958i 1.08477 1.11110i
\(193\) −0.935101 0.935101i −0.0673100 0.0673100i 0.672650 0.739960i \(-0.265156\pi\)
−0.739960 + 0.672650i \(0.765156\pi\)
\(194\) −0.768224 + 0.771300i −0.0551552 + 0.0553761i
\(195\) 26.3188 21.6582i 1.88473 1.55097i
\(196\) −0.0529562 13.2487i −0.00378258 0.946334i
\(197\) 3.97564 3.97564i 0.283252 0.283252i −0.551152 0.834405i \(-0.685812\pi\)
0.834405 + 0.551152i \(0.185812\pi\)
\(198\) 9.50983 0.0190058i 0.675834 0.00135068i
\(199\) 23.3783 1.65724 0.828622 0.559808i \(-0.189125\pi\)
0.828622 + 0.559808i \(0.189125\pi\)
\(200\) −2.63869 + 13.8938i −0.186583 + 0.982439i
\(201\) 23.1290 1.63139
\(202\) −3.44325 + 0.00688147i −0.242266 + 0.000484179i
\(203\) −2.97412 + 2.97412i −0.208742 + 0.208742i
\(204\) 0.106594 + 26.6680i 0.00746311 + 1.86714i
\(205\) −1.72661 + 1.42085i −0.120592 + 0.0992367i
\(206\) 4.94644 4.96625i 0.344635 0.346015i
\(207\) 13.2547 + 13.2547i 0.921263 + 0.921263i
\(208\) −16.1577 15.9014i −1.12033 1.10256i
\(209\) 2.97360i 0.205688i
\(210\) −4.01831 + 3.32023i −0.277290 + 0.229117i
\(211\) 15.6677i 1.07861i −0.842110 0.539305i \(-0.818687\pi\)
0.842110 0.539305i \(-0.181313\pi\)
\(212\) 12.5501 + 12.4502i 0.861947 + 0.855084i
\(213\) 21.9524 + 21.9524i 1.50416 + 1.50416i
\(214\) −8.83019 8.79496i −0.603619 0.601211i
\(215\) −1.43400 + 14.7617i −0.0977983 + 1.00674i
\(216\) 6.67638 + 6.59680i 0.454270 + 0.448856i
\(217\) −2.68550 + 2.68550i −0.182304 + 0.182304i
\(218\) 0.0498438 + 24.9402i 0.00337585 + 1.68916i
\(219\) −30.7762 −2.07966
\(220\) 4.53534 + 5.46662i 0.305773 + 0.368560i
\(221\) 28.0977 1.89006
\(222\) −0.0702389 35.1451i −0.00471412 2.35879i
\(223\) 6.08865 6.08865i 0.407726 0.407726i −0.473219 0.880945i \(-0.656908\pi\)
0.880945 + 0.473219i \(0.156908\pi\)
\(224\) 2.47585 + 2.42686i 0.165425 + 0.162151i
\(225\) −20.7731 4.07439i −1.38488 0.271626i
\(226\) 14.6724 + 14.6139i 0.975996 + 0.972103i
\(227\) −6.36587 6.36587i −0.422518 0.422518i 0.463552 0.886070i \(-0.346575\pi\)
−0.886070 + 0.463552i \(0.846575\pi\)
\(228\) −7.09263 + 7.14956i −0.469721 + 0.473491i
\(229\) 5.75631i 0.380388i 0.981747 + 0.190194i \(0.0609117\pi\)
−0.981747 + 0.190194i \(0.939088\pi\)
\(230\) −1.32587 + 13.9379i −0.0874250 + 0.919041i
\(231\) 2.61807i 0.172256i
\(232\) 0.116381 + 19.4108i 0.00764076 + 1.27438i
\(233\) −18.8947 18.8947i −1.23784 1.23784i −0.960884 0.276952i \(-0.910676\pi\)
−0.276952 0.960884i \(-0.589324\pi\)
\(234\) 23.9469 24.0428i 1.56546 1.57173i
\(235\) 26.7003 + 2.59375i 1.74173 + 0.169198i
\(236\) 1.93787 0.00774582i 0.126144 0.000504210i
\(237\) −10.8869 + 10.8869i −0.707179 + 0.707179i
\(238\) −4.29698 + 0.00858768i −0.278532 + 0.000556657i
\(239\) −4.29596 −0.277883 −0.138941 0.990301i \(-0.544370\pi\)
−0.138941 + 0.990301i \(0.544370\pi\)
\(240\) −2.13447 + 23.9614i −0.137780 + 1.54670i
\(241\) −6.30046 −0.405848 −0.202924 0.979194i \(-0.565044\pi\)
−0.202924 + 0.979194i \(0.565044\pi\)
\(242\) −11.9887 + 0.0239599i −0.770665 + 0.00154020i
\(243\) 14.2213 14.2213i 0.912298 0.912298i
\(244\) −3.41929 + 0.0136672i −0.218898 + 0.000874954i
\(245\) 9.41229 + 11.4377i 0.601329 + 0.730730i
\(246\) −2.68419 + 2.69494i −0.171138 + 0.171823i
\(247\) 7.50286 + 7.50286i 0.477396 + 0.477396i
\(248\) 0.105087 + 17.5271i 0.00667301 + 1.11297i
\(249\) 8.27610i 0.524477i
\(250\) −7.53703 13.8994i −0.476684 0.879075i
\(251\) 27.4019i 1.72959i 0.502123 + 0.864796i \(0.332552\pi\)
−0.502123 + 0.864796i \(0.667448\pi\)
\(252\) −3.65485 + 3.68418i −0.230234 + 0.232082i
\(253\) 4.97244 + 4.97244i 0.312615 + 0.312615i
\(254\) −10.0080 9.96808i −0.627958 0.625453i
\(255\) −18.9458 23.0228i −1.18643 1.44174i
\(256\) 15.9980 0.255802i 0.999872 0.0159876i
\(257\) 13.0822 13.0822i 0.816045 0.816045i −0.169487 0.985532i \(-0.554211\pi\)
0.985532 + 0.169487i \(0.0542112\pi\)
\(258\) 0.0504198 + 25.2284i 0.00313900 + 1.57065i
\(259\) 5.66287 0.351873
\(260\) 25.2366 + 2.34978i 1.56511 + 0.145727i
\(261\) −29.0559 −1.79852
\(262\) 0.00401011 + 2.00652i 0.000247745 + 0.123963i
\(263\) 14.5278 14.5278i 0.895823 0.895823i −0.0992407 0.995063i \(-0.531641\pi\)
0.995063 + 0.0992407i \(0.0316414\pi\)
\(264\) 8.59470 + 8.49226i 0.528967 + 0.522662i
\(265\) −19.6721 1.91101i −1.20845 0.117392i
\(266\) −1.14971 1.14512i −0.0704929 0.0702117i
\(267\) −5.11266 5.11266i −0.312890 0.312890i
\(268\) 12.2101 + 12.1129i 0.745849 + 0.739910i
\(269\) 16.4454i 1.00269i −0.865246 0.501347i \(-0.832838\pi\)
0.865246 0.501347i \(-0.167162\pi\)
\(270\) −10.4464 0.993728i −0.635748 0.0604763i
\(271\) 28.8912i 1.75501i −0.479565 0.877507i \(-0.659205\pi\)
0.479565 0.877507i \(-0.340795\pi\)
\(272\) −13.9100 + 14.1342i −0.843417 + 0.857011i
\(273\) 6.60580 + 6.60580i 0.399801 + 0.399801i
\(274\) −12.6568 + 12.7075i −0.764624 + 0.767686i
\(275\) −7.79297 1.52849i −0.469934 0.0921716i
\(276\) 0.0951937 + 23.8158i 0.00572999 + 1.43354i
\(277\) −4.72797 + 4.72797i −0.284076 + 0.284076i −0.834732 0.550656i \(-0.814378\pi\)
0.550656 + 0.834732i \(0.314378\pi\)
\(278\) 1.23971 0.00247761i 0.0743529 0.000148597i
\(279\) −26.2362 −1.57072
\(280\) −3.86014 0.351638i −0.230688 0.0210144i
\(281\) 2.72305 0.162443 0.0812217 0.996696i \(-0.474118\pi\)
0.0812217 + 0.996696i \(0.474118\pi\)
\(282\) 45.6318 0.0911968i 2.71733 0.00543069i
\(283\) 11.8514 11.8514i 0.704493 0.704493i −0.260878 0.965372i \(-0.584012\pi\)
0.965372 + 0.260878i \(0.0840121\pi\)
\(284\) 0.0922753 + 23.0856i 0.00547553 + 1.36988i
\(285\) 1.08866 11.2068i 0.0644868 0.663832i
\(286\) 8.98358 9.01956i 0.531211 0.533338i
\(287\) −0.433364 0.433364i −0.0255807 0.0255807i
\(288\) 0.239320 + 23.9487i 0.0141020 + 1.41119i
\(289\) 7.57892i 0.445819i
\(290\) −13.8236 16.7301i −0.811752 0.982425i
\(291\) 2.07033i 0.121365i
\(292\) −16.2471 16.1177i −0.950789 0.943219i
\(293\) 4.39475 + 4.39475i 0.256744 + 0.256744i 0.823728 0.566985i \(-0.191890\pi\)
−0.566985 + 0.823728i \(0.691890\pi\)
\(294\) 17.8523 + 17.7811i 1.04117 + 1.03702i
\(295\) −1.67298 + 1.37672i −0.0974047 + 0.0801559i
\(296\) 18.3687 18.5903i 1.06766 1.08054i
\(297\) −3.72681 + 3.72681i −0.216252 + 0.216252i
\(298\) −0.0452494 22.6413i −0.00262123 1.31157i
\(299\) 25.0925 1.45114
\(300\) −15.0912 22.2628i −0.871292 1.28535i
\(301\) −4.06500 −0.234303
\(302\) −0.0491448 24.5904i −0.00282796 1.41502i
\(303\) 4.63045 4.63045i 0.266012 0.266012i
\(304\) −7.48856 + 0.0598659i −0.429498 + 0.00343354i
\(305\) 2.95191 2.42918i 0.169026 0.139094i
\(306\) −21.0318 20.9479i −1.20231 1.19751i
\(307\) 5.32303 + 5.32303i 0.303801 + 0.303801i 0.842499 0.538698i \(-0.181084\pi\)
−0.538698 + 0.842499i \(0.681084\pi\)
\(308\) −1.37110 + 1.38211i −0.0781258 + 0.0787529i
\(309\) 13.3305i 0.758344i
\(310\) −12.4821 15.1066i −0.708938 0.857995i
\(311\) 13.0392i 0.739387i −0.929154 0.369694i \(-0.879463\pi\)
0.929154 0.369694i \(-0.120537\pi\)
\(312\) 43.1131 0.258492i 2.44080 0.0146343i
\(313\) 9.22158 + 9.22158i 0.521234 + 0.521234i 0.917944 0.396710i \(-0.129848\pi\)
−0.396710 + 0.917944i \(0.629848\pi\)
\(314\) −12.4598 + 12.5097i −0.703148 + 0.705964i
\(315\) 0.560990 5.77487i 0.0316082 0.325377i
\(316\) −11.4489 + 0.0457621i −0.644049 + 0.00257432i
\(317\) 10.5132 10.5132i 0.590481 0.590481i −0.347281 0.937761i \(-0.612895\pi\)
0.937761 + 0.347281i \(0.112895\pi\)
\(318\) −33.6203 + 0.0671914i −1.88533 + 0.00376791i
\(319\) −10.9002 −0.610295
\(320\) −13.6756 + 11.5316i −0.764488 + 0.644638i
\(321\) 23.7021 1.32292
\(322\) −3.83740 + 0.00766919i −0.213850 + 0.000427387i
\(323\) 6.56325 6.56325i 0.365189 0.365189i
\(324\) 7.55276 0.0301890i 0.419598 0.00167717i
\(325\) −23.5195 + 15.8063i −1.30463 + 0.876774i
\(326\) −14.2727 + 14.3298i −0.790491 + 0.793657i
\(327\) −33.5392 33.5392i −1.85472 1.85472i
\(328\) −2.82838 + 0.0169580i −0.156171 + 0.000936350i
\(329\) 7.35256i 0.405360i
\(330\) −13.4480 1.27925i −0.740286 0.0704206i
\(331\) 32.0991i 1.76433i 0.470943 + 0.882164i \(0.343914\pi\)
−0.470943 + 0.882164i \(0.656086\pi\)
\(332\) −4.33426 + 4.36905i −0.237873 + 0.239783i
\(333\) 27.6619 + 27.6619i 1.51586 + 1.51586i
\(334\) 13.0651 + 13.0129i 0.714889 + 0.712037i
\(335\) −19.1390 1.85923i −1.04568 0.101580i
\(336\) −6.59321 + 0.0527082i −0.359689 + 0.00287547i
\(337\) −4.54825 + 4.54825i −0.247759 + 0.247759i −0.820050 0.572291i \(-0.806055\pi\)
0.572291 + 0.820050i \(0.306055\pi\)
\(338\) −0.0540406 27.0401i −0.00293942 1.47079i
\(339\) −39.3839 −2.13904
\(340\) 2.05550 22.0761i 0.111475 1.19724i
\(341\) −9.84242 −0.532997
\(342\) −0.0224031 11.2097i −0.00121142 0.606153i
\(343\) −5.90432 + 5.90432i −0.318803 + 0.318803i
\(344\) −13.1857 + 13.3448i −0.710924 + 0.719501i
\(345\) −16.9195 20.5604i −0.910914 1.10693i
\(346\) 6.01413 + 5.99013i 0.323321 + 0.322032i
\(347\) 2.12338 + 2.12338i 0.113989 + 0.113989i 0.761801 0.647812i \(-0.224316\pi\)
−0.647812 + 0.761801i \(0.724316\pi\)
\(348\) −26.2079 25.9992i −1.40489 1.39370i
\(349\) 14.0584i 0.752527i −0.926513 0.376263i \(-0.877209\pi\)
0.926513 0.376263i \(-0.122791\pi\)
\(350\) 3.59201 2.42444i 0.192001 0.129592i
\(351\) 18.8067i 1.00383i
\(352\) 0.0897799 + 8.98428i 0.00478529 + 0.478863i
\(353\) −9.01285 9.01285i −0.479706 0.479706i 0.425332 0.905037i \(-0.360157\pi\)
−0.905037 + 0.425332i \(0.860157\pi\)
\(354\) −2.60082 + 2.61124i −0.138232 + 0.138786i
\(355\) −16.4008 19.9301i −0.870463 1.05778i
\(356\) −0.0214906 5.37657i −0.00113900 0.284958i
\(357\) 5.77853 5.77853i 0.305832 0.305832i
\(358\) −11.2983 + 0.0225801i −0.597135 + 0.00119340i
\(359\) −21.5045 −1.13496 −0.567481 0.823386i \(-0.692082\pi\)
−0.567481 + 0.823386i \(0.692082\pi\)
\(360\) −17.1383 20.5737i −0.903269 1.08433i
\(361\) −15.4949 −0.815519
\(362\) 20.0502 0.0400711i 1.05382 0.00210609i
\(363\) 16.1223 16.1223i 0.846202 0.846202i
\(364\) 0.0277669 + 6.94679i 0.00145538 + 0.364111i
\(365\) 25.4670 + 2.47394i 1.33300 + 0.129492i
\(366\) 4.58905 4.60743i 0.239873 0.240834i
\(367\) 15.2095 + 15.2095i 0.793932 + 0.793932i 0.982131 0.188199i \(-0.0602650\pi\)
−0.188199 + 0.982131i \(0.560265\pi\)
\(368\) −12.4222 + 12.6225i −0.647554 + 0.657991i
\(369\) 4.23379i 0.220402i
\(370\) −2.76702 + 29.0879i −0.143851 + 1.51221i
\(371\) 5.41717i 0.281246i
\(372\) −23.6646 23.4762i −1.22695 1.21718i
\(373\) 1.46829 + 1.46829i 0.0760252 + 0.0760252i 0.744097 0.668072i \(-0.232880\pi\)
−0.668072 + 0.744097i \(0.732880\pi\)
\(374\) −7.89001 7.85853i −0.407983 0.406355i
\(375\) 28.8102 + 8.61360i 1.48775 + 0.444805i
\(376\) 24.1373 + 23.8496i 1.24479 + 1.22995i
\(377\) −27.5030 + 27.5030i −1.41648 + 1.41648i
\(378\) −0.00574801 2.87611i −0.000295646 0.147931i
\(379\) 10.0239 0.514894 0.257447 0.966292i \(-0.417119\pi\)
0.257447 + 0.966292i \(0.417119\pi\)
\(380\) 6.44379 5.34604i 0.330560 0.274246i
\(381\) 26.8636 1.37626
\(382\) −0.00975690 4.88202i −0.000499206 0.249786i
\(383\) 13.9942 13.9942i 0.715068 0.715068i −0.252523 0.967591i \(-0.581260\pi\)
0.967591 + 0.252523i \(0.0812603\pi\)
\(384\) −21.2135 + 21.8155i −1.08254 + 1.11327i
\(385\) 0.210453 2.16642i 0.0107257 0.110411i
\(386\) 1.32507 + 1.31979i 0.0674444 + 0.0671754i
\(387\) −19.8567 19.8567i −1.00937 1.00937i
\(388\) 1.08425 1.09295i 0.0550445 0.0554863i
\(389\) 30.3206i 1.53732i −0.639659 0.768659i \(-0.720925\pi\)
0.639659 0.768659i \(-0.279075\pi\)
\(390\) −37.1591 + 30.7036i −1.88163 + 1.55474i
\(391\) 21.9501i 1.11006i
\(392\) 0.112337 + 18.7363i 0.00567385 + 0.946325i
\(393\) −2.69834 2.69834i −0.136113 0.136113i
\(394\) −5.61115 + 5.63362i −0.282686 + 0.283818i
\(395\) 9.88393 8.13364i 0.497314 0.409248i
\(396\) −13.4489 + 0.0537563i −0.675830 + 0.00270135i
\(397\) −20.8645 + 20.8645i −1.04716 + 1.04716i −0.0483271 + 0.998832i \(0.515389\pi\)
−0.998832 + 0.0483271i \(0.984611\pi\)
\(398\) −33.0619 + 0.0660754i −1.65724 + 0.00331206i
\(399\) 3.08605 0.154496
\(400\) 3.69239 19.6562i 0.184620 0.982810i
\(401\) −27.4808 −1.37232 −0.686162 0.727449i \(-0.740706\pi\)
−0.686162 + 0.727449i \(0.740706\pi\)
\(402\) −32.7093 + 0.0653707i −1.63139 + 0.00326040i
\(403\) −24.8340 + 24.8340i −1.23707 + 1.23707i
\(404\) 4.86947 0.0194637i 0.242265 0.000968355i
\(405\) −6.52038 + 5.36572i −0.324000 + 0.266625i
\(406\) 4.19763 4.21444i 0.208325 0.209159i
\(407\) 10.3773 + 10.3773i 0.514382 + 0.514382i
\(408\) −0.226120 37.7139i −0.0111946 1.86712i
\(409\) 8.80523i 0.435391i −0.976017 0.217695i \(-0.930146\pi\)
0.976017 0.217695i \(-0.0698539\pi\)
\(410\) 2.43777 2.01427i 0.120393 0.0994775i
\(411\) 34.1095i 1.68250i
\(412\) −6.98127 + 7.03731i −0.343943 + 0.346703i
\(413\) −0.419904 0.419904i −0.0206621 0.0206621i
\(414\) −18.7824 18.7074i −0.923103 0.919420i
\(415\) 0.665275 6.84839i 0.0326571 0.336174i
\(416\) 22.8953 + 22.4422i 1.12253 + 1.10032i
\(417\) −1.66715 + 1.66715i −0.0816406 + 0.0816406i
\(418\) −0.00840443 4.20529i −0.000411074 0.205688i
\(419\) 5.76098 0.281442 0.140721 0.990049i \(-0.455058\pi\)
0.140721 + 0.990049i \(0.455058\pi\)
\(420\) 5.67336 4.70686i 0.276832 0.229671i
\(421\) 0.285923 0.0139351 0.00696753 0.999976i \(-0.497782\pi\)
0.00696753 + 0.999976i \(0.497782\pi\)
\(422\) 0.0442825 + 22.1575i 0.00215564 + 1.07861i
\(423\) −35.9157 + 35.9157i −1.74628 + 1.74628i
\(424\) −17.7837 17.5718i −0.863654 0.853360i
\(425\) 13.8268 + 20.5741i 0.670698 + 0.997990i
\(426\) −31.1074 30.9833i −1.50716 1.50115i
\(427\) 0.740905 + 0.740905i 0.0358549 + 0.0358549i
\(428\) 12.5126 + 12.4130i 0.604820 + 0.600004i
\(429\) 24.2104i 1.16889i
\(430\) 1.98626 20.8803i 0.0957861 1.00694i
\(431\) 33.7234i 1.62440i −0.583381 0.812199i \(-0.698270\pi\)
0.583381 0.812199i \(-0.301730\pi\)
\(432\) −9.46046 9.31040i −0.455167 0.447947i
\(433\) −16.2481 16.2481i −0.780836 0.780836i 0.199136 0.979972i \(-0.436186\pi\)
−0.979972 + 0.199136i \(0.936186\pi\)
\(434\) 3.79027 3.80545i 0.181939 0.182668i
\(435\) 41.0803 + 3.99068i 1.96965 + 0.191338i
\(436\) −0.140979 35.2705i −0.00675169 1.68915i
\(437\) 5.86128 5.86128i 0.280383 0.280383i
\(438\) 43.5240 0.0869843i 2.07966 0.00415627i
\(439\) 33.9364 1.61970 0.809849 0.586639i \(-0.199549\pi\)
0.809849 + 0.586639i \(0.199549\pi\)
\(440\) −6.42938 7.71814i −0.306509 0.367948i
\(441\) −28.0463 −1.33554
\(442\) −39.7361 + 0.0794141i −1.89005 + 0.00377734i
\(443\) −14.6750 + 14.6750i −0.697230 + 0.697230i −0.963812 0.266582i \(-0.914106\pi\)
0.266582 + 0.963812i \(0.414106\pi\)
\(444\) 0.198665 + 49.7024i 0.00942823 + 2.35877i
\(445\) 3.81969 + 4.64165i 0.181071 + 0.220036i
\(446\) −8.59342 + 8.62784i −0.406910 + 0.408540i
\(447\) 30.4477 + 30.4477i 1.44013 + 1.44013i
\(448\) −3.50824 3.42509i −0.165749 0.161820i
\(449\) 11.9800i 0.565371i 0.959213 + 0.282686i \(0.0912253\pi\)
−0.959213 + 0.282686i \(0.908775\pi\)
\(450\) 29.3891 + 5.70333i 1.38542 + 0.268858i
\(451\) 1.58829i 0.0747896i
\(452\) −20.7912 20.6257i −0.977937 0.970150i
\(453\) 33.0688 + 33.0688i 1.55371 + 1.55371i
\(454\) 9.02067 + 8.98469i 0.423361 + 0.421672i
\(455\) −4.93522 5.99724i −0.231367 0.281155i
\(456\) 10.0103 10.1310i 0.468774 0.474429i
\(457\) 0.123192 0.123192i 0.00576270 0.00576270i −0.704220 0.709982i \(-0.748703\pi\)
0.709982 + 0.704220i \(0.248703\pi\)
\(458\) −0.0162694 8.14064i −0.000760217 0.380387i
\(459\) 16.4515 0.767888
\(460\) 1.83566 19.7149i 0.0855880 0.919214i
\(461\) −1.83433 −0.0854335 −0.0427167 0.999087i \(-0.513601\pi\)
−0.0427167 + 0.999087i \(0.513601\pi\)
\(462\) −0.00739958 3.70250i −0.000344260 0.172256i
\(463\) −28.5167 + 28.5167i −1.32528 + 1.32528i −0.415849 + 0.909434i \(0.636515\pi\)
−0.909434 + 0.415849i \(0.863485\pi\)
\(464\) −0.219448 27.4506i −0.0101876 1.27436i
\(465\) 37.0937 + 3.60341i 1.72018 + 0.167104i
\(466\) 26.7746 + 26.6678i 1.24031 + 1.23536i
\(467\) 9.23022 + 9.23022i 0.427124 + 0.427124i 0.887647 0.460524i \(-0.152338\pi\)
−0.460524 + 0.887647i \(0.652338\pi\)
\(468\) −33.7980 + 34.0693i −1.56231 + 1.57485i
\(469\) 5.27038i 0.243364i
\(470\) −37.7672 3.59265i −1.74207 0.165717i
\(471\) 33.5787i 1.54723i
\(472\) −2.74053 + 0.0164313i −0.126143 + 0.000756313i
\(473\) −7.44915 7.44915i −0.342512 0.342512i
\(474\) 15.3656 15.4271i 0.705765 0.708591i
\(475\) −1.80171 + 9.18597i −0.0826683 + 0.421481i
\(476\) 6.07681 0.0242896i 0.278530 0.00111331i
\(477\) 26.4618 26.4618i 1.21160 1.21160i
\(478\) 6.07539 0.0121419i 0.277882 0.000555358i
\(479\) −20.4800 −0.935755 −0.467877 0.883793i \(-0.654981\pi\)
−0.467877 + 0.883793i \(0.654981\pi\)
\(480\) 2.95087 33.8925i 0.134688 1.54697i
\(481\) 52.3670 2.38773
\(482\) 8.91017 0.0178073i 0.405847 0.000811101i
\(483\) 5.16049 5.16049i 0.234810 0.234810i
\(484\) 16.9545 0.0677688i 0.770661 0.00308040i
\(485\) −0.166424 + 1.71318i −0.00755692 + 0.0777914i
\(486\) −20.0718 + 20.1521i −0.910473 + 0.914120i
\(487\) 1.46175 + 1.46175i 0.0662384 + 0.0662384i 0.739450 0.673212i \(-0.235086\pi\)
−0.673212 + 0.739450i \(0.735086\pi\)
\(488\) 4.83556 0.0289924i 0.218896 0.00131243i
\(489\) 38.4643i 1.73942i
\(490\) −13.3433 16.1488i −0.602788 0.729526i
\(491\) 7.84785i 0.354169i −0.984196 0.177084i \(-0.943333\pi\)
0.984196 0.177084i \(-0.0566665\pi\)
\(492\) 3.78839 3.81880i 0.170794 0.172165i
\(493\) 24.0587 + 24.0587i 1.08355 + 1.08355i
\(494\) −10.6318 10.5894i −0.478349 0.476440i
\(495\) 11.6105 9.55450i 0.521855 0.429443i
\(496\) −0.198152 24.7867i −0.00889730 1.11295i
\(497\) 5.00228 5.00228i 0.224383 0.224383i
\(498\) −0.0233912 11.7042i −0.00104818 0.524476i
\(499\) −23.0671 −1.03262 −0.516312 0.856400i \(-0.672696\pi\)
−0.516312 + 0.856400i \(0.672696\pi\)
\(500\) 10.6982 + 19.6354i 0.478440 + 0.878120i
\(501\) −35.0694 −1.56679
\(502\) −0.0774474 38.7520i −0.00345665 1.72959i
\(503\) −16.5617 + 16.5617i −0.738450 + 0.738450i −0.972278 0.233828i \(-0.924875\pi\)
0.233828 + 0.972278i \(0.424875\pi\)
\(504\) 5.15831 5.22054i 0.229769 0.232541i
\(505\) −4.20386 + 3.45943i −0.187069 + 0.153942i
\(506\) −7.04613 7.01803i −0.313239 0.311989i
\(507\) 36.3632 + 36.3632i 1.61495 + 1.61495i
\(508\) 14.1816 + 14.0687i 0.629206 + 0.624196i
\(509\) 29.2681i 1.29728i 0.761094 + 0.648642i \(0.224663\pi\)
−0.761094 + 0.648642i \(0.775337\pi\)
\(510\) 26.8585 + 32.5055i 1.18931 + 1.43937i
\(511\) 7.01293i 0.310234i
\(512\) −22.6238 + 0.406973i −0.999838 + 0.0179858i
\(513\) 4.39299 + 4.39299i 0.193955 + 0.193955i
\(514\) −18.4640 + 18.5380i −0.814413 + 0.817674i
\(515\) 1.07157 11.0308i 0.0472190 0.486076i
\(516\) −0.142609 35.6781i −0.00627799 1.57064i
\(517\) −13.4737 + 13.4737i −0.592571 + 0.592571i
\(518\) −8.00849 + 0.0160053i −0.351873 + 0.000703231i
\(519\) −16.1432 −0.708607
\(520\) −35.6965 3.25175i −1.56539 0.142599i
\(521\) −18.0489 −0.790737 −0.395369 0.918523i \(-0.629383\pi\)
−0.395369 + 0.918523i \(0.629383\pi\)
\(522\) 41.0912 0.0821222i 1.79851 0.00359439i
\(523\) −2.57935 + 2.57935i −0.112787 + 0.112787i −0.761248 0.648461i \(-0.775413\pi\)
0.648461 + 0.761248i \(0.275413\pi\)
\(524\) −0.0113423 2.83763i −0.000495489 0.123962i
\(525\) −1.58630 + 8.08768i −0.0692317 + 0.352975i
\(526\) −20.5043 + 20.5864i −0.894031 + 0.897611i
\(527\) 21.7239 + 21.7239i 0.946310 + 0.946310i
\(528\) −12.1787 11.9855i −0.530011 0.521604i
\(529\) 3.39757i 0.147721i
\(530\) 27.8259 + 2.64697i 1.20868 + 0.114977i
\(531\) 4.10229i 0.178024i
\(532\) 1.62916 + 1.61619i 0.0706331 + 0.0700707i
\(533\) −4.00751 4.00751i −0.173585 0.173585i
\(534\) 7.24483 + 7.21593i 0.313514 + 0.312264i
\(535\) −19.6132 1.90529i −0.847954 0.0823730i
\(536\) −17.3018 17.0956i −0.747326 0.738418i
\(537\) 15.1939 15.1939i 0.655663 0.655663i
\(538\) 0.0464805 + 23.2573i 0.00200392 + 1.00269i
\(539\) −10.5215 −0.453191
\(540\) 14.7762 + 1.37582i 0.635868 + 0.0592057i
\(541\) −6.04328 −0.259821 −0.129910 0.991526i \(-0.541469\pi\)
−0.129910 + 0.991526i \(0.541469\pi\)
\(542\) 0.0816566 + 40.8582i 0.00350745 + 1.75501i
\(543\) −26.9633 + 26.9633i −1.15711 + 1.15711i
\(544\) 19.6317 20.0280i 0.841702 0.858694i
\(545\) 25.0573 + 30.4494i 1.07334 + 1.30431i
\(546\) −9.36067 9.32332i −0.400599 0.399001i
\(547\) 2.28661 + 2.28661i 0.0977683 + 0.0977683i 0.754299 0.656531i \(-0.227977\pi\)
−0.656531 + 0.754299i \(0.727977\pi\)
\(548\) 17.8634 18.0068i 0.763088 0.769213i
\(549\) 7.23833i 0.308925i
\(550\) 11.0252 + 2.13959i 0.470117 + 0.0912322i
\(551\) 12.8487i 0.547371i
\(552\) −0.201936 33.6802i −0.00859495 1.43353i
\(553\) 2.48078 + 2.48078i 0.105494 + 0.105494i
\(554\) 6.67298 6.69970i 0.283508 0.284643i
\(555\) −35.3102 42.9087i −1.49884 1.82137i
\(556\) −1.75321 + 0.00700772i −0.0743525 + 0.000297194i
\(557\) 7.24008 7.24008i 0.306772 0.306772i −0.536884 0.843656i \(-0.680399\pi\)
0.843656 + 0.536884i \(0.180399\pi\)
\(558\) 37.1035 0.0741528i 1.57072 0.00313914i
\(559\) −37.5908 −1.58992
\(560\) 5.46005 + 0.486380i 0.230729 + 0.0205533i
\(561\) 21.1784 0.894155
\(562\) −3.85096 + 0.00769629i −0.162443 + 0.000324648i
\(563\) −23.0929 + 23.0929i −0.973252 + 0.973252i −0.999651 0.0263999i \(-0.991596\pi\)
0.0263999 + 0.999651i \(0.491596\pi\)
\(564\) −64.5327 + 0.257943i −2.71732 + 0.0108614i
\(565\) 32.5898 + 3.16588i 1.37106 + 0.133190i
\(566\) −16.7269 + 16.7939i −0.703084 + 0.705900i
\(567\) −1.63656 1.63656i −0.0687291 0.0687291i
\(568\) −0.195745 32.6477i −0.00821327 1.36987i
\(569\) 11.3100i 0.474140i −0.971493 0.237070i \(-0.923813\pi\)
0.971493 0.237070i \(-0.0761870\pi\)
\(570\) −1.50792 + 15.8518i −0.0631600 + 0.663959i
\(571\) 20.4162i 0.854391i 0.904159 + 0.427195i \(0.140498\pi\)
−0.904159 + 0.427195i \(0.859502\pi\)
\(572\) −12.6792 + 12.7810i −0.530144 + 0.534399i
\(573\) 6.56528 + 6.56528i 0.274269 + 0.274269i
\(574\) 0.614093 + 0.611643i 0.0256318 + 0.0255295i
\(575\) 12.3479 + 18.3736i 0.514945 + 0.766232i
\(576\) −0.406136 33.8679i −0.0169223 1.41116i
\(577\) 1.14988 1.14988i 0.0478700 0.0478700i −0.682767 0.730637i \(-0.739223\pi\)
0.730637 + 0.682767i \(0.239223\pi\)
\(578\) 0.0214207 + 10.7182i 0.000890984 + 0.445818i
\(579\) −3.55678 −0.147815
\(580\) 19.5968 + 23.6208i 0.813714 + 0.980801i
\(581\) 1.88587 0.0782389
\(582\) 0.00585149 + 2.92789i 0.000242552 + 0.121365i
\(583\) 9.92703 9.92703i 0.411136 0.411136i
\(584\) 23.0224 + 22.7479i 0.952672 + 0.941317i
\(585\) 5.18772 53.4028i 0.214486 2.20793i
\(586\) −6.22752 6.20268i −0.257256 0.256230i
\(587\) 14.6537 + 14.6537i 0.604824 + 0.604824i 0.941589 0.336765i \(-0.109333\pi\)
−0.336765 + 0.941589i \(0.609333\pi\)
\(588\) −25.2972 25.0958i −1.04324 1.03493i
\(589\) 11.6018i 0.478043i
\(590\) 2.36206 1.95170i 0.0972443 0.0803504i
\(591\) 15.1218i 0.622029i
\(592\) −25.9247 + 26.3425i −1.06550 + 1.08267i
\(593\) 10.2463 + 10.2463i 0.420765 + 0.420765i 0.885467 0.464702i \(-0.153839\pi\)
−0.464702 + 0.885467i \(0.653839\pi\)
\(594\) 5.25997 5.28103i 0.215819 0.216683i
\(595\) −5.24618 + 4.31717i −0.215072 + 0.176987i
\(596\) 0.127984 + 32.0194i 0.00524245 + 1.31157i
\(597\) 44.4612 44.4612i 1.81968 1.81968i
\(598\) −35.4861 + 0.0709204i −1.45114 + 0.00290015i
\(599\) 24.3043 0.993045 0.496523 0.868024i \(-0.334610\pi\)
0.496523 + 0.868024i \(0.334610\pi\)
\(600\) 21.4051 + 31.4417i 0.873860 + 1.28360i
\(601\) 32.2891 1.31710 0.658550 0.752537i \(-0.271170\pi\)
0.658550 + 0.752537i \(0.271170\pi\)
\(602\) 5.74876 0.0114891i 0.234302 0.000468261i
\(603\) 25.7447 25.7447i 1.04841 1.04841i
\(604\) 0.139002 + 34.7758i 0.00565592 + 1.41501i
\(605\) −14.6370 + 12.0451i −0.595080 + 0.489701i
\(606\) −6.53534 + 6.56151i −0.265480 + 0.266543i
\(607\) −15.5642 15.5642i −0.631732 0.631732i 0.316770 0.948502i \(-0.397402\pi\)
−0.948502 + 0.316770i \(0.897402\pi\)
\(608\) 10.5902 0.105828i 0.429491 0.00429190i
\(609\) 11.3124i 0.458403i
\(610\) −4.16776 + 3.44371i −0.168748 + 0.139432i
\(611\) 67.9924i 2.75068i
\(612\) 29.8026 + 29.5653i 1.20470 + 1.19511i
\(613\) 13.6883 + 13.6883i 0.552866 + 0.552866i 0.927267 0.374401i \(-0.122152\pi\)
−0.374401 + 0.927267i \(0.622152\pi\)
\(614\) −7.54293 7.51284i −0.304408 0.303194i
\(615\) −0.581488 + 5.98588i −0.0234479 + 0.241374i
\(616\) 1.93512 1.95847i 0.0779683 0.0789089i
\(617\) −17.2210 + 17.2210i −0.693292 + 0.693292i −0.962955 0.269663i \(-0.913088\pi\)
0.269663 + 0.962955i \(0.413088\pi\)
\(618\) −0.0376766 18.8521i −0.00151557 0.758342i
\(619\) 29.8732 1.20070 0.600352 0.799736i \(-0.295027\pi\)
0.600352 + 0.799736i \(0.295027\pi\)
\(620\) 17.6951 + 21.3286i 0.710651 + 0.856576i
\(621\) 14.6919 0.589566
\(622\) 0.0368535 + 18.4402i 0.00147769 + 0.739386i
\(623\) −1.16502 + 1.16502i −0.0466754 + 0.0466754i
\(624\) −60.9703 + 0.487416i −2.44077 + 0.0195122i
\(625\) −23.1478 9.44358i −0.925910 0.377743i
\(626\) −13.0673 13.0152i −0.522275 0.520192i
\(627\) 5.65522 + 5.65522i 0.225848 + 0.225848i
\(628\) 17.5855 17.7266i 0.701736 0.707368i
\(629\) 45.8089i 1.82652i
\(630\) −0.777037 + 8.16847i −0.0309579 + 0.325440i
\(631\) 31.7086i 1.26230i −0.775661 0.631149i \(-0.782584\pi\)
0.775661 0.631149i \(-0.217416\pi\)
\(632\) 16.1910 0.0970758i 0.644042 0.00386147i
\(633\) −29.7971 29.7971i −1.18433 1.18433i
\(634\) −14.8382 + 14.8976i −0.589299 + 0.591659i
\(635\) −22.2293 2.15943i −0.882144 0.0856944i
\(636\) 47.5460 0.190046i 1.88532 0.00753580i
\(637\) −26.5473 + 26.5473i −1.05184 + 1.05184i
\(638\) 15.4152 0.0308079i 0.610294 0.00121969i
\(639\) 48.8702 1.93327
\(640\) 19.3076 16.3468i 0.763198 0.646165i
\(641\) −19.2164 −0.759001 −0.379500 0.925192i \(-0.623904\pi\)
−0.379500 + 0.925192i \(0.623904\pi\)
\(642\) −33.5197 + 0.0669905i −1.32292 + 0.00264390i
\(643\) 20.3110 20.3110i 0.800987 0.800987i −0.182263 0.983250i \(-0.558342\pi\)
0.983250 + 0.182263i \(0.0583421\pi\)
\(644\) 5.42687 0.0216917i 0.213849 0.000854772i
\(645\) 25.3469 + 30.8013i 0.998032 + 1.21280i
\(646\) −9.26326 + 9.30036i −0.364458 + 0.365918i
\(647\) −32.0181 32.0181i −1.25876 1.25876i −0.951684 0.307078i \(-0.900649\pi\)
−0.307078 0.951684i \(-0.599351\pi\)
\(648\) −10.6811 + 0.0640404i −0.419593 + 0.00251575i
\(649\) 1.53896i 0.0604094i
\(650\) 33.2169 22.4199i 1.30287 0.879380i
\(651\) 10.2146i 0.400343i
\(652\) 20.1441 20.3058i 0.788903 0.795235i
\(653\) −3.37399 3.37399i −0.132034 0.132034i 0.638001 0.770035i \(-0.279761\pi\)
−0.770035 + 0.638001i \(0.779761\pi\)
\(654\) 47.5263 + 47.3367i 1.85843 + 1.85101i
\(655\) 2.01595 + 2.44976i 0.0787695 + 0.0957200i
\(656\) 3.99987 0.0319762i 0.156169 0.00124846i
\(657\) −34.2567 + 34.2567i −1.33648 + 1.33648i
\(658\) −0.0207809 10.3981i −0.000810125 0.405359i
\(659\) −1.35246 −0.0526844 −0.0263422 0.999653i \(-0.508386\pi\)
−0.0263422 + 0.999653i \(0.508386\pi\)
\(660\) 19.0219 + 1.77113i 0.740425 + 0.0689410i
\(661\) −38.1313 −1.48314 −0.741568 0.670877i \(-0.765918\pi\)
−0.741568 + 0.670877i \(0.765918\pi\)
\(662\) −0.0907235 45.3949i −0.00352607 1.76432i
\(663\) 53.4366 53.4366i 2.07531 2.07531i
\(664\) 6.11721 6.19101i 0.237394 0.240258i
\(665\) −2.55368 0.248072i −0.0990273 0.00961984i
\(666\) −39.1980 39.0416i −1.51889 1.51283i
\(667\) 21.4855 + 21.4855i 0.831922 + 0.831922i
\(668\) −18.5135 18.3661i −0.716310 0.710607i
\(669\) 23.1589i 0.895376i
\(670\) 27.0719 + 2.57525i 1.04588 + 0.0994904i
\(671\) 2.71543i 0.104828i
\(672\) 9.32404 0.0931752i 0.359683 0.00359431i
\(673\) −25.1177 25.1177i −0.968217 0.968217i 0.0312931 0.999510i \(-0.490037\pi\)
−0.999510 + 0.0312931i \(0.990037\pi\)
\(674\) 6.41934 6.44505i 0.247264 0.248254i
\(675\) −13.7709 + 9.25471i −0.530042 + 0.356214i
\(676\) 0.152850 + 38.2402i 0.00587883 + 1.47078i
\(677\) 3.17557 3.17557i 0.122047 0.122047i −0.643445 0.765492i \(-0.722496\pi\)
0.765492 + 0.643445i \(0.222496\pi\)
\(678\) 55.6972 0.111313i 2.13904 0.00427494i
\(679\) −0.471765 −0.0181047
\(680\) −2.84452 + 31.2260i −0.109082 + 1.19746i
\(681\) −24.2134 −0.927859
\(682\) 13.9193 0.0278182i 0.532996 0.00106521i
\(683\) −24.2669 + 24.2669i −0.928548 + 0.928548i −0.997612 0.0690643i \(-0.977999\pi\)
0.0690643 + 0.997612i \(0.477999\pi\)
\(684\) 0.0633653 + 15.8529i 0.00242283 + 0.606149i
\(685\) −2.74190 + 28.2253i −0.104762 + 1.07843i
\(686\) 8.33327 8.36665i 0.318166 0.319440i
\(687\) 10.9474 + 10.9474i 0.417670 + 0.417670i
\(688\) 18.6096 18.9096i 0.709485 0.720920i
\(689\) 50.0950i 1.90847i
\(690\) 23.9858 + 29.0289i 0.913125 + 1.10511i
\(691\) 31.7248i 1.20687i −0.797413 0.603433i \(-0.793799\pi\)
0.797413 0.603433i \(-0.206201\pi\)
\(692\) −8.52217 8.45431i −0.323964 0.321385i
\(693\) 2.91415 + 2.91415i 0.110699 + 0.110699i
\(694\) −3.00891 2.99691i −0.114217 0.113761i
\(695\) 1.51356 1.24553i 0.0574127 0.0472458i
\(696\) 37.1370 + 36.6943i 1.40767 + 1.39089i
\(697\) −3.50563 + 3.50563i −0.132785 + 0.132785i
\(698\) 0.0397339 + 19.8815i 0.00150395 + 0.752525i
\(699\) −71.8686 −2.71832
\(700\) −5.07301 + 3.43882i −0.191742 + 0.129975i
\(701\) −40.2785 −1.52130 −0.760648 0.649164i \(-0.775119\pi\)
−0.760648 + 0.649164i \(0.775119\pi\)
\(702\) −0.0531544 26.5966i −0.00200618 1.00383i
\(703\) 12.2322 12.2322i 0.461347 0.461347i
\(704\) −0.152360 12.7054i −0.00574230 0.478853i
\(705\) 55.7118 45.8461i 2.09823 1.72667i
\(706\) 12.7715 + 12.7206i 0.480663 + 0.478746i
\(707\) −1.05513 1.05513i −0.0396824 0.0396824i
\(708\) 3.67073 3.70019i 0.137954 0.139062i
\(709\) 44.0802i 1.65547i 0.561122 + 0.827733i \(0.310370\pi\)
−0.561122 + 0.827733i \(0.689630\pi\)
\(710\) 23.2505 + 28.1390i 0.872575 + 1.05604i
\(711\) 24.2362i 0.908929i
\(712\) 0.0455884 + 7.60355i 0.00170850 + 0.284955i
\(713\) 19.4005 + 19.4005i 0.726553 + 0.726553i
\(714\) −8.15573 + 8.18839i −0.305220 + 0.306443i
\(715\) 1.94616 20.0339i 0.0727821 0.749224i
\(716\) 15.9782 0.0638661i 0.597132 0.00238679i
\(717\) −8.17012 + 8.17012i −0.305119 + 0.305119i
\(718\) 30.4118 0.0607792i 1.13496 0.00226826i
\(719\) 28.5020 1.06295 0.531473 0.847075i \(-0.321639\pi\)
0.531473 + 0.847075i \(0.321639\pi\)
\(720\) 24.2953 + 29.0471i 0.905434 + 1.08252i
\(721\) 3.03760 0.113126
\(722\) 21.9130 0.0437940i 0.815518 0.00162984i
\(723\) −11.9823 + 11.9823i −0.445626 + 0.445626i
\(724\) −28.3551 + 0.113338i −1.05381 + 0.00421217i
\(725\) −33.6727 6.60449i −1.25057 0.245284i
\(726\) −22.7548 + 22.8459i −0.844509 + 0.847891i
\(727\) 23.0687 + 23.0687i 0.855572 + 0.855572i 0.990813 0.135240i \(-0.0431807\pi\)
−0.135240 + 0.990813i \(0.543181\pi\)
\(728\) −0.0589024 9.82415i −0.00218307 0.364107i
\(729\) 42.7634i 1.58383i
\(730\) −36.0226 3.42670i −1.33326 0.126828i
\(731\) 32.8832i 1.21623i
\(732\) −6.47686 + 6.52885i −0.239392 + 0.241313i
\(733\) −20.5353 20.5353i −0.758489 0.758489i 0.217558 0.976047i \(-0.430191\pi\)
−0.976047 + 0.217558i \(0.930191\pi\)
\(734\) −21.5525 21.4665i −0.795517 0.792344i
\(735\) 39.6528 + 3.85201i 1.46262 + 0.142083i
\(736\) 17.5320 17.8859i 0.646238 0.659284i
\(737\) 9.65804 9.65804i 0.355758 0.355758i
\(738\) 0.0119662 + 5.98747i 0.000440481 + 0.220402i
\(739\) −35.5923 −1.30929 −0.654643 0.755939i \(-0.727181\pi\)
−0.654643 + 0.755939i \(0.727181\pi\)
\(740\) 3.83094 41.1442i 0.140828 1.51249i
\(741\) 28.5381 1.04837
\(742\) 0.0153108 + 7.66102i 0.000562079 + 0.281245i
\(743\) 35.7641 35.7641i 1.31206 1.31206i 0.392161 0.919897i \(-0.371728\pi\)
0.919897 0.392161i \(-0.128272\pi\)
\(744\) 33.5331 + 33.1334i 1.22938 + 1.21473i
\(745\) −22.7476 27.6427i −0.833408 1.01275i
\(746\) −2.08062 2.07232i −0.0761770 0.0758732i
\(747\) 9.21206 + 9.21206i 0.337052 + 0.337052i
\(748\) 11.1803 + 11.0913i 0.408794 + 0.405539i
\(749\) 5.40097i 0.197347i
\(750\) −40.7681 12.1000i −1.48864 0.441830i
\(751\) 26.4073i 0.963615i 0.876277 + 0.481807i \(0.160020\pi\)
−0.876277 + 0.481807i \(0.839980\pi\)
\(752\) −34.2027 33.6601i −1.24724 1.22746i
\(753\) 52.1133 + 52.1133i 1.89911 + 1.89911i
\(754\) 38.8173 38.9728i 1.41364 1.41930i
\(755\) −24.7059 30.0224i −0.899139 1.09263i
\(756\) 0.0162578 + 4.06741i 0.000591290 + 0.147930i
\(757\) 14.5129 14.5129i 0.527481 0.527481i −0.392340 0.919820i \(-0.628334\pi\)
0.919820 + 0.392340i \(0.128334\pi\)
\(758\) −14.1759 + 0.0283311i −0.514893 + 0.00102903i
\(759\) 18.9133 0.686510
\(760\) −9.09777 + 7.57864i −0.330011 + 0.274906i
\(761\) −50.5111 −1.83103 −0.915514 0.402287i \(-0.868216\pi\)
−0.915514 + 0.402287i \(0.868216\pi\)
\(762\) −37.9908 + 0.0759259i −1.37626 + 0.00275051i
\(763\) −7.64255 + 7.64255i −0.276679 + 0.276679i
\(764\) 0.0275966 + 6.90418i 0.000998411 + 0.249784i
\(765\) −46.7149 4.53804i −1.68898 0.164073i
\(766\) −19.7511 + 19.8302i −0.713637 + 0.716496i
\(767\) −3.88304 3.88304i −0.140208 0.140208i
\(768\) 29.9386 30.9116i 1.08032 1.11543i
\(769\) 21.8236i 0.786981i 0.919329 + 0.393490i \(0.128733\pi\)
−0.919329 + 0.393490i \(0.871267\pi\)
\(770\) −0.291502 + 3.06437i −0.0105050 + 0.110432i
\(771\) 49.7598i 1.79206i
\(772\) −1.87766 1.86271i −0.0675786 0.0670405i
\(773\) −16.3163 16.3163i −0.586857 0.586857i 0.349922 0.936779i \(-0.386208\pi\)
−0.936779 + 0.349922i \(0.886208\pi\)
\(774\) 28.1376 + 28.0254i 1.01139 + 1.00735i
\(775\) −30.4050 5.96356i −1.09218 0.214218i
\(776\) −1.53027 + 1.54873i −0.0549335 + 0.0555962i
\(777\) 10.7697 10.7697i 0.386361 0.386361i
\(778\) 0.0856968 + 42.8798i 0.00307238 + 1.53731i
\(779\) −1.87220 −0.0670785
\(780\) 52.4641 43.5264i 1.87851 1.55849i
\(781\) 18.3335 0.656023
\(782\) 0.0620387 + 31.0421i 0.00221850 + 1.11006i
\(783\) −16.1032 + 16.1032i −0.575483 + 0.575483i
\(784\) −0.211823 26.4967i −0.00756510 0.946311i
\(785\) −2.69923 + 27.7861i −0.0963396 + 0.991727i
\(786\) 3.82365 + 3.80840i 0.136385 + 0.135841i
\(787\) 39.6667 + 39.6667i 1.41396 + 1.41396i 0.720243 + 0.693721i \(0.244030\pi\)
0.693721 + 0.720243i \(0.255970\pi\)
\(788\) 7.91943 7.98299i 0.282118 0.284382i
\(789\) 55.2583i 1.96725i
\(790\) −13.9550 + 11.5306i −0.496496 + 0.410241i
\(791\) 8.97437i 0.319092i
\(792\) 19.0194 0.114034i 0.675824 0.00405202i
\(793\) 6.85148 + 6.85148i 0.243303 + 0.243303i
\(794\) 29.4478 29.5658i 1.04506 1.04925i
\(795\) −41.0470 + 33.7782i −1.45579 + 1.19799i
\(796\) 46.7563 0.186889i 1.65723 0.00662410i
\(797\) −20.2066 + 20.2066i −0.715756 + 0.715756i −0.967733 0.251977i \(-0.918919\pi\)
0.251977 + 0.967733i \(0.418919\pi\)
\(798\) −4.36433 + 0.00872227i −0.154495 + 0.000308765i
\(799\) 59.4774 2.10416
\(800\) −5.16626 + 27.8084i −0.182655 + 0.983177i
\(801\) −11.3817 −0.402153
\(802\) 38.8636 0.0776703i 1.37232 0.00274264i
\(803\) −12.8513 + 12.8513i −0.453512 + 0.453512i
\(804\) 46.2577 0.184896i 1.63138 0.00652078i
\(805\) −4.68508 + 3.85542i −0.165127 + 0.135886i
\(806\) 35.0503 35.1907i 1.23460 1.23954i
\(807\) −31.2761 31.2761i −1.10097 1.10097i
\(808\) −6.88640 + 0.0412886i −0.242263 + 0.00145253i
\(809\) 9.82224i 0.345332i 0.984980 + 0.172666i \(0.0552381\pi\)
−0.984980 + 0.172666i \(0.944762\pi\)
\(810\) 9.20602 7.60669i 0.323467 0.267272i
\(811\) 43.9669i 1.54389i 0.635691 + 0.771943i \(0.280715\pi\)
−0.635691 + 0.771943i \(0.719285\pi\)
\(812\) −5.92442 + 5.97197i −0.207906 + 0.209575i
\(813\) −54.9456 54.9456i −1.92703 1.92703i
\(814\) −14.7050 14.6463i −0.515409 0.513353i
\(815\) −3.09196 + 31.8288i −0.108307 + 1.11492i
\(816\) 0.426375 + 53.3348i 0.0149261 + 1.86709i
\(817\) −8.78071 + 8.78071i −0.307198 + 0.307198i
\(818\) 0.0248867 + 12.4525i 0.000870143 + 0.435390i
\(819\) 14.7057 0.513860
\(820\) −3.44183 + 2.85549i −0.120194 + 0.0997179i
\(821\) −7.17510 −0.250413 −0.125206 0.992131i \(-0.539959\pi\)
−0.125206 + 0.992131i \(0.539959\pi\)
\(822\) 0.0964056 + 48.2381i 0.00336253 + 1.68250i
\(823\) −18.9730 + 18.9730i −0.661358 + 0.661358i −0.955700 0.294342i \(-0.904899\pi\)
0.294342 + 0.955700i \(0.404899\pi\)
\(824\) 9.85310 9.97196i 0.343249 0.347390i
\(825\) −17.7277 + 11.9139i −0.617198 + 0.414787i
\(826\) 0.595020 + 0.592646i 0.0207034 + 0.0206208i
\(827\) −2.11082 2.11082i −0.0734004 0.0734004i 0.669454 0.742854i \(-0.266528\pi\)
−0.742854 + 0.669454i \(0.766528\pi\)
\(828\) 26.6151 + 26.4032i 0.924938 + 0.917574i
\(829\) 20.4182i 0.709154i −0.935027 0.354577i \(-0.884625\pi\)
0.935027 0.354577i \(-0.115375\pi\)
\(830\) −0.921483 + 9.68694i −0.0319851 + 0.336239i
\(831\) 17.9834i 0.623838i
\(832\) −32.4422 31.6733i −1.12473 1.09808i
\(833\) 23.2227 + 23.2227i 0.804618 + 0.804618i
\(834\) 2.35299 2.36241i 0.0814773 0.0818036i
\(835\) 29.0196 + 2.81906i 1.00426 + 0.0975574i
\(836\) 0.0237713 + 5.94714i 0.000822147 + 0.205686i
\(837\) −14.5405 + 14.5405i −0.502594 + 0.502594i
\(838\) −8.14724 + 0.0162826i −0.281442 + 0.000562472i
\(839\) −34.8104 −1.20179 −0.600894 0.799329i \(-0.705189\pi\)
−0.600894 + 0.799329i \(0.705189\pi\)
\(840\) −8.01002 + 6.67252i −0.276372 + 0.230224i
\(841\) −18.0989 −0.624100
\(842\) −0.404356 0.000808120i −0.0139350 2.78497e-5i
\(843\) 5.17873 5.17873i 0.178365 0.178365i
\(844\) −0.125250 31.3352i −0.00431127 1.07860i
\(845\) −27.1671 33.0132i −0.934577 1.13569i
\(846\) 50.6909 50.8939i 1.74279 1.74977i
\(847\) −3.67377 3.67377i −0.126232 0.126232i
\(848\) 25.1996 + 24.7999i 0.865358 + 0.851632i
\(849\) 45.0784i 1.54709i
\(850\) −19.6121 29.0570i −0.672691 0.996647i
\(851\) 40.9094i 1.40236i
\(852\) 44.0800 + 43.7290i 1.51016 + 1.49813i
\(853\) −26.4110 26.4110i −0.904296 0.904296i 0.0915087 0.995804i \(-0.470831\pi\)
−0.995804 + 0.0915087i \(0.970831\pi\)
\(854\) −1.04989 1.04570i −0.0359265 0.0357832i
\(855\) −11.2624 13.6860i −0.385166 0.468050i
\(856\) −17.7305 17.5192i −0.606017 0.598794i
\(857\) 25.7008 25.7008i 0.877923 0.877923i −0.115397 0.993319i \(-0.536814\pi\)
0.993319 + 0.115397i \(0.0368139\pi\)
\(858\) −0.0684272 34.2386i −0.00233607 1.16889i
\(859\) −4.87742 −0.166416 −0.0832078 0.996532i \(-0.526517\pi\)
−0.0832078 + 0.996532i \(0.526517\pi\)
\(860\) −2.74998 + 29.5347i −0.0937735 + 1.00713i
\(861\) −1.64836 −0.0561758
\(862\) 0.0953142 + 47.6920i 0.00324641 + 1.62439i
\(863\) 35.1734 35.1734i 1.19732 1.19732i 0.222349 0.974967i \(-0.428628\pi\)
0.974967 0.222349i \(-0.0713723\pi\)
\(864\) 13.4054 + 13.1401i 0.456061 + 0.447036i
\(865\) 13.3583 + 1.29767i 0.454196 + 0.0441221i
\(866\) 23.0242 + 22.9324i 0.782395 + 0.779274i
\(867\) −14.4137 14.4137i −0.489515 0.489515i
\(868\) −5.34949 + 5.39243i −0.181574 + 0.183031i
\(869\) 9.09213i 0.308429i
\(870\) −58.1075 5.52755i −1.97003 0.187401i
\(871\) 48.7376i 1.65141i
\(872\) 0.299061 + 49.8795i 0.0101275 + 1.68913i
\(873\) −2.30447 2.30447i −0.0779945 0.0779945i
\(874\) −8.27251 + 8.30565i −0.279822 + 0.280943i
\(875\) 1.96277 6.56496i 0.0663538 0.221936i
\(876\) −61.5518 + 0.246028i −2.07964 + 0.00831252i
\(877\) −4.91798 + 4.91798i −0.166068 + 0.166068i −0.785249 0.619180i \(-0.787465\pi\)
0.619180 + 0.785249i \(0.287465\pi\)
\(878\) −47.9933 + 0.0959163i −1.61969 + 0.00323702i
\(879\) 16.7160 0.563816
\(880\) 9.11431 + 10.8969i 0.307243 + 0.367335i
\(881\) −46.2874 −1.55946 −0.779731 0.626114i \(-0.784644\pi\)
−0.779731 + 0.626114i \(0.784644\pi\)
\(882\) 39.6633 0.0792686i 1.33553 0.00266911i
\(883\) −25.5236 + 25.5236i −0.858938 + 0.858938i −0.991213 0.132275i \(-0.957772\pi\)
0.132275 + 0.991213i \(0.457772\pi\)
\(884\) 56.1950 0.224616i 1.89004 0.00755467i
\(885\) −0.563428 + 5.79997i −0.0189394 + 0.194964i
\(886\) 20.7120 20.7950i 0.695835 0.698622i
\(887\) −20.0177 20.0177i −0.672128 0.672128i 0.286078 0.958206i \(-0.407648\pi\)
−0.958206 + 0.286078i \(0.907648\pi\)
\(888\) −0.421431 70.2892i −0.0141423 2.35875i
\(889\) 6.12138i 0.205304i
\(890\) −5.41497 6.55348i −0.181510 0.219673i
\(891\) 5.99803i 0.200942i
\(892\) 12.1285 12.2259i 0.406093 0.409352i
\(893\) 15.8821 + 15.8821i 0.531474 + 0.531474i
\(894\) −43.1455 42.9734i −1.44300 1.43725i
\(895\) −13.7941 + 11.3514i −0.461087 + 0.379435i
\(896\) 4.97107 + 4.83389i 0.166072 + 0.161489i
\(897\) 47.7213 47.7213i 1.59337 1.59337i
\(898\) −0.0338597 16.9422i −0.00112991 0.565370i
\(899\) −42.5283 −1.41840
\(900\) −41.5785 7.98265i −1.38595 0.266088i
\(901\) −43.8214 −1.45990
\(902\) 0.00448907 + 2.24618i 0.000149470 + 0.0747895i
\(903\) −7.73086 + 7.73086i −0.257267 + 0.257267i
\(904\) 29.4615 + 29.1103i 0.979874 + 0.968194i
\(905\) 24.4793 20.1444i 0.813719 0.669622i
\(906\) −46.8598 46.6728i −1.55681 1.55060i
\(907\) −41.4762 41.4762i −1.37719 1.37719i −0.849328 0.527866i \(-0.822992\pi\)
−0.527866 0.849328i \(-0.677008\pi\)
\(908\) −12.7825 12.6807i −0.424203 0.420825i
\(909\) 10.3082i 0.341902i
\(910\) 6.99640 + 8.46741i 0.231928 + 0.280692i
\(911\) 54.9738i 1.82136i −0.413110 0.910681i \(-0.635558\pi\)
0.413110 0.910681i \(-0.364442\pi\)
\(912\) −14.1280 + 14.3557i −0.467824 + 0.475365i
\(913\) 3.45587 + 3.45587i 0.114373 + 0.114373i
\(914\) −0.173872 + 0.174568i −0.00575117 + 0.00577421i
\(915\) 0.994147 10.2338i 0.0328655 0.338320i
\(916\) 0.0460166 + 11.5125i 0.00152043 + 0.380385i
\(917\) −0.614869 + 0.614869i −0.0203048 + 0.0203048i
\(918\) −23.2658 + 0.0464976i −0.767887 + 0.00153465i
\(919\) −30.0697 −0.991908 −0.495954 0.868349i \(-0.665182\pi\)
−0.495954 + 0.868349i \(0.665182\pi\)
\(920\) −2.54029 + 27.8863i −0.0837508 + 0.919383i
\(921\) 20.2468 0.667155
\(922\) 2.59414 0.00518448i 0.0854333 0.000170742i
\(923\) 46.2583 46.2583i 1.52261 1.52261i
\(924\) 0.0209291 + 5.23609i 0.000688518 + 0.172255i
\(925\) 25.7696 + 38.3449i 0.847300 + 1.26077i
\(926\) 40.2480 40.4092i 1.32263 1.32793i
\(927\) 14.8380 + 14.8380i 0.487345 + 0.487345i
\(928\) 0.387931 + 38.8203i 0.0127345 + 1.27434i
\(929\) 18.1372i 0.595063i −0.954712 0.297532i \(-0.903837\pi\)
0.954712 0.297532i \(-0.0961634\pi\)
\(930\) −52.4685 4.99114i −1.72051 0.163666i
\(931\) 12.4022i 0.406465i
\(932\) −37.9402 37.6381i −1.24277 1.23288i
\(933\) −24.7982 24.7982i −0.811856 0.811856i
\(934\) −13.0796 13.0274i −0.427976 0.426269i
\(935\) −17.5249 1.70243i −0.573127 0.0556754i
\(936\) 47.7012 48.2766i 1.55916 1.57797i
\(937\) −16.1064 + 16.1064i −0.526174 + 0.526174i −0.919429 0.393255i \(-0.871349\pi\)
0.393255 + 0.919429i \(0.371349\pi\)
\(938\) 0.0148960 + 7.45343i 0.000486370 + 0.243363i
\(939\) 35.0754 1.14464
\(940\) 53.4209 + 4.97402i 1.74240 + 0.162235i
\(941\) 53.1895 1.73393 0.866964 0.498370i \(-0.166068\pi\)
0.866964 + 0.498370i \(0.166068\pi\)
\(942\) 0.0949053 + 47.4874i 0.00309218 + 1.54722i
\(943\) −3.13069 + 3.13069i −0.101949 + 0.101949i
\(944\) 3.87564 0.0309830i 0.126141 0.00100841i
\(945\) −2.88962 3.51144i −0.0939993 0.114227i
\(946\) 10.5557 + 10.5136i 0.343196 + 0.341827i
\(947\) 15.8764 + 15.8764i 0.515912 + 0.515912i 0.916332 0.400420i \(-0.131136\pi\)
−0.400420 + 0.916332i \(0.631136\pi\)
\(948\) −21.6866 + 21.8606i −0.704347 + 0.710000i
\(949\) 64.8517i 2.10517i
\(950\) 2.52204 12.9960i 0.0818258 0.421646i
\(951\) 39.9883i 1.29671i
\(952\) −8.59383 + 0.0515258i −0.278528 + 0.00166996i
\(953\) 9.75942 + 9.75942i 0.316139 + 0.316139i 0.847282 0.531143i \(-0.178237\pi\)
−0.531143 + 0.847282i \(0.678237\pi\)
\(954\) −37.3477 + 37.4973i −1.20918 + 1.21402i
\(955\) −4.90495 5.96045i −0.158721 0.192876i
\(956\) −8.59185 + 0.0343424i −0.277880 + 0.00111071i
\(957\) −20.7302 + 20.7302i −0.670111 + 0.670111i
\(958\) 28.9630 0.0578837i 0.935753 0.00187014i
\(959\) −7.77250 −0.250987
\(960\) −4.07736 + 47.9394i −0.131596 + 1.54724i
\(961\) −7.40118 −0.238748
\(962\) −74.0580 + 0.148008i −2.38773 + 0.00477196i
\(963\) 26.3826 26.3826i 0.850168 0.850168i
\(964\) −12.6008 + 0.0503666i −0.405845 + 0.00162220i
\(965\) 2.94319 + 0.285912i 0.0947448 + 0.00920382i
\(966\) −7.28343 + 7.31260i −0.234341 + 0.235279i
\(967\) 26.5520 + 26.5520i 0.853856 + 0.853856i 0.990606 0.136750i \(-0.0436656\pi\)
−0.136750 + 0.990606i \(0.543666\pi\)
\(968\) −23.9771 + 0.143759i −0.770653 + 0.00462059i
\(969\) 24.9641i 0.801964i
\(970\) 0.230516 2.42327i 0.00740143 0.0778064i
\(971\) 47.6809i 1.53015i −0.643940 0.765076i \(-0.722701\pi\)
0.643940 0.765076i \(-0.277299\pi\)
\(972\) 28.3287 28.5561i 0.908644 0.915937i
\(973\) 0.379891 + 0.379891i 0.0121788 + 0.0121788i
\(974\) −2.07136 2.06310i −0.0663706 0.0661058i
\(975\) −14.6692 + 74.7903i −0.469790 + 2.39521i
\(976\) −6.83842 + 0.0546684i −0.218892 + 0.00174989i
\(977\) 6.26374 6.26374i 0.200395 0.200395i −0.599774 0.800169i \(-0.704743\pi\)
0.800169 + 0.599774i \(0.204743\pi\)
\(978\) 0.108714 + 54.3967i 0.00347628 + 1.73941i
\(979\) −4.26981 −0.136464
\(980\) 18.9159 + 22.8000i 0.604245 + 0.728320i
\(981\) −74.6645 −2.38385
\(982\) 0.0221808 + 11.0985i 0.000707818 + 0.354168i
\(983\) 26.1154 26.1154i 0.832951 0.832951i −0.154968 0.987919i \(-0.549527\pi\)
0.987919 + 0.154968i \(0.0495275\pi\)
\(984\) −5.34679 + 5.41129i −0.170450 + 0.172506i
\(985\) −1.21557 + 12.5132i −0.0387313 + 0.398702i
\(986\) −34.0920 33.9561i −1.08571 1.08138i
\(987\) 13.9832 + 13.9832i 0.445090 + 0.445090i
\(988\) 15.0656 + 14.9456i 0.479300 + 0.475484i
\(989\) 29.3662i 0.933790i
\(990\) −16.3928 + 13.5449i −0.520996 + 0.430485i
\(991\) 33.6990i 1.07048i 0.844699 + 0.535242i \(0.179780\pi\)
−0.844699 + 0.535242i \(0.820220\pi\)
\(992\) 0.350285 + 35.0530i 0.0111216 + 1.11293i
\(993\) 61.0466 + 61.0466i 1.93725 + 1.93725i
\(994\) −7.06014 + 7.08842i −0.223934 + 0.224831i
\(995\) −40.3652 + 33.2172i −1.27966 + 1.05305i
\(996\) 0.0661601 + 16.5521i 0.00209636 + 0.524472i
\(997\) 14.9851 14.9851i 0.474584 0.474584i −0.428811 0.903394i \(-0.641067\pi\)
0.903394 + 0.428811i \(0.141067\pi\)
\(998\) 32.6217 0.0651957i 1.03262 0.00206373i
\(999\) 30.6614 0.970082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.k.c.83.1 108
4.3 odd 2 inner 820.2.k.c.83.24 yes 108
5.2 odd 4 inner 820.2.k.c.247.24 yes 108
20.7 even 4 inner 820.2.k.c.247.1 yes 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.k.c.83.1 108 1.1 even 1 trivial
820.2.k.c.83.24 yes 108 4.3 odd 2 inner
820.2.k.c.247.1 yes 108 20.7 even 4 inner
820.2.k.c.247.24 yes 108 5.2 odd 4 inner