Properties

Label 820.2.k.c.247.24
Level $820$
Weight $2$
Character 820.247
Analytic conductor $6.548$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(83,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 247.24
Character \(\chi\) \(=\) 820.247
Dual form 820.2.k.c.83.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00282635 - 1.41421i) q^{2} +(-1.90181 - 1.90181i) q^{3} +(-1.99998 + 0.00799412i) q^{4} +(-1.72661 - 1.42085i) q^{5} +(-2.68419 + 2.69494i) q^{6} +(0.433364 - 0.433364i) q^{7} +(0.0169580 + 2.82838i) q^{8} +4.23379i q^{9} +(-2.00451 + 2.44580i) q^{10} -1.58829i q^{11} +(3.81880 + 3.78839i) q^{12} +(-4.00751 + 4.00751i) q^{13} +(-0.614093 - 0.611643i) q^{14} +(0.581488 + 5.98588i) q^{15} +(3.99987 - 0.0319762i) q^{16} +(-3.50563 - 3.50563i) q^{17} +(5.98747 - 0.0119662i) q^{18} +1.87220 q^{19} +(3.46455 + 2.82788i) q^{20} -1.64836 q^{21} +(-2.24618 + 0.00448907i) q^{22} +(3.13069 + 3.13069i) q^{23} +(5.34679 - 5.41129i) q^{24} +(0.962351 + 4.90651i) q^{25} +(5.67879 + 5.65614i) q^{26} +(2.34643 - 2.34643i) q^{27} +(-0.863257 + 0.870186i) q^{28} +6.86286i q^{29} +(8.46366 - 0.839265i) q^{30} -6.19687i q^{31} +(-0.0565262 - 5.65657i) q^{32} +(-3.02063 + 3.02063i) q^{33} +(-4.94780 + 4.96761i) q^{34} +(-1.36400 + 0.132503i) q^{35} +(-0.0338454 - 8.46751i) q^{36} +(-6.53361 - 6.53361i) q^{37} +(-0.00529150 - 2.64769i) q^{38} +15.2431 q^{39} +(3.98943 - 4.90759i) q^{40} +1.00000 q^{41} +(0.00465883 + 2.33112i) q^{42} +(-4.69005 - 4.69005i) q^{43} +(0.0126970 + 3.17655i) q^{44} +(6.01559 - 7.31009i) q^{45} +(4.41861 - 4.43630i) q^{46} +(8.48312 - 8.48312i) q^{47} +(-7.66782 - 7.54620i) q^{48} +6.62439i q^{49} +(6.93612 - 1.37484i) q^{50} +13.3341i q^{51} +(7.98292 - 8.04699i) q^{52} +(6.25014 - 6.25014i) q^{53} +(-3.32498 - 3.31172i) q^{54} +(-2.25673 + 2.74235i) q^{55} +(1.23307 + 1.21837i) q^{56} +(-3.56057 - 3.56057i) q^{57} +(9.70554 - 0.0193969i) q^{58} -0.968941 q^{59} +(-1.21082 - 11.9670i) q^{60} -1.70966 q^{61} +(-8.76368 + 0.0175145i) q^{62} +(1.83477 + 1.83477i) q^{63} +(-7.99942 + 0.0959274i) q^{64} +(12.6135 - 1.22532i) q^{65} +(4.28035 + 4.26327i) q^{66} +(-6.08078 + 6.08078i) q^{67} +(7.03923 + 6.98319i) q^{68} -11.9080i q^{69} +(0.191243 + 1.92860i) q^{70} +11.5429i q^{71} +(-11.9747 + 0.0717967i) q^{72} +(-8.09127 + 8.09127i) q^{73} +(-9.22144 + 9.25837i) q^{74} +(7.50106 - 11.1615i) q^{75} +(-3.74437 + 0.0149666i) q^{76} +(-0.688308 - 0.688308i) q^{77} +(-0.0430823 - 21.5569i) q^{78} +5.72448 q^{79} +(-6.95165 - 5.62802i) q^{80} +3.77641 q^{81} +(-0.00282635 - 1.41421i) q^{82} +(2.17584 + 2.17584i) q^{83} +(3.29668 - 0.0131771i) q^{84} +(1.07186 + 11.0338i) q^{85} +(-6.61946 + 6.64597i) q^{86} +(13.0519 - 13.0519i) q^{87} +(4.49228 - 0.0269343i) q^{88} +2.68831i q^{89} +(-10.3550 - 8.48665i) q^{90} +3.47342i q^{91} +(-6.28636 - 6.23630i) q^{92} +(-11.7853 + 11.7853i) q^{93} +(-12.0209 - 11.9729i) q^{94} +(-3.23256 - 2.66012i) q^{95} +(-10.6502 + 10.8652i) q^{96} +(0.544305 + 0.544305i) q^{97} +(9.36828 - 0.0187229i) q^{98} +6.72448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 12 q^{2} - 4 q^{6} - 24 q^{8} + 4 q^{10} - 16 q^{13} + 52 q^{16} - 8 q^{17} + 18 q^{18} + 38 q^{20} + 72 q^{21} + 10 q^{22} - 12 q^{25} + 24 q^{26} - 58 q^{28} - 70 q^{30} - 38 q^{32} + 8 q^{33}+ \cdots + 122 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.00282635 1.41421i −0.00199853 0.999998i
\(3\) −1.90181 1.90181i −1.09801 1.09801i −0.994643 0.103369i \(-0.967038\pi\)
−0.103369 0.994643i \(-0.532962\pi\)
\(4\) −1.99998 + 0.00799412i −0.999992 + 0.00399706i
\(5\) −1.72661 1.42085i −0.772163 0.635425i
\(6\) −2.68419 + 2.69494i −1.09582 + 1.10020i
\(7\) 0.433364 0.433364i 0.163796 0.163796i −0.620450 0.784246i \(-0.713050\pi\)
0.784246 + 0.620450i \(0.213050\pi\)
\(8\) 0.0169580 + 2.82838i 0.00599557 + 0.999982i
\(9\) 4.23379i 1.41126i
\(10\) −2.00451 + 2.44580i −0.633880 + 0.773431i
\(11\) 1.58829i 0.478887i −0.970910 0.239444i \(-0.923035\pi\)
0.970910 0.239444i \(-0.0769651\pi\)
\(12\) 3.81880 + 3.78839i 1.10239 + 1.09361i
\(13\) −4.00751 + 4.00751i −1.11148 + 1.11148i −0.118533 + 0.992950i \(0.537819\pi\)
−0.992950 + 0.118533i \(0.962181\pi\)
\(14\) −0.614093 0.611643i −0.164123 0.163469i
\(15\) 0.581488 + 5.98588i 0.150140 + 1.54555i
\(16\) 3.99987 0.0319762i 0.999968 0.00799405i
\(17\) −3.50563 3.50563i −0.850241 0.850241i 0.139922 0.990163i \(-0.455315\pi\)
−0.990163 + 0.139922i \(0.955315\pi\)
\(18\) 5.98747 0.0119662i 1.41126 0.00282045i
\(19\) 1.87220 0.429512 0.214756 0.976668i \(-0.431104\pi\)
0.214756 + 0.976668i \(0.431104\pi\)
\(20\) 3.46455 + 2.82788i 0.774696 + 0.632333i
\(21\) −1.64836 −0.359701
\(22\) −2.24618 + 0.00448907i −0.478886 + 0.000957072i
\(23\) 3.13069 + 3.13069i 0.652794 + 0.652794i 0.953665 0.300871i \(-0.0972774\pi\)
−0.300871 + 0.953665i \(0.597277\pi\)
\(24\) 5.34679 5.41129i 1.09141 1.10458i
\(25\) 0.962351 + 4.90651i 0.192470 + 0.981303i
\(26\) 5.67879 + 5.65614i 1.11370 + 1.10926i
\(27\) 2.34643 2.34643i 0.451571 0.451571i
\(28\) −0.863257 + 0.870186i −0.163140 + 0.164450i
\(29\) 6.86286i 1.27440i 0.770698 + 0.637201i \(0.219908\pi\)
−0.770698 + 0.637201i \(0.780092\pi\)
\(30\) 8.46366 0.839265i 1.54525 0.153228i
\(31\) 6.19687i 1.11299i −0.830851 0.556495i \(-0.812146\pi\)
0.830851 0.556495i \(-0.187854\pi\)
\(32\) −0.0565262 5.65657i −0.00999251 0.999950i
\(33\) −3.02063 + 3.02063i −0.525824 + 0.525824i
\(34\) −4.94780 + 4.96761i −0.848540 + 0.851938i
\(35\) −1.36400 + 0.132503i −0.230558 + 0.0223971i
\(36\) −0.0338454 8.46751i −0.00564090 1.41125i
\(37\) −6.53361 6.53361i −1.07412 1.07412i −0.997024 0.0770954i \(-0.975435\pi\)
−0.0770954 0.997024i \(-0.524565\pi\)
\(38\) −0.00529150 2.64769i −0.000858394 0.429511i
\(39\) 15.2431 2.44084
\(40\) 3.98943 4.90759i 0.630784 0.775958i
\(41\) 1.00000 0.156174
\(42\) 0.00465883 + 2.33112i 0.000718874 + 0.359700i
\(43\) −4.69005 4.69005i −0.715225 0.715225i 0.252398 0.967623i \(-0.418781\pi\)
−0.967623 + 0.252398i \(0.918781\pi\)
\(44\) 0.0126970 + 3.17655i 0.00191414 + 0.478884i
\(45\) 6.01559 7.31009i 0.896751 1.08972i
\(46\) 4.41861 4.43630i 0.651488 0.654097i
\(47\) 8.48312 8.48312i 1.23739 1.23739i 0.276326 0.961064i \(-0.410883\pi\)
0.961064 0.276326i \(-0.0891170\pi\)
\(48\) −7.66782 7.54620i −1.10675 1.08920i
\(49\) 6.62439i 0.946342i
\(50\) 6.93612 1.37484i 0.980916 0.194431i
\(51\) 13.3341i 1.86715i
\(52\) 7.98292 8.04699i 1.10703 1.11592i
\(53\) 6.25014 6.25014i 0.858522 0.858522i −0.132642 0.991164i \(-0.542346\pi\)
0.991164 + 0.132642i \(0.0423459\pi\)
\(54\) −3.32498 3.31172i −0.452473 0.450668i
\(55\) −2.25673 + 2.74235i −0.304297 + 0.369779i
\(56\) 1.23307 + 1.21837i 0.164775 + 0.162811i
\(57\) −3.56057 3.56057i −0.471610 0.471610i
\(58\) 9.70554 0.0193969i 1.27440 0.00254693i
\(59\) −0.968941 −0.126145 −0.0630727 0.998009i \(-0.520090\pi\)
−0.0630727 + 0.998009i \(0.520090\pi\)
\(60\) −1.21082 11.9670i −0.156316 1.54494i
\(61\) −1.70966 −0.218899 −0.109450 0.993992i \(-0.534909\pi\)
−0.109450 + 0.993992i \(0.534909\pi\)
\(62\) −8.76368 + 0.0175145i −1.11299 + 0.00222435i
\(63\) 1.83477 + 1.83477i 0.231160 + 0.231160i
\(64\) −7.99942 + 0.0959274i −0.999928 + 0.0119909i
\(65\) 12.6135 1.22532i 1.56451 0.151982i
\(66\) 4.28035 + 4.26327i 0.526874 + 0.524772i
\(67\) −6.08078 + 6.08078i −0.742885 + 0.742885i −0.973132 0.230247i \(-0.926047\pi\)
0.230247 + 0.973132i \(0.426047\pi\)
\(68\) 7.03923 + 6.98319i 0.853633 + 0.846836i
\(69\) 11.9080i 1.43355i
\(70\) 0.191243 + 1.92860i 0.0228579 + 0.230512i
\(71\) 11.5429i 1.36989i 0.728595 + 0.684945i \(0.240174\pi\)
−0.728595 + 0.684945i \(0.759826\pi\)
\(72\) −11.9747 + 0.0717967i −1.41124 + 0.00846132i
\(73\) −8.09127 + 8.09127i −0.947011 + 0.947011i −0.998665 0.0516537i \(-0.983551\pi\)
0.0516537 + 0.998665i \(0.483551\pi\)
\(74\) −9.22144 + 9.25837i −1.07197 + 1.07626i
\(75\) 7.50106 11.1615i 0.866148 1.28882i
\(76\) −3.74437 + 0.0149666i −0.429509 + 0.00171678i
\(77\) −0.688308 0.688308i −0.0784400 0.0784400i
\(78\) −0.0430823 21.5569i −0.00487811 2.44084i
\(79\) 5.72448 0.644054 0.322027 0.946730i \(-0.395636\pi\)
0.322027 + 0.946730i \(0.395636\pi\)
\(80\) −6.95165 5.62802i −0.777218 0.629232i
\(81\) 3.77641 0.419601
\(82\) −0.00282635 1.41421i −0.000312118 0.156173i
\(83\) 2.17584 + 2.17584i 0.238830 + 0.238830i 0.816366 0.577536i \(-0.195986\pi\)
−0.577536 + 0.816366i \(0.695986\pi\)
\(84\) 3.29668 0.0131771i 0.359698 0.00143774i
\(85\) 1.07186 + 11.0338i 0.116260 + 1.19679i
\(86\) −6.61946 + 6.64597i −0.713795 + 0.716653i
\(87\) 13.0519 13.0519i 1.39931 1.39931i
\(88\) 4.49228 0.0269343i 0.478879 0.00287120i
\(89\) 2.68831i 0.284960i 0.989798 + 0.142480i \(0.0455077\pi\)
−0.989798 + 0.142480i \(0.954492\pi\)
\(90\) −10.3550 8.48665i −1.09151 0.894572i
\(91\) 3.47342i 0.364114i
\(92\) −6.28636 6.23630i −0.655398 0.650179i
\(93\) −11.7853 + 11.7853i −1.22208 + 1.22208i
\(94\) −12.0209 11.9729i −1.23986 1.23491i
\(95\) −3.23256 2.66012i −0.331653 0.272923i
\(96\) −10.6502 + 10.8652i −1.08699 + 1.10893i
\(97\) 0.544305 + 0.544305i 0.0552658 + 0.0552658i 0.734200 0.678934i \(-0.237558\pi\)
−0.678934 + 0.734200i \(0.737558\pi\)
\(98\) 9.36828 0.0187229i 0.946340 0.00189130i
\(99\) 6.72448 0.675836
\(100\) −1.96391 9.80526i −0.196391 0.980526i
\(101\) 2.43475 0.242267 0.121133 0.992636i \(-0.461347\pi\)
0.121133 + 0.992636i \(0.461347\pi\)
\(102\) 18.8573 0.0376869i 1.86715 0.00373156i
\(103\) 3.50467 + 3.50467i 0.345326 + 0.345326i 0.858365 0.513039i \(-0.171481\pi\)
−0.513039 + 0.858365i \(0.671481\pi\)
\(104\) −11.4027 11.2668i −1.11813 1.10480i
\(105\) 2.84606 + 2.34207i 0.277747 + 0.228563i
\(106\) −8.85668 8.82135i −0.860237 0.856805i
\(107\) −6.23144 + 6.23144i −0.602416 + 0.602416i −0.940953 0.338537i \(-0.890068\pi\)
0.338537 + 0.940953i \(0.390068\pi\)
\(108\) −4.67407 + 4.71159i −0.449763 + 0.453372i
\(109\) 17.6354i 1.68916i 0.535426 + 0.844582i \(0.320151\pi\)
−0.535426 + 0.844582i \(0.679849\pi\)
\(110\) 3.88464 + 3.18374i 0.370386 + 0.303557i
\(111\) 24.8514i 2.35879i
\(112\) 1.71954 1.74726i 0.162482 0.165100i
\(113\) −10.3543 + 10.3543i −0.974051 + 0.974051i −0.999672 0.0256206i \(-0.991844\pi\)
0.0256206 + 0.999672i \(0.491844\pi\)
\(114\) −5.02534 + 5.04547i −0.470666 + 0.472551i
\(115\) −0.957223 9.85372i −0.0892615 0.918864i
\(116\) −0.0548625 13.7256i −0.00509386 1.27439i
\(117\) −16.9669 16.9669i −1.56859 1.56859i
\(118\) 0.00273857 + 1.37029i 0.000252106 + 0.126145i
\(119\) −3.03843 −0.278533
\(120\) −16.9205 + 1.74618i −1.54462 + 0.159403i
\(121\) 8.47734 0.770667
\(122\) 0.00483210 + 2.41782i 0.000437478 + 0.218899i
\(123\) −1.90181 1.90181i −0.171481 0.171481i
\(124\) 0.0495385 + 12.3936i 0.00444869 + 1.11298i
\(125\) 5.30983 9.83899i 0.474926 0.880026i
\(126\) 2.58957 2.59994i 0.230697 0.231621i
\(127\) −7.06262 + 7.06262i −0.626706 + 0.626706i −0.947238 0.320531i \(-0.896139\pi\)
0.320531 + 0.947238i \(0.396139\pi\)
\(128\) 0.158271 + 11.3126i 0.0139893 + 0.999902i
\(129\) 17.8392i 1.57065i
\(130\) −1.76850 17.8347i −0.155108 1.56420i
\(131\) 1.41883i 0.123963i −0.998077 0.0619817i \(-0.980258\pi\)
0.998077 0.0619817i \(-0.0197421\pi\)
\(132\) 6.01707 6.06536i 0.523718 0.527922i
\(133\) 0.811344 0.811344i 0.0703525 0.0703525i
\(134\) 8.61669 + 8.58232i 0.744369 + 0.741399i
\(135\) −7.38531 + 0.717433i −0.635626 + 0.0617468i
\(136\) 9.85580 9.97470i 0.845128 0.855323i
\(137\) 8.96763 + 8.96763i 0.766157 + 0.766157i 0.977428 0.211271i \(-0.0677602\pi\)
−0.211271 + 0.977428i \(0.567760\pi\)
\(138\) −16.8404 + 0.0336561i −1.43355 + 0.00286500i
\(139\) 0.876610 0.0743531 0.0371765 0.999309i \(-0.488164\pi\)
0.0371765 + 0.999309i \(0.488164\pi\)
\(140\) 2.72691 0.275908i 0.230466 0.0233185i
\(141\) −32.2666 −2.71734
\(142\) 16.3241 0.0326243i 1.36989 0.00273777i
\(143\) 6.36509 + 6.36509i 0.532275 + 0.532275i
\(144\) 0.135380 + 16.9346i 0.0112817 + 1.41122i
\(145\) 9.75112 11.8495i 0.809787 0.984046i
\(146\) 11.4656 + 11.4199i 0.948902 + 0.945117i
\(147\) 12.5984 12.5984i 1.03909 1.03909i
\(148\) 13.1193 + 13.0149i 1.07840 + 1.06982i
\(149\) 16.0098i 1.31158i −0.754945 0.655788i \(-0.772336\pi\)
0.754945 0.655788i \(-0.227664\pi\)
\(150\) −15.8059 10.5765i −1.29055 0.863570i
\(151\) 17.3881i 1.41502i 0.706703 + 0.707510i \(0.250182\pi\)
−0.706703 + 0.707510i \(0.749818\pi\)
\(152\) 0.0317488 + 5.29529i 0.00257517 + 0.429504i
\(153\) 14.8421 14.8421i 1.19991 1.19991i
\(154\) −0.971467 + 0.975358i −0.0782830 + 0.0785966i
\(155\) −8.80484 + 10.6996i −0.707222 + 0.859410i
\(156\) −30.4859 + 0.121855i −2.44083 + 0.00975620i
\(157\) 8.82808 + 8.82808i 0.704558 + 0.704558i 0.965385 0.260828i \(-0.0839954\pi\)
−0.260828 + 0.965385i \(0.583995\pi\)
\(158\) −0.0161794 8.09562i −0.00128716 0.644053i
\(159\) −23.7732 −1.88534
\(160\) −7.93956 + 9.84700i −0.627677 + 0.778474i
\(161\) 2.71346 0.213850
\(162\) −0.0106735 5.34064i −0.000838586 0.419600i
\(163\) −10.1125 10.1125i −0.792075 0.792075i 0.189756 0.981831i \(-0.439230\pi\)
−0.981831 + 0.189756i \(0.939230\pi\)
\(164\) −1.99998 + 0.00799412i −0.156173 + 0.000624236i
\(165\) 9.50732 0.923572i 0.740144 0.0719000i
\(166\) 3.07095 3.08325i 0.238352 0.239307i
\(167\) 9.21999 9.21999i 0.713464 0.713464i −0.253794 0.967258i \(-0.581679\pi\)
0.967258 + 0.253794i \(0.0816786\pi\)
\(168\) −0.0279529 4.66217i −0.00215661 0.359694i
\(169\) 19.1203i 1.47079i
\(170\) 15.6012 1.54703i 1.19655 0.118652i
\(171\) 7.92650i 0.606154i
\(172\) 9.41751 + 9.34253i 0.718079 + 0.712361i
\(173\) −4.24416 + 4.24416i −0.322677 + 0.322677i −0.849793 0.527116i \(-0.823273\pi\)
0.527116 + 0.849793i \(0.323273\pi\)
\(174\) −18.4950 18.4212i −1.40210 1.39651i
\(175\) 2.54336 + 1.70926i 0.192260 + 0.129208i
\(176\) −0.0507875 6.35296i −0.00382825 0.478872i
\(177\) 1.84274 + 1.84274i 0.138509 + 0.138509i
\(178\) 3.80183 0.00759811i 0.284960 0.000569502i
\(179\) −7.98914 −0.597137 −0.298568 0.954388i \(-0.596509\pi\)
−0.298568 + 0.954388i \(0.596509\pi\)
\(180\) −11.9726 + 14.6682i −0.892388 + 1.09330i
\(181\) −14.1777 −1.05382 −0.526909 0.849922i \(-0.676649\pi\)
−0.526909 + 0.849922i \(0.676649\pi\)
\(182\) 4.91215 0.00981712i 0.364113 0.000727693i
\(183\) 3.25145 + 3.25145i 0.240354 + 0.240354i
\(184\) −8.80168 + 8.90786i −0.648868 + 0.656696i
\(185\) 1.99768 + 20.5643i 0.146873 + 1.51192i
\(186\) 16.7002 + 16.6336i 1.22452 + 1.21963i
\(187\) −5.56796 + 5.56796i −0.407170 + 0.407170i
\(188\) −16.8983 + 17.0339i −1.23243 + 1.24233i
\(189\) 2.03372i 0.147931i
\(190\) −3.75284 + 4.57903i −0.272259 + 0.332198i
\(191\) 3.45212i 0.249786i 0.992170 + 0.124893i \(0.0398588\pi\)
−0.992170 + 0.124893i \(0.960141\pi\)
\(192\) 15.3958 + 15.0310i 1.11110 + 1.08477i
\(193\) −0.935101 + 0.935101i −0.0673100 + 0.0673100i −0.739960 0.672650i \(-0.765156\pi\)
0.672650 + 0.739960i \(0.265156\pi\)
\(194\) 0.768224 0.771300i 0.0551552 0.0553761i
\(195\) −26.3188 21.6582i −1.88473 1.55097i
\(196\) −0.0529562 13.2487i −0.00378258 0.946334i
\(197\) 3.97564 + 3.97564i 0.283252 + 0.283252i 0.834405 0.551152i \(-0.185812\pi\)
−0.551152 + 0.834405i \(0.685812\pi\)
\(198\) −0.0190058 9.50983i −0.00135068 0.675834i
\(199\) −23.3783 −1.65724 −0.828622 0.559808i \(-0.810875\pi\)
−0.828622 + 0.559808i \(0.810875\pi\)
\(200\) −13.8611 + 2.80510i −0.980131 + 0.198350i
\(201\) 23.1290 1.63139
\(202\) −0.00688147 3.44325i −0.000484179 0.242266i
\(203\) 2.97412 + 2.97412i 0.208742 + 0.208742i
\(204\) −0.106594 26.6680i −0.00746311 1.86714i
\(205\) −1.72661 1.42085i −0.120592 0.0992367i
\(206\) 4.94644 4.96625i 0.344635 0.346015i
\(207\) −13.2547 + 13.2547i −0.921263 + 0.921263i
\(208\) −15.9014 + 16.1577i −1.10256 + 1.12033i
\(209\) 2.97360i 0.205688i
\(210\) 3.30414 4.03155i 0.228007 0.278204i
\(211\) 15.6677i 1.07861i −0.842110 0.539305i \(-0.818687\pi\)
0.842110 0.539305i \(-0.181313\pi\)
\(212\) −12.4502 + 12.5501i −0.855084 + 0.861947i
\(213\) 21.9524 21.9524i 1.50416 1.50416i
\(214\) 8.83019 + 8.79496i 0.603619 + 0.601211i
\(215\) 1.43400 + 14.7617i 0.0977983 + 1.00674i
\(216\) 6.67638 + 6.59680i 0.454270 + 0.448856i
\(217\) −2.68550 2.68550i −0.182304 0.182304i
\(218\) 24.9402 0.0498438i 1.68916 0.00337585i
\(219\) 30.7762 2.07966
\(220\) 4.49150 5.50270i 0.302817 0.370992i
\(221\) 28.0977 1.89006
\(222\) 35.1451 0.0702389i 2.35879 0.00471412i
\(223\) −6.08865 6.08865i −0.407726 0.407726i 0.473219 0.880945i \(-0.343092\pi\)
−0.880945 + 0.473219i \(0.843092\pi\)
\(224\) −2.47585 2.42686i −0.165425 0.162151i
\(225\) −20.7731 + 4.07439i −1.38488 + 0.271626i
\(226\) 14.6724 + 14.6139i 0.975996 + 0.972103i
\(227\) 6.36587 6.36587i 0.422518 0.422518i −0.463552 0.886070i \(-0.653425\pi\)
0.886070 + 0.463552i \(0.153425\pi\)
\(228\) 7.14956 + 7.09263i 0.473491 + 0.469721i
\(229\) 5.75631i 0.380388i −0.981747 0.190194i \(-0.939088\pi\)
0.981747 0.190194i \(-0.0609117\pi\)
\(230\) −13.9325 + 1.38157i −0.918684 + 0.0910977i
\(231\) 2.61807i 0.172256i
\(232\) −19.4108 + 0.116381i −1.27438 + 0.00764076i
\(233\) −18.8947 + 18.8947i −1.23784 + 1.23784i −0.276952 + 0.960884i \(0.589324\pi\)
−0.960884 + 0.276952i \(0.910676\pi\)
\(234\) −23.9469 + 24.0428i −1.56546 + 1.57173i
\(235\) −26.7003 + 2.59375i −1.74173 + 0.169198i
\(236\) 1.93787 0.00774582i 0.126144 0.000504210i
\(237\) −10.8869 10.8869i −0.707179 0.707179i
\(238\) 0.00858768 + 4.29698i 0.000556657 + 0.278532i
\(239\) 4.29596 0.277883 0.138941 0.990301i \(-0.455630\pi\)
0.138941 + 0.990301i \(0.455630\pi\)
\(240\) 2.51729 + 23.9242i 0.162490 + 1.54430i
\(241\) −6.30046 −0.405848 −0.202924 0.979194i \(-0.565044\pi\)
−0.202924 + 0.979194i \(0.565044\pi\)
\(242\) −0.0239599 11.9887i −0.00154020 0.770665i
\(243\) −14.2213 14.2213i −0.912298 0.912298i
\(244\) 3.41929 0.0136672i 0.218898 0.000874954i
\(245\) 9.41229 11.4377i 0.601329 0.730730i
\(246\) −2.68419 + 2.69494i −0.171138 + 0.171823i
\(247\) −7.50286 + 7.50286i −0.477396 + 0.477396i
\(248\) 17.5271 0.105087i 1.11297 0.00667301i
\(249\) 8.27610i 0.524477i
\(250\) −13.9294 7.48142i −0.880973 0.473166i
\(251\) 27.4019i 1.72959i 0.502123 + 0.864796i \(0.332552\pi\)
−0.502123 + 0.864796i \(0.667448\pi\)
\(252\) −3.68418 3.65485i −0.232082 0.230234i
\(253\) 4.97244 4.97244i 0.312615 0.312615i
\(254\) 10.0080 + 9.96808i 0.627958 + 0.625453i
\(255\) 18.9458 23.0228i 1.18643 1.44174i
\(256\) 15.9980 0.255802i 0.999872 0.0159876i
\(257\) 13.0822 + 13.0822i 0.816045 + 0.816045i 0.985532 0.169487i \(-0.0542112\pi\)
−0.169487 + 0.985532i \(0.554211\pi\)
\(258\) 25.2284 0.0504198i 1.57065 0.00313900i
\(259\) −5.66287 −0.351873
\(260\) −25.2170 + 2.55144i −1.56389 + 0.158234i
\(261\) −29.0559 −1.79852
\(262\) −2.00652 + 0.00401011i −0.123963 + 0.000247745i
\(263\) −14.5278 14.5278i −0.895823 0.895823i 0.0992407 0.995063i \(-0.468359\pi\)
−0.995063 + 0.0992407i \(0.968359\pi\)
\(264\) −8.59470 8.49226i −0.528967 0.522662i
\(265\) −19.6721 + 1.91101i −1.20845 + 0.117392i
\(266\) −1.14971 1.14512i −0.0704929 0.0702117i
\(267\) 5.11266 5.11266i 0.312890 0.312890i
\(268\) 12.1129 12.2101i 0.739910 0.745849i
\(269\) 16.4454i 1.00269i 0.865246 + 0.501347i \(0.167162\pi\)
−0.865246 + 0.501347i \(0.832838\pi\)
\(270\) 1.03547 + 10.4424i 0.0630170 + 0.635501i
\(271\) 28.8912i 1.75501i −0.479565 0.877507i \(-0.659205\pi\)
0.479565 0.877507i \(-0.340795\pi\)
\(272\) −14.1342 13.9100i −0.857011 0.843417i
\(273\) 6.60580 6.60580i 0.399801 0.399801i
\(274\) 12.6568 12.7075i 0.764624 0.767686i
\(275\) 7.79297 1.52849i 0.469934 0.0921716i
\(276\) 0.0951937 + 23.8158i 0.00572999 + 1.43354i
\(277\) −4.72797 4.72797i −0.284076 0.284076i 0.550656 0.834732i \(-0.314378\pi\)
−0.834732 + 0.550656i \(0.814378\pi\)
\(278\) −0.00247761 1.23971i −0.000148597 0.0743529i
\(279\) 26.2362 1.57072
\(280\) −0.397900 3.85565i −0.0237790 0.230419i
\(281\) 2.72305 0.162443 0.0812217 0.996696i \(-0.474118\pi\)
0.0812217 + 0.996696i \(0.474118\pi\)
\(282\) 0.0911968 + 45.6318i 0.00543069 + 2.71733i
\(283\) −11.8514 11.8514i −0.704493 0.704493i 0.260878 0.965372i \(-0.415988\pi\)
−0.965372 + 0.260878i \(0.915988\pi\)
\(284\) −0.0922753 23.0856i −0.00547553 1.36988i
\(285\) 1.08866 + 11.2068i 0.0644868 + 0.663832i
\(286\) 8.98358 9.01956i 0.531211 0.533338i
\(287\) 0.433364 0.433364i 0.0255807 0.0255807i
\(288\) 23.9487 0.239320i 1.41119 0.0141020i
\(289\) 7.57892i 0.445819i
\(290\) −16.7852 13.7567i −0.985662 0.807819i
\(291\) 2.07033i 0.121365i
\(292\) 16.1177 16.2471i 0.943219 0.950789i
\(293\) 4.39475 4.39475i 0.256744 0.256744i −0.566985 0.823728i \(-0.691890\pi\)
0.823728 + 0.566985i \(0.191890\pi\)
\(294\) −17.8523 17.7811i −1.04117 1.03702i
\(295\) 1.67298 + 1.37672i 0.0974047 + 0.0801559i
\(296\) 18.3687 18.5903i 1.06766 1.08054i
\(297\) −3.72681 3.72681i −0.216252 0.216252i
\(298\) −22.6413 + 0.0452494i −1.31157 + 0.00262123i
\(299\) −25.0925 −1.45114
\(300\) −14.9128 + 22.3828i −0.860989 + 1.29227i
\(301\) −4.06500 −0.234303
\(302\) 24.5904 0.0491448i 1.41502 0.00282796i
\(303\) −4.63045 4.63045i −0.266012 0.266012i
\(304\) 7.48856 0.0598659i 0.429498 0.00343354i
\(305\) 2.95191 + 2.42918i 0.169026 + 0.139094i
\(306\) −21.0318 20.9479i −1.20231 1.19751i
\(307\) −5.32303 + 5.32303i −0.303801 + 0.303801i −0.842499 0.538698i \(-0.818916\pi\)
0.538698 + 0.842499i \(0.318916\pi\)
\(308\) 1.38211 + 1.37110i 0.0787529 + 0.0781258i
\(309\) 13.3305i 0.758344i
\(310\) 15.1563 + 12.4217i 0.860821 + 0.705503i
\(311\) 13.0392i 0.739387i −0.929154 0.369694i \(-0.879463\pi\)
0.929154 0.369694i \(-0.120537\pi\)
\(312\) 0.258492 + 43.1131i 0.0146343 + 2.44080i
\(313\) 9.22158 9.22158i 0.521234 0.521234i −0.396710 0.917944i \(-0.629848\pi\)
0.917944 + 0.396710i \(0.129848\pi\)
\(314\) 12.4598 12.5097i 0.703148 0.705964i
\(315\) −0.560990 5.77487i −0.0316082 0.325377i
\(316\) −11.4489 + 0.0457621i −0.644049 + 0.00257432i
\(317\) 10.5132 + 10.5132i 0.590481 + 0.590481i 0.937761 0.347281i \(-0.112895\pi\)
−0.347281 + 0.937761i \(0.612895\pi\)
\(318\) 0.0671914 + 33.6203i 0.00376791 + 1.88533i
\(319\) 10.9002 0.610295
\(320\) 13.9482 + 11.2004i 0.779726 + 0.626120i
\(321\) 23.7021 1.32292
\(322\) −0.00766919 3.83740i −0.000427387 0.213850i
\(323\) −6.56325 6.56325i −0.365189 0.365189i
\(324\) −7.55276 + 0.0301890i −0.419598 + 0.00167717i
\(325\) −23.5195 15.8063i −1.30463 0.876774i
\(326\) −14.2727 + 14.3298i −0.790491 + 0.793657i
\(327\) 33.5392 33.5392i 1.85472 1.85472i
\(328\) 0.0169580 + 2.82838i 0.000936350 + 0.156171i
\(329\) 7.35256i 0.405360i
\(330\) −1.33300 13.4427i −0.0733791 0.739999i
\(331\) 32.0991i 1.76433i 0.470943 + 0.882164i \(0.343914\pi\)
−0.470943 + 0.882164i \(0.656086\pi\)
\(332\) −4.36905 4.33426i −0.239783 0.237873i
\(333\) 27.6619 27.6619i 1.51586 1.51586i
\(334\) −13.0651 13.0129i −0.714889 0.712037i
\(335\) 19.1390 1.85923i 1.04568 0.101580i
\(336\) −6.59321 + 0.0527082i −0.359689 + 0.00287547i
\(337\) −4.54825 4.54825i −0.247759 0.247759i 0.572291 0.820050i \(-0.306055\pi\)
−0.820050 + 0.572291i \(0.806055\pi\)
\(338\) −27.0401 + 0.0540406i −1.47079 + 0.00293942i
\(339\) 39.3839 2.13904
\(340\) −2.23192 22.0589i −0.121043 1.19631i
\(341\) −9.84242 −0.532997
\(342\) 11.2097 0.0224031i 0.606153 0.00121142i
\(343\) 5.90432 + 5.90432i 0.318803 + 0.318803i
\(344\) 13.1857 13.3448i 0.710924 0.719501i
\(345\) −16.9195 + 20.5604i −0.910914 + 1.10693i
\(346\) 6.01413 + 5.99013i 0.323321 + 0.322032i
\(347\) −2.12338 + 2.12338i −0.113989 + 0.113989i −0.761801 0.647812i \(-0.775684\pi\)
0.647812 + 0.761801i \(0.275684\pi\)
\(348\) −25.9992 + 26.2079i −1.39370 + 1.40489i
\(349\) 14.0584i 0.752527i 0.926513 + 0.376263i \(0.122791\pi\)
−0.926513 + 0.376263i \(0.877209\pi\)
\(350\) 2.41006 3.60167i 0.128823 0.192517i
\(351\) 18.8067i 1.00383i
\(352\) −8.98428 + 0.0897799i −0.478863 + 0.00478529i
\(353\) −9.01285 + 9.01285i −0.479706 + 0.479706i −0.905037 0.425332i \(-0.860157\pi\)
0.425332 + 0.905037i \(0.360157\pi\)
\(354\) 2.60082 2.61124i 0.138232 0.138786i
\(355\) 16.4008 19.9301i 0.870463 1.05778i
\(356\) −0.0214906 5.37657i −0.00113900 0.284958i
\(357\) 5.77853 + 5.77853i 0.305832 + 0.305832i
\(358\) 0.0225801 + 11.2983i 0.00119340 + 0.597135i
\(359\) 21.5045 1.13496 0.567481 0.823386i \(-0.307918\pi\)
0.567481 + 0.823386i \(0.307918\pi\)
\(360\) 20.7777 + 16.8904i 1.09508 + 0.890202i
\(361\) −15.4949 −0.815519
\(362\) 0.0400711 + 20.0502i 0.00210609 + 1.05382i
\(363\) −16.1223 16.1223i −0.846202 0.846202i
\(364\) −0.0277669 6.94679i −0.00145538 0.364111i
\(365\) 25.4670 2.47394i 1.33300 0.129492i
\(366\) 4.58905 4.60743i 0.239873 0.240834i
\(367\) −15.2095 + 15.2095i −0.793932 + 0.793932i −0.982131 0.188199i \(-0.939735\pi\)
0.188199 + 0.982131i \(0.439735\pi\)
\(368\) 12.6225 + 12.4222i 0.657991 + 0.647554i
\(369\) 4.23379i 0.220402i
\(370\) 29.0766 2.88327i 1.51162 0.149894i
\(371\) 5.41717i 0.281246i
\(372\) 23.4762 23.6646i 1.21718 1.22695i
\(373\) 1.46829 1.46829i 0.0760252 0.0760252i −0.668072 0.744097i \(-0.732880\pi\)
0.744097 + 0.668072i \(0.232880\pi\)
\(374\) 7.89001 + 7.85853i 0.407983 + 0.406355i
\(375\) −28.8102 + 8.61360i −1.48775 + 0.444805i
\(376\) 24.1373 + 23.8496i 1.24479 + 1.22995i
\(377\) −27.5030 27.5030i −1.41648 1.41648i
\(378\) −2.87611 + 0.00574801i −0.147931 + 0.000295646i
\(379\) −10.0239 −0.514894 −0.257447 0.966292i \(-0.582881\pi\)
−0.257447 + 0.966292i \(0.582881\pi\)
\(380\) 6.48632 + 5.29436i 0.332741 + 0.271595i
\(381\) 26.8636 1.37626
\(382\) 4.88202 0.00975690i 0.249786 0.000499206i
\(383\) −13.9942 13.9942i −0.715068 0.715068i 0.252523 0.967591i \(-0.418740\pi\)
−0.967591 + 0.252523i \(0.918740\pi\)
\(384\) 21.2135 21.8155i 1.08254 1.11327i
\(385\) 0.210453 + 2.16642i 0.0107257 + 0.110411i
\(386\) 1.32507 + 1.31979i 0.0674444 + 0.0671754i
\(387\) 19.8567 19.8567i 1.00937 1.00937i
\(388\) −1.09295 1.08425i −0.0554863 0.0550445i
\(389\) 30.3206i 1.53732i 0.639659 + 0.768659i \(0.279075\pi\)
−0.639659 + 0.768659i \(0.720925\pi\)
\(390\) −30.5548 + 37.2816i −1.54720 + 1.88783i
\(391\) 21.9501i 1.11006i
\(392\) −18.7363 + 0.112337i −0.946325 + 0.00567385i
\(393\) −2.69834 + 2.69834i −0.136113 + 0.136113i
\(394\) 5.61115 5.63362i 0.282686 0.283818i
\(395\) −9.88393 8.13364i −0.497314 0.409248i
\(396\) −13.4489 + 0.0537563i −0.675830 + 0.00270135i
\(397\) −20.8645 20.8645i −1.04716 1.04716i −0.998832 0.0483271i \(-0.984611\pi\)
−0.0483271 0.998832i \(-0.515389\pi\)
\(398\) 0.0660754 + 33.0619i 0.00331206 + 1.65724i
\(399\) −3.08605 −0.154496
\(400\) 4.00617 + 19.5947i 0.200309 + 0.979733i
\(401\) −27.4808 −1.37232 −0.686162 0.727449i \(-0.740706\pi\)
−0.686162 + 0.727449i \(0.740706\pi\)
\(402\) −0.0653707 32.7093i −0.00326040 1.63139i
\(403\) 24.8340 + 24.8340i 1.23707 + 1.23707i
\(404\) −4.86947 + 0.0194637i −0.242265 + 0.000968355i
\(405\) −6.52038 5.36572i −0.324000 0.266625i
\(406\) 4.19763 4.21444i 0.208325 0.209159i
\(407\) −10.3773 + 10.3773i −0.514382 + 0.514382i
\(408\) −37.7139 + 0.226120i −1.86712 + 0.0111946i
\(409\) 8.80523i 0.435391i 0.976017 + 0.217695i \(0.0698539\pi\)
−0.976017 + 0.217695i \(0.930146\pi\)
\(410\) −2.00451 + 2.44580i −0.0989955 + 0.120790i
\(411\) 34.1095i 1.68250i
\(412\) −7.03731 6.98127i −0.346703 0.343943i
\(413\) −0.419904 + 0.419904i −0.0206621 + 0.0206621i
\(414\) 18.7824 + 18.7074i 0.923103 + 0.919420i
\(415\) −0.665275 6.84839i −0.0326571 0.336174i
\(416\) 22.8953 + 22.4422i 1.12253 + 1.10032i
\(417\) −1.66715 1.66715i −0.0816406 0.0816406i
\(418\) −4.20529 + 0.00840443i −0.205688 + 0.000411074i
\(419\) −5.76098 −0.281442 −0.140721 0.990049i \(-0.544942\pi\)
−0.140721 + 0.990049i \(0.544942\pi\)
\(420\) −5.71081 4.66135i −0.278659 0.227451i
\(421\) 0.285923 0.0139351 0.00696753 0.999976i \(-0.497782\pi\)
0.00696753 + 0.999976i \(0.497782\pi\)
\(422\) −22.1575 + 0.0442825i −1.07861 + 0.00215564i
\(423\) 35.9157 + 35.9157i 1.74628 + 1.74628i
\(424\) 17.7837 + 17.5718i 0.863654 + 0.853360i
\(425\) 13.8268 20.5741i 0.670698 0.997990i
\(426\) −31.1074 30.9833i −1.50716 1.50115i
\(427\) −0.740905 + 0.740905i −0.0358549 + 0.0358549i
\(428\) 12.4130 12.5126i 0.600004 0.604820i
\(429\) 24.2104i 1.16889i
\(430\) 20.8722 2.06971i 1.00655 0.0998101i
\(431\) 33.7234i 1.62440i −0.583381 0.812199i \(-0.698270\pi\)
0.583381 0.812199i \(-0.301730\pi\)
\(432\) 9.31040 9.46046i 0.447947 0.455167i
\(433\) −16.2481 + 16.2481i −0.780836 + 0.780836i −0.979972 0.199136i \(-0.936186\pi\)
0.199136 + 0.979972i \(0.436186\pi\)
\(434\) −3.79027 + 3.80545i −0.181939 + 0.182668i
\(435\) −41.0803 + 3.99068i −1.96965 + 0.191338i
\(436\) −0.140979 35.2705i −0.00675169 1.68915i
\(437\) 5.86128 + 5.86128i 0.280383 + 0.280383i
\(438\) −0.0869843 43.5240i −0.00415627 2.07966i
\(439\) −33.9364 −1.61970 −0.809849 0.586639i \(-0.800451\pi\)
−0.809849 + 0.586639i \(0.800451\pi\)
\(440\) −7.79468 6.33637i −0.371597 0.302074i
\(441\) −28.0463 −1.33554
\(442\) −0.0794141 39.7361i −0.00377734 1.89005i
\(443\) 14.6750 + 14.6750i 0.697230 + 0.697230i 0.963812 0.266582i \(-0.0858945\pi\)
−0.266582 + 0.963812i \(0.585894\pi\)
\(444\) −0.198665 49.7024i −0.00942823 2.35877i
\(445\) 3.81969 4.64165i 0.181071 0.220036i
\(446\) −8.59342 + 8.62784i −0.406910 + 0.408540i
\(447\) −30.4477 + 30.4477i −1.44013 + 1.44013i
\(448\) −3.42509 + 3.50824i −0.161820 + 0.165749i
\(449\) 11.9800i 0.565371i −0.959213 0.282686i \(-0.908775\pi\)
0.959213 0.282686i \(-0.0912253\pi\)
\(450\) 5.82076 + 29.3661i 0.274393 + 1.38433i
\(451\) 1.58829i 0.0747896i
\(452\) 20.6257 20.7912i 0.970150 0.977937i
\(453\) 33.0688 33.0688i 1.55371 1.55371i
\(454\) −9.02067 8.98469i −0.423361 0.421672i
\(455\) 4.93522 5.99724i 0.231367 0.281155i
\(456\) 10.0103 10.1310i 0.468774 0.474429i
\(457\) 0.123192 + 0.123192i 0.00576270 + 0.00576270i 0.709982 0.704220i \(-0.248703\pi\)
−0.704220 + 0.709982i \(0.748703\pi\)
\(458\) −8.14064 + 0.0162694i −0.380387 + 0.000760217i
\(459\) −16.4515 −0.767888
\(460\) 1.99320 + 19.6996i 0.0929336 + 0.918500i
\(461\) −1.83433 −0.0854335 −0.0427167 0.999087i \(-0.513601\pi\)
−0.0427167 + 0.999087i \(0.513601\pi\)
\(462\) 3.70250 0.00739958i 0.172256 0.000344260i
\(463\) 28.5167 + 28.5167i 1.32528 + 1.32528i 0.909434 + 0.415849i \(0.136515\pi\)
0.415849 + 0.909434i \(0.363485\pi\)
\(464\) 0.219448 + 27.4506i 0.0101876 + 1.27436i
\(465\) 37.0937 3.60341i 1.72018 0.167104i
\(466\) 26.7746 + 26.6678i 1.24031 + 1.23536i
\(467\) −9.23022 + 9.23022i −0.427124 + 0.427124i −0.887647 0.460524i \(-0.847662\pi\)
0.460524 + 0.887647i \(0.347662\pi\)
\(468\) 34.0693 + 33.7980i 1.57485 + 1.56231i
\(469\) 5.27038i 0.243364i
\(470\) 3.74358 + 37.7525i 0.172678 + 1.74139i
\(471\) 33.5787i 1.54723i
\(472\) −0.0164313 2.74053i −0.000756313 0.126143i
\(473\) −7.44915 + 7.44915i −0.342512 + 0.342512i
\(474\) −15.3656 + 15.4271i −0.705765 + 0.708591i
\(475\) 1.80171 + 9.18597i 0.0826683 + 0.421481i
\(476\) 6.07681 0.0242896i 0.278530 0.00111331i
\(477\) 26.4618 + 26.4618i 1.21160 + 1.21160i
\(478\) −0.0121419 6.07539i −0.000555358 0.277882i
\(479\) 20.4800 0.935755 0.467877 0.883793i \(-0.345019\pi\)
0.467877 + 0.883793i \(0.345019\pi\)
\(480\) 33.8267 3.62759i 1.54397 0.165576i
\(481\) 52.3670 2.38773
\(482\) 0.0178073 + 8.91017i 0.000811101 + 0.405847i
\(483\) −5.16049 5.16049i −0.234810 0.234810i
\(484\) −16.9545 + 0.0677688i −0.770661 + 0.00308040i
\(485\) −0.166424 1.71318i −0.00755692 0.0777914i
\(486\) −20.0718 + 20.1521i −0.910473 + 0.914120i
\(487\) −1.46175 + 1.46175i −0.0662384 + 0.0662384i −0.739450 0.673212i \(-0.764914\pi\)
0.673212 + 0.739450i \(0.264914\pi\)
\(488\) −0.0289924 4.83556i −0.00131243 0.218896i
\(489\) 38.4643i 1.73942i
\(490\) −16.2020 13.2786i −0.731930 0.599867i
\(491\) 7.84785i 0.354169i −0.984196 0.177084i \(-0.943333\pi\)
0.984196 0.177084i \(-0.0566665\pi\)
\(492\) 3.81880 + 3.78839i 0.172165 + 0.170794i
\(493\) 24.0587 24.0587i 1.08355 1.08355i
\(494\) 10.6318 + 10.5894i 0.478349 + 0.476440i
\(495\) −11.6105 9.55450i −0.521855 0.429443i
\(496\) −0.198152 24.7867i −0.00889730 1.11295i
\(497\) 5.00228 + 5.00228i 0.224383 + 0.224383i
\(498\) −11.7042 + 0.0233912i −0.524476 + 0.00104818i
\(499\) 23.0671 1.03262 0.516312 0.856400i \(-0.327304\pi\)
0.516312 + 0.856400i \(0.327304\pi\)
\(500\) −10.5409 + 19.7203i −0.471405 + 0.881917i
\(501\) −35.0694 −1.56679
\(502\) 38.7520 0.0774474i 1.72959 0.00345665i
\(503\) 16.5617 + 16.5617i 0.738450 + 0.738450i 0.972278 0.233828i \(-0.0751253\pi\)
−0.233828 + 0.972278i \(0.575125\pi\)
\(504\) −5.15831 + 5.22054i −0.229769 + 0.232541i
\(505\) −4.20386 3.45943i −0.187069 0.153942i
\(506\) −7.04613 7.01803i −0.313239 0.311989i
\(507\) −36.3632 + 36.3632i −1.61495 + 1.61495i
\(508\) 14.0687 14.1816i 0.624196 0.629206i
\(509\) 29.2681i 1.29728i −0.761094 0.648642i \(-0.775337\pi\)
0.761094 0.648642i \(-0.224663\pi\)
\(510\) −32.6126 26.7283i −1.44411 1.18355i
\(511\) 7.01293i 0.310234i
\(512\) −0.406973 22.6238i −0.0179858 0.999838i
\(513\) 4.39299 4.39299i 0.193955 0.193955i
\(514\) 18.4640 18.5380i 0.814413 0.817674i
\(515\) −1.07157 11.0308i −0.0472190 0.486076i
\(516\) −0.142609 35.6781i −0.00627799 1.57064i
\(517\) −13.4737 13.4737i −0.592571 0.592571i
\(518\) 0.0160053 + 8.00849i 0.000703231 + 0.351873i
\(519\) 16.1432 0.708607
\(520\) 3.67955 + 35.6549i 0.161359 + 1.56357i
\(521\) −18.0489 −0.790737 −0.395369 0.918523i \(-0.629383\pi\)
−0.395369 + 0.918523i \(0.629383\pi\)
\(522\) 0.0821222 + 41.0912i 0.00359439 + 1.79851i
\(523\) 2.57935 + 2.57935i 0.112787 + 0.112787i 0.761248 0.648461i \(-0.224587\pi\)
−0.648461 + 0.761248i \(0.724587\pi\)
\(524\) 0.0113423 + 2.83763i 0.000495489 + 0.123962i
\(525\) −1.58630 8.08768i −0.0692317 0.352975i
\(526\) −20.5043 + 20.5864i −0.894031 + 0.897611i
\(527\) −21.7239 + 21.7239i −0.946310 + 0.946310i
\(528\) −11.9855 + 12.1787i −0.521604 + 0.530011i
\(529\) 3.39757i 0.147721i
\(530\) 2.75817 + 27.8150i 0.119807 + 1.20821i
\(531\) 4.10229i 0.178024i
\(532\) −1.61619 + 1.62916i −0.0700707 + 0.0706331i
\(533\) −4.00751 + 4.00751i −0.173585 + 0.173585i
\(534\) −7.24483 7.21593i −0.313514 0.312264i
\(535\) 19.6132 1.90529i 0.847954 0.0823730i
\(536\) −17.3018 17.0956i −0.747326 0.738418i
\(537\) 15.1939 + 15.1939i 0.655663 + 0.655663i
\(538\) 23.2573 0.0464805i 1.00269 0.00200392i
\(539\) 10.5215 0.453191
\(540\) 14.7648 1.49389i 0.635374 0.0642869i
\(541\) −6.04328 −0.259821 −0.129910 0.991526i \(-0.541469\pi\)
−0.129910 + 0.991526i \(0.541469\pi\)
\(542\) −40.8582 + 0.0816566i −1.75501 + 0.00350745i
\(543\) 26.9633 + 26.9633i 1.15711 + 1.15711i
\(544\) −19.6317 + 20.0280i −0.841702 + 0.858694i
\(545\) 25.0573 30.4494i 1.07334 1.30431i
\(546\) −9.36067 9.32332i −0.400599 0.399001i
\(547\) −2.28661 + 2.28661i −0.0977683 + 0.0977683i −0.754299 0.656531i \(-0.772023\pi\)
0.656531 + 0.754299i \(0.272023\pi\)
\(548\) −18.0068 17.8634i −0.769213 0.763088i
\(549\) 7.23833i 0.308925i
\(550\) −2.18364 11.0166i −0.0931106 0.469748i
\(551\) 12.8487i 0.547371i
\(552\) 33.6802 0.201936i 1.43353 0.00859495i
\(553\) 2.48078 2.48078i 0.105494 0.105494i
\(554\) −6.67298 + 6.69970i −0.283508 + 0.284643i
\(555\) 35.3102 42.9087i 1.49884 1.82137i
\(556\) −1.75321 + 0.00700772i −0.0743525 + 0.000297194i
\(557\) 7.24008 + 7.24008i 0.306772 + 0.306772i 0.843656 0.536884i \(-0.180399\pi\)
−0.536884 + 0.843656i \(0.680399\pi\)
\(558\) −0.0741528 37.1035i −0.00313914 1.57072i
\(559\) 37.5908 1.58992
\(560\) −5.45158 + 0.573611i −0.230371 + 0.0242395i
\(561\) 21.1784 0.894155
\(562\) −0.00769629 3.85096i −0.000324648 0.162443i
\(563\) 23.0929 + 23.0929i 0.973252 + 0.973252i 0.999651 0.0263999i \(-0.00840433\pi\)
−0.0263999 + 0.999651i \(0.508404\pi\)
\(564\) 64.5327 0.257943i 2.71732 0.0108614i
\(565\) 32.5898 3.16588i 1.37106 0.133190i
\(566\) −16.7269 + 16.7939i −0.703084 + 0.705900i
\(567\) 1.63656 1.63656i 0.0687291 0.0687291i
\(568\) −32.6477 + 0.195745i −1.36987 + 0.00821327i
\(569\) 11.3100i 0.474140i 0.971493 + 0.237070i \(0.0761870\pi\)
−0.971493 + 0.237070i \(0.923813\pi\)
\(570\) 15.8457 1.57127i 0.663702 0.0658134i
\(571\) 20.4162i 0.854391i 0.904159 + 0.427195i \(0.140498\pi\)
−0.904159 + 0.427195i \(0.859502\pi\)
\(572\) −12.7810 12.6792i −0.534399 0.530144i
\(573\) 6.56528 6.56528i 0.274269 0.274269i
\(574\) −0.614093 0.611643i −0.0256318 0.0255295i
\(575\) −12.3479 + 18.3736i −0.514945 + 0.766232i
\(576\) −0.406136 33.8679i −0.0169223 1.41116i
\(577\) 1.14988 + 1.14988i 0.0478700 + 0.0478700i 0.730637 0.682767i \(-0.239223\pi\)
−0.682767 + 0.730637i \(0.739223\pi\)
\(578\) 10.7182 0.0214207i 0.445818 0.000890984i
\(579\) 3.55678 0.147815
\(580\) −19.4074 + 23.7767i −0.805847 + 0.987274i
\(581\) 1.88587 0.0782389
\(582\) −2.92789 + 0.00585149i −0.121365 + 0.000242552i
\(583\) −9.92703 9.92703i −0.411136 0.411136i
\(584\) −23.0224 22.7479i −0.952672 0.941317i
\(585\) 5.18772 + 53.4028i 0.214486 + 2.20793i
\(586\) −6.22752 6.20268i −0.257256 0.256230i
\(587\) −14.6537 + 14.6537i −0.604824 + 0.604824i −0.941589 0.336765i \(-0.890667\pi\)
0.336765 + 0.941589i \(0.390667\pi\)
\(588\) −25.0958 + 25.2972i −1.03493 + 1.04324i
\(589\) 11.6018i 0.478043i
\(590\) 1.94225 2.36984i 0.0799611 0.0975647i
\(591\) 15.1218i 0.622029i
\(592\) −26.3425 25.9247i −1.08267 1.06550i
\(593\) 10.2463 10.2463i 0.420765 0.420765i −0.464702 0.885467i \(-0.653839\pi\)
0.885467 + 0.464702i \(0.153839\pi\)
\(594\) −5.25997 + 5.28103i −0.215819 + 0.216683i
\(595\) 5.24618 + 4.31717i 0.215072 + 0.176987i
\(596\) 0.127984 + 32.0194i 0.00524245 + 1.31157i
\(597\) 44.4612 + 44.4612i 1.81968 + 1.81968i
\(598\) 0.0709204 + 35.4861i 0.00290015 + 1.45114i
\(599\) −24.3043 −0.993045 −0.496523 0.868024i \(-0.665390\pi\)
−0.496523 + 0.868024i \(0.665390\pi\)
\(600\) 31.6961 + 21.0265i 1.29399 + 0.858405i
\(601\) 32.2891 1.31710 0.658550 0.752537i \(-0.271170\pi\)
0.658550 + 0.752537i \(0.271170\pi\)
\(602\) 0.0114891 + 5.74876i 0.000468261 + 0.234302i
\(603\) −25.7447 25.7447i −1.04841 1.04841i
\(604\) −0.139002 34.7758i −0.00565592 1.41501i
\(605\) −14.6370 12.0451i −0.595080 0.489701i
\(606\) −6.53534 + 6.56151i −0.265480 + 0.266543i
\(607\) 15.5642 15.5642i 0.631732 0.631732i −0.316770 0.948502i \(-0.602598\pi\)
0.948502 + 0.316770i \(0.102598\pi\)
\(608\) −0.105828 10.5902i −0.00429190 0.429491i
\(609\) 11.3124i 0.458403i
\(610\) 3.42702 4.18149i 0.138756 0.169304i
\(611\) 67.9924i 2.75068i
\(612\) −29.5653 + 29.8026i −1.19511 + 1.20470i
\(613\) 13.6883 13.6883i 0.552866 0.552866i −0.374401 0.927267i \(-0.622152\pi\)
0.927267 + 0.374401i \(0.122152\pi\)
\(614\) 7.54293 + 7.51284i 0.304408 + 0.303194i
\(615\) 0.581488 + 5.98588i 0.0234479 + 0.241374i
\(616\) 1.93512 1.95847i 0.0779683 0.0789089i
\(617\) −17.2210 17.2210i −0.693292 0.693292i 0.269663 0.962955i \(-0.413088\pi\)
−0.962955 + 0.269663i \(0.913088\pi\)
\(618\) −18.8521 + 0.0376766i −0.758342 + 0.00151557i
\(619\) −29.8732 −1.20070 −0.600352 0.799736i \(-0.704973\pi\)
−0.600352 + 0.799736i \(0.704973\pi\)
\(620\) 17.5240 21.4693i 0.703781 0.862230i
\(621\) 14.6919 0.589566
\(622\) −18.4402 + 0.0368535i −0.739386 + 0.00147769i
\(623\) 1.16502 + 1.16502i 0.0466754 + 0.0466754i
\(624\) 60.9703 0.487416i 2.44077 0.0195122i
\(625\) −23.1478 + 9.44358i −0.925910 + 0.377743i
\(626\) −13.0673 13.0152i −0.522275 0.520192i
\(627\) −5.65522 + 5.65522i −0.225848 + 0.225848i
\(628\) −17.7266 17.5855i −0.707368 0.701736i
\(629\) 45.8089i 1.82652i
\(630\) −8.16530 + 0.809680i −0.325313 + 0.0322584i
\(631\) 31.7086i 1.26230i −0.775661 0.631149i \(-0.782584\pi\)
0.775661 0.631149i \(-0.217416\pi\)
\(632\) 0.0970758 + 16.1910i 0.00386147 + 0.644042i
\(633\) −29.7971 + 29.7971i −1.18433 + 1.18433i
\(634\) 14.8382 14.8976i 0.589299 0.591659i
\(635\) 22.2293 2.15943i 0.882144 0.0856944i
\(636\) 47.5460 0.190046i 1.88532 0.00753580i
\(637\) −26.5473 26.5473i −1.05184 1.05184i
\(638\) −0.0308079 15.4152i −0.00121969 0.610294i
\(639\) −48.8702 −1.93327
\(640\) 15.8003 19.7573i 0.624561 0.780976i
\(641\) −19.2164 −0.759001 −0.379500 0.925192i \(-0.623904\pi\)
−0.379500 + 0.925192i \(0.623904\pi\)
\(642\) −0.0669905 33.5197i −0.00264390 1.32292i
\(643\) −20.3110 20.3110i −0.800987 0.800987i 0.182263 0.983250i \(-0.441658\pi\)
−0.983250 + 0.182263i \(0.941658\pi\)
\(644\) −5.42687 + 0.0216917i −0.213849 + 0.000854772i
\(645\) 25.3469 30.8013i 0.998032 1.21280i
\(646\) −9.26326 + 9.30036i −0.364458 + 0.365918i
\(647\) 32.0181 32.0181i 1.25876 1.25876i 0.307078 0.951684i \(-0.400649\pi\)
0.951684 0.307078i \(-0.0993511\pi\)
\(648\) 0.0640404 + 10.6811i 0.00251575 + 0.419593i
\(649\) 1.53896i 0.0604094i
\(650\) −22.2869 + 33.3063i −0.874165 + 1.30638i
\(651\) 10.2146i 0.400343i
\(652\) 20.3058 + 20.1441i 0.795235 + 0.788903i
\(653\) −3.37399 + 3.37399i −0.132034 + 0.132034i −0.770035 0.638001i \(-0.779761\pi\)
0.638001 + 0.770035i \(0.279761\pi\)
\(654\) −47.5263 47.3367i −1.85843 1.85101i
\(655\) −2.01595 + 2.44976i −0.0787695 + 0.0957200i
\(656\) 3.99987 0.0319762i 0.156169 0.00124846i
\(657\) −34.2567 34.2567i −1.33648 1.33648i
\(658\) −10.3981 + 0.0207809i −0.405359 + 0.000810125i
\(659\) 1.35246 0.0526844 0.0263422 0.999653i \(-0.491614\pi\)
0.0263422 + 0.999653i \(0.491614\pi\)
\(660\) −19.0071 + 1.92313i −0.739850 + 0.0748578i
\(661\) −38.1313 −1.48314 −0.741568 0.670877i \(-0.765918\pi\)
−0.741568 + 0.670877i \(0.765918\pi\)
\(662\) 45.3949 0.0907235i 1.76432 0.00352607i
\(663\) −53.4366 53.4366i −2.07531 2.07531i
\(664\) −6.11721 + 6.19101i −0.237394 + 0.240258i
\(665\) −2.55368 + 0.248072i −0.0990273 + 0.00961984i
\(666\) −39.1980 39.0416i −1.51889 1.51283i
\(667\) −21.4855 + 21.4855i −0.831922 + 0.831922i
\(668\) −18.3661 + 18.5135i −0.710607 + 0.716310i
\(669\) 23.1589i 0.895376i
\(670\) −2.68343 27.0614i −0.103670 1.04547i
\(671\) 2.71543i 0.104828i
\(672\) 0.0931752 + 9.32404i 0.00359431 + 0.359683i
\(673\) −25.1177 + 25.1177i −0.968217 + 0.968217i −0.999510 0.0312931i \(-0.990037\pi\)
0.0312931 + 0.999510i \(0.490037\pi\)
\(674\) −6.41934 + 6.44505i −0.247264 + 0.248254i
\(675\) 13.7709 + 9.25471i 0.530042 + 0.356214i
\(676\) 0.152850 + 38.2402i 0.00587883 + 1.47078i
\(677\) 3.17557 + 3.17557i 0.122047 + 0.122047i 0.765492 0.643445i \(-0.222496\pi\)
−0.643445 + 0.765492i \(0.722496\pi\)
\(678\) −0.111313 55.6972i −0.00427494 2.13904i
\(679\) 0.471765 0.0181047
\(680\) −31.1897 + 3.21875i −1.19607 + 0.123433i
\(681\) −24.2134 −0.927859
\(682\) 0.0278182 + 13.9193i 0.00106521 + 0.532996i
\(683\) 24.2669 + 24.2669i 0.928548 + 0.928548i 0.997612 0.0690643i \(-0.0220014\pi\)
−0.0690643 + 0.997612i \(0.522001\pi\)
\(684\) −0.0633653 15.8529i −0.00242283 0.606149i
\(685\) −2.74190 28.2253i −0.104762 1.07843i
\(686\) 8.33327 8.36665i 0.318166 0.319440i
\(687\) −10.9474 + 10.9474i −0.417670 + 0.417670i
\(688\) −18.9096 18.6096i −0.720920 0.709485i
\(689\) 50.0950i 1.90847i
\(690\) 29.1246 + 23.8696i 1.10875 + 0.908700i
\(691\) 31.7248i 1.20687i −0.797413 0.603433i \(-0.793799\pi\)
0.797413 0.603433i \(-0.206201\pi\)
\(692\) 8.45431 8.52217i 0.321385 0.323964i
\(693\) 2.91415 2.91415i 0.110699 0.110699i
\(694\) 3.00891 + 2.99691i 0.114217 + 0.113761i
\(695\) −1.51356 1.24553i −0.0574127 0.0472458i
\(696\) 37.1370 + 36.6943i 1.40767 + 1.39089i
\(697\) −3.50563 3.50563i −0.132785 0.132785i
\(698\) 19.8815 0.0397339i 0.752525 0.00150395i
\(699\) 71.8686 2.71832
\(700\) −5.10034 3.39816i −0.192775 0.128438i
\(701\) −40.2785 −1.52130 −0.760648 0.649164i \(-0.775119\pi\)
−0.760648 + 0.649164i \(0.775119\pi\)
\(702\) 26.5966 0.0531544i 1.00383 0.00200618i
\(703\) −12.2322 12.2322i −0.461347 0.461347i
\(704\) 0.152360 + 12.7054i 0.00574230 + 0.478853i
\(705\) 55.7118 + 45.8461i 2.09823 + 1.72667i
\(706\) 12.7715 + 12.7206i 0.480663 + 0.478746i
\(707\) 1.05513 1.05513i 0.0396824 0.0396824i
\(708\) −3.70019 3.67073i −0.139062 0.137954i
\(709\) 44.0802i 1.65547i −0.561122 0.827733i \(-0.689630\pi\)
0.561122 0.827733i \(-0.310370\pi\)
\(710\) −28.2317 23.1378i −1.05952 0.868347i
\(711\) 24.2362i 0.908929i
\(712\) −7.60355 + 0.0455884i −0.284955 + 0.00170850i
\(713\) 19.4005 19.4005i 0.726553 0.726553i
\(714\) 8.15573 8.18839i 0.305220 0.306443i
\(715\) −1.94616 20.0339i −0.0727821 0.749224i
\(716\) 15.9782 0.0638661i 0.597132 0.00238679i
\(717\) −8.17012 8.17012i −0.305119 0.305119i
\(718\) −0.0607792 30.4118i −0.00226826 1.13496i
\(719\) −28.5020 −1.06295 −0.531473 0.847075i \(-0.678361\pi\)
−0.531473 + 0.847075i \(0.678361\pi\)
\(720\) 23.8278 29.4318i 0.888011 1.09686i
\(721\) 3.03760 0.113126
\(722\) 0.0437940 + 21.9130i 0.00162984 + 0.815518i
\(723\) 11.9823 + 11.9823i 0.445626 + 0.445626i
\(724\) 28.3551 0.113338i 1.05381 0.00421217i
\(725\) −33.6727 + 6.60449i −1.25057 + 0.245284i
\(726\) −22.7548 + 22.8459i −0.844509 + 0.847891i
\(727\) −23.0687 + 23.0687i −0.855572 + 0.855572i −0.990813 0.135240i \(-0.956819\pi\)
0.135240 + 0.990813i \(0.456819\pi\)
\(728\) −9.82415 + 0.0589024i −0.364107 + 0.00218307i
\(729\) 42.7634i 1.58383i
\(730\) −3.57066 36.0087i −0.132156 1.33274i
\(731\) 32.8832i 1.21623i
\(732\) −6.52885 6.47686i −0.241313 0.239392i
\(733\) −20.5353 + 20.5353i −0.758489 + 0.758489i −0.976047 0.217558i \(-0.930191\pi\)
0.217558 + 0.976047i \(0.430191\pi\)
\(734\) 21.5525 + 21.4665i 0.795517 + 0.792344i
\(735\) −39.6528 + 3.85201i −1.46262 + 0.142083i
\(736\) 17.5320 17.8859i 0.646238 0.659284i
\(737\) 9.65804 + 9.65804i 0.355758 + 0.355758i
\(738\) 5.98747 0.0119662i 0.220402 0.000440481i
\(739\) 35.5923 1.30929 0.654643 0.755939i \(-0.272819\pi\)
0.654643 + 0.755939i \(0.272819\pi\)
\(740\) −4.15973 41.1123i −0.152915 1.51132i
\(741\) 28.5381 1.04837
\(742\) −7.66102 + 0.0153108i −0.281245 + 0.000562079i
\(743\) −35.7641 35.7641i −1.31206 1.31206i −0.919897 0.392161i \(-0.871728\pi\)
−0.392161 0.919897i \(-0.628272\pi\)
\(744\) −33.5331 33.1334i −1.22938 1.21473i
\(745\) −22.7476 + 27.6427i −0.833408 + 1.01275i
\(746\) −2.08062 2.07232i −0.0761770 0.0758732i
\(747\) −9.21206 + 9.21206i −0.337052 + 0.337052i
\(748\) 11.0913 11.1803i 0.405539 0.408794i
\(749\) 5.40097i 0.197347i
\(750\) 12.2629 + 40.7194i 0.447777 + 1.48686i
\(751\) 26.4073i 0.963615i 0.876277 + 0.481807i \(0.160020\pi\)
−0.876277 + 0.481807i \(0.839980\pi\)
\(752\) 33.6601 34.2027i 1.22746 1.24724i
\(753\) 52.1133 52.1133i 1.89911 1.89911i
\(754\) −38.8173 + 38.9728i −1.41364 + 1.41930i
\(755\) 24.7059 30.0224i 0.899139 1.09263i
\(756\) 0.0162578 + 4.06741i 0.000591290 + 0.147930i
\(757\) 14.5129 + 14.5129i 0.527481 + 0.527481i 0.919820 0.392340i \(-0.128334\pi\)
−0.392340 + 0.919820i \(0.628334\pi\)
\(758\) 0.0283311 + 14.1759i 0.00102903 + 0.514893i
\(759\) −18.9133 −0.686510
\(760\) 7.46901 9.18799i 0.270929 0.333284i
\(761\) −50.5111 −1.83103 −0.915514 0.402287i \(-0.868216\pi\)
−0.915514 + 0.402287i \(0.868216\pi\)
\(762\) −0.0759259 37.9908i −0.00275051 1.37626i
\(763\) 7.64255 + 7.64255i 0.276679 + 0.276679i
\(764\) −0.0275966 6.90418i −0.000998411 0.249784i
\(765\) −46.7149 + 4.53804i −1.68898 + 0.164073i
\(766\) −19.7511 + 19.8302i −0.713637 + 0.716496i
\(767\) 3.88304 3.88304i 0.140208 0.140208i
\(768\) −30.9116 29.9386i −1.11543 1.08032i
\(769\) 21.8236i 0.786981i −0.919329 0.393490i \(-0.871267\pi\)
0.919329 0.393490i \(-0.128733\pi\)
\(770\) 3.06318 0.303749i 0.110389 0.0109463i
\(771\) 49.7598i 1.79206i
\(772\) 1.86271 1.87766i 0.0670405 0.0675786i
\(773\) −16.3163 + 16.3163i −0.586857 + 0.586857i −0.936779 0.349922i \(-0.886208\pi\)
0.349922 + 0.936779i \(0.386208\pi\)
\(774\) −28.1376 28.0254i −1.01139 1.00735i
\(775\) 30.4050 5.96356i 1.09218 0.214218i
\(776\) −1.53027 + 1.54873i −0.0549335 + 0.0555962i
\(777\) 10.7697 + 10.7697i 0.386361 + 0.386361i
\(778\) 42.8798 0.0856968i 1.53731 0.00307238i
\(779\) 1.87220 0.0670785
\(780\) 52.8103 + 43.1056i 1.89091 + 1.54343i
\(781\) 18.3335 0.656023
\(782\) −31.0421 + 0.0620387i −1.11006 + 0.00221850i
\(783\) 16.1032 + 16.1032i 0.575483 + 0.575483i
\(784\) 0.211823 + 26.4967i 0.00756510 + 0.946311i
\(785\) −2.69923 27.7861i −0.0963396 0.991727i
\(786\) 3.82365 + 3.80840i 0.136385 + 0.135841i
\(787\) −39.6667 + 39.6667i −1.41396 + 1.41396i −0.693721 + 0.720243i \(0.744030\pi\)
−0.720243 + 0.693721i \(0.755970\pi\)
\(788\) −7.98299 7.91943i −0.284382 0.282118i
\(789\) 55.2583i 1.96725i
\(790\) −11.4748 + 14.0009i −0.408253 + 0.498131i
\(791\) 8.97437i 0.319092i
\(792\) 0.114034 + 19.0194i 0.00405202 + 0.675824i
\(793\) 6.85148 6.85148i 0.243303 0.243303i
\(794\) −29.4478 + 29.5658i −1.04506 + 1.04925i
\(795\) 41.0470 + 33.7782i 1.45579 + 1.19799i
\(796\) 46.7563 0.186889i 1.65723 0.00662410i
\(797\) −20.2066 20.2066i −0.715756 0.715756i 0.251977 0.967733i \(-0.418919\pi\)
−0.967733 + 0.251977i \(0.918919\pi\)
\(798\) 0.00872227 + 4.36433i 0.000308765 + 0.154495i
\(799\) −59.4774 −2.10416
\(800\) 27.6997 5.72096i 0.979331 0.202266i
\(801\) −11.3817 −0.402153
\(802\) 0.0776703 + 38.8636i 0.00274264 + 1.37232i
\(803\) 12.8513 + 12.8513i 0.453512 + 0.453512i
\(804\) −46.2577 + 0.184896i −1.63138 + 0.00652078i
\(805\) −4.68508 3.85542i −0.165127 0.135886i
\(806\) 35.0503 35.1907i 1.23460 1.23954i
\(807\) 31.2761 31.2761i 1.10097 1.10097i
\(808\) 0.0412886 + 6.88640i 0.00145253 + 0.242263i
\(809\) 9.82224i 0.345332i −0.984980 0.172666i \(-0.944762\pi\)
0.984980 0.172666i \(-0.0552381\pi\)
\(810\) −7.56983 + 9.23635i −0.265977 + 0.324532i
\(811\) 43.9669i 1.54389i 0.635691 + 0.771943i \(0.280715\pi\)
−0.635691 + 0.771943i \(0.719285\pi\)
\(812\) −5.97197 5.92442i −0.209575 0.207906i
\(813\) −54.9456 + 54.9456i −1.92703 + 1.92703i
\(814\) 14.7050 + 14.6463i 0.515409 + 0.513353i
\(815\) 3.09196 + 31.8288i 0.108307 + 1.11492i
\(816\) 0.426375 + 53.3348i 0.0149261 + 1.86709i
\(817\) −8.78071 8.78071i −0.307198 0.307198i
\(818\) 12.4525 0.0248867i 0.435390 0.000870143i
\(819\) −14.7057 −0.513860
\(820\) 3.46455 + 2.82788i 0.120987 + 0.0987539i
\(821\) −7.17510 −0.250413 −0.125206 0.992131i \(-0.539959\pi\)
−0.125206 + 0.992131i \(0.539959\pi\)
\(822\) −48.2381 + 0.0964056i −1.68250 + 0.00336253i
\(823\) 18.9730 + 18.9730i 0.661358 + 0.661358i 0.955700 0.294342i \(-0.0951006\pi\)
−0.294342 + 0.955700i \(0.595101\pi\)
\(824\) −9.85310 + 9.97196i −0.343249 + 0.347390i
\(825\) −17.7277 11.9139i −0.617198 0.414787i
\(826\) 0.595020 + 0.592646i 0.0207034 + 0.0206208i
\(827\) 2.11082 2.11082i 0.0734004 0.0734004i −0.669454 0.742854i \(-0.733472\pi\)
0.742854 + 0.669454i \(0.233472\pi\)
\(828\) 26.4032 26.6151i 0.917574 0.924938i
\(829\) 20.4182i 0.709154i 0.935027 + 0.354577i \(0.115375\pi\)
−0.935027 + 0.354577i \(0.884625\pi\)
\(830\) −9.68318 + 0.960195i −0.336108 + 0.0333289i
\(831\) 17.9834i 0.623838i
\(832\) 31.6733 32.4422i 1.09808 1.12473i
\(833\) 23.2227 23.2227i 0.804618 0.804618i
\(834\) −2.35299 + 2.36241i −0.0814773 + 0.0818036i
\(835\) −29.0196 + 2.81906i −1.00426 + 0.0975574i
\(836\) 0.0237713 + 5.94714i 0.000822147 + 0.205686i
\(837\) −14.5405 14.5405i −0.502594 0.502594i
\(838\) 0.0162826 + 8.14724i 0.000562472 + 0.281442i
\(839\) 34.8104 1.20179 0.600894 0.799329i \(-0.294811\pi\)
0.600894 + 0.799329i \(0.294811\pi\)
\(840\) −6.57600 + 8.08946i −0.226893 + 0.279113i
\(841\) −18.0989 −0.624100
\(842\) −0.000808120 0.404356i −2.78497e−5 0.0139350i
\(843\) −5.17873 5.17873i −0.178365 0.178365i
\(844\) 0.125250 + 31.3352i 0.00431127 + 1.07860i
\(845\) −27.1671 + 33.0132i −0.934577 + 1.13569i
\(846\) 50.6909 50.8939i 1.74279 1.74977i
\(847\) 3.67377 3.67377i 0.126232 0.126232i
\(848\) 24.7999 25.1996i 0.851632 0.865358i
\(849\) 45.0784i 1.54709i
\(850\) −29.1352 19.4958i −0.999328 0.668702i
\(851\) 40.9094i 1.40236i
\(852\) −43.7290 + 44.0800i −1.49813 + 1.51016i
\(853\) −26.4110 + 26.4110i −0.904296 + 0.904296i −0.995804 0.0915087i \(-0.970831\pi\)
0.0915087 + 0.995804i \(0.470831\pi\)
\(854\) 1.04989 + 1.04570i 0.0359265 + 0.0357832i
\(855\) 11.2624 13.6860i 0.385166 0.468050i
\(856\) −17.7305 17.5192i −0.606017 0.598794i
\(857\) 25.7008 + 25.7008i 0.877923 + 0.877923i 0.993319 0.115397i \(-0.0368139\pi\)
−0.115397 + 0.993319i \(0.536814\pi\)
\(858\) −34.2386 + 0.0684272i −1.16889 + 0.00233607i
\(859\) 4.87742 0.166416 0.0832078 0.996532i \(-0.473483\pi\)
0.0832078 + 0.996532i \(0.473483\pi\)
\(860\) −2.98599 29.5118i −0.101822 1.00634i
\(861\) −1.64836 −0.0561758
\(862\) −47.6920 + 0.0953142i −1.62439 + 0.00324641i
\(863\) −35.1734 35.1734i −1.19732 1.19732i −0.974967 0.222349i \(-0.928628\pi\)
−0.222349 0.974967i \(-0.571372\pi\)
\(864\) −13.4054 13.1401i −0.456061 0.447036i
\(865\) 13.3583 1.29767i 0.454196 0.0441221i
\(866\) 23.0242 + 22.9324i 0.782395 + 0.779274i
\(867\) 14.4137 14.4137i 0.489515 0.489515i
\(868\) 5.39243 + 5.34949i 0.183031 + 0.181574i
\(869\) 9.09213i 0.308429i
\(870\) 5.75976 + 58.0849i 0.195274 + 1.96926i
\(871\) 48.7376i 1.65141i
\(872\) −49.8795 + 0.299061i −1.68913 + 0.0101275i
\(873\) −2.30447 + 2.30447i −0.0779945 + 0.0779945i
\(874\) 8.27251 8.30565i 0.279822 0.280943i
\(875\) −1.96277 6.56496i −0.0663538 0.221936i
\(876\) −61.5518 + 0.246028i −2.07964 + 0.00831252i
\(877\) −4.91798 4.91798i −0.166068 0.166068i 0.619180 0.785249i \(-0.287465\pi\)
−0.785249 + 0.619180i \(0.787465\pi\)
\(878\) 0.0959163 + 47.9933i 0.00323702 + 1.61969i
\(879\) −16.7160 −0.563816
\(880\) −8.93893 + 11.0412i −0.301331 + 0.372200i
\(881\) −46.2874 −1.55946 −0.779731 0.626114i \(-0.784644\pi\)
−0.779731 + 0.626114i \(0.784644\pi\)
\(882\) 0.0792686 + 39.6633i 0.00266911 + 1.33553i
\(883\) 25.5236 + 25.5236i 0.858938 + 0.858938i 0.991213 0.132275i \(-0.0422282\pi\)
−0.132275 + 0.991213i \(0.542228\pi\)
\(884\) −56.1950 + 0.224616i −1.89004 + 0.00755467i
\(885\) −0.563428 5.79997i −0.0189394 0.194964i
\(886\) 20.7120 20.7950i 0.695835 0.698622i
\(887\) 20.0177 20.0177i 0.672128 0.672128i −0.286078 0.958206i \(-0.592352\pi\)
0.958206 + 0.286078i \(0.0923518\pi\)
\(888\) −70.2892 + 0.421431i −2.35875 + 0.0141423i
\(889\) 6.12138i 0.205304i
\(890\) −6.57507 5.38873i −0.220397 0.180631i
\(891\) 5.99803i 0.200942i
\(892\) 12.2259 + 12.1285i 0.409352 + 0.406093i
\(893\) 15.8821 15.8821i 0.531474 0.531474i
\(894\) 43.1455 + 42.9734i 1.44300 + 1.43725i
\(895\) 13.7941 + 11.3514i 0.461087 + 0.379435i
\(896\) 4.97107 + 4.83389i 0.166072 + 0.161489i
\(897\) 47.7213 + 47.7213i 1.59337 + 1.59337i
\(898\) −16.9422 + 0.0338597i −0.565370 + 0.00112991i
\(899\) 42.5283 1.41840
\(900\) 41.5134 8.31478i 1.38378 0.277159i
\(901\) −43.8214 −1.45990
\(902\) −2.24618 + 0.00448907i −0.0747895 + 0.000149470i
\(903\) 7.73086 + 7.73086i 0.257267 + 0.257267i
\(904\) −29.4615 29.1103i −0.979874 0.968194i
\(905\) 24.4793 + 20.1444i 0.813719 + 0.669622i
\(906\) −46.8598 46.6728i −1.55681 1.55060i
\(907\) 41.4762 41.4762i 1.37719 1.37719i 0.527866 0.849328i \(-0.322992\pi\)
0.849328 0.527866i \(-0.177008\pi\)
\(908\) −12.6807 + 12.7825i −0.420825 + 0.424203i
\(909\) 10.3082i 0.341902i
\(910\) −8.49531 6.96250i −0.281617 0.230805i
\(911\) 54.9738i 1.82136i −0.413110 0.910681i \(-0.635558\pi\)
0.413110 0.910681i \(-0.364442\pi\)
\(912\) −14.3557 14.1280i −0.475365 0.467824i
\(913\) 3.45587 3.45587i 0.114373 0.114373i
\(914\) 0.173872 0.174568i 0.00575117 0.00577421i
\(915\) −0.994147 10.2338i −0.0328655 0.338320i
\(916\) 0.0460166 + 11.5125i 0.00152043 + 0.380385i
\(917\) −0.614869 0.614869i −0.0203048 0.0203048i
\(918\) 0.0464976 + 23.2658i 0.00153465 + 0.767887i
\(919\) 30.0697 0.991908 0.495954 0.868349i \(-0.334818\pi\)
0.495954 + 0.868349i \(0.334818\pi\)
\(920\) 27.8538 2.87449i 0.918313 0.0947690i
\(921\) 20.2468 0.667155
\(922\) 0.00518448 + 2.59414i 0.000170742 + 0.0854333i
\(923\) −46.2583 46.2583i −1.52261 1.52261i
\(924\) −0.0209291 5.23609i −0.000688518 0.172255i
\(925\) 25.7696 38.3449i 0.847300 1.26077i
\(926\) 40.2480 40.4092i 1.32263 1.32793i
\(927\) −14.8380 + 14.8380i −0.487345 + 0.487345i
\(928\) 38.8203 0.387931i 1.27434 0.0127345i
\(929\) 18.1372i 0.595063i 0.954712 + 0.297532i \(0.0961634\pi\)
−0.954712 + 0.297532i \(0.903837\pi\)
\(930\) −5.20082 52.4482i −0.170542 1.71984i
\(931\) 12.4022i 0.406465i
\(932\) 37.6381 37.9402i 1.23288 1.24277i
\(933\) −24.7982 + 24.7982i −0.811856 + 0.811856i
\(934\) 13.0796 + 13.0274i 0.427976 + 0.426269i
\(935\) 17.5249 1.70243i 0.573127 0.0556754i
\(936\) 47.7012 48.2766i 1.55916 1.57797i
\(937\) −16.1064 16.1064i −0.526174 0.526174i 0.393255 0.919429i \(-0.371349\pi\)
−0.919429 + 0.393255i \(0.871349\pi\)
\(938\) 7.45343 0.0148960i 0.243363 0.000486370i
\(939\) −35.0754 −1.14464
\(940\) 53.3794 5.40091i 1.74104 0.176158i
\(941\) 53.1895 1.73393 0.866964 0.498370i \(-0.166068\pi\)
0.866964 + 0.498370i \(0.166068\pi\)
\(942\) −47.4874 + 0.0949053i −1.54722 + 0.00309218i
\(943\) 3.13069 + 3.13069i 0.101949 + 0.101949i
\(944\) −3.87564 + 0.0309830i −0.126141 + 0.00100841i
\(945\) −2.88962 + 3.51144i −0.0939993 + 0.114227i
\(946\) 10.5557 + 10.5136i 0.343196 + 0.341827i
\(947\) −15.8764 + 15.8764i −0.515912 + 0.515912i −0.916332 0.400420i \(-0.868864\pi\)
0.400420 + 0.916332i \(0.368864\pi\)
\(948\) 21.8606 + 21.6866i 0.710000 + 0.704347i
\(949\) 64.8517i 2.10517i
\(950\) 12.9858 2.57397i 0.421315 0.0835105i
\(951\) 39.9883i 1.29671i
\(952\) −0.0515258 8.59383i −0.00166996 0.278528i
\(953\) 9.75942 9.75942i 0.316139 0.316139i −0.531143 0.847282i \(-0.678237\pi\)
0.847282 + 0.531143i \(0.178237\pi\)
\(954\) 37.3477 37.4973i 1.20918 1.21402i
\(955\) 4.90495 5.96045i 0.158721 0.192876i
\(956\) −8.59185 + 0.0343424i −0.277880 + 0.00111071i
\(957\) −20.7302 20.7302i −0.670111 0.670111i
\(958\) −0.0578837 28.9630i −0.00187014 0.935753i
\(959\) 7.77250 0.250987
\(960\) −5.22578 47.8278i −0.168661 1.54364i
\(961\) −7.40118 −0.238748
\(962\) −0.148008 74.0580i −0.00477196 2.38773i
\(963\) −26.3826 26.3826i −0.850168 0.850168i
\(964\) 12.6008 0.0503666i 0.405845 0.00162220i
\(965\) 2.94319 0.285912i 0.0947448 0.00920382i
\(966\) −7.28343 + 7.31260i −0.234341 + 0.235279i
\(967\) −26.5520 + 26.5520i −0.853856 + 0.853856i −0.990606 0.136750i \(-0.956334\pi\)
0.136750 + 0.990606i \(0.456334\pi\)
\(968\) 0.143759 + 23.9771i 0.00462059 + 0.770653i
\(969\) 24.9641i 0.801964i
\(970\) −2.42233 + 0.240200i −0.0777762 + 0.00771237i
\(971\) 47.6809i 1.53015i −0.643940 0.765076i \(-0.722701\pi\)
0.643940 0.765076i \(-0.277299\pi\)
\(972\) 28.5561 + 28.3287i 0.915937 + 0.908644i
\(973\) 0.379891 0.379891i 0.0121788 0.0121788i
\(974\) 2.07136 + 2.06310i 0.0663706 + 0.0661058i
\(975\) 14.6692 + 74.7903i 0.469790 + 2.39521i
\(976\) −6.83842 + 0.0546684i −0.218892 + 0.00174989i
\(977\) 6.26374 + 6.26374i 0.200395 + 0.200395i 0.800169 0.599774i \(-0.204743\pi\)
−0.599774 + 0.800169i \(0.704743\pi\)
\(978\) 54.3967 0.108714i 1.73941 0.00347628i
\(979\) 4.26981 0.136464
\(980\) −18.7330 + 22.9505i −0.598403 + 0.733127i
\(981\) −74.6645 −2.38385
\(982\) −11.0985 + 0.0221808i −0.354168 + 0.000707818i
\(983\) −26.1154 26.1154i −0.832951 0.832951i 0.154968 0.987919i \(-0.450473\pi\)
−0.987919 + 0.154968i \(0.950473\pi\)
\(984\) 5.34679 5.41129i 0.170450 0.172506i
\(985\) −1.21557 12.5132i −0.0387313 0.398702i
\(986\) −34.0920 33.9561i −1.08571 1.08138i
\(987\) −13.9832 + 13.9832i −0.445090 + 0.445090i
\(988\) 14.9456 15.0656i 0.475484 0.479300i
\(989\) 29.3662i 0.933790i
\(990\) −13.4793 + 16.4468i −0.428399 + 0.522712i
\(991\) 33.6990i 1.07048i 0.844699 + 0.535242i \(0.179780\pi\)
−0.844699 + 0.535242i \(0.820220\pi\)
\(992\) −35.0530 + 0.350285i −1.11293 + 0.0111216i
\(993\) 61.0466 61.0466i 1.93725 1.93725i
\(994\) 7.06014 7.08842i 0.223934 0.224831i
\(995\) 40.3652 + 33.2172i 1.27966 + 1.05305i
\(996\) 0.0661601 + 16.5521i 0.00209636 + 0.524472i
\(997\) 14.9851 + 14.9851i 0.474584 + 0.474584i 0.903394 0.428811i \(-0.141067\pi\)
−0.428811 + 0.903394i \(0.641067\pi\)
\(998\) −0.0651957 32.6217i −0.00206373 1.03262i
\(999\) −30.6614 −0.970082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.k.c.247.24 yes 108
4.3 odd 2 inner 820.2.k.c.247.1 yes 108
5.3 odd 4 inner 820.2.k.c.83.1 108
20.3 even 4 inner 820.2.k.c.83.24 yes 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.k.c.83.1 108 5.3 odd 4 inner
820.2.k.c.83.24 yes 108 20.3 even 4 inner
820.2.k.c.247.1 yes 108 4.3 odd 2 inner
820.2.k.c.247.24 yes 108 1.1 even 1 trivial