Newspace parameters
Level: | \( N \) | \(=\) | \( 82 = 2 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 82.f (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.1514732247\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −1.23607 | − | 3.80423i | − | 30.8481i | −12.9443 | + | 9.40456i | −44.9680 | + | 32.6711i | −117.353 | + | 38.1303i | 185.924 | + | 60.4103i | 51.7771 | + | 37.6183i | −708.603 | 179.872 | + | 130.685i | |||
23.2 | −1.23607 | − | 3.80423i | − | 28.1115i | −12.9443 | + | 9.40456i | 68.7458 | − | 49.9467i | −106.942 | + | 34.7477i | −165.128 | − | 53.6532i | 51.7771 | + | 37.6183i | −547.254 | −274.983 | − | 199.787i | |||
23.3 | −1.23607 | − | 3.80423i | − | 12.8019i | −12.9443 | + | 9.40456i | 0.908820 | − | 0.660296i | −48.7014 | + | 15.8241i | −131.516 | − | 42.7322i | 51.7771 | + | 37.6183i | 79.1107 | −3.63528 | − | 2.64118i | |||
23.4 | −1.23607 | − | 3.80423i | − | 10.4652i | −12.9443 | + | 9.40456i | 16.4447 | − | 11.9478i | −39.8119 | + | 12.9357i | 166.594 | + | 54.1298i | 51.7771 | + | 37.6183i | 133.480 | −65.7788 | − | 47.7911i | |||
23.5 | −1.23607 | − | 3.80423i | − | 7.71384i | −12.9443 | + | 9.40456i | −79.0566 | + | 57.4380i | −29.3452 | + | 9.53483i | −36.5570 | − | 11.8781i | 51.7771 | + | 37.6183i | 183.497 | 316.226 | + | 229.752i | |||
23.6 | −1.23607 | − | 3.80423i | − | 5.05453i | −12.9443 | + | 9.40456i | 58.6886 | − | 42.6398i | −19.2286 | + | 6.24774i | 76.6909 | + | 24.9184i | 51.7771 | + | 37.6183i | 217.452 | −234.754 | − | 170.559i | |||
23.7 | −1.23607 | − | 3.80423i | 12.1022i | −12.9443 | + | 9.40456i | 13.1781 | − | 9.57448i | 46.0394 | − | 14.9591i | −42.6653 | − | 13.8628i | 51.7771 | + | 37.6183i | 96.5377 | −52.7126 | − | 38.2979i | ||||
23.8 | −1.23607 | − | 3.80423i | 18.1311i | −12.9443 | + | 9.40456i | −14.5751 | + | 10.5894i | 68.9748 | − | 22.4113i | −225.745 | − | 73.3489i | 51.7771 | + | 37.6183i | −85.7366 | 58.3003 | + | 42.3577i | ||||
23.9 | −1.23607 | − | 3.80423i | 22.0026i | −12.9443 | + | 9.40456i | −65.6913 | + | 47.7275i | 83.7030 | − | 27.1968i | 125.713 | + | 40.8467i | 51.7771 | + | 37.6183i | −241.116 | 262.765 | + | 190.910i | ||||
23.10 | −1.23607 | − | 3.80423i | 27.3707i | −12.9443 | + | 9.40456i | 80.2757 | − | 58.3237i | 104.124 | − | 33.8320i | 108.180 | + | 35.1500i | 51.7771 | + | 37.6183i | −506.154 | −321.103 | − | 233.295i | ||||
25.1 | −1.23607 | + | 3.80423i | − | 27.3707i | −12.9443 | − | 9.40456i | 80.2757 | + | 58.3237i | 104.124 | + | 33.8320i | 108.180 | − | 35.1500i | 51.7771 | − | 37.6183i | −506.154 | −321.103 | + | 233.295i | |||
25.2 | −1.23607 | + | 3.80423i | − | 22.0026i | −12.9443 | − | 9.40456i | −65.6913 | − | 47.7275i | 83.7030 | + | 27.1968i | 125.713 | − | 40.8467i | 51.7771 | − | 37.6183i | −241.116 | 262.765 | − | 190.910i | |||
25.3 | −1.23607 | + | 3.80423i | − | 18.1311i | −12.9443 | − | 9.40456i | −14.5751 | − | 10.5894i | 68.9748 | + | 22.4113i | −225.745 | + | 73.3489i | 51.7771 | − | 37.6183i | −85.7366 | 58.3003 | − | 42.3577i | |||
25.4 | −1.23607 | + | 3.80423i | − | 12.1022i | −12.9443 | − | 9.40456i | 13.1781 | + | 9.57448i | 46.0394 | + | 14.9591i | −42.6653 | + | 13.8628i | 51.7771 | − | 37.6183i | 96.5377 | −52.7126 | + | 38.2979i | |||
25.5 | −1.23607 | + | 3.80423i | 5.05453i | −12.9443 | − | 9.40456i | 58.6886 | + | 42.6398i | −19.2286 | − | 6.24774i | 76.6909 | − | 24.9184i | 51.7771 | − | 37.6183i | 217.452 | −234.754 | + | 170.559i | ||||
25.6 | −1.23607 | + | 3.80423i | 7.71384i | −12.9443 | − | 9.40456i | −79.0566 | − | 57.4380i | −29.3452 | − | 9.53483i | −36.5570 | + | 11.8781i | 51.7771 | − | 37.6183i | 183.497 | 316.226 | − | 229.752i | ||||
25.7 | −1.23607 | + | 3.80423i | 10.4652i | −12.9443 | − | 9.40456i | 16.4447 | + | 11.9478i | −39.8119 | − | 12.9357i | 166.594 | − | 54.1298i | 51.7771 | − | 37.6183i | 133.480 | −65.7788 | + | 47.7911i | ||||
25.8 | −1.23607 | + | 3.80423i | 12.8019i | −12.9443 | − | 9.40456i | 0.908820 | + | 0.660296i | −48.7014 | − | 15.8241i | −131.516 | + | 42.7322i | 51.7771 | − | 37.6183i | 79.1107 | −3.63528 | + | 2.64118i | ||||
25.9 | −1.23607 | + | 3.80423i | 28.1115i | −12.9443 | − | 9.40456i | 68.7458 | + | 49.9467i | −106.942 | − | 34.7477i | −165.128 | + | 53.6532i | 51.7771 | − | 37.6183i | −547.254 | −274.983 | + | 199.787i | ||||
25.10 | −1.23607 | + | 3.80423i | 30.8481i | −12.9443 | − | 9.40456i | −44.9680 | − | 32.6711i | −117.353 | − | 38.1303i | 185.924 | − | 60.4103i | 51.7771 | − | 37.6183i | −708.603 | 179.872 | − | 130.685i | ||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 82.6.f.b | ✓ | 40 |
41.f | even | 10 | 1 | inner | 82.6.f.b | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
82.6.f.b | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
82.6.f.b | ✓ | 40 | 41.f | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{40} + 7148 T_{3}^{38} + 23240104 T_{3}^{36} + 45532216346 T_{3}^{34} + 60043359870554 T_{3}^{32} + \cdots + 12\!\cdots\!00 \)
acting on \(S_{6}^{\mathrm{new}}(82, [\chi])\).