Properties

Label 2-82-41.31-c5-0-11
Degree $2$
Conductor $82$
Sign $0.967 - 0.254i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.23 + 2.35i)2-s + 4.64i·3-s + (4.94 + 15.2i)4-s + (−24.0 − 74.1i)5-s + (−10.9 + 15.0i)6-s + (17.3 + 23.9i)7-s + (−19.7 + 60.8i)8-s + 221.·9-s + (96.3 − 296. i)10-s + (580. + 188. i)11-s + (−70.6 + 22.9i)12-s + (443. − 610. i)13-s + 118. i·14-s + (344. − 111. i)15-s + (−207. + 150. i)16-s + (−926. − 301. i)17-s + ⋯
L(s)  = 1  + (0.572 + 0.415i)2-s + 0.297i·3-s + (0.154 + 0.475i)4-s + (−0.430 − 1.32i)5-s + (−0.123 + 0.170i)6-s + (0.134 + 0.184i)7-s + (−0.109 + 0.336i)8-s + 0.911·9-s + (0.304 − 0.937i)10-s + (1.44 + 0.469i)11-s + (−0.141 + 0.0460i)12-s + (0.728 − 1.00i)13-s + 0.161i·14-s + (0.394 − 0.128i)15-s + (−0.202 + 0.146i)16-s + (−0.777 − 0.252i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $0.967 - 0.254i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ 0.967 - 0.254i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.63309 + 0.340303i\)
\(L(\frac12)\) \(\approx\) \(2.63309 + 0.340303i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-3.23 - 2.35i)T \)
41 \( 1 + (1.05e4 - 2.03e3i)T \)
good3 \( 1 - 4.64iT - 243T^{2} \)
5 \( 1 + (24.0 + 74.1i)T + (-2.52e3 + 1.83e3i)T^{2} \)
7 \( 1 + (-17.3 - 23.9i)T + (-5.19e3 + 1.59e4i)T^{2} \)
11 \( 1 + (-580. - 188. i)T + (1.30e5 + 9.46e4i)T^{2} \)
13 \( 1 + (-443. + 610. i)T + (-1.14e5 - 3.53e5i)T^{2} \)
17 \( 1 + (926. + 301. i)T + (1.14e6 + 8.34e5i)T^{2} \)
19 \( 1 + (-1.55e3 - 2.13e3i)T + (-7.65e5 + 2.35e6i)T^{2} \)
23 \( 1 + (774. + 562. i)T + (1.98e6 + 6.12e6i)T^{2} \)
29 \( 1 + (-4.94e3 + 1.60e3i)T + (1.65e7 - 1.20e7i)T^{2} \)
31 \( 1 + (-2.30e3 + 7.08e3i)T + (-2.31e7 - 1.68e7i)T^{2} \)
37 \( 1 + (2.34e3 + 7.20e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
43 \( 1 + (-9.66e3 - 7.02e3i)T + (4.54e7 + 1.39e8i)T^{2} \)
47 \( 1 + (1.64e4 - 2.26e4i)T + (-7.08e7 - 2.18e8i)T^{2} \)
53 \( 1 + (-3.02e3 + 983. i)T + (3.38e8 - 2.45e8i)T^{2} \)
59 \( 1 + (5.41e3 + 3.93e3i)T + (2.20e8 + 6.79e8i)T^{2} \)
61 \( 1 + (2.68e3 - 1.95e3i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 + (4.04e4 - 1.31e4i)T + (1.09e9 - 7.93e8i)T^{2} \)
71 \( 1 + (-2.80e4 - 9.10e3i)T + (1.45e9 + 1.06e9i)T^{2} \)
73 \( 1 + 6.43e4T + 2.07e9T^{2} \)
79 \( 1 + 1.49e4iT - 3.07e9T^{2} \)
83 \( 1 + 1.00e5T + 3.93e9T^{2} \)
89 \( 1 + (-1.45e4 - 2.00e4i)T + (-1.72e9 + 5.31e9i)T^{2} \)
97 \( 1 + (-1.43e5 + 4.67e4i)T + (6.94e9 - 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28781811975456263896586186135, −12.42369941915093907883872917769, −11.64327656052927023940595412716, −9.902545435341323280126539295231, −8.753752316783346571737477775138, −7.68310251515795602503803960815, −6.11751890419254594857707320424, −4.70288431875959583310723610946, −3.86699571458638169179690514783, −1.23742724878627809136843232651, 1.42320588137139546300682838197, 3.24556773552467746803743847860, 4.38193275104667474407997485122, 6.62346295835287948153518336341, 6.92544560526384512434230566846, 8.904152620087790640530170829496, 10.34229717172401691964040031842, 11.35075185484473045835283664834, 11.96565573057332561948067951752, 13.61843192032060161985538258014

Graph of the $Z$-function along the critical line