Properties

Label 2-82-41.31-c5-0-6
Degree $2$
Conductor $82$
Sign $-0.967 - 0.251i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.23 + 2.35i)2-s + 22.2i·3-s + (4.94 + 15.2i)4-s + (20.2 + 62.2i)5-s + (−52.3 + 71.9i)6-s + (31.0 + 42.7i)7-s + (−19.7 + 60.8i)8-s − 251.·9-s + (−80.8 + 248. i)10-s + (172. + 56.0i)11-s + (−338. + 109. i)12-s + (502. − 690. i)13-s + 211. i·14-s + (−1.38e3 + 449. i)15-s + (−207. + 150. i)16-s + (347. + 112. i)17-s + ⋯
L(s)  = 1  + (0.572 + 0.415i)2-s + 1.42i·3-s + (0.154 + 0.475i)4-s + (0.361 + 1.11i)5-s + (−0.593 + 0.816i)6-s + (0.239 + 0.329i)7-s + (−0.109 + 0.336i)8-s − 1.03·9-s + (−0.255 + 0.787i)10-s + (0.429 + 0.139i)11-s + (−0.678 + 0.220i)12-s + (0.823 − 1.13i)13-s + 0.288i·14-s + (−1.58 + 0.516i)15-s + (−0.202 + 0.146i)16-s + (0.291 + 0.0946i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 - 0.251i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.967 - 0.251i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $-0.967 - 0.251i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ -0.967 - 0.251i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.335878 + 2.63212i\)
\(L(\frac12)\) \(\approx\) \(0.335878 + 2.63212i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-3.23 - 2.35i)T \)
41 \( 1 + (-1.02e4 - 3.39e3i)T \)
good3 \( 1 - 22.2iT - 243T^{2} \)
5 \( 1 + (-20.2 - 62.2i)T + (-2.52e3 + 1.83e3i)T^{2} \)
7 \( 1 + (-31.0 - 42.7i)T + (-5.19e3 + 1.59e4i)T^{2} \)
11 \( 1 + (-172. - 56.0i)T + (1.30e5 + 9.46e4i)T^{2} \)
13 \( 1 + (-502. + 690. i)T + (-1.14e5 - 3.53e5i)T^{2} \)
17 \( 1 + (-347. - 112. i)T + (1.14e6 + 8.34e5i)T^{2} \)
19 \( 1 + (762. + 1.04e3i)T + (-7.65e5 + 2.35e6i)T^{2} \)
23 \( 1 + (713. + 518. i)T + (1.98e6 + 6.12e6i)T^{2} \)
29 \( 1 + (2.60e3 - 847. i)T + (1.65e7 - 1.20e7i)T^{2} \)
31 \( 1 + (-1.61e3 + 4.95e3i)T + (-2.31e7 - 1.68e7i)T^{2} \)
37 \( 1 + (-3.06e3 - 9.42e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
43 \( 1 + (2.04e3 + 1.48e3i)T + (4.54e7 + 1.39e8i)T^{2} \)
47 \( 1 + (4.67e3 - 6.43e3i)T + (-7.08e7 - 2.18e8i)T^{2} \)
53 \( 1 + (1.30e4 - 4.22e3i)T + (3.38e8 - 2.45e8i)T^{2} \)
59 \( 1 + (-1.11e4 - 8.11e3i)T + (2.20e8 + 6.79e8i)T^{2} \)
61 \( 1 + (-2.83e4 + 2.06e4i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 + (2.85e4 - 9.28e3i)T + (1.09e9 - 7.93e8i)T^{2} \)
71 \( 1 + (-5.50e4 - 1.79e4i)T + (1.45e9 + 1.06e9i)T^{2} \)
73 \( 1 - 8.12e4T + 2.07e9T^{2} \)
79 \( 1 + 1.31e4iT - 3.07e9T^{2} \)
83 \( 1 + 1.03e5T + 3.93e9T^{2} \)
89 \( 1 + (1.60e3 + 2.20e3i)T + (-1.72e9 + 5.31e9i)T^{2} \)
97 \( 1 + (1.15e5 - 3.75e4i)T + (6.94e9 - 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.25004799752433052009630040726, −12.99863997962795606468016398630, −11.37699985890894430532312493417, −10.61883865349846066554752882120, −9.585102740201855653482232998597, −8.198527093838204328831028347556, −6.53075402456425186193473072363, −5.41775627163939668430069944937, −4.02665972781014654077668588620, −2.85080460538011753090005587529, 1.02885556308975373577911875207, 1.86376915349329140441149359330, 4.11045554906379320031798630625, 5.70472603145884687024110707036, 6.80390667682001055897232659709, 8.215865191272190837995193757329, 9.368513018793841925525353593487, 11.09695235297606760920728407564, 12.15529834029403219795867313385, 12.81451274160022677636647018629

Graph of the $Z$-function along the critical line