Properties

Label 2-82-41.4-c5-0-4
Degree $2$
Conductor $82$
Sign $0.132 - 0.991i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.23 − 2.35i)2-s − 2.80i·3-s + (4.94 − 15.2i)4-s + (−7.78 + 23.9i)5-s + (−6.58 − 9.06i)6-s + (−138. + 189. i)7-s + (−19.7 − 60.8i)8-s + 235.·9-s + (31.1 + 95.8i)10-s + (−705. + 229. i)11-s + (−42.6 − 13.8i)12-s + (317. + 437. i)13-s + 939. i·14-s + (67.0 + 21.7i)15-s + (−207. − 150. i)16-s + (1.20e3 − 392. i)17-s + ⋯
L(s)  = 1  + (0.572 − 0.415i)2-s − 0.179i·3-s + (0.154 − 0.475i)4-s + (−0.139 + 0.428i)5-s + (−0.0746 − 0.102i)6-s + (−1.06 + 1.46i)7-s + (−0.109 − 0.336i)8-s + 0.967·9-s + (0.0984 + 0.302i)10-s + (−1.75 + 0.571i)11-s + (−0.0854 − 0.0277i)12-s + (0.521 + 0.717i)13-s + 1.28i·14-s + (0.0769 + 0.0250i)15-s + (−0.202 − 0.146i)16-s + (1.01 − 0.329i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.132 - 0.991i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.132 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $0.132 - 0.991i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (45, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ 0.132 - 0.991i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.13679 + 0.994610i\)
\(L(\frac12)\) \(\approx\) \(1.13679 + 0.994610i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-3.23 + 2.35i)T \)
41 \( 1 + (714. - 1.07e4i)T \)
good3 \( 1 + 2.80iT - 243T^{2} \)
5 \( 1 + (7.78 - 23.9i)T + (-2.52e3 - 1.83e3i)T^{2} \)
7 \( 1 + (138. - 189. i)T + (-5.19e3 - 1.59e4i)T^{2} \)
11 \( 1 + (705. - 229. i)T + (1.30e5 - 9.46e4i)T^{2} \)
13 \( 1 + (-317. - 437. i)T + (-1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (-1.20e3 + 392. i)T + (1.14e6 - 8.34e5i)T^{2} \)
19 \( 1 + (234. - 322. i)T + (-7.65e5 - 2.35e6i)T^{2} \)
23 \( 1 + (2.98e3 - 2.16e3i)T + (1.98e6 - 6.12e6i)T^{2} \)
29 \( 1 + (1.88e3 + 611. i)T + (1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (-535. - 1.64e3i)T + (-2.31e7 + 1.68e7i)T^{2} \)
37 \( 1 + (-1.24e3 + 3.82e3i)T + (-5.61e7 - 4.07e7i)T^{2} \)
43 \( 1 + (911. - 661. i)T + (4.54e7 - 1.39e8i)T^{2} \)
47 \( 1 + (-359. - 494. i)T + (-7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (2.56e4 + 8.34e3i)T + (3.38e8 + 2.45e8i)T^{2} \)
59 \( 1 + (-3.77e4 + 2.74e4i)T + (2.20e8 - 6.79e8i)T^{2} \)
61 \( 1 + (1.69e4 + 1.23e4i)T + (2.60e8 + 8.03e8i)T^{2} \)
67 \( 1 + (-9.45e3 - 3.07e3i)T + (1.09e9 + 7.93e8i)T^{2} \)
71 \( 1 + (2.56e4 - 8.33e3i)T + (1.45e9 - 1.06e9i)T^{2} \)
73 \( 1 + 1.65e4T + 2.07e9T^{2} \)
79 \( 1 + 2.48e4iT - 3.07e9T^{2} \)
83 \( 1 - 5.16e4T + 3.93e9T^{2} \)
89 \( 1 + (2.37e4 - 3.27e4i)T + (-1.72e9 - 5.31e9i)T^{2} \)
97 \( 1 + (-1.69e5 - 5.51e4i)T + (6.94e9 + 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21614606314623927753661734776, −12.66243951381028079941367783616, −11.70379928637331859769886664913, −10.26669537283218598032586538061, −9.477994755844923181713218997453, −7.72065492057618777451411373605, −6.35915268877349945168603402024, −5.19039359415823523081251745147, −3.36170301503651861987657770719, −2.10537001262170126958769765543, 0.51045295528027533840680397546, 3.26048698149957952894786558629, 4.42270497528882175361410096600, 5.89027570324208595472425285698, 7.27995418354318673569215681403, 8.195545310156914801220920013325, 10.12874204260796715942408443427, 10.59488172420874834343825057027, 12.61907699966111563685898406971, 13.06882432982823014341939351697

Graph of the $Z$-function along the critical line