Properties

Label 2-82-41.4-c5-0-15
Degree $2$
Conductor $82$
Sign $-0.805 + 0.593i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.23 − 2.35i)2-s − 13.3i·3-s + (4.94 − 15.2i)4-s + (−5.46 + 16.8i)5-s + (−31.4 − 43.2i)6-s + (93.7 − 129. i)7-s + (−19.7 − 60.8i)8-s + 64.5·9-s + (21.8 + 67.2i)10-s + (−207. + 67.4i)11-s + (−203. − 66.0i)12-s + (−646. − 889. i)13-s − 638. i·14-s + (224. + 73.0i)15-s + (−207. − 150. i)16-s + (−62.7 + 20.4i)17-s + ⋯
L(s)  = 1  + (0.572 − 0.415i)2-s − 0.856i·3-s + (0.154 − 0.475i)4-s + (−0.0977 + 0.300i)5-s + (−0.356 − 0.490i)6-s + (0.723 − 0.995i)7-s + (−0.109 − 0.336i)8-s + 0.265·9-s + (0.0691 + 0.212i)10-s + (−0.517 + 0.168i)11-s + (−0.407 − 0.132i)12-s + (−1.06 − 1.46i)13-s − 0.870i·14-s + (0.257 + 0.0837i)15-s + (−0.202 − 0.146i)16-s + (−0.0526 + 0.0171i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 + 0.593i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.805 + 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $-0.805 + 0.593i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (45, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ -0.805 + 0.593i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.700853 - 2.13235i\)
\(L(\frac12)\) \(\approx\) \(0.700853 - 2.13235i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-3.23 + 2.35i)T \)
41 \( 1 + (-8.21e3 + 6.95e3i)T \)
good3 \( 1 + 13.3iT - 243T^{2} \)
5 \( 1 + (5.46 - 16.8i)T + (-2.52e3 - 1.83e3i)T^{2} \)
7 \( 1 + (-93.7 + 129. i)T + (-5.19e3 - 1.59e4i)T^{2} \)
11 \( 1 + (207. - 67.4i)T + (1.30e5 - 9.46e4i)T^{2} \)
13 \( 1 + (646. + 889. i)T + (-1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (62.7 - 20.4i)T + (1.14e6 - 8.34e5i)T^{2} \)
19 \( 1 + (361. - 497. i)T + (-7.65e5 - 2.35e6i)T^{2} \)
23 \( 1 + (3.66e3 - 2.66e3i)T + (1.98e6 - 6.12e6i)T^{2} \)
29 \( 1 + (-6.84e3 - 2.22e3i)T + (1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (3.07e3 + 9.47e3i)T + (-2.31e7 + 1.68e7i)T^{2} \)
37 \( 1 + (-797. + 2.45e3i)T + (-5.61e7 - 4.07e7i)T^{2} \)
43 \( 1 + (-1.43e4 + 1.04e4i)T + (4.54e7 - 1.39e8i)T^{2} \)
47 \( 1 + (-3.13e3 - 4.31e3i)T + (-7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (-1.79e4 - 5.83e3i)T + (3.38e8 + 2.45e8i)T^{2} \)
59 \( 1 + (1.60e4 - 1.16e4i)T + (2.20e8 - 6.79e8i)T^{2} \)
61 \( 1 + (-2.29e4 - 1.66e4i)T + (2.60e8 + 8.03e8i)T^{2} \)
67 \( 1 + (-6.62e4 - 2.15e4i)T + (1.09e9 + 7.93e8i)T^{2} \)
71 \( 1 + (2.45e4 - 7.98e3i)T + (1.45e9 - 1.06e9i)T^{2} \)
73 \( 1 + 4.40e4T + 2.07e9T^{2} \)
79 \( 1 - 2.73e4iT - 3.07e9T^{2} \)
83 \( 1 - 1.05e5T + 3.93e9T^{2} \)
89 \( 1 + (-1.29e4 + 1.77e4i)T + (-1.72e9 - 5.31e9i)T^{2} \)
97 \( 1 + (-5.12e4 - 1.66e4i)T + (6.94e9 + 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.90542529510057923901896703927, −12.10293346087269532197958589804, −10.76930144076151581123378953075, −10.03036762438541540637747601839, −7.81408815568950776278152469358, −7.28344435116719736076846952426, −5.60277553075278463163416537011, −4.13911975535605933601454848322, −2.36016312092095020160852543613, −0.795062568572660260040820440957, 2.37459874096858696612052116359, 4.40673782118033472353950943411, 5.00134674629044908417716535988, 6.61009406999019656434317347611, 8.185420305434076671715622514846, 9.200988513301955018737180633133, 10.51364644517588463871458986987, 11.86587541094327046620023471553, 12.55621524577381484428843849648, 14.19037587014577729990154058573

Graph of the $Z$-function along the critical line