Properties

Label 819.2.s.g.289.17
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,44,0,0,4,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.17
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.g.802.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37301 q^{2} +3.63116 q^{4} +(-0.794473 + 1.37607i) q^{5} +(2.03905 - 1.68590i) q^{7} +3.87075 q^{8} +(-1.88529 + 3.26542i) q^{10} +(1.64114 - 2.84254i) q^{11} +(3.29459 + 1.46482i) q^{13} +(4.83869 - 4.00066i) q^{14} +1.92300 q^{16} -5.95318 q^{17} +(3.57521 + 6.19244i) q^{19} +(-2.88486 + 4.99672i) q^{20} +(3.89444 - 6.74536i) q^{22} +5.54299 q^{23} +(1.23763 + 2.14363i) q^{25} +(7.81807 + 3.47603i) q^{26} +(7.40413 - 6.12178i) q^{28} +(-3.68065 - 6.37507i) q^{29} +(-4.24807 - 7.35787i) q^{31} -3.17821 q^{32} -14.1269 q^{34} +(0.699942 + 4.14528i) q^{35} -2.55484 q^{37} +(8.48399 + 14.6947i) q^{38} +(-3.07521 + 5.32642i) q^{40} +(1.54466 + 2.67543i) q^{41} +(-5.36917 + 9.29968i) q^{43} +(5.95924 - 10.3217i) q^{44} +13.1535 q^{46} +(-4.29375 + 7.43700i) q^{47} +(1.31547 - 6.87528i) q^{49} +(2.93690 + 5.08685i) q^{50} +(11.9632 + 5.31900i) q^{52} +(-5.97827 - 10.3547i) q^{53} +(2.60768 + 4.51664i) q^{55} +(7.89267 - 6.52571i) q^{56} +(-8.73420 - 15.1281i) q^{58} +1.21539 q^{59} +(-0.319227 - 0.552917i) q^{61} +(-10.0807 - 17.4603i) q^{62} -11.3879 q^{64} +(-4.63315 + 3.36981i) q^{65} +(-0.682078 + 1.18139i) q^{67} -21.6170 q^{68} +(1.66097 + 9.83677i) q^{70} +(-1.19321 + 2.06670i) q^{71} +(-0.309169 - 0.535496i) q^{73} -6.06265 q^{74} +(12.9822 + 22.4858i) q^{76} +(-1.44587 - 8.56288i) q^{77} +(7.41828 - 12.8488i) q^{79} +(-1.52777 + 2.64618i) q^{80} +(3.66549 + 6.34882i) q^{82} -10.1913 q^{83} +(4.72964 - 8.19198i) q^{85} +(-12.7411 + 22.0682i) q^{86} +(6.35245 - 11.0028i) q^{88} -8.27717 q^{89} +(9.18738 - 2.56750i) q^{91} +20.1275 q^{92} +(-10.1891 + 17.6480i) q^{94} -11.3616 q^{95} +(0.831568 - 1.44032i) q^{97} +(3.12162 - 16.3151i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 44 q^{4} + 4 q^{7} + 8 q^{10} + 20 q^{16} + 4 q^{19} - 10 q^{22} - 22 q^{25} + 16 q^{28} - 18 q^{31} + 8 q^{34} - 20 q^{37} + 14 q^{40} + 20 q^{43} + 8 q^{46} - 12 q^{49} + 10 q^{52} + 42 q^{55}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37301 1.67797 0.838985 0.544155i \(-0.183150\pi\)
0.838985 + 0.544155i \(0.183150\pi\)
\(3\) 0 0
\(4\) 3.63116 1.81558
\(5\) −0.794473 + 1.37607i −0.355299 + 0.615396i −0.987169 0.159678i \(-0.948954\pi\)
0.631870 + 0.775074i \(0.282288\pi\)
\(6\) 0 0
\(7\) 2.03905 1.68590i 0.770689 0.637211i
\(8\) 3.87075 1.36852
\(9\) 0 0
\(10\) −1.88529 + 3.26542i −0.596181 + 1.03262i
\(11\) 1.64114 2.84254i 0.494822 0.857057i −0.505160 0.863026i \(-0.668566\pi\)
0.999982 + 0.00596843i \(0.00189982\pi\)
\(12\) 0 0
\(13\) 3.29459 + 1.46482i 0.913754 + 0.406269i
\(14\) 4.83869 4.00066i 1.29319 1.06922i
\(15\) 0 0
\(16\) 1.92300 0.480751
\(17\) −5.95318 −1.44386 −0.721929 0.691967i \(-0.756744\pi\)
−0.721929 + 0.691967i \(0.756744\pi\)
\(18\) 0 0
\(19\) 3.57521 + 6.19244i 0.820209 + 1.42064i 0.905526 + 0.424290i \(0.139476\pi\)
−0.0853172 + 0.996354i \(0.527190\pi\)
\(20\) −2.88486 + 4.99672i −0.645074 + 1.11730i
\(21\) 0 0
\(22\) 3.89444 6.74536i 0.830296 1.43812i
\(23\) 5.54299 1.15579 0.577896 0.816110i \(-0.303874\pi\)
0.577896 + 0.816110i \(0.303874\pi\)
\(24\) 0 0
\(25\) 1.23763 + 2.14363i 0.247525 + 0.428726i
\(26\) 7.81807 + 3.47603i 1.53325 + 0.681706i
\(27\) 0 0
\(28\) 7.40413 6.12178i 1.39925 1.15691i
\(29\) −3.68065 6.37507i −0.683479 1.18382i −0.973912 0.226925i \(-0.927133\pi\)
0.290433 0.956895i \(-0.406201\pi\)
\(30\) 0 0
\(31\) −4.24807 7.35787i −0.762976 1.32151i −0.941310 0.337542i \(-0.890404\pi\)
0.178335 0.983970i \(-0.442929\pi\)
\(32\) −3.17821 −0.561833
\(33\) 0 0
\(34\) −14.1269 −2.42275
\(35\) 0.699942 + 4.14528i 0.118312 + 0.700680i
\(36\) 0 0
\(37\) −2.55484 −0.420013 −0.210006 0.977700i \(-0.567348\pi\)
−0.210006 + 0.977700i \(0.567348\pi\)
\(38\) 8.48399 + 14.6947i 1.37629 + 2.38380i
\(39\) 0 0
\(40\) −3.07521 + 5.32642i −0.486233 + 0.842181i
\(41\) 1.54466 + 2.67543i 0.241236 + 0.417832i 0.961067 0.276317i \(-0.0891140\pi\)
−0.719831 + 0.694149i \(0.755781\pi\)
\(42\) 0 0
\(43\) −5.36917 + 9.29968i −0.818791 + 1.41819i 0.0877830 + 0.996140i \(0.472022\pi\)
−0.906574 + 0.422048i \(0.861312\pi\)
\(44\) 5.95924 10.3217i 0.898390 1.55606i
\(45\) 0 0
\(46\) 13.1535 1.93938
\(47\) −4.29375 + 7.43700i −0.626308 + 1.08480i 0.361978 + 0.932186i \(0.382101\pi\)
−0.988286 + 0.152611i \(0.951232\pi\)
\(48\) 0 0
\(49\) 1.31547 6.87528i 0.187925 0.982183i
\(50\) 2.93690 + 5.08685i 0.415340 + 0.719389i
\(51\) 0 0
\(52\) 11.9632 + 5.31900i 1.65899 + 0.737613i
\(53\) −5.97827 10.3547i −0.821179 1.42232i −0.904805 0.425827i \(-0.859983\pi\)
0.0836255 0.996497i \(-0.473350\pi\)
\(54\) 0 0
\(55\) 2.60768 + 4.51664i 0.351620 + 0.609023i
\(56\) 7.89267 6.52571i 1.05470 0.872035i
\(57\) 0 0
\(58\) −8.73420 15.1281i −1.14686 1.98641i
\(59\) 1.21539 0.158231 0.0791154 0.996865i \(-0.474790\pi\)
0.0791154 + 0.996865i \(0.474790\pi\)
\(60\) 0 0
\(61\) −0.319227 0.552917i −0.0408728 0.0707938i 0.844865 0.534979i \(-0.179681\pi\)
−0.885738 + 0.464185i \(0.846347\pi\)
\(62\) −10.0807 17.4603i −1.28025 2.21746i
\(63\) 0 0
\(64\) −11.3879 −1.42349
\(65\) −4.63315 + 3.36981i −0.574672 + 0.417973i
\(66\) 0 0
\(67\) −0.682078 + 1.18139i −0.0833291 + 0.144330i −0.904678 0.426096i \(-0.859889\pi\)
0.821349 + 0.570426i \(0.193222\pi\)
\(68\) −21.6170 −2.62144
\(69\) 0 0
\(70\) 1.66097 + 9.83677i 0.198524 + 1.17572i
\(71\) −1.19321 + 2.06670i −0.141608 + 0.245272i −0.928102 0.372325i \(-0.878561\pi\)
0.786494 + 0.617598i \(0.211894\pi\)
\(72\) 0 0
\(73\) −0.309169 0.535496i −0.0361855 0.0626751i 0.847366 0.531010i \(-0.178187\pi\)
−0.883551 + 0.468335i \(0.844854\pi\)
\(74\) −6.06265 −0.704768
\(75\) 0 0
\(76\) 12.9822 + 22.4858i 1.48916 + 2.57929i
\(77\) −1.44587 8.56288i −0.164772 0.975831i
\(78\) 0 0
\(79\) 7.41828 12.8488i 0.834622 1.44561i −0.0597162 0.998215i \(-0.519020\pi\)
0.894338 0.447392i \(-0.147647\pi\)
\(80\) −1.52777 + 2.64618i −0.170810 + 0.295852i
\(81\) 0 0
\(82\) 3.66549 + 6.34882i 0.404786 + 0.701110i
\(83\) −10.1913 −1.11864 −0.559319 0.828953i \(-0.688937\pi\)
−0.559319 + 0.828953i \(0.688937\pi\)
\(84\) 0 0
\(85\) 4.72964 8.19198i 0.513002 0.888545i
\(86\) −12.7411 + 22.0682i −1.37391 + 2.37967i
\(87\) 0 0
\(88\) 6.35245 11.0028i 0.677173 1.17290i
\(89\) −8.27717 −0.877379 −0.438689 0.898639i \(-0.644557\pi\)
−0.438689 + 0.898639i \(0.644557\pi\)
\(90\) 0 0
\(91\) 9.18738 2.56750i 0.963099 0.269147i
\(92\) 20.1275 2.09843
\(93\) 0 0
\(94\) −10.1891 + 17.6480i −1.05093 + 1.82026i
\(95\) −11.3616 −1.16568
\(96\) 0 0
\(97\) 0.831568 1.44032i 0.0844329 0.146242i −0.820717 0.571336i \(-0.806425\pi\)
0.905149 + 0.425094i \(0.139759\pi\)
\(98\) 3.12162 16.3151i 0.315331 1.64807i
\(99\) 0 0
\(100\) 4.49402 + 7.78387i 0.449402 + 0.778387i
\(101\) 0.0969105 0.167854i 0.00964296 0.0167021i −0.861164 0.508328i \(-0.830264\pi\)
0.870807 + 0.491626i \(0.163597\pi\)
\(102\) 0 0
\(103\) 1.31879 2.28421i 0.129944 0.225070i −0.793710 0.608296i \(-0.791853\pi\)
0.923655 + 0.383225i \(0.125187\pi\)
\(104\) 12.7525 + 5.66997i 1.25049 + 0.555986i
\(105\) 0 0
\(106\) −14.1865 24.5717i −1.37791 2.38662i
\(107\) −3.61628 −0.349599 −0.174800 0.984604i \(-0.555928\pi\)
−0.174800 + 0.984604i \(0.555928\pi\)
\(108\) 0 0
\(109\) −0.193567 0.335267i −0.0185403 0.0321128i 0.856606 0.515970i \(-0.172569\pi\)
−0.875147 + 0.483858i \(0.839235\pi\)
\(110\) 6.18805 + 10.7180i 0.590007 + 1.02192i
\(111\) 0 0
\(112\) 3.92111 3.24200i 0.370510 0.306340i
\(113\) 5.11211 8.85443i 0.480907 0.832955i −0.518853 0.854863i \(-0.673641\pi\)
0.999760 + 0.0219083i \(0.00697418\pi\)
\(114\) 0 0
\(115\) −4.40375 + 7.62752i −0.410652 + 0.711270i
\(116\) −13.3650 23.1489i −1.24091 2.14932i
\(117\) 0 0
\(118\) 2.88414 0.265507
\(119\) −12.1389 + 10.0365i −1.11277 + 0.920042i
\(120\) 0 0
\(121\) 0.113320 + 0.196276i 0.0103018 + 0.0178433i
\(122\) −0.757528 1.31208i −0.0685833 0.118790i
\(123\) 0 0
\(124\) −15.4254 26.7176i −1.38524 2.39931i
\(125\) −11.8778 −1.06238
\(126\) 0 0
\(127\) 2.95916 + 5.12542i 0.262583 + 0.454807i 0.966928 0.255051i \(-0.0820923\pi\)
−0.704345 + 0.709858i \(0.748759\pi\)
\(128\) −20.6672 −1.82674
\(129\) 0 0
\(130\) −10.9945 + 7.99658i −0.964282 + 0.701347i
\(131\) 0.623862 1.08056i 0.0545071 0.0944090i −0.837484 0.546461i \(-0.815975\pi\)
0.891991 + 0.452052i \(0.149308\pi\)
\(132\) 0 0
\(133\) 17.7299 + 6.59927i 1.53738 + 0.572229i
\(134\) −1.61858 + 2.80346i −0.139824 + 0.242182i
\(135\) 0 0
\(136\) −23.0433 −1.97595
\(137\) 1.04945 0.0896607 0.0448304 0.998995i \(-0.485725\pi\)
0.0448304 + 0.998995i \(0.485725\pi\)
\(138\) 0 0
\(139\) −1.79256 + 3.10480i −0.152043 + 0.263346i −0.931978 0.362514i \(-0.881918\pi\)
0.779936 + 0.625860i \(0.215252\pi\)
\(140\) 2.54160 + 15.0522i 0.214805 + 1.27214i
\(141\) 0 0
\(142\) −2.83149 + 4.90429i −0.237614 + 0.411559i
\(143\) 9.57069 6.96101i 0.800341 0.582109i
\(144\) 0 0
\(145\) 11.6967 0.971357
\(146\) −0.733659 1.27074i −0.0607181 0.105167i
\(147\) 0 0
\(148\) −9.27702 −0.762567
\(149\) 11.2765 + 19.5315i 0.923806 + 1.60008i 0.793470 + 0.608609i \(0.208272\pi\)
0.130336 + 0.991470i \(0.458394\pi\)
\(150\) 0 0
\(151\) −7.36849 12.7626i −0.599639 1.03861i −0.992874 0.119167i \(-0.961977\pi\)
0.393235 0.919438i \(-0.371356\pi\)
\(152\) 13.8388 + 23.9694i 1.12247 + 1.94418i
\(153\) 0 0
\(154\) −3.43105 20.3198i −0.276482 1.63741i
\(155\) 13.4999 1.08434
\(156\) 0 0
\(157\) 6.63722 + 11.4960i 0.529708 + 0.917481i 0.999399 + 0.0346506i \(0.0110318\pi\)
−0.469691 + 0.882831i \(0.655635\pi\)
\(158\) 17.6036 30.4904i 1.40047 2.42568i
\(159\) 0 0
\(160\) 2.52500 4.37342i 0.199619 0.345750i
\(161\) 11.3024 9.34493i 0.890757 0.736484i
\(162\) 0 0
\(163\) 2.40964 + 4.17362i 0.188738 + 0.326904i 0.944830 0.327562i \(-0.106227\pi\)
−0.756092 + 0.654466i \(0.772894\pi\)
\(164\) 5.60892 + 9.71493i 0.437983 + 0.758608i
\(165\) 0 0
\(166\) −24.1840 −1.87704
\(167\) −4.56029 7.89865i −0.352886 0.611216i 0.633868 0.773441i \(-0.281466\pi\)
−0.986754 + 0.162225i \(0.948133\pi\)
\(168\) 0 0
\(169\) 8.70859 + 9.65197i 0.669892 + 0.742459i
\(170\) 11.2235 19.4396i 0.860801 1.49095i
\(171\) 0 0
\(172\) −19.4963 + 33.7686i −1.48658 + 2.57483i
\(173\) 7.84037 + 13.5799i 0.596092 + 1.03246i 0.993392 + 0.114773i \(0.0366140\pi\)
−0.397300 + 0.917689i \(0.630053\pi\)
\(174\) 0 0
\(175\) 6.13754 + 2.28446i 0.463954 + 0.172689i
\(176\) 3.15592 5.46621i 0.237886 0.412031i
\(177\) 0 0
\(178\) −19.6418 −1.47221
\(179\) −5.05568 + 8.75670i −0.377879 + 0.654506i −0.990753 0.135674i \(-0.956680\pi\)
0.612874 + 0.790181i \(0.290013\pi\)
\(180\) 0 0
\(181\) −16.7897 −1.24797 −0.623983 0.781438i \(-0.714487\pi\)
−0.623983 + 0.781438i \(0.714487\pi\)
\(182\) 21.8017 6.09269i 1.61605 0.451620i
\(183\) 0 0
\(184\) 21.4555 1.58172
\(185\) 2.02975 3.51563i 0.149230 0.258474i
\(186\) 0 0
\(187\) −9.77000 + 16.9221i −0.714453 + 1.23747i
\(188\) −15.5913 + 27.0049i −1.13711 + 1.96954i
\(189\) 0 0
\(190\) −26.9612 −1.95597
\(191\) 9.45382 + 16.3745i 0.684055 + 1.18482i 0.973733 + 0.227693i \(0.0731183\pi\)
−0.289678 + 0.957124i \(0.593548\pi\)
\(192\) 0 0
\(193\) 3.92508 6.79844i 0.282534 0.489362i −0.689475 0.724310i \(-0.742158\pi\)
0.972008 + 0.234947i \(0.0754918\pi\)
\(194\) 1.97332 3.41788i 0.141676 0.245390i
\(195\) 0 0
\(196\) 4.77669 24.9653i 0.341192 1.78323i
\(197\) 12.5419 + 21.7232i 0.893572 + 1.54771i 0.835562 + 0.549396i \(0.185142\pi\)
0.0580100 + 0.998316i \(0.481524\pi\)
\(198\) 0 0
\(199\) −7.78382 −0.551780 −0.275890 0.961189i \(-0.588973\pi\)
−0.275890 + 0.961189i \(0.588973\pi\)
\(200\) 4.79055 + 8.29747i 0.338743 + 0.586720i
\(201\) 0 0
\(202\) 0.229969 0.398319i 0.0161806 0.0280256i
\(203\) −18.2528 6.79389i −1.28109 0.476837i
\(204\) 0 0
\(205\) −4.90877 −0.342843
\(206\) 3.12950 5.42046i 0.218043 0.377661i
\(207\) 0 0
\(208\) 6.33550 + 2.81686i 0.439288 + 0.195314i
\(209\) 23.4697 1.62343
\(210\) 0 0
\(211\) 1.17458 + 2.03443i 0.0808614 + 0.140056i 0.903620 0.428335i \(-0.140900\pi\)
−0.822759 + 0.568391i \(0.807566\pi\)
\(212\) −21.7081 37.5995i −1.49092 2.58234i
\(213\) 0 0
\(214\) −8.58147 −0.586617
\(215\) −8.53132 14.7767i −0.581831 1.00776i
\(216\) 0 0
\(217\) −21.0667 7.84126i −1.43010 0.532299i
\(218\) −0.459335 0.795591i −0.0311101 0.0538842i
\(219\) 0 0
\(220\) 9.46891 + 16.4006i 0.638394 + 1.10573i
\(221\) −19.6133 8.72035i −1.31933 0.586594i
\(222\) 0 0
\(223\) −5.78913 10.0271i −0.387669 0.671462i 0.604467 0.796630i \(-0.293386\pi\)
−0.992136 + 0.125168i \(0.960053\pi\)
\(224\) −6.48053 + 5.35814i −0.432998 + 0.358006i
\(225\) 0 0
\(226\) 12.1311 21.0116i 0.806947 1.39767i
\(227\) 12.9795 0.861479 0.430739 0.902476i \(-0.358253\pi\)
0.430739 + 0.902476i \(0.358253\pi\)
\(228\) 0 0
\(229\) 9.63048 16.6805i 0.636400 1.10228i −0.349817 0.936818i \(-0.613756\pi\)
0.986217 0.165459i \(-0.0529105\pi\)
\(230\) −10.4501 + 18.1002i −0.689061 + 1.19349i
\(231\) 0 0
\(232\) −14.2469 24.6763i −0.935353 1.62008i
\(233\) 6.25233 10.8294i 0.409604 0.709454i −0.585242 0.810859i \(-0.699000\pi\)
0.994845 + 0.101405i \(0.0323337\pi\)
\(234\) 0 0
\(235\) −6.82254 11.8170i −0.445053 0.770855i
\(236\) 4.41329 0.287281
\(237\) 0 0
\(238\) −28.8056 + 23.8166i −1.86719 + 1.54380i
\(239\) 29.7431 1.92392 0.961961 0.273187i \(-0.0880776\pi\)
0.961961 + 0.273187i \(0.0880776\pi\)
\(240\) 0 0
\(241\) 16.1479 1.04018 0.520090 0.854112i \(-0.325898\pi\)
0.520090 + 0.854112i \(0.325898\pi\)
\(242\) 0.268909 + 0.465764i 0.0172861 + 0.0299404i
\(243\) 0 0
\(244\) −1.15916 2.00773i −0.0742079 0.128532i
\(245\) 8.41575 + 7.27240i 0.537662 + 0.464617i
\(246\) 0 0
\(247\) 2.70800 + 25.6386i 0.172306 + 1.63134i
\(248\) −16.4432 28.4805i −1.04415 1.80851i
\(249\) 0 0
\(250\) −28.1860 −1.78264
\(251\) 9.80082 16.9755i 0.618622 1.07149i −0.371115 0.928587i \(-0.621024\pi\)
0.989737 0.142898i \(-0.0456422\pi\)
\(252\) 0 0
\(253\) 9.09682 15.7561i 0.571912 0.990580i
\(254\) 7.02211 + 12.1626i 0.440606 + 0.763152i
\(255\) 0 0
\(256\) −26.2675 −1.64172
\(257\) −5.97902 −0.372961 −0.186481 0.982459i \(-0.559708\pi\)
−0.186481 + 0.982459i \(0.559708\pi\)
\(258\) 0 0
\(259\) −5.20945 + 4.30720i −0.323699 + 0.267637i
\(260\) −16.8237 + 12.2363i −1.04336 + 0.758864i
\(261\) 0 0
\(262\) 1.48043 2.56418i 0.0914612 0.158415i
\(263\) −7.49612 + 12.9837i −0.462231 + 0.800607i −0.999072 0.0430764i \(-0.986284\pi\)
0.536841 + 0.843683i \(0.319617\pi\)
\(264\) 0 0
\(265\) 18.9983 1.16706
\(266\) 42.0731 + 15.6601i 2.57967 + 0.960183i
\(267\) 0 0
\(268\) −2.47674 + 4.28983i −0.151291 + 0.262043i
\(269\) −10.2059 −0.622263 −0.311131 0.950367i \(-0.600708\pi\)
−0.311131 + 0.950367i \(0.600708\pi\)
\(270\) 0 0
\(271\) 5.93324 0.360419 0.180209 0.983628i \(-0.442322\pi\)
0.180209 + 0.983628i \(0.442322\pi\)
\(272\) −11.4480 −0.694137
\(273\) 0 0
\(274\) 2.49036 0.150448
\(275\) 8.12447 0.489924
\(276\) 0 0
\(277\) 8.37533 0.503225 0.251612 0.967828i \(-0.419039\pi\)
0.251612 + 0.967828i \(0.419039\pi\)
\(278\) −4.25375 + 7.36771i −0.255123 + 0.441886i
\(279\) 0 0
\(280\) 2.70930 + 16.0453i 0.161912 + 0.958893i
\(281\) −13.9797 −0.833958 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(282\) 0 0
\(283\) 8.44102 14.6203i 0.501766 0.869085i −0.498232 0.867044i \(-0.666017\pi\)
0.999998 0.00204071i \(-0.000649577\pi\)
\(284\) −4.33274 + 7.50452i −0.257101 + 0.445311i
\(285\) 0 0
\(286\) 22.7113 16.5185i 1.34295 0.976760i
\(287\) 7.66016 + 2.85120i 0.452165 + 0.168301i
\(288\) 0 0
\(289\) 18.4404 1.08473
\(290\) 27.7563 1.62991
\(291\) 0 0
\(292\) −1.12264 1.94447i −0.0656976 0.113792i
\(293\) 14.2012 24.5972i 0.829643 1.43698i −0.0686755 0.997639i \(-0.521877\pi\)
0.898319 0.439345i \(-0.144789\pi\)
\(294\) 0 0
\(295\) −0.965598 + 1.67246i −0.0562193 + 0.0973746i
\(296\) −9.88915 −0.574795
\(297\) 0 0
\(298\) 26.7592 + 46.3483i 1.55012 + 2.68488i
\(299\) 18.2618 + 8.11949i 1.05611 + 0.469562i
\(300\) 0 0
\(301\) 4.73032 + 28.0144i 0.272651 + 1.61472i
\(302\) −17.4855 30.2857i −1.00618 1.74275i
\(303\) 0 0
\(304\) 6.87514 + 11.9081i 0.394317 + 0.682976i
\(305\) 1.01447 0.0580883
\(306\) 0 0
\(307\) 23.5914 1.34643 0.673217 0.739445i \(-0.264912\pi\)
0.673217 + 0.739445i \(0.264912\pi\)
\(308\) −5.25018 31.0932i −0.299157 1.77170i
\(309\) 0 0
\(310\) 32.0353 1.81949
\(311\) 3.26084 + 5.64795i 0.184905 + 0.320266i 0.943545 0.331245i \(-0.107469\pi\)
−0.758639 + 0.651511i \(0.774135\pi\)
\(312\) 0 0
\(313\) −7.81661 + 13.5388i −0.441821 + 0.765256i −0.997825 0.0659236i \(-0.979001\pi\)
0.556004 + 0.831180i \(0.312334\pi\)
\(314\) 15.7502 + 27.2801i 0.888834 + 1.53951i
\(315\) 0 0
\(316\) 26.9370 46.6562i 1.51532 2.62462i
\(317\) −8.89819 + 15.4121i −0.499772 + 0.865631i −1.00000 0.000262972i \(-0.999916\pi\)
0.500228 + 0.865894i \(0.333250\pi\)
\(318\) 0 0
\(319\) −24.1618 −1.35280
\(320\) 9.04739 15.6705i 0.505764 0.876009i
\(321\) 0 0
\(322\) 26.8208 22.1756i 1.49466 1.23580i
\(323\) −21.2839 36.8647i −1.18427 2.05121i
\(324\) 0 0
\(325\) 0.937427 + 8.87528i 0.0519991 + 0.492312i
\(326\) 5.71810 + 9.90404i 0.316696 + 0.548534i
\(327\) 0 0
\(328\) 5.97901 + 10.3559i 0.330135 + 0.571811i
\(329\) 3.78286 + 22.4033i 0.208556 + 1.23513i
\(330\) 0 0
\(331\) −0.820913 1.42186i −0.0451215 0.0781527i 0.842583 0.538567i \(-0.181034\pi\)
−0.887704 + 0.460414i \(0.847701\pi\)
\(332\) −37.0062 −2.03098
\(333\) 0 0
\(334\) −10.8216 18.7436i −0.592131 1.02560i
\(335\) −1.08379 1.87717i −0.0592135 0.102561i
\(336\) 0 0
\(337\) 7.89772 0.430216 0.215108 0.976590i \(-0.430990\pi\)
0.215108 + 0.976590i \(0.430990\pi\)
\(338\) 20.6655 + 22.9042i 1.12406 + 1.24582i
\(339\) 0 0
\(340\) 17.1741 29.7464i 0.931395 1.61322i
\(341\) −27.8867 −1.51015
\(342\) 0 0
\(343\) −8.90874 16.2368i −0.481027 0.876706i
\(344\) −20.7827 + 35.9968i −1.12053 + 1.94082i
\(345\) 0 0
\(346\) 18.6052 + 32.2252i 1.00022 + 1.73244i
\(347\) 5.52400 0.296544 0.148272 0.988947i \(-0.452629\pi\)
0.148272 + 0.988947i \(0.452629\pi\)
\(348\) 0 0
\(349\) −4.98919 8.64153i −0.267065 0.462570i 0.701037 0.713124i \(-0.252721\pi\)
−0.968103 + 0.250554i \(0.919387\pi\)
\(350\) 14.5644 + 5.42104i 0.778501 + 0.289767i
\(351\) 0 0
\(352\) −5.21588 + 9.03417i −0.278007 + 0.481523i
\(353\) 5.29640 9.17364i 0.281899 0.488264i −0.689953 0.723854i \(-0.742369\pi\)
0.971852 + 0.235590i \(0.0757023\pi\)
\(354\) 0 0
\(355\) −1.89595 3.28387i −0.100626 0.174290i
\(356\) −30.0557 −1.59295
\(357\) 0 0
\(358\) −11.9972 + 20.7797i −0.634070 + 1.09824i
\(359\) 10.4330 18.0706i 0.550635 0.953728i −0.447594 0.894237i \(-0.647719\pi\)
0.998229 0.0594908i \(-0.0189477\pi\)
\(360\) 0 0
\(361\) −16.0642 + 27.8241i −0.845486 + 1.46442i
\(362\) −39.8420 −2.09405
\(363\) 0 0
\(364\) 33.3609 9.32300i 1.74858 0.488658i
\(365\) 0.982504 0.0514266
\(366\) 0 0
\(367\) 4.84685 8.39499i 0.253003 0.438215i −0.711348 0.702840i \(-0.751915\pi\)
0.964351 + 0.264625i \(0.0852483\pi\)
\(368\) 10.6592 0.555649
\(369\) 0 0
\(370\) 4.81661 8.34261i 0.250403 0.433712i
\(371\) −29.6470 11.0349i −1.53919 0.572906i
\(372\) 0 0
\(373\) 6.21589 + 10.7662i 0.321847 + 0.557455i 0.980869 0.194668i \(-0.0623631\pi\)
−0.659022 + 0.752123i \(0.729030\pi\)
\(374\) −23.1843 + 40.1564i −1.19883 + 2.07644i
\(375\) 0 0
\(376\) −16.6201 + 28.7868i −0.857114 + 1.48456i
\(377\) −2.78787 26.3947i −0.143582 1.35940i
\(378\) 0 0
\(379\) −13.3427 23.1102i −0.685368 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287953 0.957644i \(-0.407025\pi\)
\(380\) −41.2559 −2.11638
\(381\) 0 0
\(382\) 22.4340 + 38.8568i 1.14782 + 1.98809i
\(383\) −1.28041 2.21774i −0.0654260 0.113321i 0.831457 0.555589i \(-0.187507\pi\)
−0.896883 + 0.442268i \(0.854174\pi\)
\(384\) 0 0
\(385\) 12.9318 + 4.81337i 0.659066 + 0.245312i
\(386\) 9.31424 16.1327i 0.474083 0.821135i
\(387\) 0 0
\(388\) 3.01956 5.23002i 0.153295 0.265514i
\(389\) 10.0916 + 17.4792i 0.511664 + 0.886228i 0.999909 + 0.0135213i \(0.00430410\pi\)
−0.488244 + 0.872707i \(0.662363\pi\)
\(390\) 0 0
\(391\) −32.9984 −1.66880
\(392\) 5.09187 26.6125i 0.257178 1.34414i
\(393\) 0 0
\(394\) 29.7620 + 51.5492i 1.49939 + 2.59701i
\(395\) 11.7872 + 20.4161i 0.593081 + 1.02725i
\(396\) 0 0
\(397\) 2.85126 + 4.93853i 0.143101 + 0.247858i 0.928663 0.370925i \(-0.120959\pi\)
−0.785562 + 0.618783i \(0.787626\pi\)
\(398\) −18.4711 −0.925871
\(399\) 0 0
\(400\) 2.37996 + 4.12221i 0.118998 + 0.206111i
\(401\) −5.32871 −0.266103 −0.133051 0.991109i \(-0.542478\pi\)
−0.133051 + 0.991109i \(0.542478\pi\)
\(402\) 0 0
\(403\) −3.21765 30.4638i −0.160283 1.51751i
\(404\) 0.351898 0.609505i 0.0175076 0.0303240i
\(405\) 0 0
\(406\) −43.3139 16.1219i −2.14963 0.800118i
\(407\) −4.19285 + 7.26222i −0.207832 + 0.359975i
\(408\) 0 0
\(409\) −21.6886 −1.07243 −0.536216 0.844081i \(-0.680147\pi\)
−0.536216 + 0.844081i \(0.680147\pi\)
\(410\) −11.6485 −0.575280
\(411\) 0 0
\(412\) 4.78874 8.29435i 0.235924 0.408633i
\(413\) 2.47825 2.04904i 0.121947 0.100826i
\(414\) 0 0
\(415\) 8.09669 14.0239i 0.397451 0.688405i
\(416\) −10.4709 4.65551i −0.513377 0.228255i
\(417\) 0 0
\(418\) 55.6937 2.72407
\(419\) 18.0347 + 31.2369i 0.881050 + 1.52602i 0.850175 + 0.526501i \(0.176496\pi\)
0.0308759 + 0.999523i \(0.490170\pi\)
\(420\) 0 0
\(421\) 17.4314 0.849552 0.424776 0.905298i \(-0.360353\pi\)
0.424776 + 0.905298i \(0.360353\pi\)
\(422\) 2.78729 + 4.82772i 0.135683 + 0.235010i
\(423\) 0 0
\(424\) −23.1404 40.0804i −1.12380 1.94648i
\(425\) −7.36781 12.7614i −0.357391 0.619020i
\(426\) 0 0
\(427\) −1.58308 0.589242i −0.0766108 0.0285154i
\(428\) −13.1313 −0.634726
\(429\) 0 0
\(430\) −20.2449 35.0652i −0.976295 1.69099i
\(431\) −0.337428 + 0.584442i −0.0162533 + 0.0281516i −0.874038 0.485858i \(-0.838507\pi\)
0.857784 + 0.514010i \(0.171840\pi\)
\(432\) 0 0
\(433\) 9.80271 16.9788i 0.471088 0.815948i −0.528365 0.849017i \(-0.677195\pi\)
0.999453 + 0.0330689i \(0.0105281\pi\)
\(434\) −49.9914 18.6074i −2.39966 0.893182i
\(435\) 0 0
\(436\) −0.702871 1.21741i −0.0336614 0.0583033i
\(437\) 19.8173 + 34.3246i 0.947992 + 1.64197i
\(438\) 0 0
\(439\) −32.0250 −1.52847 −0.764236 0.644937i \(-0.776884\pi\)
−0.764236 + 0.644937i \(0.776884\pi\)
\(440\) 10.0937 + 17.4828i 0.481198 + 0.833459i
\(441\) 0 0
\(442\) −46.5424 20.6935i −2.21380 0.984287i
\(443\) 8.77986 15.2072i 0.417144 0.722514i −0.578507 0.815677i \(-0.696364\pi\)
0.995651 + 0.0931630i \(0.0296978\pi\)
\(444\) 0 0
\(445\) 6.57599 11.3899i 0.311732 0.539935i
\(446\) −13.7376 23.7943i −0.650496 1.12669i
\(447\) 0 0
\(448\) −23.2206 + 19.1989i −1.09707 + 0.907063i
\(449\) 2.82841 4.89895i 0.133481 0.231196i −0.791535 0.611123i \(-0.790718\pi\)
0.925016 + 0.379928i \(0.124051\pi\)
\(450\) 0 0
\(451\) 10.1400 0.477475
\(452\) 18.5629 32.1519i 0.873125 1.51230i
\(453\) 0 0
\(454\) 30.8004 1.44553
\(455\) −3.76607 + 14.6823i −0.176556 + 0.688315i
\(456\) 0 0
\(457\) −5.90864 −0.276394 −0.138197 0.990405i \(-0.544131\pi\)
−0.138197 + 0.990405i \(0.544131\pi\)
\(458\) 22.8532 39.5829i 1.06786 1.84959i
\(459\) 0 0
\(460\) −15.9907 + 27.6968i −0.745571 + 1.29137i
\(461\) 19.0332 32.9664i 0.886463 1.53540i 0.0424358 0.999099i \(-0.486488\pi\)
0.844027 0.536300i \(-0.180178\pi\)
\(462\) 0 0
\(463\) −35.4984 −1.64975 −0.824876 0.565314i \(-0.808755\pi\)
−0.824876 + 0.565314i \(0.808755\pi\)
\(464\) −7.07790 12.2593i −0.328583 0.569123i
\(465\) 0 0
\(466\) 14.8368 25.6981i 0.687302 1.19044i
\(467\) 0.127466 0.220777i 0.00589842 0.0102164i −0.863061 0.505099i \(-0.831456\pi\)
0.868960 + 0.494883i \(0.164789\pi\)
\(468\) 0 0
\(469\) 0.600921 + 3.55884i 0.0277480 + 0.164332i
\(470\) −16.1899 28.0418i −0.746786 1.29347i
\(471\) 0 0
\(472\) 4.70449 0.216542
\(473\) 17.6231 + 30.5241i 0.810312 + 1.40350i
\(474\) 0 0
\(475\) −8.84954 + 15.3279i −0.406045 + 0.703290i
\(476\) −44.0781 + 36.4441i −2.02032 + 1.67041i
\(477\) 0 0
\(478\) 70.5806 3.22828
\(479\) 7.59913 13.1621i 0.347213 0.601390i −0.638540 0.769588i \(-0.720461\pi\)
0.985753 + 0.168198i \(0.0537948\pi\)
\(480\) 0 0
\(481\) −8.41713 3.74238i −0.383788 0.170638i
\(482\) 38.3192 1.74539
\(483\) 0 0
\(484\) 0.411483 + 0.712709i 0.0187038 + 0.0323959i
\(485\) 1.32132 + 2.28859i 0.0599978 + 0.103919i
\(486\) 0 0
\(487\) 0.229080 0.0103806 0.00519030 0.999987i \(-0.498348\pi\)
0.00519030 + 0.999987i \(0.498348\pi\)
\(488\) −1.23565 2.14021i −0.0559352 0.0968826i
\(489\) 0 0
\(490\) 19.9706 + 17.2575i 0.902181 + 0.779613i
\(491\) −7.19778 12.4669i −0.324831 0.562624i 0.656647 0.754198i \(-0.271974\pi\)
−0.981478 + 0.191574i \(0.938641\pi\)
\(492\) 0 0
\(493\) 21.9116 + 37.9519i 0.986847 + 1.70927i
\(494\) 6.42611 + 60.8405i 0.289124 + 2.73734i
\(495\) 0 0
\(496\) −8.16906 14.1492i −0.366801 0.635319i
\(497\) 1.05124 + 6.22574i 0.0471543 + 0.279263i
\(498\) 0 0
\(499\) −6.68657 + 11.5815i −0.299332 + 0.518458i −0.975983 0.217845i \(-0.930097\pi\)
0.676651 + 0.736304i \(0.263430\pi\)
\(500\) −43.1301 −1.92884
\(501\) 0 0
\(502\) 23.2574 40.2830i 1.03803 1.79792i
\(503\) −5.78251 + 10.0156i −0.257829 + 0.446574i −0.965660 0.259808i \(-0.916341\pi\)
0.707831 + 0.706382i \(0.249674\pi\)
\(504\) 0 0
\(505\) 0.153986 + 0.266711i 0.00685227 + 0.0118685i
\(506\) 21.5868 37.3894i 0.959650 1.66216i
\(507\) 0 0
\(508\) 10.7452 + 18.6112i 0.476740 + 0.825739i
\(509\) 29.5436 1.30950 0.654748 0.755848i \(-0.272775\pi\)
0.654748 + 0.755848i \(0.272775\pi\)
\(510\) 0 0
\(511\) −1.53320 0.570676i −0.0678250 0.0252452i
\(512\) −20.9987 −0.928019
\(513\) 0 0
\(514\) −14.1883 −0.625817
\(515\) 2.09549 + 3.62949i 0.0923382 + 0.159935i
\(516\) 0 0
\(517\) 14.0933 + 24.4103i 0.619822 + 1.07356i
\(518\) −12.3621 + 10.2210i −0.543158 + 0.449086i
\(519\) 0 0
\(520\) −17.9338 + 13.0437i −0.786449 + 0.572004i
\(521\) −8.38685 14.5265i −0.367435 0.636416i 0.621729 0.783233i \(-0.286431\pi\)
−0.989164 + 0.146817i \(0.953097\pi\)
\(522\) 0 0
\(523\) −40.2787 −1.76127 −0.880633 0.473799i \(-0.842882\pi\)
−0.880633 + 0.473799i \(0.842882\pi\)
\(524\) 2.26534 3.92369i 0.0989619 0.171407i
\(525\) 0 0
\(526\) −17.7883 + 30.8103i −0.775609 + 1.34339i
\(527\) 25.2895 + 43.8027i 1.10163 + 1.90808i
\(528\) 0 0
\(529\) 7.72469 0.335856
\(530\) 45.0831 1.95828
\(531\) 0 0
\(532\) 64.3801 + 23.9630i 2.79123 + 1.03893i
\(533\) 1.16999 + 11.0771i 0.0506778 + 0.479802i
\(534\) 0 0
\(535\) 2.87304 4.97625i 0.124212 0.215142i
\(536\) −2.64016 + 4.57289i −0.114037 + 0.197519i
\(537\) 0 0
\(538\) −24.2186 −1.04414
\(539\) −17.3844 15.0226i −0.748798 0.647068i
\(540\) 0 0
\(541\) 2.65491 4.59844i 0.114144 0.197702i −0.803294 0.595583i \(-0.796921\pi\)
0.917437 + 0.397881i \(0.130254\pi\)
\(542\) 14.0796 0.604772
\(543\) 0 0
\(544\) 18.9204 0.811207
\(545\) 0.615133 0.0263494
\(546\) 0 0
\(547\) 28.9584 1.23817 0.619085 0.785324i \(-0.287504\pi\)
0.619085 + 0.785324i \(0.287504\pi\)
\(548\) 3.81073 0.162786
\(549\) 0 0
\(550\) 19.2794 0.822077
\(551\) 26.3182 45.5844i 1.12119 1.94196i
\(552\) 0 0
\(553\) −6.53561 38.7060i −0.277923 1.64594i
\(554\) 19.8747 0.844395
\(555\) 0 0
\(556\) −6.50906 + 11.2740i −0.276046 + 0.478125i
\(557\) 5.76960 9.99324i 0.244466 0.423427i −0.717516 0.696542i \(-0.754721\pi\)
0.961981 + 0.273115i \(0.0880541\pi\)
\(558\) 0 0
\(559\) −31.3116 + 22.7737i −1.32434 + 0.963225i
\(560\) 1.34599 + 7.97139i 0.0568785 + 0.336853i
\(561\) 0 0
\(562\) −33.1739 −1.39936
\(563\) −23.9625 −1.00990 −0.504949 0.863149i \(-0.668489\pi\)
−0.504949 + 0.863149i \(0.668489\pi\)
\(564\) 0 0
\(565\) 8.12286 + 14.0692i 0.341731 + 0.591896i
\(566\) 20.0306 34.6940i 0.841948 1.45830i
\(567\) 0 0
\(568\) −4.61862 + 7.99969i −0.193793 + 0.335659i
\(569\) −0.632181 −0.0265024 −0.0132512 0.999912i \(-0.504218\pi\)
−0.0132512 + 0.999912i \(0.504218\pi\)
\(570\) 0 0
\(571\) −1.82039 3.15301i −0.0761810 0.131949i 0.825418 0.564522i \(-0.190939\pi\)
−0.901599 + 0.432572i \(0.857606\pi\)
\(572\) 34.7527 25.2765i 1.45308 1.05686i
\(573\) 0 0
\(574\) 18.1776 + 6.76592i 0.758719 + 0.282404i
\(575\) 6.86014 + 11.8821i 0.286088 + 0.495519i
\(576\) 0 0
\(577\) 2.63632 + 4.56623i 0.109751 + 0.190095i 0.915669 0.401932i \(-0.131661\pi\)
−0.805918 + 0.592027i \(0.798328\pi\)
\(578\) 43.7591 1.82014
\(579\) 0 0
\(580\) 42.4726 1.76358
\(581\) −20.7805 + 17.1815i −0.862122 + 0.712808i
\(582\) 0 0
\(583\) −39.2447 −1.62535
\(584\) −1.19672 2.07277i −0.0495205 0.0857720i
\(585\) 0 0
\(586\) 33.6995 58.3693i 1.39212 2.41121i
\(587\) −1.40954 2.44139i −0.0581779 0.100767i 0.835470 0.549537i \(-0.185196\pi\)
−0.893648 + 0.448770i \(0.851862\pi\)
\(588\) 0 0
\(589\) 30.3755 52.6118i 1.25160 2.16783i
\(590\) −2.29137 + 3.96877i −0.0943342 + 0.163392i
\(591\) 0 0
\(592\) −4.91296 −0.201922
\(593\) 7.65704 13.2624i 0.314437 0.544621i −0.664881 0.746949i \(-0.731518\pi\)
0.979318 + 0.202329i \(0.0648510\pi\)
\(594\) 0 0
\(595\) −4.16688 24.6776i −0.170826 1.01168i
\(596\) 40.9467 + 70.9218i 1.67724 + 2.90507i
\(597\) 0 0
\(598\) 43.3355 + 19.2676i 1.77212 + 0.787911i
\(599\) −4.16303 7.21058i −0.170097 0.294616i 0.768357 0.640022i \(-0.221075\pi\)
−0.938453 + 0.345406i \(0.887741\pi\)
\(600\) 0 0
\(601\) −8.31185 14.3965i −0.339047 0.587247i 0.645207 0.764008i \(-0.276771\pi\)
−0.984254 + 0.176761i \(0.943438\pi\)
\(602\) 11.2251 + 66.4784i 0.457500 + 2.70946i
\(603\) 0 0
\(604\) −26.7562 46.3430i −1.08869 1.88567i
\(605\) −0.360118 −0.0146409
\(606\) 0 0
\(607\) 17.3656 + 30.0780i 0.704846 + 1.22083i 0.966747 + 0.255734i \(0.0823172\pi\)
−0.261901 + 0.965095i \(0.584349\pi\)
\(608\) −11.3627 19.6809i −0.460820 0.798164i
\(609\) 0 0
\(610\) 2.40734 0.0974704
\(611\) −25.0400 + 18.2122i −1.01301 + 0.736788i
\(612\) 0 0
\(613\) −1.12628 + 1.95078i −0.0454902 + 0.0787913i −0.887874 0.460087i \(-0.847818\pi\)
0.842384 + 0.538878i \(0.181152\pi\)
\(614\) 55.9826 2.25927
\(615\) 0 0
\(616\) −5.59660 33.1448i −0.225493 1.33544i
\(617\) −13.5484 + 23.4666i −0.545439 + 0.944729i 0.453140 + 0.891440i \(0.350304\pi\)
−0.998579 + 0.0532893i \(0.983029\pi\)
\(618\) 0 0
\(619\) 16.6208 + 28.7880i 0.668045 + 1.15709i 0.978450 + 0.206484i \(0.0662020\pi\)
−0.310405 + 0.950604i \(0.600465\pi\)
\(620\) 49.0203 1.96870
\(621\) 0 0
\(622\) 7.73800 + 13.4026i 0.310266 + 0.537396i
\(623\) −16.8776 + 13.9545i −0.676186 + 0.559075i
\(624\) 0 0
\(625\) 3.24843 5.62645i 0.129937 0.225058i
\(626\) −18.5489 + 32.1276i −0.741362 + 1.28408i
\(627\) 0 0
\(628\) 24.1008 + 41.7438i 0.961727 + 1.66576i
\(629\) 15.2094 0.606439
\(630\) 0 0
\(631\) −20.6922 + 35.8399i −0.823743 + 1.42677i 0.0791326 + 0.996864i \(0.474785\pi\)
−0.902876 + 0.429901i \(0.858548\pi\)
\(632\) 28.7143 49.7347i 1.14220 1.97834i
\(633\) 0 0
\(634\) −21.1155 + 36.5731i −0.838602 + 1.45250i
\(635\) −9.40389 −0.373182
\(636\) 0 0
\(637\) 14.4050 20.7243i 0.570747 0.821126i
\(638\) −57.3362 −2.26996
\(639\) 0 0
\(640\) 16.4195 28.4394i 0.649038 1.12417i
\(641\) −46.0633 −1.81939 −0.909695 0.415276i \(-0.863685\pi\)
−0.909695 + 0.415276i \(0.863685\pi\)
\(642\) 0 0
\(643\) −16.6181 + 28.7834i −0.655353 + 1.13510i 0.326452 + 0.945214i \(0.394147\pi\)
−0.981805 + 0.189891i \(0.939187\pi\)
\(644\) 41.0410 33.9329i 1.61724 1.33714i
\(645\) 0 0
\(646\) −50.5068 87.4803i −1.98716 3.44187i
\(647\) 2.98855 5.17631i 0.117492 0.203502i −0.801281 0.598288i \(-0.795848\pi\)
0.918773 + 0.394786i \(0.129181\pi\)
\(648\) 0 0
\(649\) 1.99463 3.45480i 0.0782962 0.135613i
\(650\) 2.22452 + 21.0611i 0.0872529 + 0.826084i
\(651\) 0 0
\(652\) 8.74980 + 15.1551i 0.342669 + 0.593520i
\(653\) 23.8552 0.933527 0.466764 0.884382i \(-0.345420\pi\)
0.466764 + 0.884382i \(0.345420\pi\)
\(654\) 0 0
\(655\) 0.991282 + 1.71695i 0.0387326 + 0.0670868i
\(656\) 2.97039 + 5.14487i 0.115974 + 0.200873i
\(657\) 0 0
\(658\) 8.97675 + 53.1631i 0.349950 + 2.07251i
\(659\) −13.1153 + 22.7163i −0.510899 + 0.884902i 0.489022 + 0.872272i \(0.337354\pi\)
−0.999920 + 0.0126308i \(0.995979\pi\)
\(660\) 0 0
\(661\) 8.31040 14.3940i 0.323237 0.559863i −0.657917 0.753091i \(-0.728562\pi\)
0.981154 + 0.193227i \(0.0618955\pi\)
\(662\) −1.94803 3.37409i −0.0757124 0.131138i
\(663\) 0 0
\(664\) −39.4479 −1.53088
\(665\) −23.1669 + 19.1546i −0.898376 + 0.742783i
\(666\) 0 0
\(667\) −20.4018 35.3369i −0.789960 1.36825i
\(668\) −16.5591 28.6813i −0.640692 1.10971i
\(669\) 0 0
\(670\) −2.57183 4.45454i −0.0993585 0.172094i
\(671\) −2.09558 −0.0808991
\(672\) 0 0
\(673\) 21.2726 + 36.8451i 0.819997 + 1.42028i 0.905684 + 0.423954i \(0.139358\pi\)
−0.0856874 + 0.996322i \(0.527309\pi\)
\(674\) 18.7414 0.721890
\(675\) 0 0
\(676\) 31.6223 + 35.0478i 1.21624 + 1.34799i
\(677\) −5.90158 + 10.2218i −0.226816 + 0.392857i −0.956863 0.290540i \(-0.906165\pi\)
0.730047 + 0.683397i \(0.239498\pi\)
\(678\) 0 0
\(679\) −0.732623 4.33882i −0.0281155 0.166509i
\(680\) 18.3073 31.7091i 0.702052 1.21599i
\(681\) 0 0
\(682\) −66.1753 −2.53398
\(683\) 20.6901 0.791685 0.395843 0.918318i \(-0.370453\pi\)
0.395843 + 0.918318i \(0.370453\pi\)
\(684\) 0 0
\(685\) −0.833761 + 1.44412i −0.0318564 + 0.0551768i
\(686\) −21.1405 38.5301i −0.807148 1.47109i
\(687\) 0 0
\(688\) −10.3249 + 17.8833i −0.393635 + 0.681795i
\(689\) −4.52818 42.8715i −0.172510 1.63327i
\(690\) 0 0
\(691\) 12.4210 0.472519 0.236259 0.971690i \(-0.424078\pi\)
0.236259 + 0.971690i \(0.424078\pi\)
\(692\) 28.4696 + 49.3108i 1.08225 + 1.87452i
\(693\) 0 0
\(694\) 13.1085 0.497592
\(695\) −2.84828 4.93336i −0.108041 0.187133i
\(696\) 0 0
\(697\) −9.19565 15.9273i −0.348310 0.603291i
\(698\) −11.8394 20.5064i −0.448127 0.776179i
\(699\) 0 0
\(700\) 22.2864 + 8.29525i 0.842346 + 0.313531i
\(701\) 35.6900 1.34799 0.673996 0.738735i \(-0.264577\pi\)
0.673996 + 0.738735i \(0.264577\pi\)
\(702\) 0 0
\(703\) −9.13408 15.8207i −0.344498 0.596688i
\(704\) −18.6892 + 32.3706i −0.704374 + 1.22001i
\(705\) 0 0
\(706\) 12.5684 21.7691i 0.473018 0.819291i
\(707\) −0.0853796 0.505645i −0.00321103 0.0190167i
\(708\) 0 0
\(709\) 15.5062 + 26.8574i 0.582346 + 1.00865i 0.995201 + 0.0978556i \(0.0311983\pi\)
−0.412855 + 0.910797i \(0.635468\pi\)
\(710\) −4.49909 7.79265i −0.168848 0.292453i
\(711\) 0 0
\(712\) −32.0389 −1.20071
\(713\) −23.5470 40.7846i −0.881841 1.52739i
\(714\) 0 0
\(715\) 1.97516 + 18.7002i 0.0738668 + 0.699349i
\(716\) −18.3580 + 31.7970i −0.686070 + 1.18831i
\(717\) 0 0
\(718\) 24.7577 42.8816i 0.923948 1.60033i
\(719\) −13.5709 23.5054i −0.506108 0.876605i −0.999975 0.00706745i \(-0.997750\pi\)
0.493867 0.869537i \(-0.335583\pi\)
\(720\) 0 0
\(721\) −1.16187 6.88099i −0.0432705 0.256261i
\(722\) −38.1205 + 66.0267i −1.41870 + 2.45726i
\(723\) 0 0
\(724\) −60.9660 −2.26578
\(725\) 9.11053 15.7799i 0.338356 0.586051i
\(726\) 0 0
\(727\) −21.0336 −0.780095 −0.390047 0.920795i \(-0.627541\pi\)
−0.390047 + 0.920795i \(0.627541\pi\)
\(728\) 35.5621 9.93815i 1.31802 0.368332i
\(729\) 0 0
\(730\) 2.33149 0.0862923
\(731\) 31.9636 55.3627i 1.18222 2.04766i
\(732\) 0 0
\(733\) 4.49198 7.78034i 0.165915 0.287373i −0.771065 0.636757i \(-0.780276\pi\)
0.936980 + 0.349383i \(0.113609\pi\)
\(734\) 11.5016 19.9214i 0.424532 0.735311i
\(735\) 0 0
\(736\) −17.6167 −0.649362
\(737\) 2.23877 + 3.87767i 0.0824662 + 0.142836i
\(738\) 0 0
\(739\) −5.96672 + 10.3347i −0.219489 + 0.380167i −0.954652 0.297724i \(-0.903772\pi\)
0.735163 + 0.677891i \(0.237106\pi\)
\(740\) 7.37034 12.7658i 0.270939 0.469280i
\(741\) 0 0
\(742\) −70.3525 26.1860i −2.58272 0.961318i
\(743\) −7.76713 13.4531i −0.284948 0.493545i 0.687648 0.726044i \(-0.258643\pi\)
−0.972597 + 0.232499i \(0.925310\pi\)
\(744\) 0 0
\(745\) −35.8355 −1.31291
\(746\) 14.7504 + 25.5484i 0.540049 + 0.935392i
\(747\) 0 0
\(748\) −35.4765 + 61.4470i −1.29715 + 2.24673i
\(749\) −7.37380 + 6.09670i −0.269433 + 0.222769i
\(750\) 0 0
\(751\) −36.6217 −1.33635 −0.668173 0.744006i \(-0.732923\pi\)
−0.668173 + 0.744006i \(0.732923\pi\)
\(752\) −8.25690 + 14.3014i −0.301098 + 0.521518i
\(753\) 0 0
\(754\) −6.61562 62.6348i −0.240927 2.28102i
\(755\) 23.4163 0.852205
\(756\) 0 0
\(757\) −9.66722 16.7441i −0.351361 0.608575i 0.635127 0.772408i \(-0.280948\pi\)
−0.986488 + 0.163832i \(0.947614\pi\)
\(758\) −31.6623 54.8407i −1.15003 1.99190i
\(759\) 0 0
\(760\) −43.9781 −1.59525
\(761\) 11.0495 + 19.1383i 0.400543 + 0.693762i 0.993792 0.111258i \(-0.0354880\pi\)
−0.593248 + 0.805020i \(0.702155\pi\)
\(762\) 0 0
\(763\) −0.959920 0.357293i −0.0347514 0.0129349i
\(764\) 34.3283 + 59.4584i 1.24196 + 2.15113i
\(765\) 0 0
\(766\) −3.03843 5.26271i −0.109783 0.190149i
\(767\) 4.00422 + 1.78034i 0.144584 + 0.0642842i
\(768\) 0 0
\(769\) −8.04717 13.9381i −0.290188 0.502621i 0.683666 0.729795i \(-0.260385\pi\)
−0.973854 + 0.227174i \(0.927051\pi\)
\(770\) 30.6873 + 11.4222i 1.10589 + 0.411626i
\(771\) 0 0
\(772\) 14.2526 24.6862i 0.512962 0.888477i
\(773\) 23.9765 0.862375 0.431188 0.902262i \(-0.358095\pi\)
0.431188 + 0.902262i \(0.358095\pi\)
\(774\) 0 0
\(775\) 10.5150 18.2126i 0.377711 0.654215i
\(776\) 3.21879 5.57511i 0.115548 0.200135i
\(777\) 0 0
\(778\) 23.9474 + 41.4781i 0.858557 + 1.48706i
\(779\) −11.0450 + 19.1305i −0.395727 + 0.685420i
\(780\) 0 0
\(781\) 3.91645 + 6.78349i 0.140142 + 0.242732i
\(782\) −78.3054 −2.80020
\(783\) 0 0
\(784\) 2.52966 13.2212i 0.0903449 0.472186i
\(785\) −21.0924 −0.752819
\(786\) 0 0
\(787\) −38.4905 −1.37204 −0.686019 0.727584i \(-0.740643\pi\)
−0.686019 + 0.727584i \(0.740643\pi\)
\(788\) 45.5416 + 78.8803i 1.62235 + 2.81000i
\(789\) 0 0
\(790\) 27.9712 + 48.4476i 0.995171 + 1.72369i
\(791\) −4.50384 26.6732i −0.160138 0.948389i
\(792\) 0 0
\(793\) −0.241795 2.28924i −0.00858640 0.0812935i
\(794\) 6.76607 + 11.7192i 0.240119 + 0.415898i
\(795\) 0 0
\(796\) −28.2643 −1.00180
\(797\) −22.8007 + 39.4919i −0.807641 + 1.39888i 0.106853 + 0.994275i \(0.465923\pi\)
−0.914494 + 0.404600i \(0.867411\pi\)
\(798\) 0 0
\(799\) 25.5615 44.2738i 0.904300 1.56629i
\(800\) −3.93343 6.81290i −0.139068 0.240872i
\(801\) 0 0
\(802\) −12.6451 −0.446512
\(803\) −2.02956 −0.0716215
\(804\) 0 0
\(805\) 3.87977 + 22.9772i 0.136744 + 0.809840i
\(806\) −7.63551 72.2908i −0.268950 2.54633i
\(807\) 0 0
\(808\) 0.375117 0.649721i 0.0131966 0.0228571i
\(809\) −12.4612 + 21.5835i −0.438114 + 0.758836i −0.997544 0.0700419i \(-0.977687\pi\)
0.559430 + 0.828878i \(0.311020\pi\)
\(810\) 0 0
\(811\) −23.7418 −0.833689 −0.416844 0.908978i \(-0.636864\pi\)
−0.416844 + 0.908978i \(0.636864\pi\)
\(812\) −66.2787 24.6697i −2.32593 0.865737i
\(813\) 0 0
\(814\) −9.94965 + 17.2333i −0.348735 + 0.604027i
\(815\) −7.65758 −0.268233
\(816\) 0 0
\(817\) −76.7836 −2.68632
\(818\) −51.4672 −1.79951
\(819\) 0 0
\(820\) −17.8245 −0.622459
\(821\) 28.9555 1.01056 0.505278 0.862957i \(-0.331390\pi\)
0.505278 + 0.862957i \(0.331390\pi\)
\(822\) 0 0
\(823\) 37.2875 1.29976 0.649880 0.760036i \(-0.274819\pi\)
0.649880 + 0.760036i \(0.274819\pi\)
\(824\) 5.10472 8.84163i 0.177831 0.308013i
\(825\) 0 0
\(826\) 5.88091 4.86238i 0.204623 0.169184i
\(827\) −20.7885 −0.722888 −0.361444 0.932394i \(-0.617716\pi\)
−0.361444 + 0.932394i \(0.617716\pi\)
\(828\) 0 0
\(829\) 27.9148 48.3498i 0.969520 1.67926i 0.272572 0.962135i \(-0.412126\pi\)
0.696948 0.717122i \(-0.254541\pi\)
\(830\) 19.2135 33.2788i 0.666910 1.15512i
\(831\) 0 0
\(832\) −37.5185 16.6813i −1.30072 0.578319i
\(833\) −7.83124 + 40.9298i −0.271336 + 1.41813i
\(834\) 0 0
\(835\) 14.4921 0.501520
\(836\) 85.2221 2.94747
\(837\) 0 0
\(838\) 42.7964 + 74.1255i 1.47838 + 2.56062i
\(839\) −11.2275 + 19.4465i −0.387615 + 0.671369i −0.992128 0.125226i \(-0.960034\pi\)
0.604513 + 0.796595i \(0.293368\pi\)
\(840\) 0 0
\(841\) −12.5943 + 21.8140i −0.434287 + 0.752206i
\(842\) 41.3647 1.42552
\(843\) 0 0
\(844\) 4.26509 + 7.38735i 0.146810 + 0.254283i
\(845\) −20.2005 + 4.31538i −0.694918 + 0.148454i
\(846\) 0 0
\(847\) 0.561967 + 0.209171i 0.0193094 + 0.00718718i
\(848\) −11.4963 19.9121i −0.394783 0.683784i
\(849\) 0 0
\(850\) −17.4839 30.2830i −0.599692 1.03870i
\(851\) −14.1614 −0.485448
\(852\) 0 0
\(853\) 10.8150 0.370298 0.185149 0.982710i \(-0.440723\pi\)
0.185149 + 0.982710i \(0.440723\pi\)
\(854\) −3.75667 1.39828i −0.128551 0.0478480i
\(855\) 0 0
\(856\) −13.9978 −0.478433
\(857\) 17.7262 + 30.7026i 0.605514 + 1.04878i 0.991970 + 0.126474i \(0.0403659\pi\)
−0.386456 + 0.922308i \(0.626301\pi\)
\(858\) 0 0
\(859\) −24.0734 + 41.6963i −0.821373 + 1.42266i 0.0832873 + 0.996526i \(0.473458\pi\)
−0.904660 + 0.426134i \(0.859875\pi\)
\(860\) −30.9786 53.6565i −1.05636 1.82967i
\(861\) 0 0
\(862\) −0.800718 + 1.38688i −0.0272726 + 0.0472375i
\(863\) 2.06142 3.57048i 0.0701714 0.121540i −0.828805 0.559538i \(-0.810979\pi\)
0.898976 + 0.437997i \(0.144312\pi\)
\(864\) 0 0
\(865\) −24.9158 −0.847164
\(866\) 23.2619 40.2908i 0.790471 1.36914i
\(867\) 0 0
\(868\) −76.4965 28.4729i −2.59646 0.966432i
\(869\) −24.3489 42.1735i −0.825979 1.43064i
\(870\) 0 0
\(871\) −3.97770 + 2.89308i −0.134779 + 0.0980283i
\(872\) −0.749248 1.29774i −0.0253728 0.0439469i
\(873\) 0 0
\(874\) 47.0267 + 81.4526i 1.59070 + 2.75517i
\(875\) −24.2194 + 20.0247i −0.818765 + 0.676960i
\(876\) 0 0
\(877\) −14.4898 25.0971i −0.489286 0.847468i 0.510638 0.859796i \(-0.329409\pi\)
−0.999924 + 0.0123279i \(0.996076\pi\)
\(878\) −75.9956 −2.56473
\(879\) 0 0
\(880\) 5.01458 + 8.68552i 0.169042 + 0.292789i
\(881\) −7.56041 13.0950i −0.254717 0.441182i 0.710102 0.704099i \(-0.248649\pi\)
−0.964819 + 0.262917i \(0.915316\pi\)
\(882\) 0 0
\(883\) −31.9151 −1.07403 −0.537014 0.843573i \(-0.680448\pi\)
−0.537014 + 0.843573i \(0.680448\pi\)
\(884\) −71.2189 31.6650i −2.39535 1.06501i
\(885\) 0 0
\(886\) 20.8347 36.0867i 0.699955 1.21236i
\(887\) −48.6843 −1.63466 −0.817330 0.576170i \(-0.804547\pi\)
−0.817330 + 0.576170i \(0.804547\pi\)
\(888\) 0 0
\(889\) 14.6748 + 5.46214i 0.492178 + 0.183194i
\(890\) 15.6049 27.0284i 0.523076 0.905995i
\(891\) 0 0
\(892\) −21.0213 36.4099i −0.703844 1.21909i
\(893\) −61.4042 −2.05481
\(894\) 0 0
\(895\) −8.03320 13.9139i −0.268520 0.465091i
\(896\) −42.1415 + 34.8428i −1.40785 + 1.16402i
\(897\) 0 0
\(898\) 6.71183 11.6252i 0.223977 0.387939i
\(899\) −31.2713 + 54.1634i −1.04296 + 1.80645i
\(900\) 0 0
\(901\) 35.5898 + 61.6433i 1.18567 + 2.05363i
\(902\) 24.0623 0.801189
\(903\) 0 0
\(904\) 19.7877 34.2733i 0.658130 1.13991i
\(905\) 13.3389 23.1037i 0.443401 0.767993i
\(906\) 0 0
\(907\) 20.7185 35.8854i 0.687945 1.19156i −0.284556 0.958659i \(-0.591846\pi\)
0.972501 0.232897i \(-0.0748204\pi\)
\(908\) 47.1306 1.56408
\(909\) 0 0
\(910\) −8.93692 + 34.8411i −0.296256 + 1.15497i
\(911\) −55.6403 −1.84344 −0.921722 0.387851i \(-0.873218\pi\)
−0.921722 + 0.387851i \(0.873218\pi\)
\(912\) 0 0
\(913\) −16.7253 + 28.9691i −0.553527 + 0.958737i
\(914\) −14.0212 −0.463781
\(915\) 0 0
\(916\) 34.9698 60.5695i 1.15544 2.00127i
\(917\) −0.549631 3.25509i −0.0181504 0.107493i
\(918\) 0 0
\(919\) −1.15990 2.00901i −0.0382617 0.0662711i 0.846260 0.532769i \(-0.178849\pi\)
−0.884522 + 0.466498i \(0.845515\pi\)
\(920\) −17.0458 + 29.5243i −0.561985 + 0.973386i
\(921\) 0 0
\(922\) 45.1658 78.2295i 1.48746 2.57635i
\(923\) −6.95848 + 5.06108i −0.229041 + 0.166588i
\(924\) 0 0
\(925\) −3.16193 5.47663i −0.103964 0.180070i
\(926\) −84.2380 −2.76823
\(927\) 0 0
\(928\) 11.6978 + 20.2613i 0.384001 + 0.665109i
\(929\) −22.6240 39.1860i −0.742270 1.28565i −0.951459 0.307774i \(-0.900416\pi\)
0.209189 0.977875i \(-0.432918\pi\)
\(930\) 0 0
\(931\) 47.2779 16.4346i 1.54947 0.538622i
\(932\) 22.7032 39.3231i 0.743668 1.28807i
\(933\) 0 0
\(934\) 0.302478 0.523906i 0.00989737 0.0171427i
\(935\) −15.5240 26.8884i −0.507689 0.879343i
\(936\) 0 0
\(937\) 23.7899 0.777181 0.388590 0.921411i \(-0.372962\pi\)
0.388590 + 0.921411i \(0.372962\pi\)
\(938\) 1.42599 + 8.44516i 0.0465602 + 0.275744i
\(939\) 0 0
\(940\) −24.7737 42.9094i −0.808030 1.39955i
\(941\) −15.7112 27.2127i −0.512172 0.887107i −0.999900 0.0141120i \(-0.995508\pi\)
0.487729 0.872995i \(-0.337825\pi\)
\(942\) 0 0
\(943\) 8.56204 + 14.8299i 0.278818 + 0.482928i
\(944\) 2.33721 0.0760697
\(945\) 0 0
\(946\) 41.8198 + 72.4340i 1.35968 + 2.35503i
\(947\) 17.7770 0.577674 0.288837 0.957378i \(-0.406731\pi\)
0.288837 + 0.957378i \(0.406731\pi\)
\(948\) 0 0
\(949\) −0.234177 2.21711i −0.00760169 0.0719706i
\(950\) −21.0000 + 36.3731i −0.681331 + 1.18010i
\(951\) 0 0
\(952\) −46.9865 + 38.8487i −1.52284 + 1.25910i
\(953\) 0.457510 0.792431i 0.0148202 0.0256694i −0.858520 0.512780i \(-0.828616\pi\)
0.873340 + 0.487110i \(0.161949\pi\)
\(954\) 0 0
\(955\) −30.0432 −0.972176
\(956\) 108.002 3.49303
\(957\) 0 0
\(958\) 18.0328 31.2337i 0.582613 1.00911i
\(959\) 2.13989 1.76927i 0.0691006 0.0571328i
\(960\) 0 0
\(961\) −20.5922 + 35.6667i −0.664263 + 1.15054i
\(962\) −19.9739 8.88070i −0.643985 0.286325i
\(963\) 0 0
\(964\) 58.6357 1.88853
\(965\) 6.23674 + 10.8024i 0.200768 + 0.347740i
\(966\) 0 0
\(967\) 48.9250 1.57332 0.786660 0.617386i \(-0.211808\pi\)
0.786660 + 0.617386i \(0.211808\pi\)
\(968\) 0.438634 + 0.759736i 0.0140982 + 0.0244188i
\(969\) 0 0
\(970\) 3.13549 + 5.43083i 0.100675 + 0.174373i
\(971\) 14.5954 + 25.2799i 0.468387 + 0.811270i 0.999347 0.0361265i \(-0.0115019\pi\)
−0.530960 + 0.847397i \(0.678169\pi\)
\(972\) 0 0
\(973\) 1.57927 + 9.35293i 0.0506290 + 0.299841i
\(974\) 0.543608 0.0174183
\(975\) 0 0
\(976\) −0.613875 1.06326i −0.0196497 0.0340342i
\(977\) 13.8084 23.9168i 0.441770 0.765168i −0.556051 0.831148i \(-0.687684\pi\)
0.997821 + 0.0659804i \(0.0210175\pi\)
\(978\) 0 0
\(979\) −13.5840 + 23.5282i −0.434146 + 0.751964i
\(980\) 30.5589 + 26.4073i 0.976169 + 0.843549i
\(981\) 0 0
\(982\) −17.0804 29.5841i −0.545057 0.944066i
\(983\) 6.29829 + 10.9090i 0.200884 + 0.347942i 0.948814 0.315836i \(-0.102285\pi\)
−0.747929 + 0.663778i \(0.768952\pi\)
\(984\) 0 0
\(985\) −39.8567 −1.26994
\(986\) 51.9963 + 90.0602i 1.65590 + 2.86810i
\(987\) 0 0
\(988\) 9.83320 + 93.0978i 0.312836 + 2.96184i
\(989\) −29.7612 + 51.5480i −0.946352 + 1.63913i
\(990\) 0 0
\(991\) −2.04231 + 3.53738i −0.0648760 + 0.112369i −0.896639 0.442762i \(-0.853999\pi\)
0.831763 + 0.555131i \(0.187332\pi\)
\(992\) 13.5012 + 23.3848i 0.428665 + 0.742469i
\(993\) 0 0
\(994\) 2.49459 + 14.7737i 0.0791235 + 0.468594i
\(995\) 6.18403 10.7111i 0.196047 0.339563i
\(996\) 0 0
\(997\) 42.0885 1.33296 0.666478 0.745525i \(-0.267801\pi\)
0.666478 + 0.745525i \(0.267801\pi\)
\(998\) −15.8673 + 27.4829i −0.502270 + 0.869957i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.g.289.17 yes 36
3.2 odd 2 inner 819.2.s.g.289.2 yes 36
7.4 even 3 819.2.n.g.172.2 yes 36
13.9 even 3 819.2.n.g.100.2 36
21.11 odd 6 819.2.n.g.172.17 yes 36
39.35 odd 6 819.2.n.g.100.17 yes 36
91.74 even 3 inner 819.2.s.g.802.17 yes 36
273.74 odd 6 inner 819.2.s.g.802.2 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.n.g.100.2 36 13.9 even 3
819.2.n.g.100.17 yes 36 39.35 odd 6
819.2.n.g.172.2 yes 36 7.4 even 3
819.2.n.g.172.17 yes 36 21.11 odd 6
819.2.s.g.289.2 yes 36 3.2 odd 2 inner
819.2.s.g.289.17 yes 36 1.1 even 1 trivial
819.2.s.g.802.2 yes 36 273.74 odd 6 inner
819.2.s.g.802.17 yes 36 91.74 even 3 inner