Properties

Label 819.2.s
Level $819$
Weight $2$
Character orbit 819.s
Rep. character $\chi_{819}(289,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $90$
Newform subspaces $7$
Sturm bound $224$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(224\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(819, [\chi])\).

Total New Old
Modular forms 240 98 142
Cusp forms 208 90 118
Eisenstein series 32 8 24

Trace form

\( 90 q + 2 q^{2} + 86 q^{4} + 2 q^{5} + q^{7} + 12 q^{8} + q^{10} - 3 q^{11} + 14 q^{14} + 70 q^{16} + 22 q^{17} + 2 q^{19} + 6 q^{20} - 14 q^{22} - 10 q^{23} - 39 q^{25} - 28 q^{26} + 3 q^{28} + 4 q^{29}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(819, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
819.2.s.a 819.s 91.h $2$ $6.540$ \(\Q(\sqrt{-3}) \) None 91.2.g.a \(-2\) \(0\) \(3\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}-q^{4}+3\zeta_{6}q^{5}+(3-2\zeta_{6})q^{7}+\cdots\)
819.2.s.b 819.s 91.h $2$ $6.540$ \(\Q(\sqrt{-3}) \) None 273.2.j.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-2q^{4}+(-3+2\zeta_{6})q^{7}-6\zeta_{6}q^{11}+\cdots\)
819.2.s.c 819.s 91.h $2$ $6.540$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 819.2.n.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{U}(1)[D_{3}]$ \(q-2q^{4}+(-3+2\zeta_{6})q^{7}+(3-4\zeta_{6})q^{13}+\cdots\)
819.2.s.d 819.s 91.h $12$ $6.540$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 91.2.g.b \(4\) \(0\) \(-1\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{3}-\beta _{5}+\beta _{11})q^{2}+(1-\beta _{6}-\beta _{10}+\cdots)q^{4}+\cdots\)
819.2.s.e 819.s 91.h $16$ $6.540$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 273.2.j.b \(0\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{2})q^{2}+(1+\beta _{3}-\beta _{4})q^{4}+\beta _{14}q^{5}+\cdots\)
819.2.s.f 819.s 91.h $20$ $6.540$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 273.2.j.c \(0\) \(0\) \(0\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{4}q^{2}+(2+\beta _{2})q^{4}-\beta _{10}q^{5}-\beta _{11}q^{7}+\cdots\)
819.2.s.g 819.s 91.h $36$ $6.540$ None 819.2.n.g \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(819, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(819, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)