Properties

Label 819.2.n.g.172.17
Level $819$
Weight $2$
Character 819.172
Analytic conductor $6.540$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(100,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.100"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.n (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,-22,0,0,-8,0,0,-16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 172.17
Character \(\chi\) \(=\) 819.172
Dual form 819.2.n.g.100.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18650 - 2.05508i) q^{2} +(-1.81558 - 3.14468i) q^{4} +(0.794473 + 1.37607i) q^{5} +(0.440507 - 2.60882i) q^{7} -3.87075 q^{8} +3.77058 q^{10} +3.28228 q^{11} +(3.29459 + 1.46482i) q^{13} +(-4.83869 - 4.00066i) q^{14} +(-0.961502 + 1.66537i) q^{16} +(-2.97659 - 5.15561i) q^{17} -7.15042 q^{19} +(2.88486 - 4.99672i) q^{20} +(3.89444 - 6.74536i) q^{22} +(2.77149 - 4.80037i) q^{23} +(1.23763 - 2.14363i) q^{25} +(6.91937 - 5.03263i) q^{26} +(-9.00368 + 3.35127i) q^{28} +(3.68065 + 6.37507i) q^{29} +(-4.24807 + 7.35787i) q^{31} +(-1.58910 - 2.75241i) q^{32} -14.1269 q^{34} +(3.93989 - 1.46647i) q^{35} +(1.27742 - 2.21255i) q^{37} +(-8.48399 + 14.6947i) q^{38} +(-3.07521 - 5.32642i) q^{40} +(-1.54466 - 2.67543i) q^{41} +(-5.36917 + 9.29968i) q^{43} +(-5.95924 - 10.3217i) q^{44} +(-6.57677 - 11.3913i) q^{46} +(4.29375 + 7.43700i) q^{47} +(-6.61191 - 2.29841i) q^{49} +(-2.93690 - 5.08685i) q^{50} +(-1.37519 - 13.0199i) q^{52} +(5.97827 - 10.3547i) q^{53} +(2.60768 + 4.51664i) q^{55} +(-1.70510 + 10.0981i) q^{56} +17.4684 q^{58} +(0.607697 + 1.05256i) q^{59} +0.638454 q^{61} +(10.0807 + 17.4603i) q^{62} -11.3879 q^{64} +(0.601765 + 5.69733i) q^{65} +1.36416 q^{67} +(-10.8085 + 18.7208i) q^{68} +(1.66097 - 9.83677i) q^{70} +(1.19321 - 2.06670i) q^{71} +(-0.309169 + 0.535496i) q^{73} +(-3.03132 - 5.25041i) q^{74} +(12.9822 + 22.4858i) q^{76} +(1.44587 - 8.56288i) q^{77} +(7.41828 + 12.8488i) q^{79} -3.05555 q^{80} -7.33099 q^{82} +10.1913 q^{83} +(4.72964 - 8.19198i) q^{85} +(12.7411 + 22.0682i) q^{86} -12.7049 q^{88} +(-4.13859 + 7.16824i) q^{89} +(5.27275 - 7.94972i) q^{91} -20.1275 q^{92} +20.3782 q^{94} +(-5.68081 - 9.83945i) q^{95} +(0.831568 - 1.44032i) q^{97} +(-12.5685 + 10.8610i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 22 q^{4} - 8 q^{7} - 16 q^{10} - 10 q^{16} - 8 q^{19} - 10 q^{22} - 22 q^{25} - 14 q^{28} - 18 q^{31} + 8 q^{34} + 10 q^{37} + 14 q^{40} + 20 q^{43} - 4 q^{46} - 48 q^{49} + 22 q^{52} + 42 q^{55}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18650 2.05508i 0.838985 1.45316i −0.0517600 0.998660i \(-0.516483\pi\)
0.890745 0.454504i \(-0.150184\pi\)
\(3\) 0 0
\(4\) −1.81558 3.14468i −0.907790 1.57234i
\(5\) 0.794473 + 1.37607i 0.355299 + 0.615396i 0.987169 0.159678i \(-0.0510457\pi\)
−0.631870 + 0.775074i \(0.717712\pi\)
\(6\) 0 0
\(7\) 0.440507 2.60882i 0.166496 0.986042i
\(8\) −3.87075 −1.36852
\(9\) 0 0
\(10\) 3.77058 1.19236
\(11\) 3.28228 0.989645 0.494822 0.868994i \(-0.335233\pi\)
0.494822 + 0.868994i \(0.335233\pi\)
\(12\) 0 0
\(13\) 3.29459 + 1.46482i 0.913754 + 0.406269i
\(14\) −4.83869 4.00066i −1.29319 1.06922i
\(15\) 0 0
\(16\) −0.961502 + 1.66537i −0.240376 + 0.416343i
\(17\) −2.97659 5.15561i −0.721929 1.25042i −0.960225 0.279226i \(-0.909922\pi\)
0.238296 0.971193i \(-0.423411\pi\)
\(18\) 0 0
\(19\) −7.15042 −1.64042 −0.820209 0.572064i \(-0.806143\pi\)
−0.820209 + 0.572064i \(0.806143\pi\)
\(20\) 2.88486 4.99672i 0.645074 1.11730i
\(21\) 0 0
\(22\) 3.89444 6.74536i 0.830296 1.43812i
\(23\) 2.77149 4.80037i 0.577896 1.00095i −0.417824 0.908528i \(-0.637207\pi\)
0.995720 0.0924177i \(-0.0294595\pi\)
\(24\) 0 0
\(25\) 1.23763 2.14363i 0.247525 0.428726i
\(26\) 6.91937 5.03263i 1.35700 0.986981i
\(27\) 0 0
\(28\) −9.00368 + 3.35127i −1.70154 + 0.633331i
\(29\) 3.68065 + 6.37507i 0.683479 + 1.18382i 0.973912 + 0.226925i \(0.0728672\pi\)
−0.290433 + 0.956895i \(0.593799\pi\)
\(30\) 0 0
\(31\) −4.24807 + 7.35787i −0.762976 + 1.32151i 0.178335 + 0.983970i \(0.442929\pi\)
−0.941310 + 0.337542i \(0.890404\pi\)
\(32\) −1.58910 2.75241i −0.280916 0.486561i
\(33\) 0 0
\(34\) −14.1269 −2.42275
\(35\) 3.93989 1.46647i 0.665962 0.247879i
\(36\) 0 0
\(37\) 1.27742 2.21255i 0.210006 0.363742i −0.741710 0.670721i \(-0.765985\pi\)
0.951716 + 0.306979i \(0.0993182\pi\)
\(38\) −8.48399 + 14.6947i −1.37629 + 2.38380i
\(39\) 0 0
\(40\) −3.07521 5.32642i −0.486233 0.842181i
\(41\) −1.54466 2.67543i −0.241236 0.417832i 0.719831 0.694149i \(-0.244219\pi\)
−0.961067 + 0.276317i \(0.910886\pi\)
\(42\) 0 0
\(43\) −5.36917 + 9.29968i −0.818791 + 1.41819i 0.0877830 + 0.996140i \(0.472022\pi\)
−0.906574 + 0.422048i \(0.861312\pi\)
\(44\) −5.95924 10.3217i −0.898390 1.55606i
\(45\) 0 0
\(46\) −6.57677 11.3913i −0.969692 1.67956i
\(47\) 4.29375 + 7.43700i 0.626308 + 1.08480i 0.988286 + 0.152611i \(0.0487681\pi\)
−0.361978 + 0.932186i \(0.617899\pi\)
\(48\) 0 0
\(49\) −6.61191 2.29841i −0.944558 0.328344i
\(50\) −2.93690 5.08685i −0.415340 0.719389i
\(51\) 0 0
\(52\) −1.37519 13.0199i −0.190705 1.80554i
\(53\) 5.97827 10.3547i 0.821179 1.42232i −0.0836255 0.996497i \(-0.526650\pi\)
0.904805 0.425827i \(-0.140017\pi\)
\(54\) 0 0
\(55\) 2.60768 + 4.51664i 0.351620 + 0.609023i
\(56\) −1.70510 + 10.0981i −0.227853 + 1.34942i
\(57\) 0 0
\(58\) 17.4684 2.29371
\(59\) 0.607697 + 1.05256i 0.0791154 + 0.137032i 0.902869 0.429917i \(-0.141457\pi\)
−0.823753 + 0.566949i \(0.808124\pi\)
\(60\) 0 0
\(61\) 0.638454 0.0817457 0.0408728 0.999164i \(-0.486986\pi\)
0.0408728 + 0.999164i \(0.486986\pi\)
\(62\) 10.0807 + 17.4603i 1.28025 + 2.21746i
\(63\) 0 0
\(64\) −11.3879 −1.42349
\(65\) 0.601765 + 5.69733i 0.0746398 + 0.706667i
\(66\) 0 0
\(67\) 1.36416 0.166658 0.0833291 0.996522i \(-0.473445\pi\)
0.0833291 + 0.996522i \(0.473445\pi\)
\(68\) −10.8085 + 18.7208i −1.31072 + 2.27023i
\(69\) 0 0
\(70\) 1.66097 9.83677i 0.198524 1.17572i
\(71\) 1.19321 2.06670i 0.141608 0.245272i −0.786494 0.617598i \(-0.788106\pi\)
0.928102 + 0.372325i \(0.121439\pi\)
\(72\) 0 0
\(73\) −0.309169 + 0.535496i −0.0361855 + 0.0626751i −0.883551 0.468335i \(-0.844854\pi\)
0.847366 + 0.531010i \(0.178187\pi\)
\(74\) −3.03132 5.25041i −0.352384 0.610347i
\(75\) 0 0
\(76\) 12.9822 + 22.4858i 1.48916 + 2.57929i
\(77\) 1.44587 8.56288i 0.164772 0.975831i
\(78\) 0 0
\(79\) 7.41828 + 12.8488i 0.834622 + 1.44561i 0.894338 + 0.447392i \(0.147647\pi\)
−0.0597162 + 0.998215i \(0.519020\pi\)
\(80\) −3.05555 −0.341621
\(81\) 0 0
\(82\) −7.33099 −0.809572
\(83\) 10.1913 1.11864 0.559319 0.828953i \(-0.311063\pi\)
0.559319 + 0.828953i \(0.311063\pi\)
\(84\) 0 0
\(85\) 4.72964 8.19198i 0.513002 0.888545i
\(86\) 12.7411 + 22.0682i 1.37391 + 2.37967i
\(87\) 0 0
\(88\) −12.7049 −1.35435
\(89\) −4.13859 + 7.16824i −0.438689 + 0.759832i −0.997589 0.0694034i \(-0.977890\pi\)
0.558899 + 0.829235i \(0.311224\pi\)
\(90\) 0 0
\(91\) 5.27275 7.94972i 0.552734 0.833357i
\(92\) −20.1275 −2.09843
\(93\) 0 0
\(94\) 20.3782 2.10185
\(95\) −5.68081 9.83945i −0.582839 1.00951i
\(96\) 0 0
\(97\) 0.831568 1.44032i 0.0844329 0.146242i −0.820717 0.571336i \(-0.806425\pi\)
0.905149 + 0.425094i \(0.139759\pi\)
\(98\) −12.5685 + 10.8610i −1.26961 + 1.09712i
\(99\) 0 0
\(100\) −8.98804 −0.898804
\(101\) 0.193821 0.0192859 0.00964296 0.999954i \(-0.496931\pi\)
0.00964296 + 0.999954i \(0.496931\pi\)
\(102\) 0 0
\(103\) 1.31879 + 2.28421i 0.129944 + 0.225070i 0.923655 0.383225i \(-0.125187\pi\)
−0.793710 + 0.608296i \(0.791853\pi\)
\(104\) −12.7525 5.66997i −1.25049 0.555986i
\(105\) 0 0
\(106\) −14.1865 24.5717i −1.37791 2.38662i
\(107\) −1.80814 + 3.13179i −0.174800 + 0.302762i −0.940092 0.340921i \(-0.889261\pi\)
0.765292 + 0.643683i \(0.222594\pi\)
\(108\) 0 0
\(109\) −0.193567 + 0.335267i −0.0185403 + 0.0321128i −0.875147 0.483858i \(-0.839235\pi\)
0.856606 + 0.515970i \(0.172569\pi\)
\(110\) 12.3761 1.18001
\(111\) 0 0
\(112\) 3.92111 + 3.24200i 0.370510 + 0.306340i
\(113\) −5.11211 + 8.85443i −0.480907 + 0.832955i −0.999760 0.0219083i \(-0.993026\pi\)
0.518853 + 0.854863i \(0.326359\pi\)
\(114\) 0 0
\(115\) 8.80750 0.821304
\(116\) 13.3650 23.1489i 1.24091 2.14932i
\(117\) 0 0
\(118\) 2.88414 0.265507
\(119\) −14.7613 + 5.49431i −1.35316 + 0.503663i
\(120\) 0 0
\(121\) −0.226640 −0.0206036
\(122\) 0.757528 1.31208i 0.0685833 0.118790i
\(123\) 0 0
\(124\) 30.8508 2.77049
\(125\) 11.8778 1.06238
\(126\) 0 0
\(127\) 2.95916 + 5.12542i 0.262583 + 0.454807i 0.966928 0.255051i \(-0.0820923\pi\)
−0.704345 + 0.709858i \(0.748759\pi\)
\(128\) −10.3336 + 17.8983i −0.913369 + 1.58200i
\(129\) 0 0
\(130\) 12.4225 + 5.52323i 1.08952 + 0.484419i
\(131\) −0.623862 1.08056i −0.0545071 0.0944090i 0.837484 0.546461i \(-0.184025\pi\)
−0.891991 + 0.452052i \(0.850692\pi\)
\(132\) 0 0
\(133\) −3.14981 + 18.6542i −0.273123 + 1.61752i
\(134\) 1.61858 2.80346i 0.139824 0.242182i
\(135\) 0 0
\(136\) 11.5217 + 19.9561i 0.987974 + 1.71122i
\(137\) 0.524726 + 0.908852i 0.0448304 + 0.0776485i 0.887570 0.460673i \(-0.152392\pi\)
−0.842740 + 0.538322i \(0.819059\pi\)
\(138\) 0 0
\(139\) −1.79256 + 3.10480i −0.152043 + 0.263346i −0.931978 0.362514i \(-0.881918\pi\)
0.779936 + 0.625860i \(0.215252\pi\)
\(140\) −11.7648 9.72717i −0.994303 0.822096i
\(141\) 0 0
\(142\) −2.83149 4.90429i −0.237614 0.411559i
\(143\) 10.8138 + 4.80796i 0.904291 + 0.402061i
\(144\) 0 0
\(145\) −5.84835 + 10.1296i −0.485679 + 0.841220i
\(146\) 0.733659 + 1.27074i 0.0607181 + 0.105167i
\(147\) 0 0
\(148\) −9.27702 −0.762567
\(149\) 22.5530 1.84761 0.923806 0.382861i \(-0.125061\pi\)
0.923806 + 0.382861i \(0.125061\pi\)
\(150\) 0 0
\(151\) −7.36849 + 12.7626i −0.599639 + 1.03861i 0.393235 + 0.919438i \(0.371356\pi\)
−0.992874 + 0.119167i \(0.961977\pi\)
\(152\) 27.6775 2.24494
\(153\) 0 0
\(154\) −15.8819 13.1313i −1.27980 1.05815i
\(155\) −13.4999 −1.08434
\(156\) 0 0
\(157\) 6.63722 11.4960i 0.529708 0.917481i −0.469691 0.882831i \(-0.655635\pi\)
0.999399 0.0346506i \(-0.0110318\pi\)
\(158\) 35.2073 2.80094
\(159\) 0 0
\(160\) 2.52500 4.37342i 0.199619 0.345750i
\(161\) −11.3024 9.34493i −0.890757 0.736484i
\(162\) 0 0
\(163\) −4.81929 −0.377476 −0.188738 0.982028i \(-0.560440\pi\)
−0.188738 + 0.982028i \(0.560440\pi\)
\(164\) −5.60892 + 9.71493i −0.437983 + 0.758608i
\(165\) 0 0
\(166\) 12.0920 20.9439i 0.938520 1.62556i
\(167\) 4.56029 + 7.89865i 0.352886 + 0.611216i 0.986754 0.162225i \(-0.0518671\pi\)
−0.633868 + 0.773441i \(0.718534\pi\)
\(168\) 0 0
\(169\) 8.70859 + 9.65197i 0.669892 + 0.742459i
\(170\) −11.2235 19.4396i −0.860801 1.49095i
\(171\) 0 0
\(172\) 38.9926 2.97316
\(173\) 15.6807 1.19218 0.596092 0.802916i \(-0.296719\pi\)
0.596092 + 0.802916i \(0.296719\pi\)
\(174\) 0 0
\(175\) −5.04717 4.17303i −0.381530 0.315452i
\(176\) −3.15592 + 5.46621i −0.237886 + 0.412031i
\(177\) 0 0
\(178\) 9.82089 + 17.0103i 0.736107 + 1.27497i
\(179\) −10.1114 −0.755759 −0.377879 0.925855i \(-0.623347\pi\)
−0.377879 + 0.925855i \(0.623347\pi\)
\(180\) 0 0
\(181\) −16.7897 −1.24797 −0.623983 0.781438i \(-0.714487\pi\)
−0.623983 + 0.781438i \(0.714487\pi\)
\(182\) −10.0812 20.2683i −0.747269 1.50239i
\(183\) 0 0
\(184\) −10.7278 + 18.5810i −0.790862 + 1.36981i
\(185\) 4.05950 0.298460
\(186\) 0 0
\(187\) −9.77000 16.9221i −0.714453 1.23747i
\(188\) 15.5913 27.0049i 1.13711 1.96954i
\(189\) 0 0
\(190\) −26.9612 −1.95597
\(191\) 18.9076 1.36811 0.684055 0.729431i \(-0.260215\pi\)
0.684055 + 0.729431i \(0.260215\pi\)
\(192\) 0 0
\(193\) −7.85016 −0.565067 −0.282534 0.959257i \(-0.591175\pi\)
−0.282534 + 0.959257i \(0.591175\pi\)
\(194\) −1.97332 3.41788i −0.141676 0.245390i
\(195\) 0 0
\(196\) 4.77669 + 24.9653i 0.341192 + 1.78323i
\(197\) −12.5419 21.7232i −0.893572 1.54771i −0.835562 0.549396i \(-0.814858\pi\)
−0.0580100 0.998316i \(-0.518476\pi\)
\(198\) 0 0
\(199\) 3.89191 + 6.74099i 0.275890 + 0.477856i 0.970359 0.241667i \(-0.0776940\pi\)
−0.694469 + 0.719523i \(0.744361\pi\)
\(200\) −4.79055 + 8.29747i −0.338743 + 0.586720i
\(201\) 0 0
\(202\) 0.229969 0.398319i 0.0161806 0.0280256i
\(203\) 18.2528 6.79389i 1.28109 0.476837i
\(204\) 0 0
\(205\) 2.45438 4.25112i 0.171422 0.296911i
\(206\) 6.25900 0.436085
\(207\) 0 0
\(208\) −5.60722 + 4.07828i −0.388791 + 0.282778i
\(209\) −23.4697 −1.62343
\(210\) 0 0
\(211\) 1.17458 + 2.03443i 0.0808614 + 0.140056i 0.903620 0.428335i \(-0.140900\pi\)
−0.822759 + 0.568391i \(0.807566\pi\)
\(212\) −43.4161 −2.98183
\(213\) 0 0
\(214\) 4.29073 + 7.43177i 0.293309 + 0.508025i
\(215\) −17.0626 −1.16366
\(216\) 0 0
\(217\) 17.3241 + 14.3236i 1.17603 + 0.972353i
\(218\) 0.459335 + 0.795591i 0.0311101 + 0.0538842i
\(219\) 0 0
\(220\) 9.46891 16.4006i 0.638394 1.10573i
\(221\) −2.25459 21.3458i −0.151660 1.43587i
\(222\) 0 0
\(223\) −5.78913 10.0271i −0.387669 0.671462i 0.604467 0.796630i \(-0.293386\pi\)
−0.992136 + 0.125168i \(0.960053\pi\)
\(224\) −7.88055 + 2.93323i −0.526541 + 0.195985i
\(225\) 0 0
\(226\) 12.1311 + 21.0116i 0.806947 + 1.39767i
\(227\) 6.48974 + 11.2406i 0.430739 + 0.746062i 0.996937 0.0782070i \(-0.0249195\pi\)
−0.566198 + 0.824269i \(0.691586\pi\)
\(228\) 0 0
\(229\) 9.63048 + 16.6805i 0.636400 + 1.10228i 0.986217 + 0.165459i \(0.0529105\pi\)
−0.349817 + 0.936818i \(0.613756\pi\)
\(230\) 10.4501 18.1002i 0.689061 1.19349i
\(231\) 0 0
\(232\) −14.2469 24.6763i −0.935353 1.62008i
\(233\) −6.25233 10.8294i −0.409604 0.709454i 0.585242 0.810859i \(-0.301000\pi\)
−0.994845 + 0.101405i \(0.967666\pi\)
\(234\) 0 0
\(235\) −6.82254 + 11.8170i −0.445053 + 0.770855i
\(236\) 2.20665 3.82202i 0.143640 0.248793i
\(237\) 0 0
\(238\) −6.22302 + 36.8547i −0.403378 + 2.38893i
\(239\) −29.7431 −1.92392 −0.961961 0.273187i \(-0.911922\pi\)
−0.961961 + 0.273187i \(0.911922\pi\)
\(240\) 0 0
\(241\) −8.07397 13.9845i −0.520090 0.900822i −0.999727 0.0233553i \(-0.992565\pi\)
0.479637 0.877467i \(-0.340768\pi\)
\(242\) −0.268909 + 0.465764i −0.0172861 + 0.0299404i
\(243\) 0 0
\(244\) −1.15916 2.00773i −0.0742079 0.128532i
\(245\) −2.09021 10.9245i −0.133539 0.697938i
\(246\) 0 0
\(247\) −23.5577 10.4741i −1.49894 0.666450i
\(248\) 16.4432 28.4805i 1.04415 1.80851i
\(249\) 0 0
\(250\) 14.0930 24.4098i 0.891320 1.54381i
\(251\) −9.80082 + 16.9755i −0.618622 + 1.07149i 0.371115 + 0.928587i \(0.378976\pi\)
−0.989737 + 0.142898i \(0.954358\pi\)
\(252\) 0 0
\(253\) 9.09682 15.7561i 0.571912 0.990580i
\(254\) 14.0442 0.881212
\(255\) 0 0
\(256\) 13.1338 + 22.7483i 0.820860 + 1.42177i
\(257\) −2.98951 + 5.17798i −0.186481 + 0.322994i −0.944074 0.329732i \(-0.893041\pi\)
0.757594 + 0.652726i \(0.226375\pi\)
\(258\) 0 0
\(259\) −5.20945 4.30720i −0.323699 0.267637i
\(260\) 16.8237 12.2363i 1.04336 0.758864i
\(261\) 0 0
\(262\) −2.96086 −0.182922
\(263\) −14.9922 −0.924461 −0.462231 0.886760i \(-0.652951\pi\)
−0.462231 + 0.886760i \(0.652951\pi\)
\(264\) 0 0
\(265\) 18.9983 1.16706
\(266\) 34.5986 + 28.6064i 2.12138 + 1.75397i
\(267\) 0 0
\(268\) −2.47674 4.28983i −0.151291 0.262043i
\(269\) −5.10294 8.83854i −0.311131 0.538896i 0.667476 0.744631i \(-0.267375\pi\)
−0.978608 + 0.205736i \(0.934041\pi\)
\(270\) 0 0
\(271\) −2.96662 + 5.13834i −0.180209 + 0.312132i −0.941952 0.335748i \(-0.891011\pi\)
0.761742 + 0.647880i \(0.224344\pi\)
\(272\) 11.4480 0.694137
\(273\) 0 0
\(274\) 2.49036 0.150448
\(275\) 4.06224 7.03600i 0.244962 0.424287i
\(276\) 0 0
\(277\) −4.18766 7.25325i −0.251612 0.435805i 0.712358 0.701817i \(-0.247627\pi\)
−0.963970 + 0.266011i \(0.914294\pi\)
\(278\) 4.25375 + 7.36771i 0.255123 + 0.441886i
\(279\) 0 0
\(280\) −15.2503 + 5.67635i −0.911381 + 0.339227i
\(281\) 13.9797 0.833958 0.416979 0.908916i \(-0.363089\pi\)
0.416979 + 0.908916i \(0.363089\pi\)
\(282\) 0 0
\(283\) −16.8820 −1.00353 −0.501766 0.865003i \(-0.667316\pi\)
−0.501766 + 0.865003i \(0.667316\pi\)
\(284\) −8.66547 −0.514201
\(285\) 0 0
\(286\) 22.7113 16.5185i 1.34295 0.976760i
\(287\) −7.66016 + 2.85120i −0.452165 + 0.168301i
\(288\) 0 0
\(289\) −9.22019 + 15.9698i −0.542364 + 0.939402i
\(290\) 13.8782 + 24.0377i 0.814954 + 1.41154i
\(291\) 0 0
\(292\) 2.24528 0.131395
\(293\) −14.2012 + 24.5972i −0.829643 + 1.43698i 0.0686755 + 0.997639i \(0.478123\pi\)
−0.898319 + 0.439345i \(0.855211\pi\)
\(294\) 0 0
\(295\) −0.965598 + 1.67246i −0.0562193 + 0.0973746i
\(296\) −4.94457 + 8.56425i −0.287398 + 0.497787i
\(297\) 0 0
\(298\) 26.7592 46.3483i 1.55012 2.68488i
\(299\) 16.1626 11.7555i 0.934708 0.679837i
\(300\) 0 0
\(301\) 21.8960 + 18.1038i 1.26207 + 1.04348i
\(302\) 17.4855 + 30.2857i 1.00618 + 1.74275i
\(303\) 0 0
\(304\) 6.87514 11.9081i 0.394317 0.682976i
\(305\) 0.507234 + 0.878556i 0.0290441 + 0.0503059i
\(306\) 0 0
\(307\) 23.5914 1.34643 0.673217 0.739445i \(-0.264912\pi\)
0.673217 + 0.739445i \(0.264912\pi\)
\(308\) −29.5526 + 10.9998i −1.68392 + 0.626773i
\(309\) 0 0
\(310\) −16.0177 + 27.7434i −0.909743 + 1.57572i
\(311\) −3.26084 + 5.64795i −0.184905 + 0.320266i −0.943545 0.331245i \(-0.892531\pi\)
0.758639 + 0.651511i \(0.225865\pi\)
\(312\) 0 0
\(313\) −7.81661 13.5388i −0.441821 0.765256i 0.556004 0.831180i \(-0.312334\pi\)
−0.997825 + 0.0659236i \(0.979001\pi\)
\(314\) −15.7502 27.2801i −0.888834 1.53951i
\(315\) 0 0
\(316\) 26.9370 46.6562i 1.51532 2.62462i
\(317\) 8.89819 + 15.4121i 0.499772 + 0.865631i 1.00000 0.000262972i \(-8.37067e-5\pi\)
−0.500228 + 0.865894i \(0.666750\pi\)
\(318\) 0 0
\(319\) 12.0809 + 20.9247i 0.676401 + 1.17156i
\(320\) −9.04739 15.6705i −0.505764 0.876009i
\(321\) 0 0
\(322\) −32.6150 + 12.1397i −1.81756 + 0.676518i
\(323\) 21.2839 + 36.8647i 1.18427 + 2.05121i
\(324\) 0 0
\(325\) 7.21750 5.24948i 0.400355 0.291189i
\(326\) −5.71810 + 9.90404i −0.316696 + 0.548534i
\(327\) 0 0
\(328\) 5.97901 + 10.3559i 0.330135 + 0.571811i
\(329\) 21.2932 7.92558i 1.17393 0.436952i
\(330\) 0 0
\(331\) 1.64183 0.0902429 0.0451215 0.998982i \(-0.485633\pi\)
0.0451215 + 0.998982i \(0.485633\pi\)
\(332\) −18.5031 32.0483i −1.01549 1.75888i
\(333\) 0 0
\(334\) 21.6432 1.18426
\(335\) 1.08379 + 1.87717i 0.0592135 + 0.102561i
\(336\) 0 0
\(337\) 7.89772 0.430216 0.215108 0.976590i \(-0.430990\pi\)
0.215108 + 0.976590i \(0.430990\pi\)
\(338\) 30.1684 6.44480i 1.64094 0.350551i
\(339\) 0 0
\(340\) −34.3482 −1.86279
\(341\) −13.9433 + 24.1506i −0.755075 + 1.30783i
\(342\) 0 0
\(343\) −8.90874 + 16.2368i −0.481027 + 0.876706i
\(344\) 20.7827 35.9968i 1.12053 1.94082i
\(345\) 0 0
\(346\) 18.6052 32.2252i 1.00022 1.73244i
\(347\) 2.76200 + 4.78393i 0.148272 + 0.256815i 0.930589 0.366066i \(-0.119296\pi\)
−0.782317 + 0.622881i \(0.785962\pi\)
\(348\) 0 0
\(349\) −4.98919 8.64153i −0.267065 0.462570i 0.701037 0.713124i \(-0.252721\pi\)
−0.968103 + 0.250554i \(0.919387\pi\)
\(350\) −14.5644 + 5.42104i −0.778501 + 0.289767i
\(351\) 0 0
\(352\) −5.21588 9.03417i −0.278007 0.481523i
\(353\) 10.5928 0.563798 0.281899 0.959444i \(-0.409036\pi\)
0.281899 + 0.959444i \(0.409036\pi\)
\(354\) 0 0
\(355\) 3.79189 0.201253
\(356\) 30.0557 1.59295
\(357\) 0 0
\(358\) −11.9972 + 20.7797i −0.634070 + 1.09824i
\(359\) −10.4330 18.0706i −0.550635 0.953728i −0.998229 0.0594908i \(-0.981052\pi\)
0.447594 0.894237i \(-0.352281\pi\)
\(360\) 0 0
\(361\) 32.1285 1.69097
\(362\) −19.9210 + 34.5042i −1.04702 + 1.81350i
\(363\) 0 0
\(364\) −34.5724 2.14773i −1.81209 0.112572i
\(365\) −0.982504 −0.0514266
\(366\) 0 0
\(367\) −9.69370 −0.506007 −0.253003 0.967465i \(-0.581418\pi\)
−0.253003 + 0.967465i \(0.581418\pi\)
\(368\) 5.32959 + 9.23113i 0.277824 + 0.481206i
\(369\) 0 0
\(370\) 4.81661 8.34261i 0.250403 0.433712i
\(371\) −24.3800 20.1576i −1.26575 1.04653i
\(372\) 0 0
\(373\) −12.4318 −0.643693 −0.321847 0.946792i \(-0.604304\pi\)
−0.321847 + 0.946792i \(0.604304\pi\)
\(374\) −46.3686 −2.39766
\(375\) 0 0
\(376\) −16.6201 28.7868i −0.857114 1.48456i
\(377\) 2.78787 + 26.3947i 0.143582 + 1.35940i
\(378\) 0 0
\(379\) −13.3427 23.1102i −0.685368 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287953 0.957644i \(-0.407025\pi\)
\(380\) −20.6279 + 35.7286i −1.05819 + 1.83284i
\(381\) 0 0
\(382\) 22.4340 38.8568i 1.14782 1.98809i
\(383\) −2.56082 −0.130852 −0.0654260 0.997857i \(-0.520841\pi\)
−0.0654260 + 0.997857i \(0.520841\pi\)
\(384\) 0 0
\(385\) 12.9318 4.81337i 0.659066 0.245312i
\(386\) −9.31424 + 16.1327i −0.474083 + 0.821135i
\(387\) 0 0
\(388\) −6.03911 −0.306589
\(389\) −10.0916 + 17.4792i −0.511664 + 0.886228i 0.488244 + 0.872707i \(0.337637\pi\)
−0.999909 + 0.0135213i \(0.995696\pi\)
\(390\) 0 0
\(391\) −32.9984 −1.66880
\(392\) 25.5931 + 8.89658i 1.29265 + 0.449345i
\(393\) 0 0
\(394\) −59.5239 −2.99877
\(395\) −11.7872 + 20.4161i −0.593081 + 1.02725i
\(396\) 0 0
\(397\) −5.70253 −0.286202 −0.143101 0.989708i \(-0.545707\pi\)
−0.143101 + 0.989708i \(0.545707\pi\)
\(398\) 18.4711 0.925871
\(399\) 0 0
\(400\) 2.37996 + 4.12221i 0.118998 + 0.206111i
\(401\) −2.66435 + 4.61480i −0.133051 + 0.230452i −0.924851 0.380329i \(-0.875811\pi\)
0.791800 + 0.610781i \(0.209144\pi\)
\(402\) 0 0
\(403\) −24.7736 + 18.0185i −1.23406 + 0.897564i
\(404\) −0.351898 0.609505i −0.0175076 0.0303240i
\(405\) 0 0
\(406\) 7.69496 45.5719i 0.381894 2.26170i
\(407\) 4.19285 7.26222i 0.207832 0.359975i
\(408\) 0 0
\(409\) 10.8443 + 18.7829i 0.536216 + 0.928753i 0.999103 + 0.0423360i \(0.0134800\pi\)
−0.462888 + 0.886417i \(0.653187\pi\)
\(410\) −5.82427 10.0879i −0.287640 0.498207i
\(411\) 0 0
\(412\) 4.78874 8.29435i 0.235924 0.408633i
\(413\) 3.01364 1.12171i 0.148292 0.0551959i
\(414\) 0 0
\(415\) 8.09669 + 14.0239i 0.397451 + 0.688405i
\(416\) −1.20365 11.3958i −0.0590137 0.558725i
\(417\) 0 0
\(418\) −27.8468 + 48.2321i −1.36203 + 2.35911i
\(419\) −18.0347 31.2369i −0.881050 1.52602i −0.850175 0.526501i \(-0.823504\pi\)
−0.0308759 0.999523i \(-0.509830\pi\)
\(420\) 0 0
\(421\) 17.4314 0.849552 0.424776 0.905298i \(-0.360353\pi\)
0.424776 + 0.905298i \(0.360353\pi\)
\(422\) 5.57457 0.271366
\(423\) 0 0
\(424\) −23.1404 + 40.0804i −1.12380 + 1.94648i
\(425\) −14.7356 −0.714783
\(426\) 0 0
\(427\) 0.281244 1.66561i 0.0136103 0.0806047i
\(428\) 13.1313 0.634726
\(429\) 0 0
\(430\) −20.2449 + 35.0652i −0.976295 + 1.69099i
\(431\) −0.674855 −0.0325066 −0.0162533 0.999868i \(-0.505174\pi\)
−0.0162533 + 0.999868i \(0.505174\pi\)
\(432\) 0 0
\(433\) 9.80271 16.9788i 0.471088 0.815948i −0.528365 0.849017i \(-0.677195\pi\)
0.999453 + 0.0330689i \(0.0105281\pi\)
\(434\) 49.9914 18.6074i 2.39966 0.893182i
\(435\) 0 0
\(436\) 1.40574 0.0673228
\(437\) −19.8173 + 34.3246i −0.947992 + 1.64197i
\(438\) 0 0
\(439\) 16.0125 27.7345i 0.764236 1.32370i −0.176414 0.984316i \(-0.556450\pi\)
0.940650 0.339379i \(-0.110217\pi\)
\(440\) −10.0937 17.4828i −0.481198 0.833459i
\(441\) 0 0
\(442\) −46.5424 20.6935i −2.21380 0.984287i
\(443\) −8.77986 15.2072i −0.417144 0.722514i 0.578507 0.815677i \(-0.303636\pi\)
−0.995651 + 0.0931630i \(0.970302\pi\)
\(444\) 0 0
\(445\) −13.1520 −0.623463
\(446\) −27.4753 −1.30099
\(447\) 0 0
\(448\) −5.01646 + 29.7090i −0.237005 + 1.40362i
\(449\) −2.82841 + 4.89895i −0.133481 + 0.231196i −0.925016 0.379928i \(-0.875949\pi\)
0.791535 + 0.611123i \(0.209282\pi\)
\(450\) 0 0
\(451\) −5.07001 8.78152i −0.238738 0.413506i
\(452\) 37.1258 1.74625
\(453\) 0 0
\(454\) 30.8004 1.44553
\(455\) 15.1284 + 0.939819i 0.709231 + 0.0440594i
\(456\) 0 0
\(457\) 2.95432 5.11703i 0.138197 0.239365i −0.788617 0.614885i \(-0.789203\pi\)
0.926814 + 0.375520i \(0.122536\pi\)
\(458\) 45.7064 2.13572
\(459\) 0 0
\(460\) −15.9907 27.6968i −0.745571 1.29137i
\(461\) −19.0332 + 32.9664i −0.886463 + 1.53540i −0.0424358 + 0.999099i \(0.513512\pi\)
−0.844027 + 0.536300i \(0.819822\pi\)
\(462\) 0 0
\(463\) −35.4984 −1.64975 −0.824876 0.565314i \(-0.808755\pi\)
−0.824876 + 0.565314i \(0.808755\pi\)
\(464\) −14.1558 −0.657167
\(465\) 0 0
\(466\) −29.6736 −1.37460
\(467\) −0.127466 0.220777i −0.00589842 0.0102164i 0.863061 0.505099i \(-0.168544\pi\)
−0.868960 + 0.494883i \(0.835211\pi\)
\(468\) 0 0
\(469\) 0.600921 3.55884i 0.0277480 0.164332i
\(470\) 16.1899 + 28.0418i 0.746786 + 1.29347i
\(471\) 0 0
\(472\) −2.35225 4.07421i −0.108271 0.187531i
\(473\) −17.6231 + 30.5241i −0.810312 + 1.40350i
\(474\) 0 0
\(475\) −8.84954 + 15.3279i −0.406045 + 0.703290i
\(476\) 44.0781 + 36.4441i 2.02032 + 1.67041i
\(477\) 0 0
\(478\) −35.2903 + 61.1246i −1.61414 + 2.79577i
\(479\) 15.1983 0.694426 0.347213 0.937786i \(-0.387128\pi\)
0.347213 + 0.937786i \(0.387128\pi\)
\(480\) 0 0
\(481\) 7.44956 5.41826i 0.339671 0.247051i
\(482\) −38.3192 −1.74539
\(483\) 0 0
\(484\) 0.411483 + 0.712709i 0.0187038 + 0.0323959i
\(485\) 2.64263 0.119996
\(486\) 0 0
\(487\) −0.114540 0.198389i −0.00519030 0.00898986i 0.863419 0.504488i \(-0.168319\pi\)
−0.868609 + 0.495498i \(0.834985\pi\)
\(488\) −2.47130 −0.111870
\(489\) 0 0
\(490\) −24.9307 8.66634i −1.12625 0.391505i
\(491\) 7.19778 + 12.4669i 0.324831 + 0.562624i 0.981478 0.191574i \(-0.0613591\pi\)
−0.656647 + 0.754198i \(0.728026\pi\)
\(492\) 0 0
\(493\) 21.9116 37.9519i 0.986847 1.70927i
\(494\) −49.4764 + 35.9854i −2.22605 + 1.61906i
\(495\) 0 0
\(496\) −8.16906 14.1492i −0.366801 0.635319i
\(497\) −4.86604 4.02327i −0.218272 0.180468i
\(498\) 0 0
\(499\) −6.68657 11.5815i −0.299332 0.518458i 0.676651 0.736304i \(-0.263430\pi\)
−0.975983 + 0.217845i \(0.930097\pi\)
\(500\) −21.5650 37.3517i −0.964418 1.67042i
\(501\) 0 0
\(502\) 23.2574 + 40.2830i 1.03803 + 1.79792i
\(503\) 5.78251 10.0156i 0.257829 0.446574i −0.707831 0.706382i \(-0.750326\pi\)
0.965660 + 0.259808i \(0.0836594\pi\)
\(504\) 0 0
\(505\) 0.153986 + 0.266711i 0.00685227 + 0.0118685i
\(506\) −21.5868 37.3894i −0.959650 1.66216i
\(507\) 0 0
\(508\) 10.7452 18.6112i 0.476740 0.825739i
\(509\) 14.7718 25.5855i 0.654748 1.13406i −0.327209 0.944952i \(-0.606108\pi\)
0.981957 0.189104i \(-0.0605584\pi\)
\(510\) 0 0
\(511\) 1.26082 + 1.04246i 0.0557755 + 0.0461155i
\(512\) 20.9987 0.928019
\(513\) 0 0
\(514\) 7.09413 + 12.2874i 0.312909 + 0.541974i
\(515\) −2.09549 + 3.62949i −0.0923382 + 0.159935i
\(516\) 0 0
\(517\) 14.0933 + 24.4103i 0.619822 + 1.07356i
\(518\) −15.0327 + 5.59534i −0.660499 + 0.245845i
\(519\) 0 0
\(520\) −2.32928 22.0530i −0.102146 0.967087i
\(521\) 8.38685 14.5265i 0.367435 0.636416i −0.621729 0.783233i \(-0.713569\pi\)
0.989164 + 0.146817i \(0.0469028\pi\)
\(522\) 0 0
\(523\) 20.1394 34.8824i 0.880633 1.52530i 0.0299941 0.999550i \(-0.490451\pi\)
0.850639 0.525751i \(-0.176216\pi\)
\(524\) −2.26534 + 3.92369i −0.0989619 + 0.171407i
\(525\) 0 0
\(526\) −17.7883 + 30.8103i −0.775609 + 1.34339i
\(527\) 50.5790 2.20326
\(528\) 0 0
\(529\) −3.86235 6.68978i −0.167928 0.290860i
\(530\) 22.5416 39.0431i 0.979142 1.69592i
\(531\) 0 0
\(532\) 64.3801 23.9630i 2.79123 1.03893i
\(533\) −1.16999 11.0771i −0.0506778 0.479802i
\(534\) 0 0
\(535\) −5.74608 −0.248425
\(536\) −5.28032 −0.228075
\(537\) 0 0
\(538\) −24.2186 −1.04414
\(539\) −21.7021 7.54403i −0.934777 0.324944i
\(540\) 0 0
\(541\) 2.65491 + 4.59844i 0.114144 + 0.197702i 0.917437 0.397881i \(-0.130254\pi\)
−0.803294 + 0.595583i \(0.796921\pi\)
\(542\) 7.03981 + 12.1933i 0.302386 + 0.523747i
\(543\) 0 0
\(544\) −9.46022 + 16.3856i −0.405603 + 0.702526i
\(545\) −0.615133 −0.0263494
\(546\) 0 0
\(547\) 28.9584 1.23817 0.619085 0.785324i \(-0.287504\pi\)
0.619085 + 0.785324i \(0.287504\pi\)
\(548\) 1.90536 3.30019i 0.0813931 0.140977i
\(549\) 0 0
\(550\) −9.63971 16.6965i −0.411039 0.711940i
\(551\) −26.3182 45.5844i −1.12119 1.94196i
\(552\) 0 0
\(553\) 36.7881 13.6930i 1.56439 0.582284i
\(554\) −19.8747 −0.844395
\(555\) 0 0
\(556\) 13.0181 0.552092
\(557\) 11.5392 0.488931 0.244466 0.969658i \(-0.421387\pi\)
0.244466 + 0.969658i \(0.421387\pi\)
\(558\) 0 0
\(559\) −31.3116 + 22.7737i −1.32434 + 0.963225i
\(560\) −1.34599 + 7.97139i −0.0568785 + 0.336853i
\(561\) 0 0
\(562\) 16.5869 28.7294i 0.699678 1.21188i
\(563\) −11.9812 20.7521i −0.504949 0.874597i −0.999984 0.00572413i \(-0.998178\pi\)
0.495035 0.868873i \(-0.335155\pi\)
\(564\) 0 0
\(565\) −16.2457 −0.683463
\(566\) −20.0306 + 34.6940i −0.841948 + 1.45830i
\(567\) 0 0
\(568\) −4.61862 + 7.99969i −0.193793 + 0.335659i
\(569\) −0.316091 + 0.547485i −0.0132512 + 0.0229518i −0.872575 0.488480i \(-0.837551\pi\)
0.859324 + 0.511432i \(0.170885\pi\)
\(570\) 0 0
\(571\) −1.82039 + 3.15301i −0.0761810 + 0.131949i −0.901599 0.432572i \(-0.857606\pi\)
0.825418 + 0.564522i \(0.190939\pi\)
\(572\) −4.51376 42.7350i −0.188730 1.78684i
\(573\) 0 0
\(574\) −3.22935 + 19.1252i −0.134791 + 0.798272i
\(575\) −6.86014 11.8821i −0.286088 0.495519i
\(576\) 0 0
\(577\) 2.63632 4.56623i 0.109751 0.190095i −0.805918 0.592027i \(-0.798328\pi\)
0.915669 + 0.401932i \(0.131661\pi\)
\(578\) 21.8796 + 37.8965i 0.910070 + 1.57629i
\(579\) 0 0
\(580\) 42.4726 1.76358
\(581\) 4.48933 26.5872i 0.186249 1.10302i
\(582\) 0 0
\(583\) 19.6224 33.9869i 0.812676 1.40760i
\(584\) 1.19672 2.07277i 0.0495205 0.0857720i
\(585\) 0 0
\(586\) 33.6995 + 58.3693i 1.39212 + 2.41121i
\(587\) 1.40954 + 2.44139i 0.0581779 + 0.100767i 0.893648 0.448770i \(-0.148138\pi\)
−0.835470 + 0.549537i \(0.814804\pi\)
\(588\) 0 0
\(589\) 30.3755 52.6118i 1.25160 2.16783i
\(590\) 2.29137 + 3.96877i 0.0943342 + 0.163392i
\(591\) 0 0
\(592\) 2.45648 + 4.25475i 0.100961 + 0.174869i
\(593\) −7.65704 13.2624i −0.314437 0.544621i 0.664881 0.746949i \(-0.268482\pi\)
−0.979318 + 0.202329i \(0.935149\pi\)
\(594\) 0 0
\(595\) −19.2880 15.9474i −0.790730 0.653780i
\(596\) −40.9467 70.9218i −1.67724 2.90507i
\(597\) 0 0
\(598\) −4.98151 47.1634i −0.203709 1.92866i
\(599\) 4.16303 7.21058i 0.170097 0.294616i −0.768357 0.640022i \(-0.778925\pi\)
0.938453 + 0.345406i \(0.112259\pi\)
\(600\) 0 0
\(601\) −8.31185 14.3965i −0.339047 0.587247i 0.645207 0.764008i \(-0.276771\pi\)
−0.984254 + 0.176761i \(0.943438\pi\)
\(602\) 63.1845 23.5180i 2.57521 0.958522i
\(603\) 0 0
\(604\) 53.5123 2.17739
\(605\) −0.180059 0.311872i −0.00732045 0.0126794i
\(606\) 0 0
\(607\) −34.7311 −1.40969 −0.704846 0.709360i \(-0.748984\pi\)
−0.704846 + 0.709360i \(0.748984\pi\)
\(608\) 11.3627 + 19.6809i 0.460820 + 0.798164i
\(609\) 0 0
\(610\) 2.40734 0.0974704
\(611\) 3.25226 + 30.7914i 0.131572 + 1.24569i
\(612\) 0 0
\(613\) 2.25257 0.0909804 0.0454902 0.998965i \(-0.485515\pi\)
0.0454902 + 0.998965i \(0.485515\pi\)
\(614\) 27.9913 48.4823i 1.12964 1.95659i
\(615\) 0 0
\(616\) −5.59660 + 33.1448i −0.225493 + 1.33544i
\(617\) 13.5484 23.4666i 0.545439 0.944729i −0.453140 0.891440i \(-0.649696\pi\)
0.998579 0.0532893i \(-0.0169706\pi\)
\(618\) 0 0
\(619\) 16.6208 28.7880i 0.668045 1.15709i −0.310405 0.950604i \(-0.600465\pi\)
0.978450 0.206484i \(-0.0662020\pi\)
\(620\) 24.5101 + 42.4528i 0.984351 + 1.70495i
\(621\) 0 0
\(622\) 7.73800 + 13.4026i 0.310266 + 0.537396i
\(623\) 16.8776 + 13.9545i 0.676186 + 0.559075i
\(624\) 0 0
\(625\) 3.24843 + 5.62645i 0.129937 + 0.225058i
\(626\) −37.0977 −1.48272
\(627\) 0 0
\(628\) −48.2016 −1.92345
\(629\) −15.2094 −0.606439
\(630\) 0 0
\(631\) −20.6922 + 35.8399i −0.823743 + 1.42677i 0.0791326 + 0.996864i \(0.474785\pi\)
−0.902876 + 0.429901i \(0.858548\pi\)
\(632\) −28.7143 49.7347i −1.14220 1.97834i
\(633\) 0 0
\(634\) 42.2309 1.67720
\(635\) −4.70194 + 8.14401i −0.186591 + 0.323185i
\(636\) 0 0
\(637\) −18.4167 17.2576i −0.729697 0.683770i
\(638\) 57.3362 2.26996
\(639\) 0 0
\(640\) −32.8390 −1.29808
\(641\) −23.0317 39.8920i −0.909695 1.57564i −0.814487 0.580181i \(-0.802982\pi\)
−0.0952082 0.995457i \(-0.530352\pi\)
\(642\) 0 0
\(643\) −16.6181 + 28.7834i −0.655353 + 1.13510i 0.326452 + 0.945214i \(0.394147\pi\)
−0.981805 + 0.189891i \(0.939187\pi\)
\(644\) −8.86630 + 52.5090i −0.349381 + 2.06914i
\(645\) 0 0
\(646\) 101.014 3.97432
\(647\) 5.97709 0.234984 0.117492 0.993074i \(-0.462515\pi\)
0.117492 + 0.993074i \(0.462515\pi\)
\(648\) 0 0
\(649\) 1.99463 + 3.45480i 0.0782962 + 0.135613i
\(650\) −2.22452 21.0611i −0.0872529 0.826084i
\(651\) 0 0
\(652\) 8.74980 + 15.1551i 0.342669 + 0.593520i
\(653\) 11.9276 20.6592i 0.466764 0.808458i −0.532516 0.846420i \(-0.678753\pi\)
0.999279 + 0.0379620i \(0.0120866\pi\)
\(654\) 0 0
\(655\) 0.991282 1.71695i 0.0387326 0.0670868i
\(656\) 5.94078 0.231949
\(657\) 0 0
\(658\) 8.97675 53.1631i 0.349950 2.07251i
\(659\) 13.1153 22.7163i 0.510899 0.884902i −0.489022 0.872272i \(-0.662646\pi\)
0.999920 0.0126308i \(-0.00402061\pi\)
\(660\) 0 0
\(661\) −16.6208 −0.646474 −0.323237 0.946318i \(-0.604771\pi\)
−0.323237 + 0.946318i \(0.604771\pi\)
\(662\) 1.94803 3.37409i 0.0757124 0.131138i
\(663\) 0 0
\(664\) −39.4479 −1.53088
\(665\) −28.1718 + 10.4859i −1.09246 + 0.406625i
\(666\) 0 0
\(667\) 40.8035 1.57992
\(668\) 16.5591 28.6813i 0.640692 1.10971i
\(669\) 0 0
\(670\) 5.14366 0.198717
\(671\) 2.09558 0.0808991
\(672\) 0 0
\(673\) 21.2726 + 36.8451i 0.819997 + 1.42028i 0.905684 + 0.423954i \(0.139358\pi\)
−0.0856874 + 0.996322i \(0.527309\pi\)
\(674\) 9.37068 16.2305i 0.360945 0.625175i
\(675\) 0 0
\(676\) 14.5412 44.9096i 0.559276 1.72729i
\(677\) 5.90158 + 10.2218i 0.226816 + 0.392857i 0.956863 0.290540i \(-0.0938350\pi\)
−0.730047 + 0.683397i \(0.760502\pi\)
\(678\) 0 0
\(679\) −3.39122 2.80388i −0.130143 0.107603i
\(680\) −18.3073 + 31.7091i −0.702052 + 1.21599i
\(681\) 0 0
\(682\) 33.0877 + 57.3095i 1.26699 + 2.19449i
\(683\) 10.3451 + 17.9182i 0.395843 + 0.685619i 0.993208 0.116349i \(-0.0371193\pi\)
−0.597366 + 0.801969i \(0.703786\pi\)
\(684\) 0 0
\(685\) −0.833761 + 1.44412i −0.0318564 + 0.0551768i
\(686\) 22.7978 + 37.5732i 0.870424 + 1.43455i
\(687\) 0 0
\(688\) −10.3249 17.8833i −0.393635 0.681795i
\(689\) 34.8637 25.3573i 1.32820 0.966035i
\(690\) 0 0
\(691\) −6.21052 + 10.7569i −0.236259 + 0.409213i −0.959638 0.281238i \(-0.909255\pi\)
0.723379 + 0.690452i \(0.242588\pi\)
\(692\) −28.4696 49.3108i −1.08225 1.87452i
\(693\) 0 0
\(694\) 13.1085 0.497592
\(695\) −5.69655 −0.216083
\(696\) 0 0
\(697\) −9.19565 + 15.9273i −0.348310 + 0.603291i
\(698\) −23.6788 −0.896254
\(699\) 0 0
\(700\) −3.95930 + 23.4482i −0.149647 + 0.886258i
\(701\) −35.6900 −1.34799 −0.673996 0.738735i \(-0.735423\pi\)
−0.673996 + 0.738735i \(0.735423\pi\)
\(702\) 0 0
\(703\) −9.13408 + 15.8207i −0.344498 + 0.596688i
\(704\) −37.3783 −1.40875
\(705\) 0 0
\(706\) 12.5684 21.7691i 0.473018 0.819291i
\(707\) 0.0853796 0.505645i 0.00321103 0.0190167i
\(708\) 0 0
\(709\) −31.0123 −1.16469 −0.582346 0.812941i \(-0.697865\pi\)
−0.582346 + 0.812941i \(0.697865\pi\)
\(710\) 4.49909 7.79265i 0.168848 0.292453i
\(711\) 0 0
\(712\) 16.0195 27.7465i 0.600354 1.03984i
\(713\) 23.5470 + 40.7846i 0.881841 + 1.52739i
\(714\) 0 0
\(715\) 1.97516 + 18.7002i 0.0738668 + 0.699349i
\(716\) 18.3580 + 31.7970i 0.686070 + 1.18831i
\(717\) 0 0
\(718\) −49.5154 −1.84790
\(719\) −27.1417 −1.01222 −0.506108 0.862470i \(-0.668916\pi\)
−0.506108 + 0.862470i \(0.668916\pi\)
\(720\) 0 0
\(721\) 6.54005 2.43428i 0.243564 0.0906573i
\(722\) 38.1205 66.0267i 1.41870 2.45726i
\(723\) 0 0
\(724\) 30.4830 + 52.7981i 1.13289 + 1.96222i
\(725\) 18.2211 0.676713
\(726\) 0 0
\(727\) −21.0336 −0.780095 −0.390047 0.920795i \(-0.627541\pi\)
−0.390047 + 0.920795i \(0.627541\pi\)
\(728\) −20.4095 + 30.7714i −0.756427 + 1.14047i
\(729\) 0 0
\(730\) −1.16574 + 2.01913i −0.0431461 + 0.0747313i
\(731\) 63.9273 2.36444
\(732\) 0 0
\(733\) 4.49198 + 7.78034i 0.165915 + 0.287373i 0.936980 0.349383i \(-0.113609\pi\)
−0.771065 + 0.636757i \(0.780276\pi\)
\(734\) −11.5016 + 19.9214i −0.424532 + 0.735311i
\(735\) 0 0
\(736\) −17.6167 −0.649362
\(737\) 4.47754 0.164932
\(738\) 0 0
\(739\) 11.9334 0.438979 0.219489 0.975615i \(-0.429561\pi\)
0.219489 + 0.975615i \(0.429561\pi\)
\(740\) −7.37034 12.7658i −0.270939 0.469280i
\(741\) 0 0
\(742\) −70.3525 + 26.1860i −2.58272 + 0.961318i
\(743\) 7.76713 + 13.4531i 0.284948 + 0.493545i 0.972597 0.232499i \(-0.0746902\pi\)
−0.687648 + 0.726044i \(0.741357\pi\)
\(744\) 0 0
\(745\) 17.9177 + 31.0344i 0.656455 + 1.13701i
\(746\) −14.7504 + 25.5484i −0.540049 + 0.935392i
\(747\) 0 0
\(748\) −35.4765 + 61.4470i −1.29715 + 2.24673i
\(749\) 7.37380 + 6.09670i 0.269433 + 0.222769i
\(750\) 0 0
\(751\) 18.3109 31.7153i 0.668173 1.15731i −0.310242 0.950658i \(-0.600410\pi\)
0.978415 0.206652i \(-0.0662567\pi\)
\(752\) −16.5138 −0.602197
\(753\) 0 0
\(754\) 57.5511 + 25.5881i 2.09589 + 0.931863i
\(755\) −23.4163 −0.852205
\(756\) 0 0
\(757\) −9.66722 16.7441i −0.351361 0.608575i 0.635127 0.772408i \(-0.280948\pi\)
−0.986488 + 0.163832i \(0.947614\pi\)
\(758\) −63.3246 −2.30005
\(759\) 0 0
\(760\) 21.9890 + 38.0861i 0.797626 + 1.38153i
\(761\) 22.0990 0.801087 0.400543 0.916278i \(-0.368821\pi\)
0.400543 + 0.916278i \(0.368821\pi\)
\(762\) 0 0
\(763\) 0.789385 + 0.652668i 0.0285776 + 0.0236282i
\(764\) −34.3283 59.4584i −1.24196 2.15113i
\(765\) 0 0
\(766\) −3.03843 + 5.26271i −0.109783 + 0.190149i
\(767\) 0.460294 + 4.35793i 0.0166202 + 0.157356i
\(768\) 0 0
\(769\) −8.04717 13.9381i −0.290188 0.502621i 0.683666 0.729795i \(-0.260385\pi\)
−0.973854 + 0.227174i \(0.927051\pi\)
\(770\) 5.45176 32.2870i 0.196468 1.16354i
\(771\) 0 0
\(772\) 14.2526 + 24.6862i 0.512962 + 0.888477i
\(773\) 11.9883 + 20.7643i 0.431188 + 0.746839i 0.996976 0.0777116i \(-0.0247613\pi\)
−0.565788 + 0.824551i \(0.691428\pi\)
\(774\) 0 0
\(775\) 10.5150 + 18.2126i 0.377711 + 0.654215i
\(776\) −3.21879 + 5.57511i −0.115548 + 0.200135i
\(777\) 0 0
\(778\) 23.9474 + 41.4781i 0.858557 + 1.48706i
\(779\) 11.0450 + 19.1305i 0.395727 + 0.685420i
\(780\) 0 0
\(781\) 3.91645 6.78349i 0.140142 0.242732i
\(782\) −39.1527 + 67.8145i −1.40010 + 2.42504i
\(783\) 0 0
\(784\) 10.1851 8.80135i 0.363753 0.314334i
\(785\) 21.0924 0.752819
\(786\) 0 0
\(787\) 19.2452 + 33.3337i 0.686019 + 1.18822i 0.973115 + 0.230318i \(0.0739766\pi\)
−0.287097 + 0.957902i \(0.592690\pi\)
\(788\) −45.5416 + 78.8803i −1.62235 + 2.81000i
\(789\) 0 0
\(790\) 27.9712 + 48.4476i 0.995171 + 1.72369i
\(791\) 20.8477 + 17.2370i 0.741260 + 0.612878i
\(792\) 0 0
\(793\) 2.10344 + 0.935222i 0.0746954 + 0.0332107i
\(794\) −6.76607 + 11.7192i −0.240119 + 0.415898i
\(795\) 0 0
\(796\) 14.1322 24.4776i 0.500901 0.867586i
\(797\) 22.8007 39.4919i 0.807641 1.39888i −0.106853 0.994275i \(-0.534077\pi\)
0.914494 0.404600i \(-0.132589\pi\)
\(798\) 0 0
\(799\) 25.5615 44.2738i 0.904300 1.56629i
\(800\) −7.86686 −0.278136
\(801\) 0 0
\(802\) 6.32253 + 10.9509i 0.223256 + 0.386691i
\(803\) −1.01478 + 1.75765i −0.0358107 + 0.0620260i
\(804\) 0 0
\(805\) 3.87977 22.9772i 0.136744 0.809840i
\(806\) 7.63551 + 72.2908i 0.268950 + 2.54633i
\(807\) 0 0
\(808\) −0.750234 −0.0263931
\(809\) −24.9225 −0.876228 −0.438114 0.898919i \(-0.644353\pi\)
−0.438114 + 0.898919i \(0.644353\pi\)
\(810\) 0 0
\(811\) −23.7418 −0.833689 −0.416844 0.908978i \(-0.636864\pi\)
−0.416844 + 0.908978i \(0.636864\pi\)
\(812\) −54.5039 45.0642i −1.91271 1.58144i
\(813\) 0 0
\(814\) −9.94965 17.2333i −0.348735 0.604027i
\(815\) −3.82879 6.63166i −0.134117 0.232297i
\(816\) 0 0
\(817\) 38.3918 66.4966i 1.34316 2.32642i
\(818\) 51.4672 1.79951
\(819\) 0 0
\(820\) −17.8245 −0.622459
\(821\) 14.4778 25.0762i 0.505278 0.875166i −0.494704 0.869062i \(-0.664723\pi\)
0.999981 0.00610476i \(-0.00194322\pi\)
\(822\) 0 0
\(823\) −18.6438 32.2919i −0.649880 1.12563i −0.983151 0.182795i \(-0.941486\pi\)
0.333271 0.942831i \(-0.391848\pi\)
\(824\) −5.10472 8.84163i −0.177831 0.308013i
\(825\) 0 0
\(826\) 1.27048 7.52421i 0.0442058 0.261801i
\(827\) 20.7885 0.722888 0.361444 0.932394i \(-0.382284\pi\)
0.361444 + 0.932394i \(0.382284\pi\)
\(828\) 0 0
\(829\) −55.8295 −1.93904 −0.969520 0.245014i \(-0.921208\pi\)
−0.969520 + 0.245014i \(0.921208\pi\)
\(830\) 38.4270 1.33382
\(831\) 0 0
\(832\) −37.5185 16.6813i −1.30072 0.578319i
\(833\) 7.83124 + 40.9298i 0.271336 + 1.41813i
\(834\) 0 0
\(835\) −7.24605 + 12.5505i −0.250760 + 0.434329i
\(836\) 42.6111 + 73.8045i 1.47373 + 2.55258i
\(837\) 0 0
\(838\) −85.5927 −2.95675
\(839\) 11.2275 19.4465i 0.387615 0.671369i −0.604513 0.796595i \(-0.706632\pi\)
0.992128 + 0.125226i \(0.0399656\pi\)
\(840\) 0 0
\(841\) −12.5943 + 21.8140i −0.434287 + 0.752206i
\(842\) 20.6824 35.8229i 0.712761 1.23454i
\(843\) 0 0
\(844\) 4.26509 7.38735i 0.146810 0.254283i
\(845\) −6.36301 + 19.6518i −0.218894 + 0.676044i
\(846\) 0 0
\(847\) −0.0998365 + 0.591263i −0.00343042 + 0.0203160i
\(848\) 11.4963 + 19.9121i 0.394783 + 0.683784i
\(849\) 0 0
\(850\) −17.4839 + 30.2830i −0.599692 + 1.03870i
\(851\) −7.08071 12.2642i −0.242724 0.420410i
\(852\) 0 0
\(853\) 10.8150 0.370298 0.185149 0.982710i \(-0.440723\pi\)
0.185149 + 0.982710i \(0.440723\pi\)
\(854\) −3.08928 2.55423i −0.105713 0.0874041i
\(855\) 0 0
\(856\) 6.99888 12.1224i 0.239217 0.414335i
\(857\) −17.7262 + 30.7026i −0.605514 + 1.04878i 0.386456 + 0.922308i \(0.373699\pi\)
−0.991970 + 0.126474i \(0.959634\pi\)
\(858\) 0 0
\(859\) −24.0734 41.6963i −0.821373 1.42266i −0.904660 0.426134i \(-0.859875\pi\)
0.0832873 0.996526i \(-0.473458\pi\)
\(860\) 30.9786 + 53.6565i 1.05636 + 1.82967i
\(861\) 0 0
\(862\) −0.800718 + 1.38688i −0.0272726 + 0.0472375i
\(863\) −2.06142 3.57048i −0.0701714 0.121540i 0.828805 0.559538i \(-0.189021\pi\)
−0.898976 + 0.437997i \(0.855688\pi\)
\(864\) 0 0
\(865\) 12.4579 + 21.5777i 0.423582 + 0.733665i
\(866\) −23.2619 40.2908i −0.790471 1.36914i
\(867\) 0 0
\(868\) 13.5900 80.4843i 0.461275 2.73182i
\(869\) 24.3489 + 42.1735i 0.825979 + 1.43064i
\(870\) 0 0
\(871\) 4.49433 + 1.99825i 0.152285 + 0.0677080i
\(872\) 0.749248 1.29774i 0.0253728 0.0439469i
\(873\) 0 0
\(874\) 47.0267 + 81.4526i 1.59070 + 2.75517i
\(875\) 5.23224 30.9870i 0.176882 1.04755i
\(876\) 0 0
\(877\) 28.9796 0.978572 0.489286 0.872124i \(-0.337258\pi\)
0.489286 + 0.872124i \(0.337258\pi\)
\(878\) −37.9978 65.8142i −1.28236 2.22112i
\(879\) 0 0
\(880\) −10.0292 −0.338083
\(881\) 7.56041 + 13.0950i 0.254717 + 0.441182i 0.964819 0.262917i \(-0.0846845\pi\)
−0.710102 + 0.704099i \(0.751351\pi\)
\(882\) 0 0
\(883\) −31.9151 −1.07403 −0.537014 0.843573i \(-0.680448\pi\)
−0.537014 + 0.843573i \(0.680448\pi\)
\(884\) −63.0322 + 45.8449i −2.12000 + 1.54193i
\(885\) 0 0
\(886\) −41.6693 −1.39991
\(887\) −24.3422 + 42.1619i −0.817330 + 1.41566i 0.0903126 + 0.995913i \(0.471213\pi\)
−0.907643 + 0.419744i \(0.862120\pi\)
\(888\) 0 0
\(889\) 14.6748 5.46214i 0.492178 0.183194i
\(890\) −15.6049 + 27.0284i −0.523076 + 0.905995i
\(891\) 0 0
\(892\) −21.0213 + 36.4099i −0.703844 + 1.21909i
\(893\) −30.7021 53.1776i −1.02741 1.77952i
\(894\) 0 0
\(895\) −8.03320 13.9139i −0.268520 0.465091i
\(896\) 42.1415 + 34.8428i 1.40785 + 1.16402i
\(897\) 0 0
\(898\) 6.71183 + 11.6252i 0.223977 + 0.387939i
\(899\) −62.5425 −2.08591
\(900\) 0 0
\(901\) −71.1795 −2.37133
\(902\) −24.0623 −0.801189
\(903\) 0 0
\(904\) 19.7877 34.2733i 0.658130 1.13991i
\(905\) −13.3389 23.1037i −0.443401 0.767993i
\(906\) 0 0
\(907\) −41.4369 −1.37589 −0.687945 0.725763i \(-0.741487\pi\)
−0.687945 + 0.725763i \(0.741487\pi\)
\(908\) 23.5653 40.8163i 0.782042 1.35454i
\(909\) 0 0
\(910\) 19.8813 29.9751i 0.659059 0.993663i
\(911\) 55.6403 1.84344 0.921722 0.387851i \(-0.126782\pi\)
0.921722 + 0.387851i \(0.126782\pi\)
\(912\) 0 0
\(913\) 33.4506 1.10705
\(914\) −7.01062 12.1427i −0.231891 0.401646i
\(915\) 0 0
\(916\) 34.9698 60.5695i 1.15544 2.00127i
\(917\) −3.09381 + 1.15155i −0.102166 + 0.0380275i
\(918\) 0 0
\(919\) 2.31981 0.0765233 0.0382617 0.999268i \(-0.487818\pi\)
0.0382617 + 0.999268i \(0.487818\pi\)
\(920\) −34.0917 −1.12397
\(921\) 0 0
\(922\) 45.1658 + 78.2295i 1.48746 + 2.57635i
\(923\) 6.95848 5.06108i 0.229041 0.166588i
\(924\) 0 0
\(925\) −3.16193 5.47663i −0.103964 0.180070i
\(926\) −42.1190 + 72.9523i −1.38412 + 2.39736i
\(927\) 0 0
\(928\) 11.6978 20.2613i 0.384001 0.665109i
\(929\) −45.2481 −1.48454 −0.742270 0.670101i \(-0.766251\pi\)
−0.742270 + 0.670101i \(0.766251\pi\)
\(930\) 0 0
\(931\) 47.2779 + 16.4346i 1.54947 + 0.538622i
\(932\) −22.7032 + 39.3231i −0.743668 + 1.28807i
\(933\) 0 0
\(934\) −0.604955 −0.0197947
\(935\) 15.5240 26.8884i 0.507689 0.879343i
\(936\) 0 0
\(937\) 23.7899 0.777181 0.388590 0.921411i \(-0.372962\pi\)
0.388590 + 0.921411i \(0.372962\pi\)
\(938\) −6.60073 5.45752i −0.215521 0.178194i
\(939\) 0 0
\(940\) 49.5475 1.61606
\(941\) 15.7112 27.2127i 0.512172 0.887107i −0.487729 0.872995i \(-0.662175\pi\)
0.999900 0.0141120i \(-0.00449213\pi\)
\(942\) 0 0
\(943\) −17.1241 −0.557637
\(944\) −2.33721 −0.0760697
\(945\) 0 0
\(946\) 41.8198 + 72.4340i 1.35968 + 2.35503i
\(947\) 8.88848 15.3953i 0.288837 0.500280i −0.684695 0.728829i \(-0.740065\pi\)
0.973532 + 0.228549i \(0.0733981\pi\)
\(948\) 0 0
\(949\) −1.80299 + 1.31136i −0.0585275 + 0.0425685i
\(950\) 21.0000 + 36.3731i 0.681331 + 1.18010i
\(951\) 0 0
\(952\) 57.1373 21.2671i 1.85183 0.689272i
\(953\) −0.457510 + 0.792431i −0.0148202 + 0.0256694i −0.873340 0.487110i \(-0.838051\pi\)
0.858520 + 0.512780i \(0.171384\pi\)
\(954\) 0 0
\(955\) 15.0216 + 26.0182i 0.486088 + 0.841929i
\(956\) 54.0010 + 93.5325i 1.74652 + 3.02506i
\(957\) 0 0
\(958\) 18.0328 31.2337i 0.582613 1.00911i
\(959\) 2.60218 0.968561i 0.0840287 0.0312765i
\(960\) 0 0
\(961\) −20.5922 35.6667i −0.664263 1.15054i
\(962\) −2.29604 21.7383i −0.0740274 0.700870i
\(963\) 0 0
\(964\) −29.3179 + 50.7800i −0.944265 + 1.63551i
\(965\) −6.23674 10.8024i −0.200768 0.347740i
\(966\) 0 0
\(967\) 48.9250 1.57332 0.786660 0.617386i \(-0.211808\pi\)
0.786660 + 0.617386i \(0.211808\pi\)
\(968\) 0.877267 0.0281964
\(969\) 0 0
\(970\) 3.13549 5.43083i 0.100675 0.174373i
\(971\) 29.1907 0.936774 0.468387 0.883523i \(-0.344835\pi\)
0.468387 + 0.883523i \(0.344835\pi\)
\(972\) 0 0
\(973\) 7.31024 + 6.04415i 0.234355 + 0.193767i
\(974\) −0.543608 −0.0174183
\(975\) 0 0
\(976\) −0.613875 + 1.06326i −0.0196497 + 0.0340342i
\(977\) 27.6168 0.883539 0.441770 0.897128i \(-0.354351\pi\)
0.441770 + 0.897128i \(0.354351\pi\)
\(978\) 0 0
\(979\) −13.5840 + 23.5282i −0.434146 + 0.751964i
\(980\) −30.5589 + 26.4073i −0.976169 + 0.843549i
\(981\) 0 0
\(982\) 34.1608 1.09011
\(983\) −6.29829 + 10.9090i −0.200884 + 0.347942i −0.948814 0.315836i \(-0.897715\pi\)
0.747929 + 0.663778i \(0.231048\pi\)
\(984\) 0 0
\(985\) 19.9284 34.5169i 0.634970 1.09980i
\(986\) −51.9963 90.0602i −1.65590 2.86810i
\(987\) 0 0
\(988\) 9.83320 + 93.0978i 0.312836 + 2.96184i
\(989\) 29.7612 + 51.5480i 0.946352 + 1.63913i
\(990\) 0 0
\(991\) 4.08461 0.129752 0.0648760 0.997893i \(-0.479335\pi\)
0.0648760 + 0.997893i \(0.479335\pi\)
\(992\) 27.0025 0.857329
\(993\) 0 0
\(994\) −14.0417 + 5.22649i −0.445376 + 0.165774i
\(995\) −6.18403 + 10.7111i −0.196047 + 0.339563i
\(996\) 0 0
\(997\) −21.0442 36.4497i −0.666478 1.15437i −0.978882 0.204424i \(-0.934468\pi\)
0.312405 0.949949i \(-0.398865\pi\)
\(998\) −31.7346 −1.00454
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.n.g.172.17 yes 36
3.2 odd 2 inner 819.2.n.g.172.2 yes 36
7.2 even 3 819.2.s.g.289.2 yes 36
13.9 even 3 819.2.s.g.802.2 yes 36
21.2 odd 6 819.2.s.g.289.17 yes 36
39.35 odd 6 819.2.s.g.802.17 yes 36
91.9 even 3 inner 819.2.n.g.100.17 yes 36
273.191 odd 6 inner 819.2.n.g.100.2 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.n.g.100.2 36 273.191 odd 6 inner
819.2.n.g.100.17 yes 36 91.9 even 3 inner
819.2.n.g.172.2 yes 36 3.2 odd 2 inner
819.2.n.g.172.17 yes 36 1.1 even 1 trivial
819.2.s.g.289.2 yes 36 7.2 even 3
819.2.s.g.289.17 yes 36 21.2 odd 6
819.2.s.g.802.2 yes 36 13.9 even 3
819.2.s.g.802.17 yes 36 39.35 odd 6